151
|
Iosef C, Gkourasas T, Jia CYH, Li SSC, Han VKM. A functional nuclear localization signal in insulin-like growth factor binding protein-6 mediates its nuclear import. Endocrinology 2008; 149:1214-26. [PMID: 18039785 DOI: 10.1210/en.2007-0959] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF binding protein (IGFBP)-6 is a member of the IGFBP family that regulates the actions of IGFs. Although IGFBPs exert their functions extracellularly in an autocrine/paracrine manner, several members of the family, such as IGFBP-3 and -5, possess nuclear localization signals (NLS). To date, no NLS has been described for IGFBP-6, an IGFBP that binds preferentially to IGF-II. We report here that both exogenous and endogenous IGFBP-6 could be imported into the nuclei of rhabdomyosarcoma and HEK-293 cells. Nuclear import of IGFBP-6 was mediated by a NLS sequence that bears limited homology to those found in IGFBP-3 and -5. IGFBP-6 nuclear translocation was an active process that required importins. A peptide corresponding to the IGFBP-6 NLS bound preferentially to importin-alpha. A comprehensive peptide array study revealed that, in addition to positively charged residues such as Arg and Lys, amino acids, notably Gly and Pro, within the NLS, played an important part in binding to importins. Overexpression of wild-type IGFBP-6 increased apoptosis, and the addition of IGF-II did not negate this effect. Only the deletion of the NLS segment abolished the apoptosis effect. Taken together, these results suggest that IGFBP-6 is translocated to the nucleus with functional consequences and that different members of the IGFBP family have specific nuclear import mechanisms.
Collapse
Affiliation(s)
- Cristiana Iosef
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | |
Collapse
|
152
|
Polyamines modulate the subcellular localization of RNA-binding protein HuR through AMP-activated protein kinase-regulated phosphorylation and acetylation of importin alpha1. Biochem J 2008; 409:389-98. [PMID: 17919121 DOI: 10.1042/bj20070860] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polyamines are required for maintenance of intestinal epithelial integrity, and a decrease in cellular polyamines increases the cytoplasmic levels of RNA-binding protein HuR stabilizing p53 and nucleophosmin mRNAs, thus inhibiting IEC (intestinal epithelial cell) proliferation. The AMPK (AMP-activated protein kinase), an enzyme involved in responding to metabolic stress, was recently found to be implicated in regulating the nuclear import of HuR. Here, we provide evidence showing that polyamines modulate subcellular localization of HuR through AMPK-regulated phosphorylation and acetylation of Impalpha1 (importin alpha1) in IECs. Decreased levels of cellular polyamines as a result of inhibiting ODC (ornithine decarboxylase) with DFMO (D,L-alpha-difluoromethylornithine) repressed AMPK activity and reduced Impalpha1 levels, whereas increased levels of polyamines as a result of ODC overexpression induced both AMPK and Impalpha1 levels. AMPK activation by overexpression of the AMPK gene increased Impalpha1 but reduced the cytoplasmic levels of HuR in control and polyamine-deficient cells. IECs overexpressing wild-type Impalpha1 exhibited a decrease in cytoplasmic HuR abundance, while cells overexpressing Impalpha1 proteins bearing K22R (lacking acetylation site), S105A (lacking phosphorylation site) or K22R/S105A (lacking both sites) mutations displayed increased levels of cytoplasmic HuR. Ectopic expression of these Impalpha1 mutants also prevented the increased levels of cytoplasmic HuR following polyamine depletion. These results indicate that polyamine-mediated AMPK activation triggers HuR nuclear import through phosphorylation and acetylation of Impalpha1 in IECs and that polyamine depletion increases cytoplasmic levels of HuR as a result of inactivation of the AMPK-driven Impalpha1 pathway.
Collapse
|
153
|
Drosophila importin alpha1 performs paralog-specific functions essential for gametogenesis. Genetics 2008; 178:839-50. [PMID: 18245351 DOI: 10.1534/genetics.107.081778] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Importin alpha's mediate nuclear transport by linking nuclear localization signal (NLS)-containing proteins to importin beta1. Animal genomes encode three conserved groups of importin alpha's, alpha1's, alpha2's, and alpha3's, each of which are competent to bind classical NLS sequences. Using Drosophila melanogaster we describe the isolation and phenotypic characterization of the first animal importin alpha1 mutant. Animal alpha1's are more similar to ancestral plant and fungal alpha1-like genes than to animal alpha2 and alpha3 genes. Male and female importin alpha1 (Dalpha1) null flies developed normally to adulthood (with a minor wing defect) but were sterile with defects in gametogenesis. The Dalpha1 mutant phenotypes were rescued by Dalpha1 transgenes, but not by Dalpha2 or Dalpha3 transgenes. Genetic interactions between the ectopic expression of Dalpha1 and the karyopherins CAS and importin beta1 suggest that high nuclear levels of Dalpha1 are deleterious. We conclude that Dalpha1 performs paralog-specific activities that are essential for gametogenesis and that regulation of subcellular Dalpha1 localization may affect cell fate decisions. The initial expansion and specialization of the animal importin alpha-gene family may have been driven by the specialized needs of gametogenesis. These results provide a framework for studies of the more complex mammalian importin alpha-gene family.
Collapse
|
154
|
Theodore M, Kawai Y, Yang J, Kleshchenko Y, Reddy SP, Villalta F, Arinze IJ. Multiple nuclear localization signals function in the nuclear import of the transcription factor Nrf2. J Biol Chem 2008; 283:8984-94. [PMID: 18238777 DOI: 10.1074/jbc.m709040200] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) mediates the transcriptional response of cells to oxidative stress and is translocated into the nucleus following, or concomitant with, its activation by electrophiles or reactive oxygen species. The mechanism of its translocation into the nucleus is not entirely elucidated. Here we have identified two novel nuclear localization signal (NLS) motifs in murine Nrf2, one located near the N-terminal region (amino acid residues 42-53) and the other (residues 587-593) located near the C-terminal region. Imaging of green fluorescent protein (GFP)-tagged Nrf2 revealed that mutation(s) in any of these sequences resulted in decreased nuclear fluorescence intensity compared with the wild-type Nrf2 when Nrf2 activation was induced with the electrophile tert-butylhydroquinone. The mutations also impaired Nrf2-induced transactivation of antioxidant response element-driven reporter gene expression to the same extent as the Nrf2 construct bearing mutation in a previously identified bipartite NLS that maps at residues 494-511. When linked to GFP or to GFP-PEPCK-C each of the novel NLS motifs was sufficient to drive nuclear translocation of the fusion proteins. Co-immunoprecipitation assays demonstrated that importins alpha5 and beta1 associate with Nrf2, an interaction that was blocked by the nuclear import inhibitor SN50. SN50 also blocked tert-butylhydroquinone-induced nuclear fluorescence of GFP-Nrf2 in cells transfected with wild-type GFP-Nrf2. Overall these results reveal that multiple NLS motifs in Nrf2 function in its nuclear translocation in response to pro-oxidant stimuli and that the importin alpha-beta heterodimer nuclear import receptor system plays a critical role in the import process.
Collapse
Affiliation(s)
- Melanie Theodore
- School of Medicine, Meharry Medical College, Nashville, TN 37208-3599, USA
| | | | | | | | | | | | | |
Collapse
|
155
|
Depping R, Steinhoff A, Schindler SG, Friedrich B, Fagerlund R, Metzen E, Hartmann E, Köhler M. Nuclear translocation of hypoxia-inducible factors (HIFs): involvement of the classical importin alpha/beta pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:394-404. [PMID: 18187047 DOI: 10.1016/j.bbamcr.2007.12.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 12/04/2007] [Accepted: 12/04/2007] [Indexed: 01/25/2023]
Abstract
Hypoxia-inducible factors are the key elements in the essential process of oxygen homeostasis of vertebrate cells. Stabilisation and subsequent nuclear localisation of HIF-alpha subunits results in the activation of target genes such as vegf, epo and glut1. The passage of transcription factors e.g. HIF-1alpha into the nucleus through the nuclear pore complex is regulated by nuclear transport receptors. Therefore nucleocytoplasmic shuttling can regulate transcriptional activity by facilitating the cellular traffic of transcription factors between both compartments. Here, we report on the identification of specific interactions of hypoxia-inducible factors with nuclear transport receptors importin alpha/beta. HIF-1alpha, -1beta, and HIF-2alpha are binding to importin alpha1, alpha3, alpha5, and alpha7. The direct interaction of HIF-1alpha to alpha importins is dependent on a functional nuclear localisation signal within the C-terminal region of the protein. In contrast, the supposed N-terminal NLS is not effective. Our findings provide new insight into the mechanism of the regulation of nuclear transport of hypoxia-inducible factors.
Collapse
Affiliation(s)
- Reinhard Depping
- Department of Physiology, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Yeung PL, Chen LY, Tsai SC, Zhang A, Chen JD. Daxx contains two nuclear localization signals and interacts with importin α3. J Cell Biochem 2008; 103:456-70. [PMID: 17661348 DOI: 10.1002/jcb.21408] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Daxx plays a major role in several important signaling pathways including transcription and cell death. It has been postulated that Daxx regulates both events from the nucleus; however, the mechanism by which Daxx is localized in the nucleus remains obscure. Here we show that nuclear localization of Daxx is controlled by two independent signals and importin 3. Domain analysis reveals that Daxx contains two separate nuclear localizing domains. Site-directed mutagenesis reveals that the basic aa sequence RLKRK at residues 227-231 (NLS1) is responsible for nuclear localization of N-terminal domain, while aa sequence KKSRKEKK at residues 630-637 (NLS2) is responsible for nuclear localization of the C-terminal domain. Mutations of a NLS consensus sequence RKKRR at residues 391-395 and several other basic aa clusters have no effect on Daxx nuclear localization. In full-length Daxx, NLS1 contributes partially to nuclear localization, while NLS2 plays a major role. Markedly, it is essential to disrupt both NLS1 and NLS2 in order to completely block nuclear localization of the full-length protein and to prevent its association with PML nuclear bodies. Furthermore, Daxx interacts selectively with importin alpha3 through its NLS1 and NLS2 sequences. Conversely, importin alpha3 utilizes two NLS-binding sites for Daxx interaction, suggesting that the importin/mediates nuclear import of Daxx. Finally, we show that nuclear localization of Daxx is essential for its transcriptional effects on GR and p53. Together, these data unveil a molecular mechanism that controls nuclear localization of Daxx and support a nuclear role of Daxx in transcriptional regulation.
Collapse
Affiliation(s)
- Percy Luk Yeung
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | | | | | | |
Collapse
|
157
|
Terry LJ, Shows EB, Wente SR. Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 2007; 318:1412-6. [PMID: 18048681 DOI: 10.1126/science.1142204] [Citation(s) in RCA: 401] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transport of macromolecules between the nucleus and cytoplasm is a critical cellular process for eukaryotes, and the machinery that mediates nucleocytoplasmic exchange is subject to multiple levels of control. Regulation is achieved by modulating the expression or function of single cargoes, transport receptors, or the transport channel. Each of these mechanisms has increasingly broad impacts on transport patterns and capacity, and this hierarchy of control directly affects gene expression, signal transduction, development, and disease.
Collapse
Affiliation(s)
- Laura J Terry
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
158
|
Hogarth CA, Jans DA, Loveland KL. Subcellular distribution of importins correlates with germ cell maturation. Dev Dyn 2007; 236:2311-20. [PMID: 17654710 DOI: 10.1002/dvdy.21238] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Importin proteins regulate access to the nucleus by recognizing and transporting distinct cargo proteins. Building on studies in Drosophila and Caenorhabditis elegans, we hypothesized that regulated expression and subcellular localization of specific importins may be linked to mammalian gonadal differentiation. We identified distinct developmental and cellular localization patterns for importins beta1, alpha3, alpha4 and RanBP5 (importin beta3) in fetal and postnatal murine testes using Western blotting and immunohistochemistry. Importin beta1 protein is detected in selected germ and somatic cells in fetal gonads, with a striking perinuclear staining evident from embryonic day (E) 14.5 within testicular gonocytes. RanBP5 exhibits age- and gender-specific subcellular localization within fetal gonads. At E12.5, RanBP5 protein is cytoplasmic in gonocytes but predominantly nuclear in oogonia, but by E14.5 RanBP5 appears nuclear in gonocytes and cytoplasmic in oogonia. In postnatal testes, importin alpha3 and alpha4 in spermatocytes, spermatids, and Sertoli cells display cytoplasmic and nuclear localization, respectively.
Collapse
Affiliation(s)
- Cathryn A Hogarth
- The Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
159
|
Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1. J Virol 2007; 81:13469-77. [PMID: 17928350 DOI: 10.1128/jvi.01097-07] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Zaire ebolavirus protein VP24 was previously demonstrated to inhibit alpha/beta interferon (IFN-alpha/beta)- and IFN-gamma-induced nuclear accumulation of tyrosine-phosphorylated STAT1 (PY-STAT1) and to inhibit IFN-alpha/beta- and IFN-gamma-induced gene expression. These properties correlated with the ability of VP24 to interact with the nuclear localization signal receptor for PY-STAT1, karyopherin alpha1. Here, VP24 is demonstrated to interact not only with overexpressed but also with endogenous karyopherin alpha1. Mutational analysis demonstrated that VP24 binds within the PY-STAT1 binding region located in the C terminus of karyopherin alpha1. In addition, VP24 was found to inhibit PY-STAT1 binding to both overexpressed and endogenous karyopherin alpha1. We assessed the binding of both PY-STAT1 and the VP24 proteins from Zaire, mouse-adapted Zaire, and Reston Ebola viruses for interaction with all six members of the human karyopherin alpha family. We found, in contrast to previous studies, that PY-STAT1 can interact not only with karyopherin alpha1 but also with karyopherins alpha5 and alpha6, which together comprise the NPI-1 subfamily of karyopherin alphaS. Similarly, all three VP24s bound and inhibited PY-STAT1 interaction with karyopherins alpha1, alpha5, and alpha6. Consistent with their ability to inhibit the karyopherin-PY-STAT1 interaction, Zaire, mouse-adapted Zaire, and Reston Ebola virus VP24s displayed similar capacities to inhibit IFN-beta-induced gene expression in human and mouse cells. These findings suggest that VP24 inhibits interaction of PY-STAT1 with karyopherins alpha1, alpha5, or alpha6 by binding within the PY-STAT1 binding region of the karyopherins and that this function is conserved among the VP24 proteins of different Ebola virus species.
Collapse
|
160
|
Saito Y, Yamagishi N, Hatayama T. Different localization of Hsp105 family proteins in mammalian cells. Exp Cell Res 2007; 313:3707-17. [PMID: 17643418 DOI: 10.1016/j.yexcr.2007.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 05/18/2007] [Accepted: 06/10/2007] [Indexed: 11/18/2022]
Abstract
Hsp105alpha and Hsp105beta of the HSP105 family are alternatively spliced products derived from an hsp 105 gene transcript. Hsp105alpha is constitutively expressed and also induced by various stress, whereas Hsp105beta, lacking 44 amino acids from Hsp105alpha, is specifically expressed during mild heat shock. Although Hsp105alpha is shown to localize in the cytoplasm of mammalian cells, cellular localization of Hsp105beta is not known. In this study, we showed that Hsp105beta localized in the nucleus of cells in contrast to cytoplasmic Hsp105alpha, suggesting that these proteins function in different cellular compartments of cells. Using deletion and substitution mutants of Hsp105alpha and Hsp105beta, we revealed that these proteins had a functional nuclear localization signal (NLS) and a nuclear export signal (NES). Furthermore, Hsp105alpha accumulated in the nucleus of cells when treated with leptomycin B, a specific inhibitor of NES-dependent nuclear export. siRNA for importin beta, an essential component for NLS-dependent nuclear transport, inhibited the nuclear localization of Hsp105beta. Furthermore, the 44 amino acids sequence found in Hsp105alpha but not in Hsp105beta suppressed the NLS activity. Thus, the different localization of Hsp105alpha and Hsp105beta is suggested to be due to the suppressed NLS activity in Hsp105alpha.
Collapse
Affiliation(s)
- Youhei Saito
- Department of Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | | | | |
Collapse
|
161
|
Hood FE, Clarke PR. RCC1 isoforms differ in their affinity for chromatin, molecular interactions and regulation by phosphorylation. J Cell Sci 2007; 120:3436-45. [PMID: 17855385 DOI: 10.1242/jcs.009092] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RCC1 is the guanine nucleotide exchange factor for Ran GTPase. Generation of Ran-GTP by RCC1 on chromatin provides a spatial signal that directs nucleocytoplasmic transport, mitotic spindle assembly and nuclear envelope formation. We show that RCC1 is expressed in human cells as at least three isoforms, named RCC1alpha, RCC1beta and RCC1gamma, which are expressed at different levels in specific tissues. The beta and gamma isoforms contain short inserts in their N-terminal regions (NTRs) that are not present in RCC1alpha. This region mediates interaction with chromatin, binds importin alpha3 and/or importin beta, and contains regulatory phosphorylation sites. RCC1gamma is predominantly localised to the nucleus and mitotic chromosomes like RCC1alpha. However, compared to RCC1alpha, RCC1gamma has a greatly reduced interaction with an importin alpha3-beta and a stronger interaction with chromatin that is mediated by the extended NTR. RCC1gamma is also the isoform that is most highly phosphorylated at serine 11 in mitosis. Unlike RCC1alpha, RCC1gamma supports cell proliferation in tsBN2 cells more efficiently when serine 11 is mutated to non-phosphorylatable alanine. Phosphorylation of RCC1gamma therefore specifically controls its function during mitosis. These results show that human RCC1 isoforms have distinct chromatin binding properties, different molecular interactions, and are selectively regulated by phosphorylation, as determined by their different NTRs.
Collapse
Affiliation(s)
- Fiona E Hood
- Biomedical Research Centre, Level 5, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | | |
Collapse
|
162
|
Buse P, Maiyar AC, Failor KL, Tran S, Leong MLL, Firestone GL. The stimulus-dependent co-localization of serum- and glucocorticoid-regulated protein kinase (Sgk) and Erk/MAPK in mammary tumor cells involves the mutual interaction with the importin-alpha nuclear import protein. Exp Cell Res 2007; 313:3261-75. [PMID: 17692313 PMCID: PMC3422670 DOI: 10.1016/j.yexcr.2007.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 06/21/2007] [Accepted: 07/03/2007] [Indexed: 01/04/2023]
Abstract
In Con8 rat mammary epithelial tumor cells, indirect immunofluorescence revealed that Sgk (serum- and glucocorticoid-regulated kinase) and Erk/MAPK (extracellular signal-regulated protein kinase/mitogen activated protein kinase) co-localized to the nucleus in serum-treated cells and to the cytoplasmic compartment in cells treated with the synthetic glucocorticoid dexamethasone. Moreover, the subcellular distribution of the importin-alpha nuclear transport protein was similarly regulated in a signal-dependent manner. In vitro GST-pull down assays revealed the direct interaction of importin-alpha with either Sgk or Erk/MAPK, while RNA interference knockdown of importin-alpha expression disrupted the localization of both Sgk and Erk into the nucleus of serum-treated cells. Wild type or kinase dead forms of Sgk co-immunoprecipitated with Erk/MAPK from either serum- or dexamethasone-treated mammary tumor cells, suggesting the existence of a protein complex containing both kinases. In serum-treated cells, nucleus residing Sgk and Erk/MAPK were both hyperphosphorylated, indicative of their active states, whereas, in dexamethasone-treated cells Erk/MAPK, but not Sgk, was in its inactive hypophosphorylated state. Treatment with a MEK inhibitor, which inactivates Erk/MAPK, caused the relocalization of both Sgk and ERK to the cytoplasm. We therefore propose that the signal-dependent co-localization of Sgk and Erk/MAPK mediated by importin-alpha represents a new pathway of signal integration between steroid and serum/growth factor-regulated pathways.
Collapse
Affiliation(s)
- Patricia Buse
- Department of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA 94720-3200, USA
| | | | | | | | | | | |
Collapse
|
163
|
Qu D, Zhang Y, Ma J, Guo K, Li R, Yin Y, Cao X, Park DS. The nuclear localization of SET mediated by impalpha3/impbeta attenuates its cytosolic toxicity in neurons. J Neurochem 2007; 103:408-22. [PMID: 17608644 DOI: 10.1111/j.1471-4159.2007.04747.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SET is a multi-functional protein in proliferating cells. Some of the proposed functions of SET suggest an important nuclear role. However, the nuclear import pathway of SET is also unknown and the function of SET in neurons is unclear. Presently, using cortical neurons, we report that the nuclear import of SET is mediated by an impalpha/impbeta-dependent pathway. Nuclear localization signal, (168)KRSSQTQNKASRKR(181), in SET interacts with impalpha3, which recruits impbeta to form a ternary complex, resulting in efficient transportation of SET into nucleus. By in vitro nuclear import assay based on digitonin-permeabilized neurons, we further demonstrated that the nuclear import of SET relies on Ran GTPase. We provide evidence that this nuclear localization of SET is important in neuronal survival. Under basal conditions, SET is predominately nuclear. However, upon death induced by genotoxic stress, endogenous SET decreases in the nucleus and increases in the cytoplasm. Consistent with a toxic role of SET in the cytoplasm, targeted expression of SET to the cytoplasm exacerbates death compared to wild type SET expression which is protective following DNA damage. Taken together, our results indicate that SET is imported into the nucleus through its association with impalpha3/impbeta, and that localization of SET is important in regulation of neuronal death.
Collapse
Affiliation(s)
- Dianbo Qu
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Umegaki N, Tamai K, Nakano H, Moritsugu R, Yamazaki T, Hanada K, Katayama I, Kaneda Y. Differential Regulation of Karyopherin α 2 Expression by TGF-β1 and IFN-γ in Normal Human Epidermal Keratinocytes: Evident Contribution of KPNA2 for Nuclear Translocation of IRF-1. J Invest Dermatol 2007; 127:1456-64. [PMID: 17255955 DOI: 10.1038/sj.jid.5700716] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite a number of studies on signal transduction in epidermal keratinocytes, very little is known about how signals move from the cytosol to the nucleus during the course of keratinocyte proliferation and differentiation. In this study, we first compared the expression patterns of the karyopherin alpha (KPNA) subtypes, and found that KPNA2, KPNA3, and KPNA4 were the major subtypes in both normal human epidermal keratinocytes (NHEKs) and normal human dermal fibroblasts (NHDFs). Stimulation with either transforming growth factor (TGF)-beta1 or IFN-gamma for 24 hours resulted in the downregulation of KPNA2 expression specifically in NHEK at both the mRNA and protein levels. Interestingly, IFN-gamma, but not TGF-beta1, specifically downregulated KPNA2 expression at the promoter level, suggesting differential regulation of KPNA2 expression by IFN-gamma and TGF-beta1. We then demonstrated that KPNA2 physically bound to IFN regulatory factor-1 (IRF-1), a transcription factor induced by IFN-gamma, and induced nuclear translocation of IRF-1 in NHEKs. We finally performed microarray and quantitative real-time PCR analysis for the mRNA expression pattern of NHEK with either overexpression or knockdown of KPNA2, and indicated KPNA2 involvement for various epidermal gene regulations such as involucrin. Our data suggest that KPNA2 may play an important role in the signal-transduction pathways that regulate epidermal proliferation and differentiation.
Collapse
Affiliation(s)
- Noriko Umegaki
- Department of Dermatology, Hirosaki University School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
165
|
|
166
|
Knudsen NØ, Nielsen FC, Vinther L, Bertelsen R, Holten-Andersen S, Liberti SE, Hofstra R, Kooi K, Rasmussen LJ. Nuclear localization of human DNA mismatch repair protein exonuclease 1 (hEXO1). Nucleic Acids Res 2007; 35:2609-19. [PMID: 17426132 PMCID: PMC1885640 DOI: 10.1093/nar/gkl1166] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human exonuclease 1 (hEXO1) is implicated in DNA mismatch repair (MMR) and mutations in hEXO1 may be associated with hereditary nonpolyposis colorectal cancer (HNPCC). Since the subcellular localization of MMR proteins is essential for proper MMR function, we characterized possible nuclear localization signals (NLSs) in hEXO1. Using fluorescent fusion proteins, we show that the sequence 418KRPR421, which exhibit strong homology to other monopartite NLS sequences, is responsible for correct nuclear localization of hEXO1. This NLS sequence is located in a region that is also required for hEXO1 interaction with hMLH1 and we show that defective nuclear localization of hEXO1 mutant proteins could be rescued by hMLH1 or hMSH2. Both hEXO1 and hMLH1 form complexes with the nuclear import factors importin β/α1,3,7 whereas hMSH2 specifically recognizes importin β/α3. Taken together, we infer that hEXO1, hMLH1 and hMSH2 form complexes and are imported to the nucleus together, and that redundant NLS import signals in the proteins may safeguard nuclear import and thereby MMR activity.
Collapse
Affiliation(s)
- Nina Østergaard Knudsen
- Department of Science, Systems and Models, Roskilde University, Denmark, Department of Clinical Biochemistry, University Hospital of Copenhagen, Denmark and Department of Medical Genetics, University of Groningen, The Netherlands
| | - Finn Cilius Nielsen
- Department of Science, Systems and Models, Roskilde University, Denmark, Department of Clinical Biochemistry, University Hospital of Copenhagen, Denmark and Department of Medical Genetics, University of Groningen, The Netherlands
| | - Lena Vinther
- Department of Science, Systems and Models, Roskilde University, Denmark, Department of Clinical Biochemistry, University Hospital of Copenhagen, Denmark and Department of Medical Genetics, University of Groningen, The Netherlands
| | - Ronni Bertelsen
- Department of Science, Systems and Models, Roskilde University, Denmark, Department of Clinical Biochemistry, University Hospital of Copenhagen, Denmark and Department of Medical Genetics, University of Groningen, The Netherlands
| | - Steen Holten-Andersen
- Department of Science, Systems and Models, Roskilde University, Denmark, Department of Clinical Biochemistry, University Hospital of Copenhagen, Denmark and Department of Medical Genetics, University of Groningen, The Netherlands
| | - Sascha Emilie Liberti
- Department of Science, Systems and Models, Roskilde University, Denmark, Department of Clinical Biochemistry, University Hospital of Copenhagen, Denmark and Department of Medical Genetics, University of Groningen, The Netherlands
| | - Robert Hofstra
- Department of Science, Systems and Models, Roskilde University, Denmark, Department of Clinical Biochemistry, University Hospital of Copenhagen, Denmark and Department of Medical Genetics, University of Groningen, The Netherlands
| | - Krista Kooi
- Department of Science, Systems and Models, Roskilde University, Denmark, Department of Clinical Biochemistry, University Hospital of Copenhagen, Denmark and Department of Medical Genetics, University of Groningen, The Netherlands
| | - Lene Juel Rasmussen
- Department of Science, Systems and Models, Roskilde University, Denmark, Department of Clinical Biochemistry, University Hospital of Copenhagen, Denmark and Department of Medical Genetics, University of Groningen, The Netherlands
- *To whom correspondence should be addressed +45 46742728+45 46 74 30 11
| |
Collapse
|
167
|
Donaldson NS, Daniel Y, Kelly KF, Graham M, Daniel JM. Nuclear trafficking of the POZ-ZF protein Znf131. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:546-55. [PMID: 17306895 DOI: 10.1016/j.bbamcr.2006.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 12/06/2006] [Accepted: 12/08/2006] [Indexed: 01/21/2023]
Abstract
Znf131 is a member of the BTB/POZ family of transcription factors with roles in development and carcinogenesis. Like many members of this protein family, Znf131 displays robust nuclear localization in cultured cells, but the mechanism(s) of Znf131 nuclear trafficking is unknown. Here, we report the mechanism of Znf131 nuclear localization. Visual inspection of the Znf131 amino acid sequence revealed three basic regions (BR-1, -2 and -3) with the potential to serve as nuclear localization signals (NLS). Of the three basic regions, only BR-1 functioned independently to efficiently target heterologous beta-gal-GFP fusion proteins to HeLa cell nuclei. However, a Znf131 truncation mutant containing BR-2 and BR-3 efficiently targeted heterologous beta-gal-GFP fusion proteins to HeLa cell nuclei. Mutational analysis of full-length GFP-tagged Znf131 revealed that loss of any one BR alone did not prevent Znf131 nuclear localization. This apparent redundancy in NLS activity was due to the fact that intact BR-1 or BR-2 alone could target full-length Znf131 to nuclei. Consequently, simultaneous mutation of BR-1 and BR-2 abolished full-length Znf131 nuclear localization. Therefore, BR-1 and BR-2 are functional NLSs for Znf131 and as such are designated NLS-1 and NLS-2. Finally, wild type Znf131, and not a Znf131 NLS-defective mutant (NLS-1m/NLS-2m) interacted preferentially with the nuclear import receptor Importin-alpha3 in vitro.
Collapse
Affiliation(s)
- Nickett S Donaldson
- Department of Biology, LSB-331 McMaster University, 1280 Main Street West Hamilton, Canada ON L8S 4K1
| | | | | | | | | |
Collapse
|
168
|
Kanneganti TD, Bai X, Tsai CW, Win J, Meulia T, Goodin M, Kamoun S, Hogenhout SA. A functional genetic assay for nuclear trafficking in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:149-58. [PMID: 17346267 DOI: 10.1111/j.1365-313x.2007.03029.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The receptor importin-alpha mediates the nuclear import of functionally diverse cargo proteins that contain arginine/lysine-rich nuclear localization signals (NLSs). Functional homologs of importin-alpha have been characterized in a wide range of species including yeast, human and plants. However, the differential cargo selectivity of plant importin-alpha homologs has not been established. To advance nuclear import studies conducted in plant cells, we have developed a method that allows importin-alpha-dependent nuclear import to be assayed in Nicotiana benthamiana. We employed virus-induced gene silencing (VIGS) to knock down the expression of two importin-alpha homologs, NbImpalpha1 and NbImpalpha2, which we identified from N. benthamiana. Agro-infiltration was then used to transiently express the NLS-containing proteins Arabidopsis thaliana fibrillarin 1 (AtFib1) and the Nuk6, Nuk7 and Nuk12 candidate effector proteins of the oomycete plant pathogen Phytophthora infestans. In this manner, we demonstrate importin-alpha-dependent nuclear import of Nuk6 and Nuk7. In contrast, the nuclear import of Nuk12 and AtFib1 was unaffected in cells of NbImpalpha-silenced plants. These data suggest that P. infestans Nuk6 and Nuk7 proteins are dependent on one or more alpha-importins for nuclear import. Our VIGS-based assay represents a powerful new technique to study mechanisms underlying the transport of proteins from cytoplasm to nucleus in plants.
Collapse
Affiliation(s)
- Thirumala-Devi Kanneganti
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Melén K, Kinnunen L, Fagerlund R, Ikonen N, Twu KY, Krug RM, Julkunen I. Nuclear and nucleolar targeting of influenza A virus NS1 protein: striking differences between different virus subtypes. J Virol 2007; 81:5995-6006. [PMID: 17376915 PMCID: PMC1900311 DOI: 10.1128/jvi.01714-06] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Influenza A virus nonstructural protein 1 (NS1A protein) is a virulence factor which is targeted into the nucleus. It is a multifunctional protein that inhibits host cell pre-mRNA processing and counteracts host cell antiviral responses. We show that the NS1A protein can interact with all six human importin alpha isoforms, indicating that the nuclear translocation of NS1A protein is mediated by the classical importin alpha/beta pathway. The NS1A protein of the H1N1 (WSN/33) virus has only one N-terminal arginine- or lysine-rich nuclear localization signal (NLS1), whereas the NS1A protein of the H3N2 subtype (Udorn/72) virus also has a second C-terminal NLS (NLS2). NLS1 is mapped to residues 35 to 41, which also function in the double-stranded RNA-binding activity of the NS1A protein. NLS2 was created by a 7-amino-acid C-terminal extension (residues 231 to 237) that became prevalent among human influenza A virus types isolated between the years 1950 to 1987. NLS2 includes basic amino acids at positions 219, 220, 224, 229, 231, and 232. Surprisingly, NLS2 also forms a functional nucleolar localization signal NoLS, a function that was retained in H3N2 type virus NS1A proteins even without the C-terminal extension. It is likely that the evolutionarily well-conserved nucleolar targeting function of NS1A protein plays a role in the pathogenesis of influenza A virus.
Collapse
Affiliation(s)
- Krister Melén
- Department of Viral Diseases and Immunology, National Public Health Institute, Mannerheimintie 166, FIN-00300, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
170
|
Sasai Y. A matter of some importins: nuclear transport factors in ES cell maintenance and differentiation. Dev Cell 2007; 12:172-4. [PMID: 17276333 DOI: 10.1016/j.devcel.2007.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A recent paper in Nature Cell Biology reports an unexpected role for nuclear transport proteins in triggering the differentiation of ES cells. The authors show how switching of importin-alpha subtypes exerts a selective gate-keeping function in the nuclear import of key transcription factors that regulate stem cell maintenance and differentiation.
Collapse
Affiliation(s)
- Yoshiki Sasai
- Organogenesis and Neurogenesis Group, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.
| |
Collapse
|
171
|
Nitahara-Kasahara Y, Kamata M, Yamamoto T, Zhang X, Miyamoto Y, Muneta K, Iijima S, Yoneda Y, Tsunetsugu-Yokota Y, Aida Y. Novel nuclear import of Vpr promoted by importin alpha is crucial for human immunodeficiency virus type 1 replication in macrophages. J Virol 2007; 81:5284-93. [PMID: 17344301 PMCID: PMC1900242 DOI: 10.1128/jvi.01928-06] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Monocytes/macrophages are major targets of human immunodeficiency virus type 1 (HIV-1) infection. The viral preintegration complex (PIC) of HIV-1 enters the nuclei of monocyte-derived macrophages, but very little PIC migrates into the nuclei of immature monocytes. Vpr, one of the accessory gene products of HIV-1, is essential for the nuclear import of PIC in these cells, although the role of Vpr in the entry mechanism of PIC remains to be clarified. We have shown previously that Vpr is targeted to the nuclear envelope and then transported into the nucleus by importin alpha alone, in an importin beta-independent manner. Here we demonstrate that the nuclear import of Vpr is strongly promoted by the addition of cytoplasmic extract from macrophages but not of that from monocytes and that the nuclear import activity is lost with immunodepletion of importin alpha from the cytoplasmic extract. Immunoblot analysis and real-time PCR demonstrate that immature monocytes express importin alpha at low levels, whereas the expression of three major importin alpha isoforms markedly increases upon their differentiation into macrophages, indicating that the expression of importin alpha is required for nuclear import of Vpr. Furthermore, interaction between importin alpha and the N-terminal alpha-helical domain of Vpr is indispensable, not only for the nuclear import of Vpr but also for HIV-1 replication in macrophages. This study suggests the possibility that the binding of Vpr to importin alpha, preceding a novel nuclear import process, is a potential target for therapeutic intervention.
Collapse
|
172
|
Mirski SEL, Sparks KE, Friedrich B, Köhler M, Mo YY, Beck WT, Cole SPC. Topoisomerase II binds importin alpha isoforms and exportin/CRM1 but does not shuttle between the nucleus and cytoplasm in proliferating cells. Exp Cell Res 2007; 313:627-37. [PMID: 17182034 DOI: 10.1016/j.yexcr.2006.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 10/12/2006] [Accepted: 11/07/2006] [Indexed: 01/11/2023]
Abstract
Resistance to anticancer drugs that target DNA topoisomerase II (topo II) isoforms alpha and/or beta is associated with decreased nuclear and increased cytoplasmic topo IIalpha. Earlier studies have confirmed that functional nuclear localization and export signal sequences (NLS and NES) are present in both isoforms. In this study, we show that topo II alpha and beta bind and are imported into the nucleus by importin alpha1, alpha3, and alpha5 in conjunction with importin beta. Topo IIalpha also binds exportin/CRM1 in vitro. However, wild-type topo IIalpha has only been observed in the cytoplasm of cells that are entering plateau phase growth. This suggests that topo IIalpha may shuttle between the nucleus and the cytoplasm with the equilibrium towards the nucleus in proliferating cells but towards the cytoplasm in plateau phase cells. The CRM1 inhibitor Leptomycin B increases the nuclear localization of GFP-tagged topo IIalpha with a mutant NLS, suggesting that its export is being inhibited. However, homokaryon shuttling experiments indicate that fluorescence-tagged wild-type topo II alpha and beta proteins do not shuttle in proliferating Cos-1 or HeLa cells. We conclude that topo II alpha and beta nuclear export is inhibited in proliferating cells so that these proteins do not shuttle.
Collapse
Affiliation(s)
- Shelagh E L Mirski
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada K7L 3N6
| | | | | | | | | | | | | |
Collapse
|
173
|
Bian XL, Rosas-Acosta G, Wu YC, Wilson VG. Nuclear import of bovine papillomavirus type 1 E1 protein is mediated by multiple alpha importins and is negatively regulated by phosphorylation near a nuclear localization signal. J Virol 2006; 81:2899-908. [PMID: 17192311 PMCID: PMC1865984 DOI: 10.1128/jvi.01850-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Papillomavirus DNA replication occurs in the nucleus of infected cells and requires the viral E1 protein, which enters the nuclei of host epithelial cells and carries out enzymatic functions required for the initiation of viral DNA replication. In this study, we investigated the pathway and regulation of the nuclear import of the E1 protein from bovine papillomavirus type 1 (BPV1). Using an in vitro binding assay, we determined that the E1 protein interacted with importins alpha3, alpha4, and alpha5 via its nuclear localization signal (NLS) sequence. In agreement with this result, purified E1 protein was effectively imported into the nucleus of digitonin-permeabilized HeLa cells after incubation with importin alpha3, alpha4, or alpha5 and other necessary import factors. We also observed that in vitro binding of E1 protein to all three alpha importins was significantly decreased by the introduction of pseudophosphorylation mutations in the NLS region. Consistent with the binding defect, pseudophosphorylated E1 protein failed to enter the nucleus of digitonin-permeabilized HeLa cells in vitro. Likewise, the pseudophosphorylation mutant showed aberrant intracellular localization in vivo and accumulated primarily on the nuclear envelope in transfected HeLa cells, while the corresponding alanine replacement mutant displayed the same cellular location pattern as wild-type E1 protein. Collectively, our data demonstrate that BPV1 E1 protein can be transported into the nucleus by more than one importin alpha and suggest that E1 phosphorylation by host cell kinases plays a regulatory role in modulating E1 nucleocytoplasmic localization. This phosphoregulation of nuclear E1 protein uptake may contribute to the coordination of viral replication with keratinocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Xue-Lin Bian
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|
174
|
Yasuhara N, Shibazaki N, Tanaka S, Nagai M, Kamikawa Y, Oe S, Asally M, Kamachi Y, Kondoh H, Yoneda Y. Triggering neural differentiation of ES cells by subtype switching of importin-alpha. Nat Cell Biol 2006; 9:72-9. [PMID: 17159997 DOI: 10.1038/ncb1521] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 10/19/2006] [Indexed: 02/06/2023]
Abstract
Nuclear proteins are selectively imported into the nucleus by transport factors such as importin-alpha and importin-beta. Here, we show that the expression of importin-alpha subtypes is strictly regulated during neural differentiation of mouse embryonic stem (ES) cells, and that the switching of importin-alpha subtype expression is critical for neural differentiation. Moreover, reproducing the switching of importin-alpha subtype expression in undifferentiated ES cells induced neural differentiation in the presence of leukaemia inhibitory factor (LIF) and serum, coordinated with the regulated expression of Oct3/4, Brn2 and SOX2, which are involved in ES-neural identity determination. These transcription factors were selectively imported into the nucleus by specific subtypes of importin-alpha. Thus, importin-alpha subtype switching has a major impact on cell differentiation through the regulated nuclear import of a specific set of transcription factors. This is the first study to propose that transport factors should be considered as major players in cell-fate determination.
Collapse
Affiliation(s)
- Noriko Yasuhara
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Zhang J, Ito H, Wate R, Ohnishi S, Nakano S, Kusaka H. Altered distributions of nucleocytoplasmic transport-related proteins in the spinal cord of a mouse model of amyotrophic lateral sclerosis. Acta Neuropathol 2006; 112:673-80. [PMID: 16957927 DOI: 10.1007/s00401-006-0130-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 08/05/2006] [Accepted: 08/05/2006] [Indexed: 10/24/2022]
Abstract
Recent investigations have indicated that the nucleocytoplasmic transport system is essential for maintaining cell viability and cellular functions and that its dysfunction could lead to certain disorders. To investigate the involvement of this system in the pathomechanisms of amyotrophic lateral sclerosis (ALS), we examined the immunohistochemical localization of proteins associated with nucleocytoplasmic transport in the lumbar spinal cord in a mutant SOD1 (G93A) transgenic mouse model of ALS. This model is widely used for ALS research, and the mutant mice are known to exhibit neuronal loss and Lewy body-like hyaline inclusions (LBHIs) in the anterior horns, similar to the pathology seen in familial ALS patients associated with an SOD1 mutation and in several other transgenic rodent models. Using antibodies against the importin beta family of proteins, the major carrier proteins of nucleocytoplasmic transport, and those against their adapter protein, importin alpha, we found that the immunoreactivities were decreased within the nuclei and increased within the cytoplasm of a subset of the surviving anterior horn cells of the transgenic mice. In addition, LBHIs were invariably reactive toward these antibodies. Furthermore, the immunoreactivities for histone H1 and beta-catenin, representative cargo proteins transported by importin beta-dependent and beta-independent nucleocytoplasmic transport pathways, respectively, showed distributions similar to those for importin beta family and importin alpha proteins. The altered distributions of these proteins were not associated with caspase-3 expression, suggesting that the findings are unlikely to be a manifestation of apoptotic processes. Chronological quantitative analysis of importin beta-immunostained sections from the transgenic mice revealed a statistically significant progressive decrease in the proportion of the anterior horn cells exhibiting a more intense reactivity for these proteins in the nucleus than in the cytoplasm. To the contrary, we found that the anterior horn cells with the immunoreactivity in their cytoplasm, being more pronounced than that in their nucleus, were significantly increased in number along with the disease progression. This is the first report investigating nucleocytoplasmic transport in the ALS model mouse, and our present results imply that its dysfunction could be involved in the pathomechanisms underlying ALS.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Neurology, Kansai Medical University, 10-15, Fumizono-cho, Moriguchi, Osaka, 570-8507, Japan
| | | | | | | | | | | |
Collapse
|
176
|
Plant KE, Everett DM, Gordon Gibson G, Lyon J, Plant NJ. Transcriptomic and phylogenetic analysis of Kpna genes: a family of nuclear import factors modulated in xenobiotic-mediated liver growth. Pharmacogenet Genomics 2006; 16:647-58. [PMID: 16906019 DOI: 10.1097/01.fpc.0000220570.82842.4d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES We have identified a member of the karyopherin (importin) alpha family of nuclear import factors as being modulated in rat liver following exposure to the hypolipidaemic and liver growth agent Wy-14,643. To examine the hypothetical role of this protein family as a checkpoint in receptor-mediated signalling, we characterized the rat karyopherin alpha (Kpna) gene family and present cDNA sequences and gene structures for all six rat Kpna genes. Further, we have assembled a comprehensive panel of Kpna coding regions from a range of metazoa, which we have subjected to phylogenetic analysis: This represents by far the most complete phylogenetic study of metazoan karyopherins, including several evolutionary intermediates not previously examined. The phylogeny reveals three Kpna subfamilies with distinct, conserved gene structures, shedding light on the evolutionary origins of this multigene family in metazoa. METHODS AND RESULTS Using quantitative PCR, we have analysed Kpna transcript levels in 44 rat tissues; Kpna transcripts show a wide variation in their distribution both in absolute and relative terms, suggestive of specialized roles for each member. We also demonstrate that Kpna genes are regulated in rat liver and isolated hepatocytes in a xenobiotic-specific manner for a number of chemically distinct liver growth agents. CONCLUSIONS In light of the crucial role of nuclear import in mediating the genomic changes elicited through nuclear receptor activation, we postulate that changes in the levels of specific karyopherins alpha during xenobiotic-mediated liver growth represent an important component of the cellular response to the external stimuli that trigger these events.
Collapse
Affiliation(s)
- Kathryn E Plant
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | | | | | | | | |
Collapse
|
177
|
MacPherson S, Larochelle M, Turcotte B. A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 2006; 70:583-604. [PMID: 16959962 PMCID: PMC1594591 DOI: 10.1128/mmbr.00015-06] [Citation(s) in RCA: 416] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The trace element zinc is required for proper functioning of a large number of proteins, including various enzymes. However, most zinc-containing proteins are transcription factors capable of binding DNA and are named zinc finger proteins. They form one of the largest families of transcriptional regulators and are categorized into various classes according to zinc-binding motifs. This review focuses on one class of zinc finger proteins called zinc cluster (or binuclear) proteins. Members of this family are exclusively fungal and possess the well-conserved motif CysX(2)CysX(6)CysX(5-12)CysX(2)CysX(6-8)Cys. The cysteine residues bind to two zinc atoms, which coordinate folding of the domain involved in DNA recognition. The first- and best-studied zinc cluster protein is Gal4p, a transcriptional activator of genes involved in the catabolism of galactose in the budding yeast Saccharomyces cerevisiae. Since the discovery of Gal4p, many other zinc cluster proteins have been characterized; they function in a wide range of processes, including primary and secondary metabolism and meiosis. Other roles include regulation of genes involved in the stress response as well as pleiotropic drug resistance, as demonstrated in budding yeast and in human fungal pathogens. With the number of characterized zinc cluster proteins growing rapidly, it is becoming more and more apparent that they are important regulators of fungal physiology.
Collapse
Affiliation(s)
- Sarah MacPherson
- Department of Microbiology and Immunology, Royal Victoria Hospital, McGill University, Montréal, Québec, Canada H3A 1A
| | | | | |
Collapse
|
178
|
Friedrich B, Quensel C, Sommer T, Hartmann E, Köhler M. Nuclear localization signal and protein context both mediate importin alpha specificity of nuclear import substrates. Mol Cell Biol 2006; 26:8697-709. [PMID: 17000757 PMCID: PMC1636818 DOI: 10.1128/mcb.00708-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The "classical" nuclear protein import pathway depends on importin alpha and importin beta. Importin alpha binds nuclear localization signal (NLS)-bearing proteins and functions as an adapter to access the importin beta-dependent import pathway. In humans, only one importin beta is known to interact with importin alpha, while six alpha importins have been described. Various experimental approaches provided evidence that several substrates are transported specifically by particular alpha importins. Whether the NLS is sufficient to mediate importin alpha specificity is unclear. To address this question, we exchanged the NLSs of two well-characterized import substrates, the seven-bladed propeller protein RCC1, preferentially transported into the nucleus by importin alpha3, and the less specifically imported substrate nucleoplasmin. In vitro binding studies and nuclear import assays revealed that both NLS and protein context contribute to the specificity of importin alpha binding and transport.
Collapse
Affiliation(s)
- Beate Friedrich
- The Max Delbrueck Center for Molecular Medicine, Robert Roessle Strasse 10, 13125 Berlin, Germany
| | | | | | | | | |
Collapse
|
179
|
Davis JR, Kakar M, Lim CS. Controlling protein compartmentalization to overcome disease. Pharm Res 2006; 24:17-27. [PMID: 16969692 DOI: 10.1007/s11095-006-9133-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 07/20/2006] [Indexed: 01/08/2023]
Abstract
Over the past decade, considerable progress has been made to improve our understanding of the intracellular transport of proteins. Mechanisms of nuclear import and export involving classical receptors have been studied. Signal sequences required for directing a protein molecule to a specific cellular compartment have been defined. Knowledge of subcellular trafficking of proteins has also increased our understanding of diseases caused due to mislocalization of proteins. A specific protein on deviating from its native cellular compartment may result in disease due to loss of its normal functioning and aberrant activity in the "wrong" compartment. Mislocalization of proteins results in diseases that range from metabolic disorders to cancer. In this review we discuss some of the diseases caused due to mislocalization. We further focus on application of nucleocytoplasmic transport to drug delivery. Various rationales to treat diseases by exploiting intracellular transport machinery have been proposed. Although the pathways for intracellular movement of proteins have been defined, these have not been adequately utilized for management of diseases involving mislocalized proteins. This review stresses the need for designing drug delivery systems utilizing these mechanisms as this area is least exploited but offers great potential.
Collapse
Affiliation(s)
- James R Davis
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | |
Collapse
|
180
|
Abstract
Accurate cellular localization is crucial for the effective function of most signalling molecules and nuclear translocation is central to the function of transcription factors. The passage of large molecules between the cytoplasm and nucleus is restricted, and this restriction affords a mechanism to regulate transcription by controlling the access of transcription factors to the nucleus. In this Review, we focus on the signal transducer and activator of transcription (STAT) family of transcription factors. The regulation of the nuclear trafficking of STAT-family members is diverse. Some STAT proteins constitutively shuttle between the nucleus and cytoplasm, whereas others require tyrosine phosphorylation for nuclear localization. In either case, the regulation of nuclear trafficking can provide a target for therapeutic intervention.
Collapse
Affiliation(s)
- Nancy C Reich
- Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11777, USA.
| | | |
Collapse
|
181
|
Ma J, Cao X. Regulation of Stat3 nuclear import by importin α5 and importin α7 via two different functional sequence elements. Cell Signal 2006; 18:1117-26. [PMID: 16298512 DOI: 10.1016/j.cellsig.2005.06.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 05/30/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
Regulated import of STAT proteins into the nucleus through the nuclear pores is a vital event. We previously identified Arg214/215 in the coiled-coil domain and Arg414/417 in the DNA binding domain involved in the ligand-induced nuclear translocation of Stat3. In this study, we investigated the mechanism for Stat3 nuclear transport. We report here that among five ubiquitously expressed human importin alphas, importin alpha5 and alpha7, but not importin alpha1, alpha3, and alpha4, bind to Stat3 upon cytokine stimulation. Similar results were observed for Stat1, but not for Stat5a and 5b, which were unable to interact with any of the importin alphas. The C-terminus of importin alpha5 is necessary but not sufficient for Stat3 binding. Truncation mutant of Stat3 (aa1-320) that contains Arg214/215 exhibits specific binding to importin alpha5, and an exclusive nuclear localization. Point mutations of Arg214/215 in this mutant destroy importin alpha5 binding and its nuclear localization. In contrast, the truncation mutant (aa320-770) including Arg414/417 fails to interact with importin alpha5 and is localized in the cytoplasm. However, both sequence elements are necessary for the full-length Stat3's interaction with importin alpha5. These results suggest that Arg214/215 is likely the binding site for importin alpha5, whereas Arg414/417 may not be involved in the direct binding, but necessary for maintaining the proper conformation of Stat3 dimer for importin binding. A model for Stat3 nuclear translocation is proposed based on these data.
Collapse
Affiliation(s)
- Jing Ma
- Signal Transduction Laboratory, Institute of Molecular and Cell Biology, Proteos Building, 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | | |
Collapse
|
182
|
Otis KO, Thompson KR, Martin KC. Importin-mediated nuclear transport in neurons. Curr Opin Neurobiol 2006; 16:329-35. [PMID: 16690311 DOI: 10.1016/j.conb.2006.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 05/03/2006] [Indexed: 01/17/2023]
Abstract
The polarized morphology of neurons poses a particular challenge to intracellular signal transduction. Local signals generated at distal sites must be retrogradely transported to the nucleus to produce persistent changes in neuronal function. Such communication of signals between distal neuronal compartments and the nucleus occurs during axon guidance, synapse formation, synaptic plasticity and following neuronal injury. Recent studies have begun to delineate a role for the active nuclear import pathway in transporting signals from axons and dendrites to the nucleus. In this pathway, soluble cargo proteins are recognized by nuclear transport carriers, called importins, which mediate their translocation from the cytoplasm into the nucleus. In neurons, importins might serve an additional function by carrying signals from distal sites to the soma.
Collapse
Affiliation(s)
- Klara Olofsdotter Otis
- University of California, Los Angeles, Gonda Research Building 3506C, 695 Charles Young Drive South, Los Angeles, CA 90095-1761, USA
| | | | | |
Collapse
|
183
|
Chen GD, Chou CM, Hwang SPL, Wang FF, Chen YC, Hung CC, Chen JY, Huang CJ. Requirement of nuclear localization and transcriptional activity of p53 for its targeting to the yolk syncytial layer (YSL) nuclei in zebrafish embryo and its use for apoptosis assay. Biochem Biophys Res Commun 2006; 344:272-82. [PMID: 16616005 DOI: 10.1016/j.bbrc.2006.03.136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 03/20/2006] [Indexed: 11/28/2022]
Abstract
We expressed zebrafish p53 protein fused to GFP by a neuron-specific HuC promoter in zebrafish embryos. Instead of displaying neuronal expression patterns, p53-GFP was targeted to zebrafish YSL nuclei. This YSL targeting is p53 sequence-specific because GFP fusion proteins of p63 and p73 displayed neuronal-specific patterns. To dissect the underlying mechanisms, various constructs encoding a series of p53 mutant proteins under the control of different promoters were generated. Our results showed that expression of p53, in early zebrafish embryo, is preferentially targeted to the nuclei of YSL, which is mediated by importin. Similarly, this targeting is abrogated when p53 nuclear localization signal is disrupted. In addition, the transcriptional activity of p53 is required for this targeting. We further showed that fusion of pro-apoptotic BAD protein to p53-GFP led to apoptosis of YSL cells, and subsequent imperfect microtubule formation and abnormal blastomere movements.
Collapse
Affiliation(s)
- Gen-Der Chen
- Institute of Biochemistry, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Hogarth CA, Calanni S, Jans DA, Loveland KL. Importin alpha mRNAs have distinct expression profiles during spermatogenesis. Dev Dyn 2006; 235:253-62. [PMID: 16261624 DOI: 10.1002/dvdy.20569] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Importin proteins control access to the cell nucleus by mediating the nuclear transport of specific cargoes. We hypothesized that developmental regulation of gene expression may be partially effected by changes in the nuclear transport machinery complement, manifested as regulated expression of importin alpha family genes. We first clarified the identity of the five known mouse importin alpha genes relative to those for human and then determined their expression throughout postnatal rodent testis using PCR and in situ hybridization. Distinct expression patterns were observed for each. At 10 dpp, all importin alpha mRNAs were detected in spermatogonia. In the adult mouse testis, importins alpha1 and alpha3 were detected in spermatogonia and early pachytene spermatocytes. Importin alpha4 mRNA was identified in pachytene spermatocytes, alpha6 mRNA in round spermatids, and alpha2 mRNA in both of these. The distinct importin alpha expression patterns are consistent with their having specific roles and transport cargoes during spermatogenesis.
Collapse
Affiliation(s)
- Cathryn A Hogarth
- The Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
185
|
van der Aa MAEM, Mastrobattista E, Oosting RS, Hennink WE, Koning GA, Crommelin DJA. The Nuclear Pore Complex: The Gateway to Successful Nonviral Gene Delivery. Pharm Res 2006; 23:447-59. [PMID: 16525863 DOI: 10.1007/s11095-005-9445-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 11/10/2005] [Indexed: 02/04/2023]
Abstract
One of the limiting steps in the efficiency of nonviral gene delivery is transport of genetic material across the nuclear membrane. Trafficking of nuclear proteins from the cytoplasm into the nucleus occurs via the nuclear pore complex and is mediated by nuclear localization signals and their nuclear receptors. Several strategies employing this transport mechanism have been designed and explored to improve nonviral gene delivery. In this article, we review the mechanism of nuclear import through the nuclear pore complex and the strategies used to facilitate nuclear import of exogenous DNA and improve gene expression.
Collapse
Affiliation(s)
- Marieke A E M van der Aa
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
186
|
Stallings CL, Duigou GJ, Gershon AA, Gershon MD, Silverstein SJ. The cellular localization pattern of Varicella-Zoster virus ORF29p is influenced by proteasome-mediated degradation. J Virol 2006; 80:1497-512. [PMID: 16415026 PMCID: PMC1346923 DOI: 10.1128/jvi.80.3.1497-1512.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Varicella-zoster virus (VZV) open reading frame 29 (ORF29) encodes a single-stranded DNA binding protein. During lytic infection, ORF29p is localized primarily to infected-cell nuclei, whereas during latency it appears in the cytoplasm of infected neurons. Following reactivation, ORF29p accumulates in the nucleus. In this report, we analyze the cellular localization patterns of ORF29p during VZV infection and during autonomous expression. Our results demonstrate that ORF29p is excluded from the nucleus in a cell-type-specific manner and that its cellular localization pattern may be altered by subsequent expression of VZV ORF61p or herpes simplex virus type 1 ICP0. In these cases, ORF61p and ICP0 induce nuclear accumulation of ORF29p in cell lines where it normally remains cytoplasmic. One cellular system utilized by ICP0 to influence protein abundance is the proteasome degradation pathway. Inhibition of the 26S proteasome, but not heat shock treatment, resulted in accumulation of ORF29p in the nucleus, similar to the effect of ICP0 expression. Immunofluorescence microscopy and pulse-chase experiments reveal that stabilization of ORF29p correlates with its nuclear accumulation and is dependent on a functional nuclear localization signal. ORF29p nuclear translocation in cultured enteric neurons and cells derived from an astrocytoma is reversible, as the protein's distribution and stability revert to the previous states when the proteasomal activity is restored. Thus, stabilization of ORF29p leads to its nuclear accumulation. Although proteasome inhibition induces ORF29p nuclear accumulation, this is not sufficient to reactivate latent VZV or target the immediate-early protein ORF62p to the nucleus in cultured guinea pig enteric neurons.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Line
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Enteric Nervous System/metabolism
- Enteric Nervous System/virology
- Exons
- Guinea Pigs
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/metabolism
- Herpesvirus 3, Human/genetics
- Herpesvirus 3, Human/metabolism
- Herpesvirus 3, Human/pathogenicity
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Leupeptins/pharmacology
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mutation
- Open Reading Frames
- Protease Inhibitors/pharmacology
- Proteasome Endopeptidase Complex/metabolism
- Proteasome Inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Subcellular Fractions/metabolism
- Subcellular Fractions/virology
- Tissue Culture Techniques
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Christina L Stallings
- Integrated Program in Cellular, Molecular and Biophysical Studies, and Department of Microbiology, Columbia University College of Physicians and Surgeons, 701 W. 168th Street, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
187
|
Kumar S, Saradhi M, Chaturvedi NK, Tyagi RK. Intracellular localization and nucleocytoplasmic trafficking of steroid receptors: an overview. Mol Cell Endocrinol 2006; 246:147-56. [PMID: 16388893 DOI: 10.1016/j.mce.2005.11.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Subcellular compartmentalization and dynamic movements of steroid receptors are major steps in executing their transcription regulatory function. Though significant progress has been made in understanding the mechanisms underlying nuclear import of NLS-bearing proteins, our general and mechanistic understanding about the nuclear export processes has begun to emerge only recently. The discovery of most commonly utilized CRM1/exportin1 dependent nuclear export pathway is attributed to a potent nuclear export inhibitor leptomycin B that helped dissecting this and other nuclear export pathways. Simultaneously, utilization of green fluorescent protein (GFP)-tagged intracellular steroid receptors has contributed to not only resolving controversial issue of subcellular localization of unliganded hormone receptors but also provided further insight into finer details of receptor dynamics in living cells. With judicious use of leptomycin B and expression of GFP-tagged receptors in living cells, existence of exportin1/CRM1 independent pathway(s), nuclear export signals and receptors for bi-directional translocation that are unique to steroid receptor trafficking have been specified. Currently, we appear to be arriving at a consensus that steroid/nuclear receptors follow dynamic nucleocytoplasmic processes that deviate from the ones commonly utilized by majority of other proteins.
Collapse
Affiliation(s)
- Sanjay Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | |
Collapse
|
188
|
Aratani S, Oishi T, Fujita H, Nakazawa M, Fujii R, Imamoto N, Yoneda Y, Fukamizu A, Nakajima T. The nuclear import of RNA helicase A is mediated by importin-α3. Biochem Biophys Res Commun 2006; 340:125-33. [PMID: 16375861 DOI: 10.1016/j.bbrc.2005.11.161] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
RNA helicase A (RHA), an ATPase/helicase, regulates the gene expression at various steps including transcriptional activation and RNA processing. RHA is known to shuttle between the nucleus and cytoplasm. We identified the nuclear localization signal (NLS) of RHA and analyzed the nuclear import mechanisms. The NLS of RHA (RHA-NLS) consisting of 19 amino acid residues is highly conserved through species and does not have the consensus classical NLS. In vitro nuclear import assays revealed that the nuclear import of RHA was Ran-dependent and mediated with the classical importin-alpha/beta-dependent pathway. The binding assay indicated that the basic residues in RHA-NLS were used for interaction with importin-alpha. Furthermore, the nuclear import of RHA-NLS was supported by importin-alpha1 and preferentially importin-alpha3. Our results indicate that the nuclear import of RHA is mediated by the importin-alpha3/importin-beta-dependent pathway and suggest that the specificity for importin may regulate the functions of cargo proteins.
Collapse
Affiliation(s)
- Satoko Aratani
- Department of Genome Science, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Gorjánácz M, Török I, Pomozi I, Garab G, Szlanka T, Kiss I, Mechler BM. Domains of Importin-alpha2 required for ring canal assembly during Drosophila oogenesis. J Struct Biol 2006; 154:27-41. [PMID: 16458020 DOI: 10.1016/j.jsb.2005.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 11/10/2005] [Accepted: 12/07/2005] [Indexed: 10/25/2022]
Abstract
Null-mutation in Drosophila importin-alpha2, such as the deficiency imp-alpha2(D14), causes recessive female sterility with the formation of dumpless eggs. In imp-alpha2(D14) the transfer of nurse cell components to the oocyte is interrupted and the Kelch protein, an oligomeric ring canal actin organizer, is normally produced but fails to associate with the ring canals resulting in their occlusion. To define domains regulating Kelch deposition on ring canals we performed site-directed mutagenesis on protein binding domains and putative phosphorylation sites of Imp-alpha2. Phenotypic analysis of the mutant transgenes in imp-alpha2(D14) revealed that mutations affecting the Imp-beta binding-domain, the dimerization domain, and specific serine residues of putative phosphorylation sites led to a normal or nearly normal oogenesis but arrested early embryonic development, whereas mutations in the nuclear localization signal (NLS) and CAS/exportin binding domains resulted in ring canal occlusion and a drastic nuclear accumulation of the mutant proteins. Deletion of the Imp-beta binding domain also gave rise to a nuclear localization of the mutant protein, which partially retained its function in ring canal assembly. Thus, we propose that mutations in NLS and CAS binding domains affect the deposition of Kelch onto the ring canals and prevent the association of Imp-alpha2 with a negative regulator of Kelch function.
Collapse
Affiliation(s)
- Mátyás Gorjánácz
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
190
|
Arnold M, Nath A, Wohlwend D, Kehlenbach RH. Transportin is a major nuclear import receptor for c-Fos: a novel mode of cargo interaction. J Biol Chem 2006; 281:5492-9. [PMID: 16407315 DOI: 10.1074/jbc.m513281200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
c-Fos, a component of the transcription factor AP-1, is rapidly imported into the nucleus after translation. We established an in vitro system using digitonin-permeabilized cells to analyze nuclear import of c-Fos in detail. Two import receptors of the importin beta superfamily, importin beta itself and transportin, promote import of c-Fos in vitro. Under conditions where importin beta-dependent transport was blocked, c-Fos still accumulated in the nucleus in the presence of cytosol. Inhibition of the transportin-dependent pathway, in contrast, abolished import of c-Fos. Furthermore, c-Fos mutants that interact with transportin but not with importin beta were efficiently imported in the presence of cytosol. Hence, transportin appears to be the predominant import receptor for c-Fos. A detailed biochemical characterization revealed that the interaction of transportin with c-Fos is distinct from the interaction with its established import cargoes, the M9 sequence of heterogeneous nuclear ribonucleoprotein A1 or the nuclear localization sequence of some basic proteins. Likewise, the binding sites on importin beta for its classic import cargo and for c-Fos can be separated. In summary, c-Fos employs a novel mode of receptor-cargo interaction. Hence, transportin may be as versatile as importin beta in recognizing different nuclear import cargoes.
Collapse
Affiliation(s)
- Marc Arnold
- Zentrum für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | | | |
Collapse
|
191
|
Ilmarinen T, Melén K, Kangas H, Julkunen I, Ulmanen I, Eskelin P. The monopartite nuclear localization signal of autoimmune regulator mediates its nuclear import and interaction with multiple importin alpha molecules. FEBS J 2006; 273:315-24. [PMID: 16403019 DOI: 10.1111/j.1742-4658.2005.05065.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autoimmune regulator (AIRE) is a transcriptional regulator involved in establishing immunological self-tolerance. Mutations in the AIRE gene lead to the development of the autosomal, recessively inherited, organ-specific autoimmune disease, autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED). The AIRE protein is mainly localized in the cell nucleus where it is associated with nuclear bodies. The N-terminal part of AIRE has been previously shown to mediate nuclear localization of the protein. However, the functional nuclear localization signal (NLS) and nuclear import mechanisms of AIRE have not been identified. We show that, although the amino-acid sequence of AIRE contains a potential bipartite NLS consisting of amino acids 110-114 and 131-133, only the latter part constitutes a functional NLS. Furthermore, we show by in vitro binding assays that AIRE interacts with multiple members of the nuclear transport receptor importin alpha family, mainly alpha1, alpha3, and alpha5, and that these interactions depend on the intactness of the Arg-Lys-rich NLS of AIRE. In addition, we found that AIRE binds to the 'minor' NLS-binding site of importin alpha3 and alpha5 proteins consisting of the C-terminal armadillo repeats 7-9. Our findings strongly suggest that the nuclear import of AIRE is mediated by the classical importin alpha/beta pathway through binding to several importin alpha family members.
Collapse
Affiliation(s)
- Tanja Ilmarinen
- Department of Molecular Medicine, National Public Health Institute, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
192
|
Stallings CL, Silverstein S. Dissection of a novel nuclear localization signal in open reading frame 29 of varicella-zoster virus. J Virol 2005; 79:13070-81. [PMID: 16189009 PMCID: PMC1235848 DOI: 10.1128/jvi.79.20.13070-13081.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Open reading frame 29 (ORF29) of varicella-zoster virus (VZV) encodes a 120-kDa single-stranded DNA binding protein (ORF29p) that is not packaged in the virion and is expressed during latency. During lytic infection, ORF29p is localized primarily to infected cell nuclei. In contrast, ORF29p is found exclusively in the cytoplasm in neurons of the dorsal root ganglia obtained at autopsy from seropositive latently infected patients. ORF29p accumulates in the nuclei of neurons in dorsal root ganglia obtained at autopsy from patients with active zoster. The localization of this protein is, therefore, tightly correlated with the proposed VZV lytic/latent switch. In this report, we have investigated the nuclear import mechanism of ORF29p. We identified a novel nuclear targeting domain bounded by amino acids 9 to 154 of ORF29p that functions independent of other VZV-encoded factors. In vitro import assays in digitonin-permeabilized HeLa cells reveal that ORF29p is transported into the nucleus by a Ran-, karyopherin alpha- and beta-dependent mechanism. These data are further supported by the demonstration that a glutathione S-transferase-karyopherin alpha fusion interacts with ORF29p, but not with a protein containing a point mutation in its nuclear localization signal (NLS). Therefore, the region of ORF29p responsible for its nuclear targeting is also involved in the association with karyopherin alpha. As a result of this interaction, this noncanonical NLS appears to hijack the classical cellular nuclear import machinery. Elucidation of the mechanisms governing ORF29p nuclear targeting could shed light on the VZV reactivation process.
Collapse
Affiliation(s)
- Christina L Stallings
- Integrated Program in Cellular, Molecular and Biophysical Studies and the Department of Microbiology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
193
|
Furuta M, Kose S, Koike M, Shimi T, Hiraoka Y, Yoneda Y, Haraguchi T, Imamoto N. Heat-shock induced nuclear retention and recycling inhibition of importin alpha. Genes Cells 2005; 9:429-41. [PMID: 15147272 DOI: 10.1111/j.1356-9597.2004.00734.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Heat-shock induces a strong stress response and modifies all aspects of cellular physiology, which involves dynamic changes in the nucleocytoplasmic distributions of a variety of proteins. Many distinct nucleocytoplasmic transport pathways exist in eukaryotic cells, but how a particular transport pathway is regulated under different cellular conditions remains elusive. The finding of this study indicate that conventional nuclear import, which is mediated by importin alpha/beta, is down-regulated, while the nuclear import of 70 kD heat-shock cognate protein is up-regulated in heat-shock cells. Among the factors involved in the mediation of the conventional nuclear import, significant levels of importin alpha accumulate in the nucleus in response to heat-shock. An analysis of the behaviour of importin alpha with fluorescence recovery after photobleaching and fluorescence loss in photobleaching studies show that nuclear importin alpha becomes less mobile and its nucleocytoplasmic recycling is impaired in heat-shock cells. These data coincided well with biochemical and cytological studies. Our present data show that heat-shock induces the nuclear accumulation, nuclear retention, and recycling inhibition of importin alpha, resulting in the suppression of conventional nuclear import. This suggests a new regulatory mechanism for the adaptation of cells to environmental changes, such as heat-shock.
Collapse
Affiliation(s)
- Maiko Furuta
- Cellular Dynamics Laboratory, Discovery Research Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Palma K, Zhang Y, Li X. An importin alpha homolog, MOS6, plays an important role in plant innate immunity. Curr Biol 2005; 15:1129-35. [PMID: 15964279 DOI: 10.1016/j.cub.2005.05.022] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/06/2005] [Accepted: 05/09/2005] [Indexed: 12/28/2022]
Abstract
Plant disease resistance is the consequence of an innate defense mechanism mediated by Resistance (R) genes [1]. The conserved structure of one class of R protein is reminiscent of Toll-like receptors (TLRs) and Nucleotide binding oligomerization domain (NOD) proteins-immune-response perception modules in animal cells [2, 3, and 4]. The Arabidopsis snc1 (suppressor of npr1-1, constitutive, 1) mutant contains a mutation in a TIR-NBS-LRR-type of R gene that renders resistance responses constitutively active without interaction with pathogens [5]. Few components of the downstream signaling network activated by snc1 are known. To search for regulators of R-gene-mediated resistance, we screened for genetic suppressors of snc1. Three alleles of the mutant mos6 (modifier of snc1, 6) partially suppressed constitutive-resistance responses and immunity to virulent pathogens in snc1. Furthermore, the mos6-1 single mutant exhibited enhanced disease susceptibility to a virulent oomycete pathogen. MOS6, identified by positional cloning, encodes importin alpha3, one of eight alpha importins in Arabidopsis [6]. alpha importins mediate the import of specific proteins across the nuclear envelope. We previously reported that MOS3, a protein homologous to human nucleoporin 96, is required for constitutive resistance in snc1 [7]. Our data highlight an essential role for nucleo-cytoplasmic trafficking, especially protein import, in plant innate immunity.
Collapse
Affiliation(s)
- Kristoffer Palma
- Michael Smith Laboratories, Room 301, 2185 East Mall, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | |
Collapse
|
195
|
Fontes MRM, Teh T, Riell RD, Park SB, Standaert RF, Kobe B. Crystallization and preliminary X-ray diffraction analysis of importin-alpha complexed with NLS peptidomimetics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1750:9-13. [PMID: 15878698 DOI: 10.1016/j.bbapap.2005.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 03/30/2005] [Accepted: 03/31/2005] [Indexed: 11/16/2022]
Abstract
Importin-alpha is the nuclear import receptor that recognizes cargo proteins with nuclear localization sequences (NLSs). The study of NLS peptidomimetics can provide a better understanding of the requirements for the molecular recognition of cargo proteins by importin-alpha, and potentially engender a large number of applications in medicine. Importin-alpha was crystallized with a set of six NLS peptidomimetics, and X-ray diffraction data were collected in the range 2.1-2.5 A resolution. Preliminary electron density calculations show that the ligands are present in the crystals.
Collapse
Affiliation(s)
- Marcos R M Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP, C. P. 510, CEP 18618-000, Botucatu-SP, Brazil.
| | | | | | | | | | | |
Collapse
|
196
|
Ushijima R, Sakaguchi N, Kano A, Maruyama A, Miyamoto Y, Sekimoto T, Yoneda Y, Ogino K, Tachibana T. Extracellular signal-dependent nuclear import of STAT3 is mediated by various importin alphas. Biochem Biophys Res Commun 2005; 330:880-6. [PMID: 15809078 DOI: 10.1016/j.bbrc.2005.03.063] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Indexed: 01/08/2023]
Abstract
The signal transducer and activator of transcription 3 (STAT3) is a transcription factor that is involved in a variety of biological functions. STAT3 is activated by cytokines and growth factors via the phosphorylation of a tyrosine residue, dimerization, and subsequent nuclear translocation. However, the mechanism of its nuclear translocation is unclear. A study of the cytokine-stimulated import of STAT3 into the nucleus is reported herein. An oncostatin M (OSM)-dependent nuclear import assay system was first established in living cells. Using this system, we demonstrated that the microinjection of the importin alpha5/NPI-1 mutant, an anti-importin beta antibody, and the RanQ69L mutant inhibited the nuclear import of STAT3. Second, we showed that tyrosine-phosphorylated STAT3 associates, not only with importin alpha5/NPI-1 but also with other importin alphas, as a result of OSM stimulation, as evidenced by a solution binding assay. These findings suggest that the extracellular signal-dependent nuclear transport of STAT3 is mediated by various importin alphas, importin beta, and Ran.
Collapse
Affiliation(s)
- Ryosuke Ushijima
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Umeda M, Izaddoost S, Cushman I, Moore MS, Sazer S. The fission yeast Schizosaccharomyces pombe has two importin-alpha proteins, Imp1p and Cut15p, which have common and unique functions in nucleocytoplasmic transport and cell cycle progression. Genetics 2005; 171:7-21. [PMID: 15937127 PMCID: PMC1456536 DOI: 10.1534/genetics.105.042598] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nuclear import of classical nuclear localization signal-containing proteins depends on importin-alpha transport receptors. In budding yeast there is a single importin-alpha gene and in higher eukaryotes there are multiple importin-alpha-like genes, but in fission yeast there are two: the previously characterized cut15 and the more recently identified imp1. Like other importin-alpha family members, Imp1p supports nuclear protein import in vitro. In contrast to cut15, imp1 is not essential for viability, but imp1delta mutant cells exhibit a telophase delay and mild temperature-sensitive lethality. Differences in the cellular functions that depend on Imp1p and Cut15p indicate that they each have unique physiological roles. They also have common roles because the imp1delta and the cut15-85 temperature-sensitive mutations are synthetically lethal; overexpression of cut15 partially suppresses the temperature sensitivity, but not the mitotic delay in imp1delta cells; and overexpression of imp1 partially suppresses the mitotic defect in cut15-85 cells but not the loss of viability. Both Imp1p and Cut15p are required for the efficient nuclear import of both an SV40 nuclear localization signal-containing reporter protein and the Pap1p component of the stress response MAP kinase pathway. Imp1p and Cut15p are essential for efficient nuclear protein import in S. pombe.
Collapse
Affiliation(s)
- Makoto Umeda
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
198
|
Liu L, McBride KM, Reich NC. STAT3 nuclear import is independent of tyrosine phosphorylation and mediated by importin-alpha3. Proc Natl Acad Sci U S A 2005; 102:8150-5. [PMID: 15919823 PMCID: PMC1149424 DOI: 10.1073/pnas.0501643102] [Citation(s) in RCA: 271] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Signal transducer and activator of transcription (STAT)3 is a member of a family of DNA-binding factors that function to induce expression of responsive genes. STAT3 can act as an oncogene, and its function has been shown to be critical for cellular transformation by a number of oncogenic tyrosine kinases. The role of STAT3 as a DNA-binding transcription factor naturally depends on its ability to gain entrance to the nucleus. In this study, we provide evidence that STAT3 is distinct from previously characterized STAT molecules in that it dynamically shuttles between cytoplasmic and nuclear compartments and maintains prominent nuclear presence. Although tyrosine phosphorylation is required for STAT3 to bind to specific DNA target sites, nuclear import takes place constitutively and independently of tyrosine phosphorylation. We identify a region within the coiled-coil domain of the STAT3 molecule that is necessary for nuclear import and demonstrate that this region is critical for its recognition by specific import carrier importin-alpha3. RNA interference studies were used to verify the role and specificity of importin-alpha3 in STAT3 nuclear translocation. These results distinguish STAT3 cellular localization from other STAT molecules and identify a feature that may be targeted in the clinical intervention of STAT3-dependent neoplasia.
Collapse
Affiliation(s)
- Ling Liu
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | | | | |
Collapse
|
199
|
Pasdeloup D, Poisson N, Raux H, Gaudin Y, Ruigrok RWH, Blondel D. Nucleocytoplasmic shuttling of the rabies virus P protein requires a nuclear localization signal and a CRM1-dependent nuclear export signal. Virology 2005; 334:284-93. [PMID: 15780878 DOI: 10.1016/j.virol.2005.02.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 01/31/2005] [Accepted: 02/07/2005] [Indexed: 11/15/2022]
Abstract
Rabies virus P protein is a co-factor of the viral RNA polymerase. It has been shown previously that P mRNA directs the synthesis of four N-terminally truncated P products P2, P3, P4, and P5 due to translational initiation by a leaky scanning mechanism at internal Met codons. Whereas P and P2 are located in the cytoplasm, P3, P4, and P5 are found in the nucleus. Here, we have analyzed the molecular basis of the subcellular localization of these proteins. Using deletion mutants fused to GFP protein, we show the presence of a nuclear localization signal (NLS) in the C-terminal part of P (172-297). This domain contains a short lysine-rich stretch ((211)KKYK(214)) located in close proximity with arginine 260 as revealed by the crystal structure of P. We demonstrate the critical role of lysine 214 and arginine 260 in NLS activity. In the presence of Leptomycin B, P is retained in the nucleus indicating that it contains a CRM1-dependent nuclear export signal (NES). The subcellular distribution of P deletion mutants indicates that the domain responsible for export is the amino-terminal part of the protein. The use of fusion proteins that have amino terminal fragments of P fused to beta-galactosidase containing the NLS of SV40 T antigen allows us to identify a NES between residues 49 and 58. The localization of NLS and NES determines the cellular distribution of the P gene products.
Collapse
Affiliation(s)
- David Pasdeloup
- Unité Mixte de Virologie Moléculaire et Structurale UMR2472 CNRS, UMR1157 INRA, 91198 Gif sur Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
200
|
Sessler RJ, Noy N. A Ligand-Activated Nuclear Localization Signal in Cellular Retinoic Acid Binding Protein-II. Mol Cell 2005; 18:343-53. [PMID: 15866176 DOI: 10.1016/j.molcel.2005.03.026] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 12/28/2004] [Accepted: 03/31/2005] [Indexed: 12/30/2022]
Abstract
Primary sequences of proteins often contain motifs that serve as "signatures" for subcellular targeting, such as a nuclear localization signal (NLS). However, many nuclear proteins do not harbor a recognizable NLS, and the pathways that mediate their nuclear translocation are unknown. This work focuses on CRABP-II, a cytosolic protein that moves to the nucleus upon binding of retinoic acid. While CRABP-II does not contain an NLS in its primary sequence, such a motif could be recognized in the protein's tertiary structure. We map the retinoic acid-induced structural rearrangements that result in the presence of this NLS in holo- but not apo-CRABP-II. The signal, whose three-dimensional configuration aligns strikingly well with a "classical" NLS, mediates ligand-induced association of CRABP-II with importin alpha and is critical for nuclear localization of the protein. The ligand-controlled NLS "switch" of CRABP-II may represent a general mechanism for posttranslational regulation of the subcellular distribution of a protein.
Collapse
Affiliation(s)
- Richard J Sessler
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|