151
|
Abe H, Mine J, Parchariyanon S, Takemae N, Boonpornprasert P, Ubonyaem N, Patcharasinghawut P, Nuansrichay B, Tanikawa T, Tsunekuni R, Saito T. Co-infection of influenza A viruses of swine contributes to effective shuffling of gene segments in a naturally reared pig. Virology 2015; 484:203-212. [PMID: 26115167 DOI: 10.1016/j.virol.2015.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 11/26/2022]
Abstract
Following the 2009 H1N1 pandemic, surveillance activities have been accelerated globally to monitor the emergence of novel reassortant viruses. However, the mechanism by which influenza A viruses of swine (IAV-S) acquire novel gene constellations through reassortment events in natural settings remains poorly understood. To explore the mechanism, we collected 785 nasal swabs from pigs in a farm in Thailand from 2011 to 2014. H3N2, H3N1, H1N1 and H1N2 IAVs-S were isolated from a single co-infected sample by plaque purification and showed a high degree of diversity of the genome. In particular, the H1N1 isolates, possessing a novel gene constellation previously unreported in Thailand, exhibited greater variation in internal genes than H3N2 IAVs-S. A pair of isolates, designated H3N2-B and H1N1-D, was determined to have been initially introduced to the farm. These results demonstrate that numerous IAVs-S with various gene constellations can be created in a single co-infected pig via reassortment.
Collapse
Affiliation(s)
- Haruka Abe
- Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Ibaraki, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center (ZDCC), Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Junki Mine
- Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Ibaraki, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center (ZDCC), Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Sujira Parchariyanon
- National Institute of Animal Health, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Nobuhiro Takemae
- Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Ibaraki, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center (ZDCC), Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | | | - Namfon Ubonyaem
- National Institute of Animal Health, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | | | - Bandit Nuansrichay
- National Institute of Animal Health, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Taichiro Tanikawa
- Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Ibaraki, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center (ZDCC), Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Ryota Tsunekuni
- Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Ibaraki, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center (ZDCC), Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Takehiko Saito
- Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Ibaraki, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center (ZDCC), Kasetklang, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
152
|
Grgić H, Costa M, Friendship RM, Carman S, Nagy É, Poljak Z. Genetic Characterization of H1N1 and H1N2 Influenza A Viruses Circulating in Ontario Pigs in 2012. PLoS One 2015; 10:e0127840. [PMID: 26030614 PMCID: PMC4452332 DOI: 10.1371/journal.pone.0127840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/21/2015] [Indexed: 12/18/2022] Open
Abstract
The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada) in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1)pdm09). One H1N2 isolate had hemagglutinin (HA), polymerase A (PA) and non-structural (NS) genes closely related to A(H1N1)pdm09, and neuraminidase (NA), matrix (M), polymerase B1 (PB1), polymerase B2 (PB2), and nucleoprotein (NP) genes originating from a triple-reassortant H3N2 virus (tr H3N2). The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1)pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa) changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors.
Collapse
Affiliation(s)
- Helena Grgić
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- Centre for Public Health and Zoonoses, University of Guelph, Guelph, Ontario, Canada
| | - Marcio Costa
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- Centre for Public Health and Zoonoses, University of Guelph, Guelph, Ontario, Canada
| | - Robert M. Friendship
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- Centre for Public Health and Zoonoses, University of Guelph, Guelph, Ontario, Canada
| | - Susy Carman
- Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, Ontario, N1H 6R8, Canada
- Centre for Public Health and Zoonoses, University of Guelph, Guelph, Ontario, Canada
| | - Éva Nagy
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- Centre for Public Health and Zoonoses, University of Guelph, Guelph, Ontario, Canada
| | - Zvonimir Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- Centre for Public Health and Zoonoses, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
153
|
Bowman AS, Nolting JM, Massengill R, Baker J, Workman JD, Slemons RD. Influenza A Virus Surveillance in Waterfowl in Missouri, USA, 2005-2013. Avian Dis 2015; 59:303-8. [PMID: 26473682 PMCID: PMC8611411 DOI: 10.1637/11002-121014-reg] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Missouri, United States, is located within the Mississippi Migratory Bird Flyway where wild waterfowl stop to feed and rest during migration and, weather permitting, to overwinter. Historically, Missouri has experienced sporadic influenza A virus (IAV) outbreaks in poultry and commercial swine. The introduction of IAVs from wild, migratory waterfowl is one possible source for the IAV, IAV genomic segments, or both involved in these outbreaks in key agricultural species. During 2005 through 2013, 3984 cloacal swabs were collected from hunter-harvested waterfowl in Missouri as part of an active IAV surveillance effort. Twenty-four avian species were represented in the sample population and 108 (2.7%) of the samples tested positive for IAV recovery. These IAV isolates represented 12 HA and nine NA subtypes and at least 27 distinct HA-NA combinations. An H14 IAV isolate recovered in Missouri during the sample period provided evidence for further establishment of the H14 subtype in North American wild waterfowl and gave proof that the previously rare subtype is more genetically diverse than previously detected. The present surveillance effort also produced IAV isolates that were genomically linked to the highly pathogenic H7N3 IAV strain that emerged in 2012 and caused severe disease in Mexico's domestic poultry. The presence of antigenically diverse IAV's circulating in wild waterfowl in the vicinity of commercial poultry and swine, along with the association of several wild-bird-lineage IAV genomic segments in viruses infecting poultry in North America, justifies continued attention to biosecurity efforts in food animal production systems and ongoing active IAV surveillance in wild birds.
Collapse
Affiliation(s)
| | | | - Rose Massengill
- United States Department of Agriculture, Animal and Plant Health Inspection Service, 1715 Southridge Drive, Jefferson City, MO 65109
- Missouri Department of Agriculture, P.O. Box 630, Jefferson City, MO 65102
| | - Joseph Baker
- Missouri Department of Agriculture, P.O. Box 630, Jefferson City, MO 65102
| | | | | |
Collapse
|
154
|
Neumann G, Kawaoka Y. Transmission of influenza A viruses. Virology 2015; 479-480:234-46. [PMID: 25812763 PMCID: PMC4424116 DOI: 10.1016/j.virol.2015.03.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 02/10/2015] [Accepted: 03/02/2015] [Indexed: 12/25/2022]
Abstract
Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to 'novel' viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages.
Collapse
Affiliation(s)
- Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA; Division of Virology, Department of Microbiology and Immunology and International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
155
|
Nelson MI, Viboud C, Vincent AL, Culhane MR, Detmer SE, Wentworth DE, Rambaut A, Suchard MA, Holmes EC, Lemey P. Global migration of influenza A viruses in swine. Nat Commun 2015; 6:6696. [PMID: 25813399 PMCID: PMC4380236 DOI: 10.1038/ncomms7696] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 02/19/2015] [Indexed: 11/13/2022] Open
Abstract
The complex and unresolved evolutionary origins of the 2009 H1N1 influenza pandemic exposed major gaps in our knowledge of the global spatial ecology and evolution of influenza A viruses in swine (swIAVs). Here we undertake an expansive phylogenetic analysis of swIAV sequence data and demonstrate that the global live swine trade strongly predicts the spatial dissemination of swIAVs, with Europe and North America acting as sources of viruses in Asian countries. In contrast, China has the world’s largest swine population but is not a major exporter of live swine, and is not an important source of swIAVs in neighboring Asian countries or globally. A meta-population simulation model incorporating trade data predicts that the global ecology of swIAVs is more complex than previously thought, and the US and China’s large swine populations are unlikely to be representative of swIAV diversity in their respective geographic regions, requiring independent surveillance efforts throughout Latin America and Asia.
Collapse
Affiliation(s)
- Martha I Nelson
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Cécile Viboud
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Amy L Vincent
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - Marie R Culhane
- University of Minnesota Veterinary Diagnostic Laboratory, St Paul, Minnesota 55108, USA
| | - Susan E Detmer
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | | | - Andrew Rambaut
- 1] Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland 20892, USA [2] Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 FLT, UK [3] Centre for Immunology, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 FLT, UK
| | - Marc A Suchard
- Departments of Biomathematics, Biostatistics, and Human Genetics, University of California, Los Angeles, California 90095, USA
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, University of Sydney, Sydney New South Wales 2006, Australia
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
156
|
De Vleeschauwer A, Qiu Y, Van Reeth K. Vaccination-challenge studies with a Port Chalmers/73 (H3N2)-based swine influenza virus vaccine: Reflections on vaccine strain updates and on the vaccine potency test. Vaccine 2015; 33:2360-6. [PMID: 25804707 DOI: 10.1016/j.vaccine.2015.03.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/18/2015] [Accepted: 03/11/2015] [Indexed: 11/30/2022]
Abstract
The human A/Port Chalmers/1/73 (H3N2) influenza virus strain, the supposed ancestor of European H3N2 swine influenza viruses (SIVs), was used in most commercial SIV vaccines in Europe until recently. If manufacturers want to update vaccine strains, they have to perform laborious intratracheal (IT) challenge experiments and demonstrate reduced virus titres in the lungs of vaccinated pigs. We aimed to examine (a) the ability of a Port Chalmers/73-based commercial vaccine to induce cross-protection against a contemporary European H3N2 SIV and serologic cross-reaction against H3N2 SIVs from Europe and North America and (b) the validity of intranasal (IN) challenge and virus titrations of nasal swabs as alternatives for IT challenge and titrations of lung tissue in vaccine potency tests. Pigs were vaccinated with Suvaxyn Flu(®) and challenged by the IT or IN route with sw/Gent/172/08. Post-vaccination sera were examined in haemagglutination-inhibition assays against vaccine and challenge strains and additional H3N2 SIVs from Europe and North America, including an H3N2 variant virus. Tissues of the respiratory tract and nasal swabs were collected 3 days post challenge (DPCh) and from 0-7 DPCh, respectively, and examined by virus titration. Two vaccinations consistently induced cross-reactive antibodies against European H3N2 SIVs from 1998-2012, but minimal or undetectable antibody titres against North American viruses. Challenge virus titres in the lungs, trachea and nasal mucosa of the vaccinated pigs were significantly reduced after both IT and IN challenge. Yet the reduction of virus titres and nasal shedding was greater after IT challenge. The Port Chalmers/73-based vaccine still offered protection against a European H3N2 SIV isolated 35 years later and with only 86.9% amino acid homology in its HA1, but it is unlikely to protect against H3N2 SIVs that are endemic in North America. We use our data to reflect on vaccine strain updates and on the vaccine potency test.
Collapse
Affiliation(s)
- Annebel De Vleeschauwer
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Yu Qiu
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Kristien Van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| |
Collapse
|
157
|
Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression. J Virol 2015; 89:5651-67. [PMID: 25762737 DOI: 10.1128/jvi.00087-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/04/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. IMPORTANCE Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment independent of differential sialic acid distribution. The findings also establish that circulating neuraminidase (NA) and PA genes could alter the pathogenic phenotype of the pandemic H1N1 virus, resulting in enhanced disease. The identification of such factors provides a framework for pandemic modeling and surveillance.
Collapse
|
158
|
Development of a TaqMan MGB RT-PCR for the rapid detection of H3 subtype avian influenza virus circulating in China. J Virol Methods 2015; 217:64-9. [PMID: 25745957 DOI: 10.1016/j.jviromet.2015.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/16/2015] [Accepted: 02/11/2015] [Indexed: 11/20/2022]
Abstract
Previous studies demonstrated that the H3 avian influenza virus (AIV) in China is isolated most frequently from wild birds and live poultry markets. However, there is no subtype-specific real-time polymerase chain reaction (RT-PCR) available for the rapid and highly sensitive identification of H3 AIV. In this study, a TaqMan minor groove binder (MGB) probe and a pair of primers were designed based on a conserved region in the hemagglutinin gene of H3 AIV. These were used to generate an H3-MGB RT-PCR assay that recognizes only H3 AIV. The detection limit of the H3-MGB RT-PCR was 10 copies of DNA per reaction when 10-fold serial dilutions of T-H3HA plasmid were used as the template. This was 1000-times more sensitive than conventional RT-PCR. In experimental samples obtained from oropharyngeal swabs or cloacal swabs, the virus was detected in all ducks using H3-MGB RT-PCR, whereas only one duck tested positive for the virus in oropharyngeal swabs tested using conventional RT-PCR. The H3-MGB RT-PCR assay developed in this study is a sensitive and rapid tool for screening H3 AIV in China.
Collapse
|
159
|
Characterization of co-circulating swine influenza A viruses in North America and the identification of a novel H1 genetic clade with antigenic significance. Virus Res 2015; 201:24-31. [PMID: 25701742 DOI: 10.1016/j.virusres.2015.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/13/2015] [Accepted: 02/10/2015] [Indexed: 01/07/2023]
Abstract
Multiple genetically and antigenically distinct hemagglutinin genes of the H1 and H3 influenza A virus (IAV) subtypes co-circulate in North American swine. This diversity has evolved by repeated transmission of IAVs from humans to swine and subsequent antigenic drift in swine. To understand the evolutionary dynamics of these diverse HA lineages in North American swine, we undertook a phylogenetic analysis of 1576 H1 and 607 H3 HA gene segments, as well as 834 N1 and 1293 N2 NA gene segments, and 2126 M gene segments. These data revealed yearly co-circulation of H1N1, H1N2, and H3N2 viruses, with three HA clades representing the majority of the HA sequences: of the H1 viruses, 42% were classified as H1δ1 and 40.6% were classified as H1γ; and of the H3 viruses 53% were classified as cluster IV-A H3N2. We detected a genetically distinct minor clade consisting of 37 H1 viruses isolated between 2003 and 2013, which we classified as H1γ-2. We estimated that this clade circulated in swine since approximately 1995, but it was not detected in swine until 2003. Though this clade only represents 1.07% of swine H1 sequences reported over the past 10 years, hemagglutination inhibition (HI) assays demonstrated that representatives of this clade of viruses are antigenically distinct, and, when measured using antigenic cartography, were as many as 7 antigenic units from other H1γ viruses. Therefore vaccines against the contemporary H1γ viruses are not likely to cross-protect against γ-2 viruses. The long-term circulation of these γ-2 viruses suggests that minor populations of viruses may be underreported in the national dataset given the long branch lengths and gaps in detections. The identification of these γ-2 viruses demonstrates the need for robust surveillance to capture the full diversity IAVs in swine in the USA and the importance of antigenic drift in the diversification and emergence of new antigenic variants in swine, which complicates vaccine design.
Collapse
|
160
|
Efficient isolation of Swine influenza viruses by age-targeted specimen collection. J Clin Microbiol 2015; 53:1331-8. [PMID: 25694523 DOI: 10.1128/jcm.02941-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The control of swine influenza virus (SIV) infection is paramount for increasing the productivity of pig farming and minimizing the threat of pandemic outbreaks. Thus, SIV surveillance should be conducted by region and on a regular basis. Here, we established a microneutralization assay specific for SIV seroprevalence surveillance by using reporter gene-expressing recombinant influenza viruses. Growth-based SIV seroprevalence revealed that most sows and piglets were positive for neutralizing antibodies against influenza viruses. In contrast, the 90-day-old growing pigs exhibited limited neutralizing activity in their sera, suggesting that this particular age of population is most susceptible to SIV infection and thus is an ideal age group for SIV isolation. From nasal swab specimens of healthy pigs in this age population, we were able to isolate SIVs at a higher incidence (5.3%) than those of previous reports. Nucleotide sequencing and phylogenetic analysis of the hemagglutinin (HA) genes revealed that the isolated SIVs have circulated and evolved in pigs but not have been recently introduced from humans, implying that a large number of SIV lineages may remain "undiscovered" in the global porcine populations. We propose that the 90-day-old growing pig-targeted nasal swab collection presented in this study facilitates global SIV surveillance and contributes to the detection and control of SIV infection.
Collapse
|
161
|
Kanehira K, Takemae N, Uchida Y, Hikono H, Saito T. Reassortant swine influenza viruses isolated in Japan contain genes from pandemic A(H1N1) 2009. Microbiol Immunol 2015; 58:327-41. [PMID: 24750464 DOI: 10.1111/1348-0421.12152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/03/2014] [Accepted: 04/14/2014] [Indexed: 11/27/2022]
Abstract
In 2013, three reassortant swine influenza viruses (SIVs)-two H1N2 and one H3N2-were isolated from symptomatic pigs in Japan; each contained genes from the pandemic A(H1N1) 2009 virus and endemic SIVs. Phylogenetic analysis revealed that the two H1N2 viruses, A/swine/Gunma/1/2013 and A/swine/Ibaraki/1/2013, were reassortants that contain genes from the following three distinct lineages: (i) H1 and nucleoprotein (NP) genes derived from a classical swine H1 HA lineage uniquely circulating among Japanese SIVs; (ii) neuraminidase (NA) genes from human-like H1N2 swine viruses; and (iii) other genes from pandemic A(H1N1) 2009 viruses. The H3N2 virus, A/swine/Miyazaki/2/2013, comprised genes from two sources: (i) hemagglutinin (HA) and NA genes derived from human and human-like H3N2 swine viruses and (ii) other genes from pandemic A(H1N1) 2009 viruses. Phylogenetic analysis also indicated that each of the reassortants may have arisen independently in Japanese pigs. A/swine/Miyazaki/2/2013 were found to have strong antigenic reactivities with antisera generated for some seasonal human-lineage viruses isolated during or before 2003, whereas A/swine/Miyazaki/2/2013 reactivities with antisera against viruses isolated after 2004 were clearly weaker. In addition, antisera against some strains of seasonal human-lineage H1 viruses did not react with either A/swine/Gunma/1/2013 or A/swine/Ibaraki/1/2013. These findings indicate that emergence and spread of these reassortant SIVs is a potential public health risk.
Collapse
Affiliation(s)
- Katsushi Kanehira
- Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | | | | | | | | |
Collapse
|
162
|
Nelson MI, Vincent AL. Reverse zoonosis of influenza to swine: new perspectives on the human-animal interface. Trends Microbiol 2015; 23:142-53. [PMID: 25564096 DOI: 10.1016/j.tim.2014.12.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 01/09/2023]
Abstract
The origins of the 2009 influenza A (H1N1) pandemic in swine are unknown, highlighting gaps in our understanding of influenza A virus (IAV) ecology and evolution. We review how recently strengthened influenza virus surveillance in pigs has revealed that influenza virus transmission from humans to swine is far more frequent than swine-to-human zoonosis, and is central in seeding swine globally with new viral diversity. The scale of global human-to-swine transmission represents the largest 'reverse zoonosis' of a pathogen documented to date. Overcoming the bias towards perceiving swine as sources of human viruses, rather than recipients, is key to understanding how the bidirectional nature of the human-animal interface produces influenza threats to both hosts.
Collapse
Affiliation(s)
- Martha I Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, US Department of Agriculture (USDA) Agricultural Research Service (ARS), Ames, IA 50010, USA
| |
Collapse
|
163
|
Abstract
Influenza A viruses (IAVs) infect a variety of hosts, including humans, swine, and various avian species. The annual influenza disease burden in the human population remains significant even with current vaccine usage, and much about the pathogenesis and transmission of influenza viruses in humans remains unclear. Thus, animal models are a fundamental tool for influenza research to understand mechanisms of virulence and to develop more efficacious vaccines and forms of prevention or treatment. The choice of experimental model to be used should be based on the species characteristics and similarities to humans, and how the limitations of each host interfere the least with the parameters studied. Influenza virus infection in swine has many similarities with that in humans: the same subtypes are endemic in both species, there has been repeated exchange of viruses between these hosts, the clinical manifestation and pathogenesis are similar, and there is a similar distribution of IAV receptors in the respiratory tract. Considering these common characteristics, and the similarities between humans and swine in terms of genetics, anatomy, and physiology, pigs represent an excellent yet often overlooked model for biomedical research and the study of IAV infection.
Collapse
Affiliation(s)
- Daniela S Rajao
- Daniela S. Rajao, DVM, PhD, is a visiting research microbiologist post-doctoral associate, and Amy L. Vincent, DVM, PhD, is a research veterinary medical officer in the Virus and Prion Research Unit at the National Animal Disease Center of the Agricultural Research Service (ARS) of the United States Department of Agriculture (USDA) in Ames, Iowa
| | - Amy L Vincent
- Daniela S. Rajao, DVM, PhD, is a visiting research microbiologist post-doctoral associate, and Amy L. Vincent, DVM, PhD, is a research veterinary medical officer in the Virus and Prion Research Unit at the National Animal Disease Center of the Agricultural Research Service (ARS) of the United States Department of Agriculture (USDA) in Ames, Iowa
| |
Collapse
|
164
|
Pathogenicity and transmissibility of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 genes in pigs. J Virol 2014; 89:2831-41. [PMID: 25540372 DOI: 10.1128/jvi.03355-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED At least 10 different genotypes of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 [A(H1N1)pdm09] gene(s) have been identified in U.S. pigs, including the H3N2 variant with a single A(H1N1)pdm09 M gene, which has infected more than 300 people. To date, only three genotypes of these viruses have been evaluated in animal models, and the pathogenicity and transmissibility of the other seven genotype viruses remain unknown. Here, we show that three H3N2 reassortant viruses that contain 3 (NP, M, and NS) or 5 (PA, PB2, NP, M, and NS) genes from A(H1N1)pdm09 were pathogenic in pigs, similar to the endemic H3N2 swine virus. However, the reassortant H3N2 virus with 3 A(H1N1)pdm09 genes and a recent human influenza virus N2 gene was transmitted most efficiently among pigs, whereas the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes was transmitted less efficiently than the endemic H3N2 virus. Interestingly, the polymerase complex of reassortant H3N2 virus with 5 A(H1N1)pdm09 genes showed significantly higher polymerase activity than those of endemic and reassortant H3N2 viruses with 3 A(H1N1)pdm09 genes. Further studies showed that an avian-like glycine at position 228 at the hemagglutinin (HA) receptor binding site is responsible for inefficient transmission of the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes. Taken together, our results provide insights into the pathogenicity and transmissibility of novel reassortant H3N2 viruses in pigs and suggest that a mammalian-like serine at position 228 in the HA is critical for the transmissibility of these reassortant H3N2 viruses. IMPORTANCE Swine influenza is a highly contagious zoonotic disease that threatens animal and public health. Introduction of 2009 pandemic H1N1 virus [A(H1N1)pdm09] into swine herds has resulted in novel reassortant influenza viruses in swine, including H3N2 and H1N2 variants that have caused human infections in the United States. We showed that reassortant H3N2 influenza viruses with 3 or 5 genes from A(H1N1)pdm09 isolated from diseased pigs are pathogenic and transmissible in pigs, but the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes displayed less efficient transmissibility than the endemic and reassortant H3N2 viruses with 3 A(H1N1)pdm09 genes. Further studies revealed that an avian-like glycine at the HA 228 receptor binding site of the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes is responsible for less efficient transmissibility in pigs. Our results provide insights into viral pathogenesis and the transmission of novel reassortant H3N2 viruses that are circulating in U.S. swine herds and warrant future surveillance.
Collapse
|
165
|
Zhang N, Zheng BJ, Lu L, Zhou Y, Jiang S, Du L. Advancements in the development of subunit influenza vaccines. Microbes Infect 2014; 17:123-34. [PMID: 25529753 DOI: 10.1016/j.micinf.2014.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 12/19/2022]
Abstract
The ongoing threat of influenza epidemics and pandemics has emphasized the importance of developing safe and effective vaccines against infections from divergent influenza viruses. In this review, we first introduce the structure and life cycle of influenza A viruses, describing major influenza A virus-caused pandemics. We then compare different types of influenza vaccines and discuss current advancements in the development of subunit influenza vaccines, particularly those based on nucleoprotein (NP), extracellular domain of matrix protein 2 (M2e) and hemagglutinin (HA) proteins. We also illustrate potential strategies for improving the efficacy of subunit influenza vaccines.
Collapse
Affiliation(s)
- Naru Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Bo-Jian Zheng
- Department of Microbiology, University of Hong Kong, Pokfulam, Hong Kong
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA; Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China.
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.
| |
Collapse
|
166
|
Feng Z, Baroch JA, Long LP, Xu Y, Cunningham FL, Pedersen K, Lutman MW, Schmit BS, Bowman AS, Deliberto TJ, Wan XF. Influenza A subtype H3 viruses in feral swine, United States, 2011-2012. Emerg Infect Dis 2014; 20:843-6. [PMID: 24751326 PMCID: PMC4012812 DOI: 10.3201/eid2005.131578] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To determine whether, and to what extent, influenza A subtype H3 viruses were present in feral swine in the United States, we conducted serologic and virologic surveillance during October 2011-September 2012. These animals were periodically exposed to and infected with A(H3N2) viruses, suggesting they may threaten human and animal health.
Collapse
|
167
|
Thomas M, Wang Z, Sreenivasan CC, Hause BM, Gourapura J Renukaradhya, Li F, Francis DH, Kaushik RS, Khatri M. Poly I:C adjuvanted inactivated swine influenza vaccine induces heterologous protective immunity in pigs. Vaccine 2014; 33:542-8. [PMID: 25437101 PMCID: PMC7115561 DOI: 10.1016/j.vaccine.2014.11.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/14/2014] [Accepted: 11/19/2014] [Indexed: 11/28/2022]
Abstract
Intranasal administration of Poly I:C adjuvanted bivalent swine influenza vaccine induced challenge virus-specific HI antibodies. Poly I:C adjuvanted vaccine also induced IgA and IgG antibodies in the lungs. Poly I:C adjuvanted vaccine provided protection against antigenic variant and heterologous swine influenza viruses.
Swine influenza is widely prevalent in swine herds in North America and Europe causing enormous economic losses and a public health threat. Pigs can be infected by both avian and mammalian influenza viruses and are sources of generation of reassortant influenza viruses capable of causing pandemics in humans. Current commercial vaccines provide satisfactory immunity against homologous viruses; however, protection against heterologous viruses is not adequate. In this study, we evaluated the protective efficacy of an intranasal Poly I:C adjuvanted UV inactivated bivalent swine influenza vaccine consisting of Swine/OH/24366/07 H1N1 and Swine/CO/99 H3N2, referred as PAV, in maternal antibody positive pigs against an antigenic variant and a heterologous swine influenza virus challenge. Groups of three-week-old commercial-grade pigs were immunized intranasally with PAV or a commercial vaccine (CV) twice at 2 weeks intervals. Three weeks after the second immunization, pigs were challenged with the antigenic variant Swine/MN/08 H1N1 (MN08) and the heterologous Swine/NC/10 H1N2 (NC10) influenza virus. Antibodies in serum and respiratory tract, lung lesions, virus shedding in nasal secretions and virus load in lungs were assessed. Intranasal administration of PAV induced challenge viruses specific-hemagglutination inhibition- and IgG antibodies in the serum and IgA and IgG antibodies in the respiratory tract. Importantly, intranasal administration of PAV provided protection against the antigenic variant MN08 and the heterologous NC10 swine influenza viruses as evidenced by significant reductions in lung virus load, gross lung lesions and significantly reduced shedding of challenge viruses in nasal secretions. These results indicate that Poly I:C or its homologues may be effective as vaccine adjuvants capable of generating cross-protective immunity against antigenic variants/heterologous swine influenza viruses in pigs.
Collapse
Affiliation(s)
- Milton Thomas
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Zhao Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Chithra C Sreenivasan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Ben M Hause
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Feng Li
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA; Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - David H Francis
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
| | - Radhey S Kaushik
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA; Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Mahesh Khatri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA.
| |
Collapse
|
168
|
Grgić H, Costa M, Friendship RM, Carman S, Nagy É, Wideman G, Weese S, Poljak Z. Molecular characterization of H3N2 influenza A viruses isolated from Ontario swine in 2011 and 2012. Virol J 2014; 11:194. [PMID: 25416300 PMCID: PMC4245826 DOI: 10.1186/s12985-014-0194-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/29/2014] [Indexed: 01/19/2023] Open
Abstract
Background Data about molecular diversity of commonly circulating type A influenza viruses in Ontario swine are scarce. Yet, this information is essential for surveillance of animal and public health, vaccine updates, and for understanding virus evolution and its large-scale spread. Methods The study population consisted of 21 swine herds with clinical problems due to respiratory disease. Nasal swabs from individual pigs were collected and tested by virus isolation in MDCK cells and by rtRT-PCR. All eight segments of 10 H3N2 viruses were sequenced using high-throughput sequencing and molecularly characterized. Results Within-herd prevalence ranged between 2 and 100%. Structurally, Ontario H3N2 viruses could be classified into three different groups. Group 1 was the most similar to the original trH3N2 virus from 2005. Group 2 was the most similar to the Ontario turkey H3N2 isolates with PB1 and NS genes originating from trH3N2 virus and M, PB2, PA and NP genes originating from the A(H1N1)pdm09 virus. All Group 3 internal genes were genetically related to A(H1N1)pdm09. Analysis of antigenic sites of HA1 showed that Group 1 had 8 aa changes within 4 antigenic sites, A(1), B(3), C(2) and E(2). The Group 2 viruses had 8 aa changes within 3 antigenic sites A(3), B(3) and C(2), while Group 3 viruses had 4 aa changes within 3 antigenic sites, B(1), D(1) and E(2), when compared to the cluster IV H3N2 virus [A/swine/Ontario/33853/2005/(H3N2)]. Conclusions The characterization of the Ontario H3N2 viruses clearly indicates reassortment of gene segments between the North American swine trH3N2 from cluster IV and the A(H1N1)pdm09 virus. Electronic supplementary material The online version of this article (doi:10.1186/s12985-014-0194-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helena Grgić
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2 W1, Canada. .,Centre for Public Health and Zoonoses, University of Guelph, Guelph, Canada.
| | - Marcio Costa
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2 W1, Canada. .,Centre for Public Health and Zoonoses, University of Guelph, Guelph, Canada.
| | - Robert M Friendship
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2 W1, Canada. .,Centre for Public Health and Zoonoses, University of Guelph, Guelph, Canada.
| | - Susy Carman
- Animal Health Laboratory, University of Guelph, Guelph, Ontario, N1H 6R8, Canada.
| | - Éva Nagy
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2 W1, Canada. .,Centre for Public Health and Zoonoses, University of Guelph, Guelph, Canada.
| | - Greg Wideman
- South-West Ontario Veterinary Services, Stratford, Ontario, Canada.
| | - Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2 W1, Canada. .,Centre for Public Health and Zoonoses, University of Guelph, Guelph, Canada.
| | - Zvonimir Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2 W1, Canada. .,Centre for Public Health and Zoonoses, University of Guelph, Guelph, Canada.
| |
Collapse
|
169
|
Gauger PC, Loving CL, Khurana S, Lorusso A, Perez DR, Kehrli ME, Roth JA, Golding H, Vincent AL. Live attenuated influenza A virus vaccine protects against A(H1N1)pdm09 heterologous challenge without vaccine associated enhanced respiratory disease. Virology 2014; 471-473:93-104. [PMID: 25461535 DOI: 10.1016/j.virol.2014.10.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 09/22/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
Live-attenuated influenza virus (LAIV) vaccines may provide cross-protection against contemporary influenza A virus (IAV) in swine. Conversely, whole inactivated virus (WIV) vaccines have the potential risk of vaccine-associated enhanced respiratory disease (VAERD) when challenged with IAV of substantial antigenic drift. A temperature sensitive, intranasal H1N2 LAIV was compared to wild type exposure (WT) and an intramuscular WIV vaccine in a model shown to induce VAERD. WIV vaccinated swine challenged with pandemic A/H1N1 (H1N1pdm09) were not protected from infection and demonstrated severe respiratory disease consistent with VAERD. Lung lesions were mild and challenge virus was not detected in the respiratory tract of LAIV vaccinates. High levels of post-vaccination IgG serum antibodies targeting the H1N1pdm09 HA2 stalk domain were exclusively detected in the WIV group and associated with increased H1N1pdm09 virus infectivity in MDCK cells. In contrast, infection-enhancing antibodies were not detected in the serum of LAIV vaccinates and VAERD was not observed.
Collapse
Affiliation(s)
- Phillip C Gauger
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50010, USA; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Crystal L Loving
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50010, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA
| | - Alessio Lorusso
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50010, USA
| | - Daniel R Perez
- Department of Veterinary Medicine, University of Maryland, College Park, and Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, USA
| | - Marcus E Kehrli
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50010, USA
| | - James A Roth
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA
| | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50010, USA.
| |
Collapse
|
170
|
Powell JD, Dlugolenski D, Nagy T, Gabbard J, Lee C, Tompkins SM, Tripp RA. Polymerase discordance in novel swine influenza H3N2v constellations is tolerated in swine but not human respiratory epithelial cells. PLoS One 2014; 9:e110264. [PMID: 25330303 PMCID: PMC4199677 DOI: 10.1371/journal.pone.0110264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/04/2014] [Indexed: 12/03/2022] Open
Abstract
Swine-origin H3N2v, a variant of H3N2 influenza virus, is a concern for novel reassortment with circulating pandemic H1N1 influenza virus (H1N1pdm09) in swine because this can lead to the emergence of a novel pandemic virus. In this study, the reassortment prevalence of H3N2v with H1N1pdm09 was determined in swine cells. Reassortants evaluated showed that the H1N1pdm09 polymerase (PA) segment occurred within swine H3N2 with ∼80% frequency. The swine H3N2-human H1N1pdm09 PA reassortant (swH3N2-huPA) showed enhanced replication in swine cells, and was the dominant gene constellation. Ferrets infected with swH3N2-huPA had increased lung pathogenicity compared to parent viruses; however, swH3N2-huPA replication in normal human bronchoepithelial cells was attenuated - a feature linked to expression of IFN-β and IFN-λ genes in human but not swine cells. These findings indicate that emergence of novel H3N2v influenza constellations require more than changes in the viral polymerase complex to overcome barriers to cross-species transmission. Additionally, these findings reveal that while the ferret model is highly informative for influenza studies, slight differences in pathogenicity may not necessarily be indicative of human outcomes after infection.
Collapse
Affiliation(s)
- Joshua D. Powell
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Daniel Dlugolenski
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Jon Gabbard
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Christopher Lee
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Stephen M. Tompkins
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Ralph A. Tripp
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
171
|
Schaefer R, Rech RR, Gava D, Cantão ME, da Silva MC, Silveira S, Zanella JRC. A human-like H1N2 influenza virus detected during an outbreak of acute respiratory disease in swine in Brazil. Arch Virol 2014; 160:29-38. [PMID: 25209152 DOI: 10.1007/s00705-014-2223-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/30/2014] [Indexed: 11/25/2022]
Abstract
Passive monitoring for detection of influenza A viruses (IAVs) in pigs has been carried out in Brazil since 2009, detecting mostly the A(H1N1)pdm09 influenza virus. Since then, outbreaks of acute respiratory disease suggestive of influenza A virus infection have been observed frequently in Brazilian pig herds. During a 2010-2011 influenza monitoring, a novel H1N2 influenza virus was detected in nursery pigs showing respiratory signs. The pathologic changes were cranioventral acute necrotizing bronchiolitis to subacute proliferative and purulent bronchointerstitial pneumonia. Lung tissue samples were positive for both influenza A virus and A(H1N1)pdm09 influenza virus based on RT-qPCR of the matrix gene. Two IAVs were isolated in SPF chicken eggs. HI analysis of both swine H1N2 influenza viruses showed reactivity to the H1δ cluster. DNA sequencing was performed for all eight viral gene segments of two virus isolates. According to the phylogenetic analysis, the HA and NA genes clustered with influenza viruses of the human lineage (H1-δ cluster, N2), whereas the six internal gene segments clustered with the A(H1N1)pdm09 group. This is the first report of a reassortant human-like H1N2 influenza virus derived from pandemic H1N1 virus causing an outbreak of respiratory disease in pigs in Brazil. The emergence of a reassortant IAV demands the close monitoring of pigs through the full-genome sequencing of virus isolates in order to enhance genetic information about IAVs circulating in pigs.
Collapse
Affiliation(s)
- Rejane Schaefer
- Embrapa Swine and Poultry, Genetic and Animal Health Laboratory, Rodovia BR153, Km 110, Concórdia, SC, CEP 89700-000, Brazil,
| | | | | | | | | | | | | |
Collapse
|
172
|
Accumulation of human-adapting mutations during circulation of A(H1N1)pdm09 influenza virus in humans in the United Kingdom. J Virol 2014; 88:13269-83. [PMID: 25210166 PMCID: PMC4249111 DOI: 10.1128/jvi.01636-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The influenza pandemic that emerged in 2009 provided an unprecedented opportunity to study adaptation of a virus recently acquired from an animal source during human transmission. In the United Kingdom, the novel virus spread in three temporally distinct waves between 2009 and 2011. Phylogenetic analysis of complete viral genomes showed that mutations accumulated over time. Second- and third-wave viruses replicated more rapidly in human airway epithelial (HAE) cells than did the first-wave virus. In infected mice, weight loss varied between viral isolates from the same wave but showed no distinct pattern with wave and did not correlate with viral load in the mouse lungs or severity of disease in the human donor. However, second- and third-wave viruses induced less alpha interferon in the infected mouse lungs. NS1 protein, an interferon antagonist, had accumulated several mutations in second- and third-wave viruses. Recombinant viruses with the third-wave NS gene induced less interferon in human cells, but this alone did not account for increased virus fitness in HAE cells. Mutations in HA and NA genes in third-wave viruses caused increased binding to α-2,6-sialic acid and enhanced infectivity in human mucus. A recombinant virus with these two segments replicated more efficiently in HAE cells. A mutation in PA (N321K) enhanced polymerase activity of third-wave viruses and also provided a replicative advantage in HAE cells. Therefore, multiple mutations allowed incremental changes in viral fitness, which together may have contributed to the apparent increase in severity of A(H1N1)pdm09 influenza virus during successive waves. IMPORTANCE Although most people infected with the 2009 pandemic influenza virus had mild or unapparent symptoms, some suffered severe and devastating disease. The reasons for this variability were unknown, but the numbers of severe cases increased during successive waves of human infection in the United Kingdom. To determine the causes of this variation, we studied genetic changes in virus isolates from individual hospitalized patients. There were no consistent differences between these viruses and those circulating in the community, but we found multiple evolutionary changes that in combination over time increased the virus's ability to infect human cells. These adaptations may explain the remarkable ability of A(H1N1)pdm09 virus to continue to circulate despite widespread immunity and the apparent increase in severity of influenza over successive waves of infection.
Collapse
|
173
|
Liang H, Lam TTY, Fan X, Chen X, Zeng Y, Zhou J, Duan L, Tse M, Chan CH, Li L, Leung TY, Yip CH, Cheung CL, Zhou B, Smith DK, Poon LLM, Peiris M, Guan Y, Zhu H. Expansion of genotypic diversity and establishment of 2009 H1N1 pandemic-origin internal genes in pigs in China. J Virol 2014; 88:10864-74. [PMID: 25008935 PMCID: PMC4178866 DOI: 10.1128/jvi.01327-14] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/02/2014] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Two-way transmission of influenza viruses between humans and swine has been frequently observed, and the occurrence of the 2009 H1N1 pandemic influenza virus (pdm/09) demonstrated that swine-origin viruses could facilitate the genesis of a pandemic strain. Although multiple introductions to and reassortment in swine of the pdm/09 virus have been repeatedly reported in both Eurasia and the Americas, its long-term impact on the development of swine influenza viruses (SIVs) has not been systematically explored. Our comprehensive evolutionary studies of the complete genomes of 387 SIVs obtained from 2009 to 2012 by influenza virus surveillance in China revealed 17 reassortant genotypes with pdm/09-origin genes. Even though the entire 2009 pandemic virus and its surface genes cannot persist, its internal genes have become established and are now the predominant lineages in pigs in the region. The main persistent pdm/09-origin reassortant forms had at least five pdm/09-origin internal genes, and their surface genes were primarily of European avian-like (EA) or human H3N2-like SIV origin. These findings represent a marked change in the evolutionary patterns and ecosystem of SIVs in China. It is possible that the pdm/09-origin internal genes are in the process of replacing EA or triple-reassortant-like internal genes. These alterations in the SIV gene pool need to be continually monitored to assess changes in the potential for SIV transmission to humans. IMPORTANCE Shortly after the emergence of the 2009 pandemic H1N1 (pdm/09) influenza virus, it was transmitted from humans to pigs and this continues to occur around the world. Many reassortants between pdm/09-origin viruses and enzootic swine influenza viruses (SIVs) have been detected. However, the long-term impact of pdm/09-origin viruses on the SIV gene pool, which could lead to the generation of influenza viruses with the potential to infect humans, has not been systematically examined. From extensive surveillance of SIVs over a 38-month period in southern China, it was found that although neither complete pdm/09 viruses nor their surface genes could persist in pigs, their internal genes did persist. Over the survey period, these internal genes became predominant, potentially replacing those of the enzootic SIV lineages. The altered diversity of the SIV gene pool needs to be closely monitored for changes in the potential for SIV transmission to humans.
Collapse
Affiliation(s)
- Huyi Liang
- State Key Laboratory of Emerging Infectious Diseases (Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen, China State Key Laboratory of Emerging Infectious Diseases/Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong SAR, China Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases (Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen, China State Key Laboratory of Emerging Infectious Diseases/Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong SAR, China Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China
| | - Xiaohui Fan
- Department of Microbiology, Guangxi Medical University, Nanning, China
| | - Xinchun Chen
- State Key Laboratory of Emerging Infectious Diseases (Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen, China
| | - Yu Zeng
- State Key Laboratory of Emerging Infectious Diseases (Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen, China Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China
| | - Ji Zhou
- State Key Laboratory of Emerging Infectious Diseases (Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen, China State Key Laboratory of Emerging Infectious Diseases/Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong SAR, China Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China
| | - Lian Duan
- State Key Laboratory of Emerging Infectious Diseases (Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen, China State Key Laboratory of Emerging Infectious Diseases/Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong SAR, China Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China
| | - Maying Tse
- State Key Laboratory of Emerging Infectious Diseases/Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong SAR, China
| | - Chung-Hei Chan
- State Key Laboratory of Emerging Infectious Diseases/Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong SAR, China
| | - Lifeng Li
- State Key Laboratory of Emerging Infectious Diseases/Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong SAR, China Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China
| | - Tak-Ying Leung
- State Key Laboratory of Emerging Infectious Diseases/Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong SAR, China
| | - Chun-Hung Yip
- State Key Laboratory of Emerging Infectious Diseases/Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong SAR, China
| | - Chung-Lam Cheung
- State Key Laboratory of Emerging Infectious Diseases/Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong SAR, China
| | - Boping Zhou
- State Key Laboratory of Emerging Infectious Diseases (Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen, China
| | - David K Smith
- State Key Laboratory of Emerging Infectious Diseases/Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong SAR, China Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China
| | - Leo Lit-Man Poon
- State Key Laboratory of Emerging Infectious Diseases (Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen, China State Key Laboratory of Emerging Infectious Diseases/Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong SAR, China
| | - Malik Peiris
- State Key Laboratory of Emerging Infectious Diseases (Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen, China State Key Laboratory of Emerging Infectious Diseases/Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong SAR, China
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases (Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen, China State Key Laboratory of Emerging Infectious Diseases/Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong SAR, China Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China
| | - Huachen Zhu
- State Key Laboratory of Emerging Infectious Diseases (Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen, China State Key Laboratory of Emerging Infectious Diseases/Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong SAR, China Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China
| |
Collapse
|
174
|
Rajão DS, Loving CL, Gauger PC, Kitikoon P, Vincent AL. Influenza A virus hemagglutinin protein subunit vaccine elicits vaccine-associated enhanced respiratory disease in pigs. Vaccine 2014; 32:5170-6. [PMID: 25077416 DOI: 10.1016/j.vaccine.2014.07.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/16/2014] [Accepted: 07/17/2014] [Indexed: 01/21/2023]
Abstract
Vaccine-associated enhanced respiratory disease (VAERD) can occur when pigs are challenged with heterologous virus in the presence of non-neutralizing but cross-reactive antibodies elicited by whole inactivated virus (WIV) vaccine. The aim of this study was to compare the effects of heterologous δ1-H1N2 influenza A virus (IAV) challenge of pigs after vaccination with 2009 pandemic H1N1 virus (H1N1pdm09) recombinant hemagglutinin (HA) subunit vaccine (HA-SV) or temperature-sensitive live attenuated influenza virus (LAIV) vaccine, and to assess the role of immunity to HA in the development of VAERD. Both HA-SV and LAIV vaccines induced high neutralizing antibodies to virus with homologous HA (H1N1pdm09), but not heterologous challenge virus (δ1-H1N2). LAIV partially protected pigs, resulting in reduced virus shedding and faster viral clearance, as no virus was detected in the lungs by 5 days post infection (dpi). HA-SV vaccinated pigs developed more severe lung and tracheal lesions consistent with VAERD following challenge. These results demonstrate that the immune response against the HA protein alone is sufficient to cause VAERD following heterologous challenge.
Collapse
Affiliation(s)
- Daniela S Rajão
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, PO Box 70, Ames, IA 50010, USA
| | - Crystal L Loving
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, PO Box 70, Ames, IA 50010, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1648 Vet Med, Ames, IA 50011, USA
| | - Pravina Kitikoon
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, PO Box 70, Ames, IA 50010, USA
| | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, PO Box 70, Ames, IA 50010, USA.
| |
Collapse
|
175
|
Krumbholz A, Lange J, Sauerbrei A, Groth M, Platzer M, Kanrai P, Pleschka S, Scholtissek C, Büttner M, Dürrwald R, Zell R. Origin of the European avian-like swine influenza viruses. J Gen Virol 2014; 95:2372-2376. [PMID: 25073465 DOI: 10.1099/vir.0.068569-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The avian-like swine influenza viruses emerged in 1979 in Belgium and Germany. Thereafter, they spread through many European swine-producing countries, replaced the circulating classical swine H1N1 influenza viruses, and became endemic. Serological and subsequent molecular data indicated an avian source, but details remained obscure due to a lack of relevant avian influenza virus sequence data. Here, the origin of the European avian-like swine influenza viruses was analysed using a collection of 16 European swine H1N1 influenza viruses sampled in 1979-1981 in Germany, the Netherlands, Belgium, Italy and France, as well as several contemporaneous avian influenza viruses of various serotypes. The phylogenetic trees suggested a triple reassortant with a unique genotype constellation. Time-resolved maximum clade credibility trees indicated times to the most recent common ancestors of 34-46 years (before 2008) depending on the RNA segment and the method of tree inference.
Collapse
Affiliation(s)
- Andi Krumbholz
- Institut für Virologie und Antivirale Therapie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Str. 2, D-07745 Jena, Germany
| | - Jeannette Lange
- Institut für Virologie und Antivirale Therapie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Str. 2, D-07745 Jena, Germany
| | - Andreas Sauerbrei
- Institut für Virologie und Antivirale Therapie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Str. 2, D-07745 Jena, Germany
| | - Marco Groth
- Genomanalyse, Leibniz-Institut für Altersforschung - Fritz-Lipmann-Institut, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Matthias Platzer
- Genomanalyse, Leibniz-Institut für Altersforschung - Fritz-Lipmann-Institut, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Pumaree Kanrai
- Institut für Medizinische Virologie, Justus-Liebig-Universität, Schubertstrasse 81, D-35392 Giessen, Germany
| | - Stephan Pleschka
- Institut für Medizinische Virologie, Justus-Liebig-Universität, Schubertstrasse 81, D-35392 Giessen, Germany
| | - Christoph Scholtissek
- Institut für Medizinische Virologie, Justus-Liebig-Universität, Schubertstrasse 81, D-35392 Giessen, Germany
| | - Mathias Büttner
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Veterinärstrasse 2, D-85762 Oberschleissheim, Germany
| | - Ralf Dürrwald
- Virale Vakzinen, Geschäftsbereich Tiergesundheit, IDT Biologika GmbH, Am Pharmapark, D-06861 Dessau-Rosslau, Germany
| | - Roland Zell
- Institut für Virologie und Antivirale Therapie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Str. 2, D-07745 Jena, Germany
| |
Collapse
|
176
|
Introductions and evolution of human-origin seasonal influenza a viruses in multinational swine populations. J Virol 2014; 88:10110-9. [PMID: 24965467 DOI: 10.1128/jvi.01080-14] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED The capacity of influenza A viruses to cross species barriers presents a continual threat to human and animal health. Knowledge of the human-swine interface is particularly important for understanding how viruses with pandemic potential evolve in swine hosts. We sequenced the genomes of 141 influenza viruses collected from North American swine during 2002 to 2011 and identified a swine virus that possessed all eight genome segments of human seasonal A/H3N2 virus origin. A molecular clock analysis indicates that this virus--A/sw/Saskatchewan/02903/2009(H3N2)--has likely circulated undetected in swine for at least 7 years. For historical context, we performed a comprehensive phylogenetic analysis of an additional 1,404 whole-genome sequences from swine influenza A viruses collected globally during 1931 to 2013. Human-to-swine transmission occurred frequently over this time period, with 20 discrete introductions of human seasonal influenza A viruses showing sustained onward transmission in swine for at least 1 year since 1965. Notably, human-origin hemagglutinin (H1 and H3) and neuraminidase (particularly N2) segments were detected in swine at a much higher rate than the six internal gene segments, suggesting an association between the acquisition of swine-origin internal genes via reassortment and the adaptation of human influenza viruses to new swine hosts. Further understanding of the fitness constraints on the adaptation of human viruses to swine, and vice versa, at a genomic level is central to understanding the complex multihost ecology of influenza and the disease threats that swine and humans pose to each other. IMPORTANCE The swine origin of the 2009 A/H1N1 pandemic virus underscored the importance of understanding how influenza A virus evolves in these animals hosts. While the importance of reassortment in generating genetically diverse influenza viruses in swine is well documented, the role of human-to-swine transmission has not been as intensively studied. Through a large-scale sequencing effort, we identified a novel influenza virus of wholly human origin that has been circulating undetected in swine for at least 7 years. In addition, we demonstrate that human-to-swine transmission has occurred frequently on a global scale over the past decades but that there is little persistence of human virus internal gene segments in swine.
Collapse
|
177
|
Kitikoon P, Gauger PC, Anderson TK, Culhane MR, Swenson S, Loving CL, Perez DR, Vincent AL. Swine influenza virus vaccine serologic cross-reactivity to contemporary US swine H3N2 and efficacy in pigs infected with an H3N2 similar to 2011-2012 H3N2v. Influenza Other Respir Viruses 2014; 7 Suppl 4:32-41. [PMID: 24224818 DOI: 10.1111/irv.12189] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Swine influenza A virus (IAV) reassortment with 2009 H1N1 pandemic (H1N1pdm09) virus has been documented, and new genotypes and subclusters of H3N2 have since expanded in the US swine population. An H3N2 variant (H3N2v) virus with the H1N1pdm09 matrix gene and the remaining genes of swine triple reassortant H3N2 caused outbreaks at agricultural fairs in 2011-2012. METHODS To assess commercial swine IAV vaccines' efficacy against H3N2 viruses, including those similar to H3N2v, antisera to three vaccines were tested by hemagglutinin inhibition (HI) assay against contemporary H3N2. Vaccine 1, with high HI cross-reactivity, was further investigated for efficacy against H3N2 virus infection in pigs with or without maternally derived antibodies (MDA). In addition, efficacy of a vaccine derived from whole inactivated virus (WIV) was compared with live attenuated influenza virus (LAIV) against H3N2. RESULTS Hemagglutinin inhibition cross-reactivity demonstrated that contemporary swine H3N2 viruses have drifted from viruses in current swine IAV vaccines. The vaccine with the highest level of HI cross-reactivity significantly protected pigs without MDA. However, the presence of MDA at vaccination blocked vaccine efficacy. The performance of WIV and LAIV was comparable in the absence of MDA. CONCLUSIONS Swine IAV in the United States is complex and dynamic. Vaccination to minimize virus shedding can help limit transmission of virus among pigs and people. However, vaccines must be updated. A critical review of the use of WIV in sows is required in the context of the current IAV ecology and vaccine application in pigs with MDA.
Collapse
Affiliation(s)
- Pravina Kitikoon
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Anderson TK, Nelson MI, Kitikoon P, Swenson SL, Korslund JA, Vincent AL. Population dynamics of cocirculating swine influenza A viruses in the United States from 2009 to 2012. Influenza Other Respir Viruses 2014; 7 Suppl 4:42-51. [PMID: 24224819 DOI: 10.1111/irv.12193] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Understanding the ecology and evolution of influenza A viruses (IAV) in mammalian hosts is critical to reduce disease burden in production animals and lower zoonotic infection risk in humans. Recent advances in influenza surveillance in US swine populations allow for timely epidemiological, phylogenetic, and virological analyses that monitor emergence of novel viruses and assess changes in viral population dynamics. METHODS To better understand IAV in the North American swine population, we undertook a phylogenetic analysis of 1075 HA, 1049 NA, and 1040 M sequences of IAV isolated from US swine during 2009-2012 through voluntary and anonymous submissions to the US Department of Agriculture IAV swine surveillance system. RESULTS Analyses revealed changes in population dynamics among multiple clades of A/H1N1, A/H3N2, and A/H1N2 cocirculating in US swine populations during 2009-2012. Viral isolates were categorized into one of seven genetically and antigenically distinct hemagglutinin lineages: H1α, H1β, H1γ, H1δ1, H1δ2, H1pdm09, and H3 cluster IV. There was an increase in occurrence of H1δ1 in samples submitted, with a concurrent decrease in H1pdm09. H3 cluster IV exhibited increasing diversification, warranting a re-evaluation of phylogenetic nomenclature criteria. Although H3N2 represented 25% of identified viruses, this subtype was reported in increasing proportion of sequenced isolates since late 2011. CONCLUSIONS Surveillance and reporting of IAV in US swine have increased since 2009, and we demonstrate a period of expanded viral diversity. These data may be used to inform intervention strategies of vaccine and diagnostic updates and changes in swine health management.
Collapse
Affiliation(s)
- Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | | | | | | | | | | |
Collapse
|
179
|
Chen J, Fu X, Chen Y, He S, Zheng Y, Cao Z, Yu W, Zhou H, Su S, Zhang G. Identification of four genotypes of H3N2 swine influenza virus in pigs from southern China. Arch Virol 2014; 159:2705-9. [PMID: 24810098 DOI: 10.1007/s00705-014-2040-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/27/2014] [Indexed: 11/29/2022]
Abstract
In 2011, four H3N2 swine influenza viruses (SIVs) were isolated from nasal swabs of four pigs (800 nasal swabs were collected from pigs showing influenza-like symptoms) in Guangdong province, China. Four different genotypes of H3N2 appeared among pigs in southern China, including wholly human-like H3N2 viruses, intermediate (1975) double-reassortant human H3N2 viruses (resulting from reassortment between an early human lineage and a recent human lineage), recent double-reassortant human H3N2 viruses, and avian-like H3N2 viruses. Because pigs can support the reassortment of human and avian influenza viruses, our surveillance should be enhanced as a part of an overall pandemic preparedness plan.
Collapse
Affiliation(s)
- Jidang Chen
- MOA Key Laboratory of Animal Vaccine Development, Ministry of China, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Metreveli G, Gao Q, Mena I, Schmolke M, Berg M, Albrecht RA, García-Sastre A. The origin of the PB1 segment of swine influenza A virus subtype H1N2 determines viral pathogenicity in mice. Virus Res 2014; 188:97-102. [PMID: 24726997 DOI: 10.1016/j.virusres.2014.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/15/2014] [Accepted: 03/21/2014] [Indexed: 11/17/2022]
Abstract
Swine appear to be a key species in the generation of novel human influenza pandemics. Previous pandemic viruses are postulated to have evolved in swine by reassortment of avian, human, and swine influenza viruses. The human pandemic influenza viruses that emerged in 1957 and 1968 as well as swine viruses circulating since 1998 encode PB1 segments derived from avian influenza viruses. Here we investigate the possible role in viral replication and virulence of the PB1 gene segments present in two swine H1N2 influenza A viruses, A/swine/Sweden/1021/2009(H1N2) (sw 1021) and A/swine/Sweden/9706/2010(H1N2) (sw 9706), where the sw 1021 virus has shown to be more pathogenic in mice. By using reverse genetics, we swapped the PB1 genes of these two viruses. Similar to the sw 9706 virus, chimeric sw 1021 virus carrying the sw 9706 PB1 gene was not virulent in mice. In contrast, replacement of the PB1 gene of the sw 9706 virus by that from sw 1021 virus resulted in increased pathogenicity. Our study demonstrated that differences in virulence of swine influenza virus subtype H1N2 are attributed at least in part to the PB1 segment.
Collapse
Affiliation(s)
- Giorgi Metreveli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Qinshan Gao
- Bovine Biologics Research VMRD Zoetis, 333 Portage Street, KZO-300-206.5B, Kalamazoo, MI 49007, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mirco Schmolke
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mikael Berg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
181
|
Dorjee S, Revie CW, Poljak Z, McNab WB, Sanchez J. One-Health Simulation Modelling: A Case Study of Influenza Spread between Human and Swine Populations using NAADSM. Transbound Emerg Dis 2014; 63:36-55. [PMID: 24661802 DOI: 10.1111/tbed.12215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Indexed: 01/10/2023]
Abstract
The circulation of zoonotic influenza A viruses including pH1N1 2009 and H5N1 continue to present a constant threat to animal and human populations. Recently, an H3N2 variant spread from pigs to humans and between humans in limited numbers. Accordingly, this research investigated a range of scenarios of the transmission dynamics of pH1N1 2009 virus at the swine-human interface while accounting for different percentages of swine workers initially immune. Furthermore, the feasibility of using NAADSM (North American Animal Disease Spread Model) applied as a one-health simulation model was assessed. The study population included 488 swine herds and 29, 707 households of people within a county in Ontario, Canada. Households were categorized as follows: (i) rural households with swine workers, (ii) rural households without swine workers, and (iii) urban households without swine workers. Forty-eight scenarios were investigated, based on the combination of six scenarios around the transmissibility of the virus at the interface and four vaccination coverage levels of swine workers (0-60%), all under two settings of either swine or human origin of the virus. Outcomes were assessed in terms of stochastic 'die-out' fraction, size and time to peak epidemic day, overall size and duration of the outbreaks. The modelled outcomes indicated that minimizing influenza transmissibility at the interface and targeted vaccination of swine workers had significant beneficial effects. Our results indicate that NAADSM can be used as a framework to model the spread and control of contagious zoonotic diseases among animal and human populations, under certain simplifying assumptions. Further evaluation of the model is required. In addition to these specific findings, this study serves as a benchmark that can provide useful input to a future one-health influenza modelling studies. Some pertinent information gaps were also identified. Enhanced surveillance and the collection of high-quality information for more accurate parameterization of such models are encouraged.
Collapse
Affiliation(s)
- S Dorjee
- CVER, Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - C W Revie
- CVER, Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Z Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - W B McNab
- Animal Health and Welfare Branch, Ontario Ministry of Agriculture and Food, Guelph, ON, Canada
| | - J Sanchez
- CVER, Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
182
|
Kim JI, Lee I, Park S, Lee S, Hwang MW, Bae JY, Heo J, Kim D, Jang SI, Kim K, Park MS. Phylogenetic analysis of a swine influenza A(H3N2) virus isolated in Korea in 2012. PLoS One 2014; 9:e88782. [PMID: 24523938 PMCID: PMC3921248 DOI: 10.1371/journal.pone.0088782] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 01/12/2014] [Indexed: 01/08/2023] Open
Abstract
Influenza A virus (IAV) can infect avian and mammalian species, including humans. The genome nature of IAVs may contribute to viral adaptation in different animal hosts, resulting in gene reassortment and the reproduction of variants with optimal fitness. As seen again in the 2009 swine-origin influenza A H1N1 pandemic, pigs are known to be susceptible to swine, avian, and human IAVs and can serve as a 'mixing vessel' for the generation of novel IAV variants. To this end, the emergence of swine influenza viruses must be kept under close surveillance. Herein, we report the isolation and phylogenetic study of a swine IAV, A/swine/Korea/PL01/2012 (swPL01, H3N2 subtype). After screening nasopharyngeal samples from pigs in the Gyeongsangnam-do region of Korea from December 2011 to May 2012, we isolated the swPL01 virus and sequenced its all of 8 genome segments (polymerase basic 2, PB2; polymerase basic 1, PB1; polymerase acidic, PA; hemagglutinin, HA; nucleocapsid protein, NP; neuraminidase, NA; matrix protein, M; and nonstructural protein, NS). The phylogenetic study, analyzed with reference strains registered in the National Center for Biotechnology Information (NCBI) database, indicated that the swPL01 virus was similar to the North American triple-reassortant swine strains and that the HA gene of the swPL01 virus was categorized into swine H3 cluster IV. The swPL01 virus had the M gene of the triple-reassortant swine H3N2 viruses, whereas that of other contemporary strains in Korea was transferred from the 2009 pandemic H1N1 virus. These data suggest the possibility that various swine H3N2 viruses may co-circulate in Korea, which underlines the importance of a sustained surveillance system against swine IAVs.
Collapse
Affiliation(s)
- Jin Il Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Ilseob Lee
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Sehee Park
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Sangmoo Lee
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Min-Woong Hwang
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jun Heo
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Donghwan Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Seok-Il Jang
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Kabsu Kim
- School of Equine Science, Cheju Halla University, Jeju, Jeju-do, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
- * E-mail:
| |
Collapse
|
183
|
Hu YJ, Tu PC, Lin CS, Guo ST. Identification and chronological analysis of genomic signatures in influenza A viruses. PLoS One 2014; 9:e84638. [PMID: 24416256 PMCID: PMC3885579 DOI: 10.1371/journal.pone.0084638] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/26/2013] [Indexed: 01/05/2023] Open
Abstract
An increase in the availability of data on the influenza A viruses (IAV) has enabled the identification of the potential determinants of IAV host specificity using computational approaches. In this study, we proposed an alternative approach, based on the adjusted Rand index (ARI), for the evaluation of genomic signatures of IAVs and their ability to distinguish hosts they infected. Our experiments showed that the host-specific signatures identified using the ARI were more characteristic of their hosts than those identified using previous measures. Our results provided updates on the host-specific genomic signatures in the internal proteins of the IAV based on the sequence data as of February 2013 in the National Center for Biotechnology Information (NCBI). Unlike other approaches for signature recognition, our approach considered not only the ability of signatures to distinguish hosts (according to the ARI), but also the chronological relationships among proteins. We identified novel signatures that could be mapped to known functional domains, and introduced a chronological analysis to investigate the changes in host-specific genomic signatures over time. Our chronological analytical approach provided results on the adaptive variability of signatures, which correlated with previous studies' findings, and indicated prospective adaptation trends that warrant further investigation.
Collapse
Affiliation(s)
- Yuh-Jyh Hu
- Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu, Taiwan
- Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
- * E-mail:
| | - Po-Chin Tu
- Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Chun-Sheng Lin
- Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Szu-Ting Guo
- Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
184
|
Abstract
Reassortment is the process by which influenza viruses swap gene segments. This genetic exchange is possible due to the segmented nature of the viral genome and occurs when two differing influenza viruses co-infect a cell. The viral diversity generated through reassortment is vast and plays an important role in the evolution of influenza viruses. Herein we review recent insights into the contribution of reassortment to the natural history and epidemiology of influenza A viruses, gained through population scale phylogenic analyses. We describe methods currently used to study reassortment in the laboratory, and we summarize recent progress made using these experimental approaches to further our understanding of influenza virus reassortment and the contexts in which it occurs.
Collapse
Affiliation(s)
- John Steel
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
185
|
Abstract
The challenge of increasing swine production and a rising number of novel and known swine influenza viruses has prompted a considerable boost in research into how and why pigs have become such significant hosts for influenza viruses. The ecology of influenza A viruses is rather complicated, involving multiple host species and a segmented genome. Wild aquatic birds are the reservoir for the majority of influenza A viruses, but novel influenza viruses were recently identified in bats. Occasionally, influenza A viruses can be transmitted to mammals from avian species and this event could lead to the generation of human pandemic strains. Swine are thought to be "mixing vessels" because they are susceptible to infection with both avian and mammalian influenza viruses; and novel influenza viruses can be generated in pigs by reassortment. At present, it is difficult to predict which viruses might cause a human pandemic. Therefore, both human and veterinary research needs to give more attention to the potential cross-species transmission capacity of influenza A viruses.
Collapse
|
186
|
Li C, Chen H. Enhancement of influenza virus transmission by gene reassortment. Curr Top Microbiol Immunol 2014; 385:185-204. [PMID: 25048543 DOI: 10.1007/82_2014_389] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Influenza A virus is characterized by a genome composed of eight single-stranded, negative sense RNA segments, which allow for reassortment between different strains when they co-infect the same host cell. Reassortment is an important driving force for the evolution of influenza viruses. The ability of reassortment allows influenza virus to endlessly reinvent itself and pose a constant threat to the health of humans and other animals. Of the four human influenza pandemics since the beginning of the last century, three of them were caused by reassortant viruses bearing genes of avian, human or swine influenza virus origin. In the past decade, great efforts have been made to understand the transmissibility of influenza viruses. The use of reverse genetics technology has made it substantially easier to generate reassortant viruses and evaluate the contribution of individual virus gene on virus transmissibility in animal models such as ferrets and guinea pigs. H5, H7, and H9 avian influenza viruses represent the top three subtypes that are candidates to cause the next human influenza pandemic. Many studies have been conducted to determine whether the transmission of these avian influenza viruses could be enhanced by acquisition of gene segments from human influenza viruses. Moreover, the 2009 pdmH1N1 viruses and the triple reassortant swine influenza viruses were extensively studied to identify the gene segments that contribute to their transmissibility. These studies have greatly deepened our understanding of the transmissibility of reassortant influenza viruses, which, in turn, has improved our ability to be prepared for reassortant influenza virus with enhanced transmissibility and pandemic potential.
Collapse
Affiliation(s)
- Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, Nangang, China,
| | | |
Collapse
|
187
|
Cong Y, Sun Y, Wang W, Meng Q, Ran W, Zhu L, Yang G, Yang W, Yang L, Wang C, Ding Z. Comparative analysis of receptor-binding specificity and pathogenicity in natural reassortant and non-reassortant H3N2 swine influenza virus. Vet Microbiol 2014; 168:105-15. [DOI: 10.1016/j.vetmic.2013.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
|
188
|
Abstract
Swine influenza is an acute respiratory disease of pigs caused by influenza A virus (IAV) and characterized by fever followed by lethargy, anorexia, and serous nasal discharge. The disease progresses rapidly and may be complicated when associated with other respiratory pathogens. IAV is one of the most prevalent respiratory pathogens of swine, resulting in substantial economic burden to pork producers. In the past 10-15 years, a dramatic evolution of the IAV in U.S. swine has occurred, resulting in the co-circulation of many antigenically distinct IAV strains, derived from 13 phylogenetically distinct hemagglutinin clusters of H1 and H3 viruses. Vaccination is the most common strategy to prevent influenza in pigs, however, the current diverse IAV epidemiology poses a challenge for the production of efficacious and protective vaccines. A concern regarding the use of traditional inactivated vaccines is the possibility of inducing vaccine-associated enhanced respiratory disease (VAERD) when vaccine virus strains are mismatched with the infecting strain. In this review, we discuss the current epidemiology and pathogenesis of swine influenza in the United States, different vaccines platforms with potential to control influenza in pigs, and the factors associated with vaccine-associated disease enhancement.
Collapse
|
189
|
Abstract
Influenza A viruses (IAV) of the Orthomyxoviridae virus family cause one of the most important respiratory diseases in pigs as well as humans. Repeated outbreaks and rapid spread of genetically and antigenically distinct IAVs represent a considerable challenge for animal production and public health. This overlap between human and animal health is a prime example of the "One Health" concept. Although only subtypes of H1N1, H1N2, and H3N2 are endemic in swine around the world, considerable diversity can be found not only in the hemagglutinin (HA) and neuraminidase (NA) genes, but in the other 6 genes as well. Human and swine IAV have demonstrated a particular propensity for interspecies transmission in the past century, leading to regular and sometimes sustained, incursions from man to pig and vice versa. The diversity of IAV in swine remains one of the critical challenges in diagnosis and control of this important pathogen for swine health, and in turn contributes to a significant public health risk.
Collapse
|
190
|
Castrucci MR, Facchini M, Di Mario G, Garulli B, Sciaraffia E, Meola M, Fabiani C, De Marco MA, Cordioli P, Siccardi A, Kawaoka Y, Donatelli I. Modified vaccinia virus Ankara expressing the hemagglutinin of pandemic (H1N1) 2009 virus induces cross-protective immunity against Eurasian 'avian-like' H1N1 swine viruses in mice. Influenza Other Respir Viruses 2013; 8:367-75. [PMID: 24373385 PMCID: PMC4181486 DOI: 10.1111/irv.12221] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2013] [Indexed: 11/27/2022] Open
Abstract
Objectives To examine cross-reactivity between hemagglutinin (HA) derived from A/California/7/09 (CA/09) virus and that derived from representative Eurasian “avian-like” (EA) H1N1 swine viruses isolated in Italy between 1999 and 2008 during virological surveillance in pigs. Design Modified vaccinia virus Ankara (MVA) expressing the HA gene of CA/09 virus (MVA-HA-CA/09) was used as a vaccine to investigate cross-protective immunity against H1N1 swine viruses in mice. Sample Two classical swine H1N1 (CS) viruses and four representative EA-like H1N1 swine viruses previously isolated during outbreaks of respiratory disease in pigs on farms in Northern Italy were used in this study. Setting Female C57BL/6 mice were vaccinated with MVA/HA/CA/09 and then challenged intranasally with H1N1 swine viruses. Main outcome measures Cross-reactive antibody responses were determined by hemagglutination- inhibition (HI) and virus microneutralizing (MN) assays of sera from MVA-vaccinated mice. The extent of protective immunity against infection with H1N1 swine viruses was determined by measuring lung viral load on days 2 and 4 post-challenge. Results and Conclusions Systemic immunization of mice with CA/09-derived HA, vectored by MVA, elicited cross-protective immunity against recent EA-like swine viruses. This immune protection was related to the levels of cross-reactive HI antibodies in the sera of the immunized mice and was dependent on the similarity of the antigenic site Sa of H1 HAs. Our findings suggest that the herd immunity elicited in humans by the pandemic (H1N1) 2009 virus could limit the transmission of recent EA-like swine HA genes into the influenza A virus gene pool in humans.
Collapse
Affiliation(s)
- Maria R Castrucci
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Ye J, Xu Y, Harris J, Sun H, Bowman AS, Cunningham F, Cardona C, Yoon KJ, Slemons RD, Wan XF. Mutation from arginine to lysine at the position 189 of hemagglutinin contributes to the antigenic drift in H3N2 swine influenza viruses. Virology 2013; 446:225-9. [PMID: 24074585 PMCID: PMC4161209 DOI: 10.1016/j.virol.2013.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 05/30/2013] [Accepted: 08/06/2013] [Indexed: 11/24/2022]
Abstract
Two distinct antigenic clusters were previously identified among the H3N2 swine influenza A viruses (IAVs) and were designated H3N2SIV-alpha and H3N2SIV-beta (Feng et al., 2013. Journal of Virology 87 (13), 7655-7667). A consistent mutation was observed at the position 189 of hemagglutinin (R189K) between H3N2SIV-alpha and H3N2SIV-beta fair isolates. To evaluate the contribution of R189K mutation to the antigenic drift from H3N2SIV-alpha to H3N2SIV-beta, four reassortant viruses with 189R or 189K were generated. The antigenic cartography demonstrated that the R189K mutation in the hemagglutinin of H3N2 IAV contributed to the antigenic drift, separating these viruses into H3N2SIV-alpha to H3N2SIV-beta. This R189K mutation was also found to contribute to the cross-reaction with several ferret sera raised against historical human IAVs with hemagglutinin carrying 189K. This study suggests that the R189K mutation plays a vital role in the antigenicity of swine and human H3N2 IAVs and identification of this antigenic determinant will help us rapidly identify antigenic variants in influenza surveillance.
Collapse
Affiliation(s)
- Jianqiang Ye
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, the United States
| | - Yifei Xu
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, the United States
| | - Jillian Harris
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, the United States
| | - Hailiang Sun
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, the United States
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, the United States
| | - Fred Cunningham
- USDA/APHIS/WS, National Wildlife Research Center, Mississippi Field Station, Mississippi State, MS 39762, the United States
| | - Carol Cardona
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, the United States
| | - Kyoungjin J. Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, the United States
| | - Richard D. Slemons
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, the United States
| | - Xiu-Feng Wan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, the United States
| |
Collapse
|
192
|
Forward hysteresis and backward bifurcation caused by culling in an avian influenza model. Math Biosci 2013; 246:202-12. [DOI: 10.1016/j.mbs.2013.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 06/03/2013] [Accepted: 09/05/2013] [Indexed: 11/23/2022]
|
193
|
Corzo CA, Culhane M, Juleen K, Stigger-Rosser E, Ducatez MF, Webby RJ, Lowe JF. Active surveillance for influenza A virus among swine, midwestern United States, 2009-2011. Emerg Infect Dis 2013; 19:954-60. [PMID: 23735740 PMCID: PMC3713829 DOI: 10.3201/eid1906.121637] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Veterinary diagnostic laboratories identify and characterize influenza A viruses primarily through passive surveillance. However, additional surveillance programs are needed. To meet this need, an active surveillance program was conducted at pig farms throughout the midwestern United States. From June 2009 through December 2011, nasal swab samples were collected monthly from among 540 groups of growing pigs and tested for influenza A virus by real-time reverse transcription PCR. Of 16,170 samples, 746 were positive for influenza A virus; of these, 18.0% were subtype H1N1, 16.0% H1N2, 7.6% H3N2, and 14.5% (H1N1)pdm09. An influenza (H3N2) and (H1N1)pdm09 virus were identified simultaneously in 8 groups. This active influenza A virus surveillance program provided quality data and increased the understanding of the current situation of circulating viruses in the midwestern US pig population.
Collapse
Affiliation(s)
- Cesar A Corzo
- College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | | | | | | | | | | | | |
Collapse
|
194
|
Impact of prior seasonal H3N2 influenza vaccination or infection on protection and transmission of emerging variants of influenza A(H3N2)v virus in ferrets. J Virol 2013; 87:13480-9. [PMID: 24089569 DOI: 10.1128/jvi.02434-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza H3N2 A viruses continue to circulate in swine and occasionally infect humans, resulting in outbreaks of variant influenza H3N2 [A(H3N2)v] virus. It has been previously demonstrated in ferrets that A(H3N2)v viruses transmit as efficiently as seasonal influenza viruses, raising concern over the pandemic potential of these viruses. However, A(H3N2)v viruses have not acquired the ability to transmit efficiently among humans, which may be due in part to existing cross-reactive immunity to A(H3N2)v viruses. Although current seasonal H3N2 and A(H3N2)v viruses are antigenically distinct from one another, historical H3N2 viruses have some antigenic similarity to A(H3N2)v viruses and previous exposure to these viruses may provide a measure of immune protection sufficient to dampen A(H3N2)v virus transmission. Here, we evaluated whether prior seasonal H3N2 influenza virus vaccination or infection affects virus replication and transmission of A(H3N2)v virus in the ferret animal model. We found that the seasonal trivalent inactivated influenza virus vaccine (TIV) or a monovalent vaccine prepared from an antigenically related 1992 seasonal influenza H3N2 (A/Beijing/32/1992) virus failed to substantially reduce A(H3N2)v (A/Indiana/08/2011) virus shedding and subsequent transmission to naive hosts. Conversely, ferrets primed by seasonal H3N2 virus infection displayed reduced A(H3N2)v virus shedding following challenge, which blunted transmission to naive ferrets. A higher level of specific IgG and IgA antibody titers detected among infected versus vaccinated ferrets was associated with the degree of protection offered by seasonal H3N2 virus infection. The data demonstrate in ferrets that the efficiency of A(H3N2)v transmission is disrupted by preexisting immunity induced by seasonal H3N2 virus infection.
Collapse
|
195
|
EFSA Panel on Animal Health and Welfare (AHAW), European Centre for Disease Prevention and Control, European Medicines Agency. Scientific opinion on the possible risks posed by the influenza A (H3N2v) virus for animal health and its potential spread and implications for animal and human health. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
196
|
Poonsuk S, Sangthong P, Petcharat N, Lekcharoensuk P. Genesis and genetic constellations of swine influenza viruses in Thailand. Vet Microbiol 2013; 167:314-26. [PMID: 24095146 DOI: 10.1016/j.vetmic.2013.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 11/18/2022]
Abstract
Swine influenza virus (SIV) is one of the most important zoonotic agents and the origin of the most recent pandemic virus. Asia is considered to be the epicenter for genetic exchanging of influenza A viruses and Southeast Asia including Thailand serves as a reservoir to maintain the persistence of the viruses for seeding other regions. Therefore, searching for new reassortants in this area has been routinely required. Although SIVs in Thailand have been characterized, collective information regarding their genetic evolution and gene constellations is limited. In this study, whole genomes of 30 SIVs isolated during clinical target surveillance plus all available sequences of past and currently circulating Thai SIVs were genetically characterized based on their evolutionary relationships. All genetic pools of Thai SIVs are comprised of four lineages including classical swine (CS), Eurasian swine (EAs), Triple reassortants (TRIG) and Seasonal human (Shs). Out of 84 isolates, nine H1N1, six H3N2 and one H1N2 strains were identified. Gene constellations of SIVs in Thailand are highly complex resulting from multiple reassortments among concurrently circulating SIVs and temporally introduced foreign genes. Most strains contain gene segments from both EAs and CS lineages and appeared transiently. TRIG lineage has been recently introduced into Thai SIV gene pools. The existence of EAs and TRIG lineages in this region may increase rates of genetic exchange and diversity while Southeast Asia is a persistent reservoir for influenza A viruses. Continual monitoring of SIV evolution in this region is crucial in searching for the next potential pandemic viruses.
Collapse
Affiliation(s)
- Sukontip Poonsuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, 50 Paholyothin Road, Chatuchak, Bangkok, 10900, Thailand; Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, 50 Paholyothin Road, Chatuchak, Bangkok, 10900, Thailand
| | | | | | | |
Collapse
|
197
|
Abstract
Influenza A viruses (IAV) are significant pathogens able to repeatedly switch hosts to infect multiple avian and mammalian species, including humans. The unpredictability of IAV evolution and interspecies movement creates continual public health challenges, such as the emergence of the 2009 pandemic H1N1 virus from swine, as well as pandemic threats from the ongoing H5N1 and the recent H7N9 epizootics. In the last decade there has been increased concern about the “dual use” nature of microbiology, and a set of guidelines covering “dual use research of concern” includes seven categories of potentially problematic scientific experiments. In this Perspective, we consider how in nature IAV continually undergo “dual use experiments” as a matter of evolution and selection, and we conclude that studying these properties of IAV is critical for mitigating and preventing future epidemics and pandemics.
Collapse
|
198
|
Feng Z, Gomez J, Bowman AS, Ye J, Long LP, Nelson SW, Yang J, Martin B, Jia K, Nolting JM, Cunningham F, Cardona C, Zhang J, Yoon KJ, Slemons RD, Wan XF. Antigenic characterization of H3N2 influenza A viruses from Ohio agricultural fairs. J Virol 2013; 87:7655-67. [PMID: 23637412 PMCID: PMC3700273 DOI: 10.1128/jvi.00804-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 04/23/2013] [Indexed: 01/22/2023] Open
Abstract
The demonstrated link between the emergence of H3N2 variant (H3N2v) influenza A viruses (IAVs) and swine exposure at agricultural fairs has raised concerns about the human health risk posed by IAV-infected swine. Understanding the antigenic profiles of IAVs circulating in pigs at agricultural fairs is critical to developing effective prevention and control strategies. Here, 68 H3N2 IAV isolates recovered from pigs at Ohio fairs (2009 to 2011) were antigenically characterized. These isolates were compared with other H3 IAVs recovered from commercial swine, wild birds, and canines, along with human seasonal and variant H3N2 IAVs. Antigenic cartography demonstrated that H3N2 IAV isolates from Ohio fairs could be divided into two antigenic groups: (i) the 2009 fair isolates and (ii) the 2010 and 2011 fair isolates. These same two antigenic clusters have also been observed in commercial swine populations in recent years. Human H3N2v isolates from 2010 and 2011 are antigenically clustered with swine-origin IAVs from the same time period. The isolates recovered from pigs at fairs did not cross-react with ferret antisera produced against the human seasonal H3N2 IAVs circulating during the past decade, raising the question of the degree of immunity that the human population has to swine-origin H3N2 IAVs. Our results demonstrate that H3N2 IAVs infecting pigs at fairs and H3N2v isolates were antigenically similar to the IAVs circulating in commercial swine, demonstrating that exhibition swine can function as a bridge between commercial swine and the human population.
Collapse
Affiliation(s)
- Zhixin Feng
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Janet Gomez
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jianqiang Ye
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Li-Ping Long
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Sarah W. Nelson
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jialiang Yang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Brigitte Martin
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Kun Jia
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jacqueline M. Nolting
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Fred Cunningham
- USDA/APHIS/WS, National Wildlife Research Center, Mississippi Field Station, Mississippi State, Mississippi, USA
| | - Carol Cardona
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Kyoung-Jin Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Richard D. Slemons
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Xiu-Feng Wan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
199
|
Allerson MW, Cardona CJ, Torremorell M. Indirect Transmission of Influenza A Virus between Pig Populations under Two Different Biosecurity Settings. PLoS One 2013; 8:e67293. [PMID: 23805306 PMCID: PMC3689715 DOI: 10.1371/journal.pone.0067293] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/16/2013] [Indexed: 11/18/2022] Open
Abstract
Respiratory disease due to influenza virus is common in both human and swine populations around the world with multiple transmission routes capable of transmitting influenza virus, including indirect routes. The objective of this study was to evaluate the role of fomites in influenza A virus (IAV) transmission between pig populations separated by two different biosecurity settings. Thirty-five pigs were divided into four experimental groups: 10 pigs (1 replicate) were assigned to the infected group (I), 10 pigs (2 replicates of 5 pigs) were assigned to the low biosecurity sentinel group (LB), 10 pigs (2 replicates of 5 pigs) were assigned to the medium biosecurity sentinel group (MB), and 5 pigs (1 replicate) were assigned to the negative control group (NC). Eight of 10 pigs in the infected group were inoculated with IAV and 36 hours following inoculation, personnel movement events took place in order to move potentially infectious clothing and personal protective equipment (PPE) to sentinel pig rooms. Following contact with the infected group, personnel moved to the MB group after designated hygiene measures while personnel moved directly to the LB group. Nasal swabs and blood samples were collected from pigs to assess IAV infection status and fomites were sampled and tested via RRT-PCR. All experimentally inoculated pigs were infected with IAV and 11 of the 144 fomite samples collected following contact with infected pigs were low level positive for IAV genome. One replicate of each sentinel groups LB and MB became infected with IAV and all five pigs were infected over time. This study provides evidence that fomites can serve as an IAV transmission route from infected to sentinel pigs and highlights the need to focus on indirect routes as well as direct routes of transmission for IAV.
Collapse
Affiliation(s)
- Matt W. Allerson
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Carol J. Cardona
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
200
|
Kitikoon P, Nelson MI, Killian ML, Anderson TK, Koster L, Culhane MR, Vincent AL. Genotype patterns of contemporary reassorted H3N2 virus in US swine. J Gen Virol 2013. [DOI: 10.1099/vir.0.051839-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To understand the evolution of swine-origin H3N2v influenza viruses that have infected 320 humans in the USA since August 2011, we performed a phylogenetic analysis at a whole genome scale of North American swine influenza viruses (n = 200). All viral isolates evolved from the prototypical North American H3 cluster 4 (c4), with evidence for further diversification into subclusters. At least ten distinct reassorted H3N2/pandemic H1N1 (rH3N2p) genotypes were identified in swine. Genotype 1 (G1) was most frequently detected in swine and all human H3N2v viruses clustered within a single G1 clade. These data suggest that the genetic requirements for transmission to humans may be restricted to a specific subset of swine viruses. Mutations at putative antigenic sites as well as reduced serological cross-reactivity among the H3 subclusters suggest antigenic drift of these contemporary viruses.
Collapse
Affiliation(s)
- Pravina Kitikoon
- Virus and Prion Disease Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA
| | - Martha I. Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary Lea Killian
- National Veterinary Services Laboratories, USDA-APHIS, Ames, IA 50010, USA
| | - Tavis K. Anderson
- Virus and Prion Disease Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA
| | - Leo Koster
- National Veterinary Services Laboratories, USDA-APHIS, Ames, IA 50010, USA
| | - Marie R. Culhane
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Amy L. Vincent
- Virus and Prion Disease Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA
| |
Collapse
|