151
|
|
152
|
Sanchez TW, Debnath B, Christ F, Otake H, Debyser Z, Neamati N. Discovery of novel inhibitors of LEDGF/p75-IN protein-protein interactions. Bioorg Med Chem 2013; 21:957-63. [PMID: 23306052 PMCID: PMC6188659 DOI: 10.1016/j.bmc.2012.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/25/2012] [Accepted: 12/03/2012] [Indexed: 11/30/2022]
Abstract
Human lens epithelium-derived growth factor (LEDGF)/p75 plays an important role in the HIV life cycle by stimulating integrase (IN)-led viral DNA integration into cellular chromosomes. Mechanistic studies show the majority of IN inhibitors chelate magnesium ions in the catalytic active site, a region topologically distant from the LEDGF/p75 binding site. Compounds disrupting the formation of LEDGF/p75 and IN complexes serve as a novel mechanistic approach different from current antiretroviral therapies. We previously built pharmacophore models mimicking LEDGF/p75 residues and identified four classes of LEDGF/p75-IN inhibitors. Substructure and similarity searches yielded additional LEDGF/p75-IN inhibitors containing an acylhydrazone moiety. The most potent of the acylhydrazones inhibited LEDGF/p75-IN interaction with an IC(50) value of 400nM. We explored structure-activity relationships (SAR) and identified new acylhydrazones, hydrazines, and diazenes as lead molecules for further optimization. Two lead LEDGF/p75-IN inhibitors showed antiviral activity.
Collapse
Affiliation(s)
- Tino Wilson Sanchez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
153
|
Parczewski M. Genomics and transcriptomics in HIV and HIV/HCV coinfection—Review of basic concepts and genome-wide association studies. HIV & AIDS REVIEW 2013. [DOI: 10.1016/j.hivar.2013.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
154
|
Suppression of HIV-1 infection by APOBEC3 proteins in primary human CD4(+) T cells is associated with inhibition of processive reverse transcription as well as excessive cytidine deamination. J Virol 2012; 87:1508-17. [PMID: 23152537 DOI: 10.1128/jvi.02587-12] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Vif protein of human immunodeficiency virus type 1 (HIV-1) promotes viral replication by downregulation of the cell-encoded, antiviral APOBEC3 proteins. These proteins exert their suppressive effects through the inhibition of viral reverse transcription as well as the induction of cytidine deamination within nascent viral cDNA. Importantly, these two effects have not been characterized in detail in human CD4(+) T cells, leading to controversies over their possible contributions to viral inhibition in the natural cell targets of HIV-1 replication. Here we use wild-type and Vif-deficient viruses derived from the CD4(+) T cells of multiple donors to examine the consequences of APOBEC3 protein function at natural levels of expression. We demonstrate that APOBEC3 proteins impart a profound deficiency to reverse transcription from the initial stages of cDNA synthesis, as well as excessive cytidine deamination (hypermutation) of the DNAs that are synthesized. Experiments using viruses from transfected cells and a novel method for mapping the 3' termini of cDNAs indicate that the inhibition of reverse transcription is not limited to a few specific sites, arguing that APOBEC3 proteins impede enzymatic processivity. Detailed analyses of mutation spectra in viral cDNA strongly imply that one particular APOBEC3 protein, APOBEC3G, provides the bulk of the antiviral phenotype in CD4(+) T cells, with the effects of APOBEC3F and APOBEC3D being less significant. Taken together, we conclude that the dual mechanisms of action of APOBEC3 proteins combine to deliver more effective restriction of HIV-1 than either function would by itself.
Collapse
|
155
|
van der Kuyl AC, Berkhout B. The biased nucleotide composition of the HIV genome: a constant factor in a highly variable virus. Retrovirology 2012; 9:92. [PMID: 23131071 PMCID: PMC3511177 DOI: 10.1186/1742-4690-9-92] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/14/2012] [Indexed: 01/09/2023] Open
Abstract
Viruses often deviate from their hosts in the nucleotide composition of their genomes. The RNA genome of the lentivirus family of retroviruses, including human immunodeficiency virus (HIV), contains e.g. an above average percentage of adenine (A) nucleotides, while being extremely poor in cytosine (C). Such a deviant base composition has implications for the amino acids that are encoded by the open reading frames (ORFs), both in the requirement of specific tRNA species and in the preference for amino acids encoded by e.g. A-rich codons. Nucleotide composition does obviously affect the secondary and tertiary structure of the RNA genome and its biological functions, but it does also influence phylogenetic analysis of viral genome sequences, and possibly the activity of the integrated DNA provirus. Over time, the nucleotide composition of the HIV-1 genome is exceptionally conserved, varying by less than 1% per base position per isolate within either group M, N, or O during 1983–2009. This extreme stability of the nucleotide composition may possibly be achieved by negative selection, perhaps conserving semi-stable RNA secondary structure as reverse transcription would be significantly affected for a less A-rich genome where secondary structures are expected to be more stable and thus more difficult to unfold. This review will discuss all aspects of the lentiviral genome composition, both of the RNA and of its derived double-stranded DNA genome, with a focus on HIV-1, the nucleotide composition over time, the effects of artificially humanized codons as well as contributions of immune system pressure on HIV nucleotide bias.
Collapse
Affiliation(s)
- Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Meibergdreef 15, Amsterdam, AZ 1105, The Netherlands.
| | | |
Collapse
|
156
|
Dapp MJ, Heineman RH, Mansky LM. Interrelationship between HIV-1 fitness and mutation rate. J Mol Biol 2012; 425:41-53. [PMID: 23084856 DOI: 10.1016/j.jmb.2012.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 11/16/2022]
Abstract
Differences in replication fidelity, as well as mutator and antimutator strains, suggest that virus mutation rates are heritable and prone to natural selection. Human immunodeficiency virus type 1 (HIV-1) has many distinct advantages for the study of mutation rate optimization given the wealth of structural and biochemical data on HIV-1 reverse transcriptase (RT) and mutants. In this study, we conducted parallel analyses of mutation rate and viral fitness. In particular, a panel of 10 RT mutants-most having drug resistance phenotypes-was analyzed for their effects on viral fidelity and fitness. Fidelity differences were measured using single-cycle vector assays, while fitness differences were identified using ex vivo head-to-head competition assays. As anticipated, virus mutants possessing either higher or lower fidelity had a corresponding loss in fitness. While the virus panel was not chosen randomly, it is interesting that it included more viruses possessing a mutator phenotype rather than viruses possessing an antimutator phenotype. These observations provide the first description of an interrelationship between HIV-1 fitness and mutation rate and support the conclusion that mutator and antimutator phenotypes correlate with reduced viral fitness. In addition, the findings here help support a model in which fidelity comes at a cost of replication kinetics and may help explain why retroviruses like HIV-1 and RNA viruses maintain replication fidelity near the extinction threshold.
Collapse
Affiliation(s)
- Michael J Dapp
- Institute for Molecular Virology, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
157
|
Abstract
The efficacy of an antiretroviral (ARV) treatment regimen depends on the activity of the regimen's individual ARV drugs and the number of HIV-1 mutations required for the development of resistance to each ARV - the genetic barrier to resistance. ARV resistance impairs the response to therapy in patients with transmitted resistance, unsuccessful initial ARV therapy and multiple virological failures. Genotypic resistance testing is used to identify transmitted drug resistance, provide insight into the reasons for virological failure in treated patients, and help guide second-line and salvage therapies. In patients with transmitted drug resistance, the virological response to a regimen selected on the basis of standard genotypic testing approaches the responses observed in patients with wild-type viruses. However, because such patients are at a higher risk of harbouring minority drug-resistant variants, initial ARV therapy in this population should contain a boosted protease inhibitor (PI) - the drug class with the highest genetic barrier to resistance. In patients receiving an initial ARV regimen with a high genetic barrier to resistance, the most common reasons for virological failure are nonadherence and, potentially, pharmacokinetic factors or minority transmitted drug-resistant variants. Among patients in whom first-line ARVs have failed, the patterns of drug-resistance mutations and cross-resistance are often predictable. However, the extent of drug resistance correlates with the duration of uncontrolled virological replication. Second-line therapy should include the continued use of a dual nucleoside/nucleotide reverse transcriptase inhibitor (NRTI)-containing backbone, together with a change in the non-NRTI component, most often to an ARV belonging to a new drug class. The number of available fully active ARVs is often diminished with each successive treatment failure. Therefore, a salvage regimen is likely to be more complicated in that it may require multiple ARVs with partial residual activity and compromised genetic barriers of resistance to attain complete virological suppression. A thorough examination of the patient's ARV history and prior resistance tests should be performed because genotypic and/or phenotypic susceptibility testing is often not sufficient to identify drug-resistant variants that emerged during past therapies and may still pose a threat to a new regimen. Phenotypic testing is also often helpful in this subset of patients. ARVs used for salvage therapy can be placed into the following hierarchy: (i) ARVs belonging to a previously unused drug class; (ii) ARVs belonging to a previously used drug class that maintain significant residual antiviral activity; (iii) NRTI combinations, as these often appear to retain in vivo virological activity, even in the presence of reduced in vitro NRTI susceptibility; and rarely (iv) ARVs associated with previous virological failure and drug resistance that appear to have possibly regained their activity as a result of viral reversion to wild type. Understanding the basic principles of HIV drug resistance is helpful in guiding individual clinical decisions and the development of ARV treatment guidelines.
Collapse
Affiliation(s)
- Michele W Tang
- Stanford University, Division of Infectious Diseases, Stanford, CA 94305-5107, USA.
| | | |
Collapse
|
158
|
Abstract
Reverse transcription and integration are the defining features of the Retroviridae; the common name "retrovirus" derives from the fact that these viruses use a virally encoded enzyme, reverse transcriptase (RT), to convert their RNA genomes into DNA. Reverse transcription is an essential step in retroviral replication. This article presents an overview of reverse transcription, briefly describes the structure and function of RT, provides an introduction to some of the cellular and viral factors that can affect reverse transcription, and discusses fidelity and recombination, two processes in which reverse transcription plays an important role. In keeping with the theme of the collection, the emphasis is on HIV-1 and HIV-1 RT.
Collapse
Affiliation(s)
- Wei-Shau Hu
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland 21702-1201, USA
| | | |
Collapse
|
159
|
Tripathi K, Balagam R, Vishnoi NK, Dixit NM. Stochastic simulations suggest that HIV-1 survives close to its error threshold. PLoS Comput Biol 2012; 8:e1002684. [PMID: 23028282 PMCID: PMC3441496 DOI: 10.1371/journal.pcbi.1002684] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 07/22/2012] [Indexed: 12/22/2022] Open
Abstract
The use of mutagenic drugs to drive HIV-1 past its error threshold presents a novel intervention strategy, as suggested by the quasispecies theory, that may be less susceptible to failure via viral mutation-induced emergence of drug resistance than current strategies. The error threshold of HIV-1, , however, is not known. Application of the quasispecies theory to determine poses significant challenges: Whereas the quasispecies theory considers the asexual reproduction of an infinitely large population of haploid individuals, HIV-1 is diploid, undergoes recombination, and is estimated to have a small effective population size in vivo. We performed population genetics-based stochastic simulations of the within-host evolution of HIV-1 and estimated the structure of the HIV-1 quasispecies and . We found that with small mutation rates, the quasispecies was dominated by genomes with few mutations. Upon increasing the mutation rate, a sharp error catastrophe occurred where the quasispecies became delocalized in sequence space. Using parameter values that quantitatively captured data of viral diversification in HIV-1 patients, we estimated to be substitutions/site/replication, ∼2–6 fold higher than the natural mutation rate of HIV-1, suggesting that HIV-1 survives close to its error threshold and may be readily susceptible to mutagenic drugs. The latter estimate was weakly dependent on the within-host effective population size of HIV-1. With large population sizes and in the absence of recombination, our simulations converged to the quasispecies theory, bridging the gap between quasispecies theory and population genetics-based approaches to describing HIV-1 evolution. Further, increased with the recombination rate, rendering HIV-1 less susceptible to error catastrophe, thus elucidating an added benefit of recombination to HIV-1. Our estimate of may serve as a quantitative guideline for the use of mutagenic drugs against HIV-1. Currently available antiretroviral drugs curtail HIV infection but fail to eradicate the virus. A strategy of intervention radically different from that employed by current drugs has been proposed by the molecular quasispecies theory. The theory predicts that increasing the viral mutation rate beyond a critical value, called the error threshold, would cause a severe loss of genetic information, potentially leading to viral clearance. Several chemical mutagens are now being developed that can increase the mutation rate of HIV-1. Their success depends on reliable estimates of the error threshold of HIV-1, which are currently lacking. The quasispecies theory cannot be applied directly to HIV-1: the theory considers an infinitely large population of asexually reproducing haploid individuals, whereas HIV-1 is diploid, undergoes recombination, and is estimated to have a small effective population size in vivo. We employed detailed stochastic simulations that overcome the limitations of the quasispecies theory and accurately mimic HIV-1 evolution in vivo. With these simulations, we estimated the error threshold of HIV-1 to be ∼2–6-fold higher than its natural mutation rate, suggesting that HIV-1 survives close to its error threshold and may be readily susceptible to mutagenic drugs.
Collapse
Affiliation(s)
- Kushal Tripathi
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Rajesh Balagam
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | | | - Narendra M. Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
160
|
Margeridon-Thermet S, Shafer RW. Comparison of the Mechanisms of Drug Resistance among HIV, Hepatitis B, and Hepatitis C. Viruses 2012; 2:2696-739. [PMID: 21243082 PMCID: PMC3020796 DOI: 10.3390/v2122696] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) are the most prevalent deadly chronic viral diseases. HIV is treated by small molecule inhibitors. HBV is treated by immunomodulation and small molecule inhibitors. HCV is currently treated primarily by immunomodulation but many small molecules are in clinical development. Although HIV is a retrovirus, HBV is a double-stranded DNA virus, and HCV is a single-stranded RNA virus, antiviral drug resistance complicates the development of drugs and the successful treatment of each of these viruses. Although their replication cycles, therapeutic targets, and evolutionary mechanisms are different, the fundamental approaches to identifying and characterizing HIV, HBV, and HCV drug resistance are similar. This review describes the evolution of HIV, HBV, and HCV within individuals and populations and the genetic mechanisms associated with drug resistance to each of the antiviral drug classes used for their treatment.
Collapse
|
161
|
Ultrasensitive allele-specific PCR reveals rare preexisting drug-resistant variants and a large replicating virus population in macaques infected with a simian immunodeficiency virus containing human immunodeficiency virus reverse transcriptase. J Virol 2012; 86:12525-30. [PMID: 22933296 DOI: 10.1128/jvi.01963-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been proposed that most drug-resistant mutants, resulting from a single-nucleotide change, exist at low frequency in human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) populations in vivo prior to the initiation of antiretroviral therapy (ART). To test this hypothesis and to investigate the emergence of resistant mutants with drug selection, we developed a new ultrasensitive allele-specific PCR (UsASP) assay, which can detect drug resistance mutations at a frequency of ≥0.001% of the virus population. We applied this assay to plasma samples obtained from macaques infected with an SIV variant containing HIV-1 reverse transcriptase (RT) (RT-simian-human immunodeficiency [SHIV](mne)), before and after they were exposed to a short course of efavirenz (EFV) monotherapy. We detected RT inhibitor (RTI) resistance mutations K65R and M184I but not K103N in 2 of 2 RT-SHIV-infected macaques prior to EFV exposure. After three doses over 4 days of EFV monotherapy, 103N mutations (AAC and AAT) rapidly emerged and increased in the population to levels of ∼20%, indicating that they were present prior to EFV exposure. The rapid increase of 103N mutations from <0.001% to 20% of the viral population indicates that the replicating virus population size in RT-SHIV-infected macaques must be 10(6) or more infected cells per replication cycle.
Collapse
|
162
|
Rossolillo P, Winter F, Simon-Loriere E, Gallois-Montbrun S, Negroni M. Retrovolution: HIV-driven evolution of cellular genes and improvement of anticancer drug activation. PLoS Genet 2012; 8:e1002904. [PMID: 22927829 PMCID: PMC3426553 DOI: 10.1371/journal.pgen.1002904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/01/2012] [Indexed: 11/21/2022] Open
Abstract
In evolution strategies aimed at isolating molecules with new functions, screening for the desired phenotype is generally performed in vitro or in bacteria. When the final goal of the strategy is the modification of the human cell, the mutants selected with these preliminary screenings may fail to confer the desired phenotype, due to the complex networks that regulate gene expression in higher eukaryotes. We developed a system where, by mimicking successive infection cycles with HIV-1 derived vectors containing the gene target of the evolution in their genome, libraries of gene mutants are generated in the human cell, where they can be directly screened. As a proof of concept we created a library of mutants of the human deoxycytidine kinase (dCK) gene, involved in the activation of nucleoside analogues used in cancer treatment, with the aim of isolating a variant sensitizing cancer cells to the chemotherapy compound Gemcitabine, to be used in gene therapy for anti-cancer approaches or as a poorly immunogenic negative selection marker for cell transplantation approaches. We describe the isolation of a dCK mutant, G12, inducing a 300-fold sensitization to Gemcitabine in cells originally resistant to the prodrug (Messa 10K), an effect 60 times stronger than the one induced by the wt enzyme. The phenotype is observed in different tumour cell lines irrespective of the insertion site of the transgene and is due to a change in specificity of the mutated kinase in favour of the nucleoside analogue. The mutations characterizing G12 are distant from the active site of the enzyme and are unpredictable on a rational basis, fully validating the pragmatic approach followed. Besides the potential interest of the G12 dCK variant for therapeutic purposes, the methodology developed is of interest for a large panel of applications in biotechnology and basic research. We exploited the error-prone replication machinery of HIV-1 and its ability to stably introduce transgenes in human cells to develop a novel system, Retrovolution, to generate libraries of mutants of cellular genes. When libraries are screened to isolate variants that modify the phenotype of the human cell for biomedical applications or basic research, false positives often arise from the classical screening procedures performed in vitro or in bacteria. Retrovolution allows an easy screening of the libraries directly in the human cell, where they are generated. We describe the creation and screening of a library of the hdCK (a human kinase activating several anticancer compounds) gene, to identify variants increasing the sensitivity of cancer cells to treatment with low, poorly toxic doses of the anticancer drug Gemcitabine. We isolated a dCK variant inducing death in tumour cells at doses up to 300 times lower than those required for killing non-engineered cells. The mutant presents mutations unpredictable on structural basis and revealed a change in enzymatic properties that accounts for the observed cellular effect. Besides the intrinsic interest of the mutant identified, these results fully validate Retrovolution as a mutagenesis system with broad applications in applied and basic research.
Collapse
Affiliation(s)
- Paola Rossolillo
- Architecture et Reactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Flore Winter
- Architecture et Reactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Etienne Simon-Loriere
- Architecture et Reactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
- Institut Pasteur, Unité de Génétique Fonctionnelle de Maladies Infectieuses, Paris, France
| | - Sarah Gallois-Montbrun
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Matteo Negroni
- Architecture et Reactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
- * E-mail:
| |
Collapse
|
163
|
Brégnard C, Pacini G, Danos O, Basmaciogullari S. Suboptimal provirus expression explains apparent nonrandom cell coinfection with HIV-1. J Virol 2012; 86:8810-20. [PMID: 22696639 PMCID: PMC3421764 DOI: 10.1128/jvi.00831-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/04/2012] [Indexed: 11/20/2022] Open
Abstract
Despite the ability of primate lentiviruses to prevent infected cells from being reinfected, cell coinfection has occurred in the past and has shaped virus evolution by promoting the biogenesis of heterozygous virions and recombination during reverse transcription. In vitro experiments have shown that cell coinfection with HIV is more frequent than would be expected if coinfection were a random process. A possible explanation for this bias is the heterogeneity of target cells and the preferred infection of a subpopulation. To address this question, we compared the frequency of double-positive cells measured following coincubation with green fluorescent protein (GFP) and DsRed HIV reporter viruses with that of stochastic coinfection calculated as the product of the frequencies of GFP- and DsRed-positive cells upon incubation with either reporter virus. Coinfection was more frequent than would be expected on the grounds of stochastic infection, due to the underestimation of single-infection frequencies, which mathematically decreased the calculated frequency. Indeed, when cells were incubated with either reporter virus, a fraction of the cells were scored as uninfected yet harbored a silent provirus that was reactivated upon coinfection through cross talk between viral elements. When such cross talk was avoided, experimental and calculated coinfection frequencies matched, indicating random coinfection. The proportion of infected cells harboring a silent provirus was estimated from coinfection experiments and was shown to be cell type dependent but independent of the virus entry route.
Collapse
Affiliation(s)
- Christelle Brégnard
- Hôpital Necker-Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Inserm U845, Paris, France
| | - Gregory Pacini
- Hôpital Necker-Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Inserm U845, Paris, France
| | - Olivier Danos
- Hôpital Necker-Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Inserm U845, Paris, France
- Cancer Institute, University College London, London, United Kingdom
| | - Stéphane Basmaciogullari
- Hôpital Necker-Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Inserm U845, Paris, France
| |
Collapse
|
164
|
Smyth RP, Davenport MP, Mak J. The origin of genetic diversity in HIV-1. Virus Res 2012; 169:415-29. [PMID: 22728444 DOI: 10.1016/j.virusres.2012.06.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 06/10/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
One of the hallmarks of HIV infection is the rapid development of a genetically complex population (quasispecies) from an initially limited number of infectious particles. Genetic diversity remains one of the major obstacles to eradication of HIV. The viral quasispecies can respond rapidly to selective pressures, such as that imposed by the immune system and antiretroviral therapy, and frustrates vaccine design efforts. Two unique features of retroviral replication are responsible for the unprecedented variation generated during infection. First, mutations are frequently introduced into the viral genome by the error prone viral reverse transcriptase and through the actions of host cellular factors, such as the APOBEC family of nucleic acid editing enzymes. Second, the HIV reverse transcriptase can utilize both copies of the co-packaged viral genome in a process termed retroviral recombination. When the co-packaged viral genomes are genetically different, retroviral recombination can lead to the shuffling of mutations between viral genomes in the quasispecies. This review outlines the stages of the retroviral life cycle where genetic variation is introduced, focusing on the principal mechanisms of mutation and recombination. Understanding the mechanistic origin of genetic diversity is essential to combating HIV.
Collapse
Affiliation(s)
- Redmond P Smyth
- Centre for Virology, Burnet Institute, 85 Commercial Road, Melbourne, Victoria 3004, Australia
| | | | | |
Collapse
|
165
|
Abstract
Human immunodeficiency virus type 1 (HIV-1), hepatitis B virus (HBV), and herpes simplex virus (HSV) have been incurable to date because effective antiviral therapies target only replicating viruses and do not eradicate latently integrated or nonreplicating episomal viral genomes. Endonucleases that can target and cleave critical regions within latent viral genomes are currently in development. These enzymes are being engineered with high specificity such that off-target binding of cellular DNA will be absent or minimal. Imprecise nonhomologous-end-joining (NHEJ) DNA repair following repeated cleavage at the same critical site may permanently disrupt translation of essential viral proteins. We discuss the benefits and drawbacks of three types of DNA cleavage enzymes (zinc finger endonucleases, transcription activator-like [TAL] effector nucleases [TALENs], and homing endonucleases [also called meganucleases]), the development of delivery vectors for these enzymes, and potential obstacles for successful treatment of chronic viral infections. We then review issues regarding persistence of HIV-1, HBV, and HSV that are relevant to eradication with genome-altering approaches.
Collapse
|
166
|
Mansouri S, Kutky M, Hudak KA. Pokeweed antiviral protein increases HIV-1 particle infectivity by activating the cellular mitogen activated protein kinase pathway. PLoS One 2012; 7:e36369. [PMID: 22563495 PMCID: PMC3341375 DOI: 10.1371/journal.pone.0036369] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/05/2012] [Indexed: 11/18/2022] Open
Abstract
Pokeweed antiviral protein (PAP) is a plant-derived N-glycosidase that exhibits antiviral activity against several viruses. The enzyme removes purine bases from the messenger RNAs of the retroviruses Human immunodeficiency virus-1 and Human T-cell leukemia virus-1. This depurination reduces viral protein synthesis by stalling elongating ribosomes at nucleotides with a missing base. Here, we transiently expressed PAP in cells with a proviral clone of HIV-1 to examine the effect of the protein on virus production and quality. PAP reduced virus production by approximately 450-fold, as measured by p24 ELISA of media containing virions, which correlated with a substantial decline in virus protein synthesis in cells. However, particles released from PAP-expressing cells were approximately 7-fold more infectious, as determined by single-cycle infection of 1G5 cells and productive infection of MT2 cells. This increase in infectivity was not likely due to changes in the processing of HIV-1 polyproteins, RNA packaging efficiency or maturation of virus. Rather, expression of PAP activated the ERK1/2 MAPK pathway to a limited extent, resulting in increased phosphorylation of viral p17 matrix protein. The increase in infectivity of HIV-1 particles produced from PAP-expressing cells was compensated by the reduction in virus number; that is, virus production decreased upon de novo infection of cells over time. However, our findings emphasize the importance of investigating the influence of heterologous protein expression upon host cells when assessing their potential for antiviral applications.
Collapse
Affiliation(s)
- Sheila Mansouri
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Meherzad Kutky
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Katalin A. Hudak
- Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
167
|
Hill AL, Rosenbloom DIS, Nowak MA. Evolutionary dynamics of HIV at multiple spatial and temporal scales. J Mol Med (Berl) 2012; 90:543-61. [PMID: 22552382 PMCID: PMC7080006 DOI: 10.1007/s00109-012-0892-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/24/2012] [Accepted: 03/07/2012] [Indexed: 11/28/2022]
Abstract
Infectious diseases remain a formidable challenge to human health, and understanding pathogen evolution is crucial to designing effective therapeutics and control strategies. Here, we review important evolutionary aspects of HIV infection, highlighting the concept of selection at multiple spatial and temporal scales. At the smallest scale, a single cell may be infected by multiple virions competing for intracellular resources. Recombination and phenotypic mixing introduce novel evolutionary dynamics. As the virus spreads between cells in an infected individual, it continually evolves to circumvent the immune system. We discuss evolutionary mechanisms of HIV pathogenesis and progression to AIDS. Viral spread throughout the human population can lead to changes in virulence and the transmission of immune-evading variation. HIV emerged as a human pathogen due to selection occurring between different species, adapting from related viruses of primates. HIV also evolves resistance to antiretroviral drugs within a single infected host, and we explore the possibility for the spread of these strains between hosts, leading to a drug-resistant epidemic. We investigate the role of latency, drug-protected compartments, and direct cell-to-cell transmission on viral evolution. The introduction of an HIV vaccine may select for viral variants that escape vaccine control, both within an individual and throughout the population. Due to the strong selective pressure exerted by HIV-induced morbidity and mortality in many parts of the world, the human population itself may be co-evolving in response to the HIV pandemic. Throughout the paper, we focus on trade-offs between costs and benefits that constrain viral evolution and accentuate how selection pressures differ at different levels of selection.
Collapse
Affiliation(s)
- Alison L Hill
- Program for Evolutionary Dynamics, Department of Mathematics, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
168
|
Koning FA, Goujon C, Bauby H, Malim MH. Target cell-mediated editing of HIV-1 cDNA by APOBEC3 proteins in human macrophages. J Virol 2011; 85:13448-52. [PMID: 21957290 PMCID: PMC3233168 DOI: 10.1128/jvi.00775-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 09/22/2011] [Indexed: 01/29/2023] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins are encapsidated by assembling HIV-1 virions and edit viral cDNA in the next round of infection. Using alpha interferon (IFN-α)-treated monocyte-derived macrophages, we show that infrequent editing of HIV-1 reverse transcripts can also be mediated by APOBEC3 proteins supplied by the targets of infection. Based on the local sequence contexts of these mutations and the established characteristics of APOBEC3 protein expression in myeloid cells, we speculate that APOBEC3A may be responsible for a substantial proportion of this activity.
Collapse
Affiliation(s)
| | | | | | - Michael H. Malim
- Department of Infectious Diseases, King's College London School of Medicine, London SE1 9RT, United Kingdom
| |
Collapse
|
169
|
Skar H, Hedskog C, Albert J. HIV-1 evolution in relation to molecular epidemiology and antiretroviral resistance. Ann N Y Acad Sci 2011; 1230:108-18. [PMID: 21824168 DOI: 10.1111/j.1749-6632.2011.06128.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
HIV/AIDS has become one of the most important infectious diseases with a cumulative number of almost 60 million infections worldwide. The prevalence and epidemiological patterns are unevenly distributed across the globe and also within countries. HIV is one of the fastest evolving organisms known. Several genetically distinct subtypes are present and new circulating recombinant forms are continuously emerging. This review discusses HIV-1 evolution in relation to molecular epidemiology and antiretroviral resistance. Factors and concepts that influence global spread and within-patient evolution of HIV-1 are discussed as well as future perspectives on the use of phylodynamics in HIV epidemiology.
Collapse
Affiliation(s)
- Helena Skar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| | | | | |
Collapse
|
170
|
Belshaw R, Sanjuán R, Pybus OG. Viral mutation and substitution: units and levels. Curr Opin Virol 2011; 1:430-5. [PMID: 22440847 DOI: 10.1016/j.coviro.2011.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 08/11/2011] [Indexed: 01/11/2023]
Abstract
Viruses evolve within a hierarchy of organisational levels, from cells to host species. We discuss how these nested population structures complicate the meaning and interpretation of two apparently simple evolutionary concepts: mutation rate and substitution rate. We discuss the units in which these fundamental processes should be measured, and explore why, even for the same virus, mutation and substitution can occur at very different tempos at different biological levels. In addition, we explore the ability of whole genome evolutionary analyses to distinguish between natural selection and other population genetic processes. A better understanding of the complexities underlying the molecular evolution of viruses in natural populations is needed before accurate predictions of viral evolution can be made.
Collapse
Affiliation(s)
- Robert Belshaw
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom.
| | | | | |
Collapse
|
171
|
Ibe S, Sugiura W. Clinical significance of HIV reverse-transcriptase inhibitor-resistance mutations. Future Microbiol 2011; 6:295-315. [PMID: 21449841 DOI: 10.2217/fmb.11.7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this article, we summarize recent knowledge on drug-resistance mutations within HIV reverse transcriptase (RT). Several large-scale HIV-1 genotypic analyses have revealed that the most prevalent nucleos(t)ide analog RT inhibitor (NRTI)-resistance mutation is M184V/I followed by a series of thymidine analog-associated mutations: M41L, D67N, K70R, L210W, T215Y/F and K219Q/E. Among non-nucleoside RT inhibitor (NNRTI)-resistance mutations, K103N was frequently observed, followed by Y181C and G190A. Interestingly, V106M was identified in HIV-1 subtype C as a subtype-specific multi-NNRTI-resistance mutation. Regarding mutations in the HIV-1 RT C-terminal region, including the connection subdomain and RNase H domain, their clinical impacts are still controversial, although their effects on NRTI and NNRTI resistance have been confirmed in vitro. In HIV-2 infections, the high prevalence of the Q151M mutation associated with multi-NRTI resistance has been frequently observed.
Collapse
Affiliation(s)
- Shiro Ibe
- Department of Infection & Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | | |
Collapse
|
172
|
A high level of mutation tolerance in the multifunctional sequence encoding the RNA encapsidation signal of an avian hepatitis B virus and slow evolution rate revealed by in vivo infection. J Virol 2011; 85:9300-13. [PMID: 21752921 DOI: 10.1128/jvi.05005-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In all hepadnaviruses, protein-primed reverse transcription of the pregenomic RNA (pgRNA) is initiated by binding of the viral polymerase, P protein, to the ε RNA element. Universally, ε consists of a lower stem and an upper stem, separated by a bulge, and an apical loop. Complex formation triggers pgRNA encapsidation and the ε-templated synthesis of a DNA oligonucleotide (priming) that serves to generate minus-strand DNA. In vitro systems for duck hepatitis B virus (DHBV) yielded important insights into the priming mechanism, yet their relevance in infection is largely unexplored. Moreover, additional functions encoded in the DHBV ε (Dε) sequence could affect in vivo fitness. We therefore assessed the in vivo performances of five recombinant DHBVs bearing multiple mutations in the upper Dε stem. Three variants with only modestly reduced in vitro replication competence established chronic infection in ducks. From one variant but not another, three adapted new variants emerged upon passaging, as demonstrated by increased relative fitness in coinfections with wild-type DHBV. All three showed enhanced priming and replication competence in vitro, and in one, DHBV e antigen (DHBeAg) production was restored. Pronounced impacts on other Dε functions were not detected; however, gradual, synergistic contributions to overall performance are suggested by the fact of none of the variants reaching the in vivo fitness of wild-type virus. These data shed more light on the P-Dε interaction, define important criteria for the design of future in vivo evolution experiments, and suggest that the upper Dε stem sequences provided an evolutionary playground for DHBV to optimize in vivo fitness.
Collapse
|
173
|
Nedellec R, Coetzer M, Lederman MM, Offord RE, Hartley O, Mosier DE. Resistance to the CCR5 inhibitor 5P12-RANTES requires a difficult evolution from CCR5 to CXCR4 coreceptor use. PLoS One 2011; 6:e22020. [PMID: 21760945 PMCID: PMC3132774 DOI: 10.1371/journal.pone.0022020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 06/12/2011] [Indexed: 01/17/2023] Open
Abstract
Viral resistance to small molecule allosteric inhibitors of CCR5 is well documented, and involves either selection of preexisting CXCR4-using HIV-1 variants or envelope sequence evolution to use inhibitor-bound CCR5 for entry. Resistance to macromolecular CCR5 inhibitors has been more difficult to demonstrate, although selection of CXCR4-using variants might be expected. We have compared the in vitro selection of HIV-1 CC1/85 variants resistant to either the small molecule inhibitor maraviroc (MVC) or the macromolecular inhibitor 5P12-RANTES. High level resistance to MVC was conferred by the same envelope mutations as previously reported after 16–18 weeks of selection by increasing levels of MVC. The MVC-resistant mutants were fully sensitive to inhibition by 5P12-RANTES. By contrast, only transient and low level resistance to 5P12-RANTES was achieved in three sequential selection experiments, and each resulted in a subsequent collapse of virus replication. A fourth round of selection by 5P12-RANTES led, after 36 weeks, to a “resistant” variant that had switched from CCR5 to CXCR4 as a coreceptor. Envelope sequences diverged by 3.8% during selection of the 5P12-RANTES resistant, CXCR4-using variants, with unique and critical substitutions in the V3 region. A subset of viruses recovered from control cultures after 44 weeks of passage in the absence of inhibitors also evolved to use CXCR4, although with fewer and different envelope mutations. Control cultures contained both viruses that evolved to use CXCR4 by deleting four amino acids in V3, and others that maintained entry via CCR5. These results suggest that coreceptor switching may be the only route to resistance for compounds like 5P12-RANTES. This pathway requires more mutations and encounters more fitness obstacles than development of resistance to MVC, confirming the clinical observations that resistance to small molecule CCR5 inhibitors very rarely involves coreceptor switching.
Collapse
Affiliation(s)
- Rebecca Nedellec
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Mia Coetzer
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael M. Lederman
- Department of Medicine, Case Western Reserve University, University Hospitals/Case Medical Center, Cleveland, Ohio, United States of America
| | - Robin E. Offord
- Mintaka Foundation for Medical Research, Geneva, Switzerland
| | - Oliver Hartley
- Department of Structural Biology and Bioinformatics, University of Geneva, Geneva, Switzerland
| | - Donald E. Mosier
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
174
|
Ibeh BO, Obidoa O, Nwuke C. Lipid Peroxidation Correlates with HIVmRNA in Serodiscordant Heterosexual HIVpartners of Nigerian Origin. Indian J Clin Biochem 2011; 26:249-56. [PMID: 22754188 PMCID: PMC3162947 DOI: 10.1007/s12291-011-0120-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 02/02/2011] [Indexed: 11/24/2022]
Abstract
We recruited 59 individuals of known HIV serostatus after informed consent however, 44 were serodiscordant heterosexual partners [serodiscordant seronegative (SSN group) and serodiscordant seropositive (SSP group)] while 15 were seronegative healthy individuals (SNH). In the case-control study we choose to determine Malondialdehyde (MDA) concentration as a marker of lipid peroxidation index (oxidative stress) spectrophotometrically and quantify HIV mRNA by Real Time-nucleic acid sequence based amplification assay (RT-NASBA). Here our result show for the first time a high concentration of lipid peroxidation product (MDA, 116.6%) with a significant (P < 0.05) increase in HIV serodiscordant seropositive subjects over their seronegative partners. However, Spearman rank correlation statistics of SSP group showed a positive correlation value (P < 0.01, r = 0.89) between MDA and mRNA and a negative correlation between MDA and T-cell ratio (P < 0.01, r = 0.96).The study may strongly indicate a possible lipid peroxidation product threshold for predicting HIV infection and progression in serodiscordant heterosexual partners.
Collapse
Affiliation(s)
- Bartholomew O. Ibeh
- Department of Biochemistry, University of Nigeria, Nsukka, Nigeria
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, P.M.B. 7267, Umuahia, Abia State Nigeria
| | - Onyechi Obidoa
- Department of Biochemistry, University of Nigeria, Nsukka, Nigeria
| | - Chinedu Nwuke
- R & D Department, Shell Petroleum, PortHarcourt, Nigeria
| |
Collapse
|
175
|
Thomas JA, Shatzer TL, Gorelick RJ. Blocking premature reverse transcription fails to rescue the HIV-1 nucleocapsid-mutant replication defect. Retrovirology 2011; 8:46. [PMID: 21682883 PMCID: PMC3141651 DOI: 10.1186/1742-4690-8-46] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/17/2011] [Indexed: 02/06/2023] Open
Abstract
Background The nucleocapsid (NC) protein of HIV-1 is critical for viral replication. Mutational analyses have demonstrated its involvement in viral assembly, genome packaging, budding, maturation, reverse transcription, and integration. We previously reported that two conservative NC mutations, His23Cys and His44Cys, cause premature reverse transcription such that mutant virions contain approximately 1,000-fold more DNA than wild-type virus, and are replication defective. In addition, both mutants show a specific defect in integration after infection. Results In the present study we investigated whether blocking premature reverse transcription would relieve the infectivity defects, which we successfully performed by transfecting proviral plasmids into cells cultured in the presence of high levels of reverse transcriptase inhibitors. After subsequent removal of the inhibitors, the resulting viruses showed no significant difference in single-round infective titer compared to viruses where premature reverse transcription did occur; there was no rescue of the infectivity defects in the NC mutants upon reverse transcriptase inhibitor treatment. Surprisingly, time-course endogenous reverse transcription assays demonstrated that the kinetics for both the NC mutants were essentially identical to wild-type when premature reverse transcription was blocked. In contrast, after infection of CD4+ HeLa cells, it was observed that while the prevention of premature reverse transcription in the NC mutants resulted in lower quantities of initial reverse transcripts, the kinetics of reverse transcription were not restored to that of untreated wild-type HIV-1. Conclusions Premature reverse transcription is not the cause of the replication defect but is an independent side-effect of the NC mutations.
Collapse
Affiliation(s)
- James A Thomas
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc,, NCI at Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|