151
|
Abstract
To identify and characterize the proteins encoded by the erbA proto-oncogene, we expressed the C-terminal region of v-erbA in a bacterial trpE expression vector system and used the fusion protein to prepare antiserum. The anti-trp-erbA serum recognized the P75gag-erbA protein encoded by avian erythroblastosis virus and specifically precipitated six highly related proteins ranging in size from 27 to 46 kilodaltons from chicken embryonic erythroid cells. In vitro translation of a chicken erbA cDNA produced essentially the same pattern of proteins. Partial proteolytic maps and antigenicity and kinetic analyses of the in vivo and in vitro proteins indicated that they are related and that the multiple bands are likely to arise from internal initiations within c-erbA to generate a nested set of proteins. All of the c-erbA proteins are predominantly associated with chicken erythroblast nuclei. However, Nonidet P-40 treatment resulted in extraction of the three smaller proteins, whereas the larger proteins were retained. During differentiation of erythroid cells in chicken embryos, we found maximal levels of c-erbA protein synthesis at days 7 to 8 of embryogenesis. By contrast, c-erbA mRNA levels remained essentially constant from days 5 to 12. Together, our results indicate that posttranscriptional or translational mechanisms are involved in regulation of c-erbA expression and in the complexity of its protein products.
Collapse
Affiliation(s)
- J Bigler
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | |
Collapse
|
152
|
Abstract
The proteins encoded by both viral and cellular forms of the c-myc oncogene have been previously demonstrated to have exceptionally short in vivo half-lives. In this paper we report a comparative study on the parameters affecting turnover of nuclear oncoproteins c-myc, c-myb, and the rapidly metabolized cytoplasmic enzyme ornithine decarboxylase. The degradation of all three proteins required metabolic energy, did not result in production of cleavage intermediates, and did not involve lysosomes or ubiquitin. A five- to eightfold increase in the half-life of c-myc proteins, and a twofold increase in the half-life of c-myb proteins was detected after heat-shock treatment at 46 degrees C. In contrast, heat shock had no effect on the turnover of ornithine decarboxylase. Heat shock also had the effect of increasing the rate of c-myc protein synthesis twofold, whereas c-myb protein synthesis was decreased nearly fourfold. The increased stability and synthesis of c-myc proteins led to an overall increase in the total level of c-myc proteins in response to heat-shock treatment. Furthermore, treatments which reduced c-myc and c-myb protein turnover, such as heat shock and exposure to inhibitors of metabolic energy production, resulted in reduced detergent solubility of both proteins. The recovery from heat shock, as measured by increased turnover and solubility, was energy dependent and considerably more rapid in thermotolerant cells.
Collapse
|
153
|
Abstract
We have previously shown that the 5' noncoding region of mouse c-myc mRNA has a negative effect on translational efficiency in a rabbit reticulocyte lysate (A. Darveau, J. Pelletier, and N. Sonenberg, Proc. Natl. Acad. Sci. USA 82:2315-2319, 1985). We wanted to localize and characterize the inhibitory translational element(s) in the mRNA and to study its effect in other in vitro and in vivo systems. Here we report that the restrictive element is confined to a 240-nucleotide sequence of the 5' noncoding region of mouse c-myc mRNA and that this sequence acts in cis to inhibit the translation of a heterologous mRNA. In addition, we report that the cis-inhibitory effect is also exhibited in microinjected Xenopus oocytes and wheat-germ extracts but not in HeLa cell extracts. Transfection of corresponding plasmid DNA constructs into several established cell lines did not produce the cis-inhibitory effect. A model to explain these results is presented.
Collapse
|
154
|
Ruddell A, Linial M, Schubach W, Groudine M. Lability of leukosis virus enhancer-binding proteins in avian hematopoeitic cells. J Virol 1988; 62:2728-35. [PMID: 2839698 PMCID: PMC253706 DOI: 10.1128/jvi.62.8.2728-2735.1988] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bursal lymphomas induced by avian leukosis virus (ALV) are characterized by integration of long terminal repeat (LTR) enhancer sequences next to the myc proto-oncogene and by subsequent myc hyperexpression. Nuclear runoff transcription analyses have shown that protein synthesis inhibition specifically decreases transcription of LTR-enhanced genes in bursal lymphoma cell lines (M. Linial, N. Gunderson, and M. Groudine, Science 230:1126-1132, 1985). Here, we show that LTR-enhanced transcription is also labile in nontransformed bursa, bone marrow, and spleen but not in other ALV-infected tissues from lymphoma-susceptible chickens. The bursal cells demonstrated this lability of LTR-enhanced transcription only at an early stage of development, when chickens are susceptible to ALV-induced lymphomagenesis. Mature bursal cells show stable LTR transcription enhancement (unaffected by inhibition of protein synthesis) and are not susceptible to lymphomagenesis. In lymphoma-resistant chicken strains, LTR-enhanced transcription was stable in all tissues during development. These data suggest that lability of LTR transcription enhancement in hematopoietic cells is involved in susceptibility to lymphomagenesis, and we propose a model for the action of these labile enhancing factors. Gel shift analysis of nuclear proteins from lymphoma cells indicated that four or more binding proteins specifically interact with the three LTR enhancer regions. These proteins can be separated by their differential sensitivity to heat treatment or protein synthesis inhibition. The lability of a subset of these binding proteins correlates with lability of LTR-enhanced transcription in certain lymphoid cell types, suggesting that these proteins are essential for LTR transcription enhancement.
Collapse
Affiliation(s)
- A Ruddell
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | | | |
Collapse
|
155
|
Krystal G, Birrer M, Way J, Nau M, Sausville E, Thompson C, Minna J, Battey J. Multiple mechanisms for transcriptional regulation of the myc gene family in small-cell lung cancer. Mol Cell Biol 1988; 8:3373-81. [PMID: 2850489 PMCID: PMC363573 DOI: 10.1128/mcb.8.8.3373-3381.1988] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The molecular mechanisms reported to regulate the expression of myc family genes are multiple and complex and include gene amplification, transcriptional activation, transcriptional attenuation, and mRNA stability. We have investigated which of these mechanisms are responsible for the extreme variation in myc gene family mRNA levels observed in human small-cell lung cancer cell lines. In addition to gene amplification, a block to nascent mRNA chain elongation, causing attenuation of transcription, is an important regulatory mechanism controlling the steady-state levels of c-myc and L-myc mRNA. The loss of transcriptional attenuation is correlated with overexpression of these two genes in cell lines which do not show gene amplification. Expression of c-myc mRNA appears to be dependent on promoter activity and attenuator function. In contrast, regulation of expression of the N-myc gene does not involve transcriptional attenuation; steady-state mRNA levels are correlated with promoter activity as well as gene amplification. We conclude that transcriptional regulation of each member of the myc gene family is accomplished by a different assortment of complex mechanisms, including gene copy number, promoter activation, and transcriptional attenuation. Interference at multiple points in this complex regulatory process appears to be an important mechanism by which small-cell lung cancer and other human tumors evade growth control.
Collapse
Affiliation(s)
- G Krystal
- NCI-Navy Medical Oncology Branch, National Cancer Institute, Bethesda, Maryland 20814
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Poly(A) shortening and degradation of the 3' A+U-rich sequences of human c-myc mRNA in a cell-free system. Mol Cell Biol 1988. [PMID: 3380094 DOI: 10.1128/mcb.8.4.1697] [Citation(s) in RCA: 156] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The early steps in the degradation of human c-myc mRNA were investigated, using a previously described cell-free mRNA decay system. The first detectable step was poly(A) shortening, which generated a pool of oligoadenylated mRNA molecules. In contrast, the poly(A) of a stable mRNA, gamma globin, was not excised, even after prolonged incubation. The second step, degradation of oligoadenylated c-myc mRNA, generated decay products whose 3' termini were located within the A+U-rich portion of the 3' untranslated region. These products disappeared soon after they were formed, consistent with rapid degradation of the 3' region. In contrast, the 5' region, corresponding approximately to c-myc exon 1, was stable in vitro. The data indicate a sequential degradation pathway in which 3' region cleavages occur only after most or all of the poly(A) is removed. To account for rapid deadenylation, we suggest that the c-myc poly(A)-poly(A)-binding protein complex is readily dissociated, generating a protein-depleted poly(A) tract that is no longer resistant to nucleases.
Collapse
|
157
|
Enforced expression of the c-myc oncogene inhibits cell differentiation by precluding entry into a distinct predifferentiation state in G0/G1. Mol Cell Biol 1988. [PMID: 2454393 DOI: 10.1128/mcb.8.4.1614] [Citation(s) in RCA: 156] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A broad base of data has implicated a role for the c-myc proto-oncogene in the control of the cell cycle and cell differentiation. To further define the role of myc in these processes, I examined the effect of enforced myc expression on several events that are thought to be important steps leading to the terminally differentiated state: (i) the ability to arrest growth in G0/G1, (ii) the ability to replicate the genome upon initiation of the differentiation program, and (iii) the ability to lose responsiveness to mitogens and withdraw from the cell cycle. 3T3-L1 preadipocyte cell lines expressing various levels of myc mRNA were established by transfection with a recombinant myc gene under the transcriptional control of the Rous sarcoma virus (RSV) promoter. Cells that expressed high constitutive levels of pRSVmyc mRNA arrested in G0/G1 at densities similar to those of normal cells at confluence. Upon initiation of the differentiation program, such cells traversed the cell cycle with kinetics similar to those of normal cells and subsequently arrested in G0/G1. Thus, enforced expression of myc had no effect on the ability of cells to arrest growth in G0/G1 or to replicate the genome upon initiation of the differentiation program. Cells were then tested for their ability to reenter the cell cycle upon exposure to high concentrations of serum and for their capacity to differentiate. In contrast to normal cells, cells expressing high constitutive levels of myc RNA reentered the cell cycle when challenged with 30% serum and failed to terminally differentiate. The block to differentiation could be reversed by high expression of myc antisense RNA, showing that the induced block was specifically due to enforced expression of pRSVmyc. These findings indicate that 3T3-L1 preadipocytes enter a specific state in G0/G1 after treatment with differentiation inducers, into which cells expressing high constitutive levels of myc RNA are precluded from entering. I propose that myc acts as a molecular switch and directs cells to a pathway that can lead to continued proliferation or to terminal differentiation.
Collapse
|
158
|
Parkin N, Darveau A, Nicholson R, Sonenberg N. cis-acting translational effects of the 5' noncoding region of c-myc mRNA. Mol Cell Biol 1988; 8:2875-83. [PMID: 3043198 PMCID: PMC363507 DOI: 10.1128/mcb.8.7.2875-2883.1988] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have previously shown that the 5' noncoding region of mouse c-myc mRNA has a negative effect on translational efficiency in a rabbit reticulocyte lysate (A. Darveau, J. Pelletier, and N. Sonenberg, Proc. Natl. Acad. Sci. USA 82:2315-2319, 1985). We wanted to localize and characterize the inhibitory translational element(s) in the mRNA and to study its effect in other in vitro and in vivo systems. Here we report that the restrictive element is confined to a 240-nucleotide sequence of the 5' noncoding region of mouse c-myc mRNA and that this sequence acts in cis to inhibit the translation of a heterologous mRNA. In addition, we report that the cis-inhibitory effect is also exhibited in microinjected Xenopus oocytes and wheat-germ extracts but not in HeLa cell extracts. Transfection of corresponding plasmid DNA constructs into several established cell lines did not produce the cis-inhibitory effect. A model to explain these results is presented.
Collapse
Affiliation(s)
- N Parkin
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
159
|
Lüscher B, Eisenman RN. c-myc and c-myb protein degradation: effect of metabolic inhibitors and heat shock. Mol Cell Biol 1988; 8:2504-12. [PMID: 3043180 PMCID: PMC363451 DOI: 10.1128/mcb.8.6.2504-2512.1988] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The proteins encoded by both viral and cellular forms of the c-myc oncogene have been previously demonstrated to have exceptionally short in vivo half-lives. In this paper we report a comparative study on the parameters affecting turnover of nuclear oncoproteins c-myc, c-myb, and the rapidly metabolized cytoplasmic enzyme ornithine decarboxylase. The degradation of all three proteins required metabolic energy, did not result in production of cleavage intermediates, and did not involve lysosomes or ubiquitin. A five- to eightfold increase in the half-life of c-myc proteins, and a twofold increase in the half-life of c-myb proteins was detected after heat-shock treatment at 46 degrees C. In contrast, heat shock had no effect on the turnover of ornithine decarboxylase. Heat shock also had the effect of increasing the rate of c-myc protein synthesis twofold, whereas c-myb protein synthesis was decreased nearly fourfold. The increased stability and synthesis of c-myc proteins led to an overall increase in the total level of c-myc proteins in response to heat-shock treatment. Furthermore, treatments which reduced c-myc and c-myb protein turnover, such as heat shock and exposure to inhibitors of metabolic energy production, resulted in reduced detergent solubility of both proteins. The recovery from heat shock, as measured by increased turnover and solubility, was energy dependent and considerably more rapid in thermotolerant cells.
Collapse
Affiliation(s)
- B Lüscher
- Viral Oncology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | |
Collapse
|
160
|
An oligomer complementary to c-myc mRNA inhibits proliferation of HL-60 promyelocytic cells and induces differentiation. Mol Cell Biol 1988. [PMID: 3280975 DOI: 10.1128/mcb.8.2.963] [Citation(s) in RCA: 269] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the role of a nuclear proto-oncogene in the regulation of cell growth and differentiation, we inhibited HL-60 c-myc expression with a complementary antisense oligomer. This oligomer was stable in culture and entered cells, forming an intracellular duplex. Incubation of cells with the anti-myc oligomer decreased the steady-state levels of c-myc protein by 50 to 80%, whereas a control oligomer did not significantly affect the c-myc protein concentration. Direct inhibition of c-myc expression with the anti-myc oligomer was associated with a decreased cell growth rate and an induction of myeloid differentiation. Related antisense oligomers with 2- to 12-base-pair mismatches with c-myc mRNA did not influence HL-60 cells. Thus, the effects of the antisense oligomer exhibited sequence specificity, and furthermore, these effects could be reversed by hybridization competition with another complementary oligomer. Antisense inhibition of a nuclear proto-oncogene apparently bypasses cell surface events in affecting cell proliferation and differentiation.
Collapse
|
161
|
Brewer G, Ross J. Poly(A) shortening and degradation of the 3' A+U-rich sequences of human c-myc mRNA in a cell-free system. Mol Cell Biol 1988; 8:1697-708. [PMID: 3380094 PMCID: PMC363330 DOI: 10.1128/mcb.8.4.1697-1708.1988] [Citation(s) in RCA: 140] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The early steps in the degradation of human c-myc mRNA were investigated, using a previously described cell-free mRNA decay system. The first detectable step was poly(A) shortening, which generated a pool of oligoadenylated mRNA molecules. In contrast, the poly(A) of a stable mRNA, gamma globin, was not excised, even after prolonged incubation. The second step, degradation of oligoadenylated c-myc mRNA, generated decay products whose 3' termini were located within the A+U-rich portion of the 3' untranslated region. These products disappeared soon after they were formed, consistent with rapid degradation of the 3' region. In contrast, the 5' region, corresponding approximately to c-myc exon 1, was stable in vitro. The data indicate a sequential degradation pathway in which 3' region cleavages occur only after most or all of the poly(A) is removed. To account for rapid deadenylation, we suggest that the c-myc poly(A)-poly(A)-binding protein complex is readily dissociated, generating a protein-depleted poly(A) tract that is no longer resistant to nucleases.
Collapse
Affiliation(s)
- G Brewer
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison 53706
| | | |
Collapse
|
162
|
Freytag SO. Enforced expression of the c-myc oncogene inhibits cell differentiation by precluding entry into a distinct predifferentiation state in G0/G1. Mol Cell Biol 1988; 8:1614-24. [PMID: 2454393 PMCID: PMC363321 DOI: 10.1128/mcb.8.4.1614-1624.1988] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A broad base of data has implicated a role for the c-myc proto-oncogene in the control of the cell cycle and cell differentiation. To further define the role of myc in these processes, I examined the effect of enforced myc expression on several events that are thought to be important steps leading to the terminally differentiated state: (i) the ability to arrest growth in G0/G1, (ii) the ability to replicate the genome upon initiation of the differentiation program, and (iii) the ability to lose responsiveness to mitogens and withdraw from the cell cycle. 3T3-L1 preadipocyte cell lines expressing various levels of myc mRNA were established by transfection with a recombinant myc gene under the transcriptional control of the Rous sarcoma virus (RSV) promoter. Cells that expressed high constitutive levels of pRSVmyc mRNA arrested in G0/G1 at densities similar to those of normal cells at confluence. Upon initiation of the differentiation program, such cells traversed the cell cycle with kinetics similar to those of normal cells and subsequently arrested in G0/G1. Thus, enforced expression of myc had no effect on the ability of cells to arrest growth in G0/G1 or to replicate the genome upon initiation of the differentiation program. Cells were then tested for their ability to reenter the cell cycle upon exposure to high concentrations of serum and for their capacity to differentiate. In contrast to normal cells, cells expressing high constitutive levels of myc RNA reentered the cell cycle when challenged with 30% serum and failed to terminally differentiate. The block to differentiation could be reversed by high expression of myc antisense RNA, showing that the induced block was specifically due to enforced expression of pRSVmyc. These findings indicate that 3T3-L1 preadipocytes enter a specific state in G0/G1 after treatment with differentiation inducers, into which cells expressing high constitutive levels of myc RNA are precluded from entering. I propose that myc acts as a molecular switch and directs cells to a pathway that can lead to continued proliferation or to terminal differentiation.
Collapse
Affiliation(s)
- S O Freytag
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor
| |
Collapse
|
163
|
Structure and expression of the human L-myc gene reveal a complex pattern of alternative mRNA processing. Mol Cell Biol 1988. [PMID: 2827002 DOI: 10.1128/mcb.8.1.186] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed in detail the structure of the L-myc gene isolated from human placental DNA and characterized its expression in several small-cell lung cancer cell lines. The gene is composed of three exons and two introns spanning 6.6 kilobases in human DNA. Several distinct mRNA species are produced in all small-cell lung cancer cell lines that express L-myc. These transcripts are generated from a single gene by alternative splicing of introns 1 and 2 and by use of alternative polyadenylation signals. In some mRNAs there is a long open reading frame with a predicted translated protein of 364 residues. Amino acid sequence comparison with c-myc and N-myc demonstrated multiple discrete regions with extensive homology. In contrast, other mRNA transcripts, generated by alternative processing, could encode a truncated protein with a novel carboxy-terminal end.
Collapse
|
164
|
Holt JT, Redner RL, Nienhuis AW. An oligomer complementary to c-myc mRNA inhibits proliferation of HL-60 promyelocytic cells and induces differentiation. Mol Cell Biol 1988; 8:963-73. [PMID: 3280975 PMCID: PMC363229 DOI: 10.1128/mcb.8.2.963-973.1988] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To study the role of a nuclear proto-oncogene in the regulation of cell growth and differentiation, we inhibited HL-60 c-myc expression with a complementary antisense oligomer. This oligomer was stable in culture and entered cells, forming an intracellular duplex. Incubation of cells with the anti-myc oligomer decreased the steady-state levels of c-myc protein by 50 to 80%, whereas a control oligomer did not significantly affect the c-myc protein concentration. Direct inhibition of c-myc expression with the anti-myc oligomer was associated with a decreased cell growth rate and an induction of myeloid differentiation. Related antisense oligomers with 2- to 12-base-pair mismatches with c-myc mRNA did not influence HL-60 cells. Thus, the effects of the antisense oligomer exhibited sequence specificity, and furthermore, these effects could be reversed by hybridization competition with another complementary oligomer. Antisense inhibition of a nuclear proto-oncogene apparently bypasses cell surface events in affecting cell proliferation and differentiation.
Collapse
Affiliation(s)
- J T Holt
- Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892
| | | | | |
Collapse
|
165
|
Kaye F, Battey J, Nau M, Brooks B, Seifter E, De Greve J, Birrer M, Sausville E, Minna J. Structure and expression of the human L-myc gene reveal a complex pattern of alternative mRNA processing. Mol Cell Biol 1988; 8:186-95. [PMID: 2827002 PMCID: PMC363100 DOI: 10.1128/mcb.8.1.186-195.1988] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We analyzed in detail the structure of the L-myc gene isolated from human placental DNA and characterized its expression in several small-cell lung cancer cell lines. The gene is composed of three exons and two introns spanning 6.6 kilobases in human DNA. Several distinct mRNA species are produced in all small-cell lung cancer cell lines that express L-myc. These transcripts are generated from a single gene by alternative splicing of introns 1 and 2 and by use of alternative polyadenylation signals. In some mRNAs there is a long open reading frame with a predicted translated protein of 364 residues. Amino acid sequence comparison with c-myc and N-myc demonstrated multiple discrete regions with extensive homology. In contrast, other mRNA transcripts, generated by alternative processing, could encode a truncated protein with a novel carboxy-terminal end.
Collapse
Affiliation(s)
- F Kaye
- NCI-Navy Medical Oncology Branch, Naval Hospital, Bethesda, Maryland
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Jones DJ, Ghosh AK, Moore M, Schofield PF. A critical appraisal of the immunohistochemical detection of the c-myc oncogene product in colorectal cancer. Br J Cancer 1987; 56:779-83. [PMID: 3325094 PMCID: PMC2002390 DOI: 10.1038/bjc.1987.287] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Expression of c-myc was studied immunohistochemically in 100 colorectal carcinomas, using a monoclonal antibody, Myc 1-6E10, which is purported to recognize the oncoprotein (p62c-myc) in paraffin-embedded material. In normal epithelium, maturing crypt cells and terminally differentiated surface cells were positive, and proliferating basal crypt cells negative. All carcinomas stained positively, but intensity was independent of histological differentiation, Dukes' stage, DNA ploidy and survival. Staining was predominantly cytoplasmic despite the suspected nuclear location of p62c-myc and there was considerable staining of fibroblasts. When staining was compared in frozen and paraffin-embedded sections fixed in different ways, different patterns were observed. Acetone-fixed frozen sections exhibited weak nuclear and cytoplasmic staining or were negative. In formol-saline fixed frozen sections, there was stronger predominantly nuclear staining. In paraffin-embedded sections staining was predominantly cytoplasmic. This study suggests that c-myc expression is enhanced in the majority of colorectal carcinomas and although independent of clinical behaviour, may be a common event in malignant transformation. However, since staining is affected by fixation and processing, data obtained using Myc 1-6E10 on routinely processed specimens should be interpreted with caution.
Collapse
Affiliation(s)
- D J Jones
- Department of Immunology, Paterson Institute for Cancer Research, Manchester, UK
| | | | | | | |
Collapse
|
167
|
Yokoyama K, Imamoto F. Transcriptional control of the endogenous MYC protooncogene by antisense RNA. Proc Natl Acad Sci U S A 1987; 84:7363-7. [PMID: 2444981 PMCID: PMC299296 DOI: 10.1073/pnas.84.21.7363] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A plasmid carrying antisense human MYC DNA and the gene encoding Escherichia coli xanthine/guanine phosphoribosyltransferase (Ecogpt) was introduced into human promyelocytic leukemia cell line HL-60 by protoplast fusion. High-level expression of antisense MYC RNA was obtained by selecting cells resistant to progressively higher levels of mycophenolic acid over a period of greater than 6 months. The constitutive production of MYC protein in clones producing high levels of antisense MYC RNA was reduced by 70% compared to parental HL-60 cells. Inhibition of MYC expression was observed not only at the translational but also at the transcriptional level, implying that antisense RNA can regulate transcription of the MYC gene. The Pst I-Pvu II fragment (920 base pairs) of the MYC leader sequence is the primary transcriptional target of the antisense RNA. The suppression of endogenous MYC gene expression by antisense RNA decreases cell proliferation and triggers monocytic differentiation.
Collapse
Affiliation(s)
- K Yokoyama
- Department of Molecular Genetics, Tsukuba Life Science Center, Ibaraki, Japan
| | | |
Collapse
|
168
|
Abstract
We examined the turnover of c-myc RNA in the human promyelocytic cell line HL-60. In whole-cell RNA from rapidly growing cells we observed two major size classes of c-myc RNA, 2.4 and 2.2 kilobases (kb). When HL-60 cells were treated with actinomycin D for 30 min to inhibit transcription, the 2.4-kb c-myc RNA population was rapidly degraded, while the 2.2-kb c-myc RNA was degraded much more slowly. S1 nuclease transcript mapping and promoter-specific probes were utilized to show that both the stable 2.2-kb and the labile 2.4-kb c-myc RNA populations have 5' ends at the second promoter site (P2) and 3' ends at the second poly(A) addition site. To examine further possible structural differences between these two RNA populations, we fractionated RNA on an oligo(dT)-cellulose column to separate RNAs that contained long poly(A) tails from those which did not. We found that the labile 2.4-kb c-myc RNA population bound to oligo(dT)-cellulose, while the more stable 2.2-kb c-myc RNA population did not. Preliminary estimates of their half-lives (t1/2) showed that the poly(A)+ c-myc RNA had a t1/2 of 12 min, while the c-myc RNA that did not bind to oligo(dT)-cellulose had a t1/2 of greater than 1 h. Several other cell types contain both poly(A)+ and nonpoly(A)+ c-myc RNAs including HeLa cells, normal human bone marrow cells, and normal mouse fetal liver cells. In agreement with the results in HL-60 cell, HeLa cell poly(A)+ c-myc RNA was more labile than c-myc RNA that lacked poly(A). The stable, nonpoly(A)+ c-myc RNA population may be important in the posttranscriptional regulation of c-myc expression.
Collapse
|
169
|
Definition of regions in human c-myc that are involved in transformation and nuclear localization. Mol Cell Biol 1987. [PMID: 3299053 DOI: 10.1128/mcb.7.5.1697] [Citation(s) in RCA: 225] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To study the relationship between the primary structure of the c-myc protein and some of its functional properties, we made in-frame insertion and deletion mutants of the normal human c-myc coding domain that was expressed from a retroviral promoter-enhancer. We assessed the effects of these mutations on the ability of c-myc protein to cotransform normal rat embryo cells with a mutant ras gene, induce foci in a Rat-1-derived cell line (Rat-1a), and localize in nuclei. Using the cotransformation assay, we found two regions of the protein (amino acids 105 to 143 and 321 to 439) where integrity was critical: one region (amino acids 1 to 104) that tolerated insertion and small deletion mutations, but not large deletions, and another region (amino acids 144) to 320) that was largely dispensable. Comparison with regions that were important for transformation of Rat-1a cells revealed that some are essential for both activities, but others are important for only one or the other, suggesting that the two assays require different properties of the c-myc protein. Deletion of each of three regions of the c-myc protein (amino acids 106 to 143, 320 to 368, and 370 to 412) resulted in partial cytoplasmic localization, as determined by immunofluorescence or immunoprecipitation following subcellular fractionation. Some abnormally located proteins retained transforming activity; most proteins lacking transforming activity appeared to be normally located.
Collapse
|
170
|
Target sequences for cis-acting regulation within the dual promoter of the human c-myc gene. Mol Cell Biol 1987. [PMID: 3037316 DOI: 10.1128/mcb.7.4.1393] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recombinant plasmids of the human c-myc promoter-leader region and the bacterial chloramphenicol acetyltransferase (cat) gene were constructed. After transfection into different rodent and human cells, the 862-base-pair (bp) PvuII fragment carrying both c-myc promoters and 350 bp of the untranslated leader conferred 1/15 to 1/30 of the CAT activity mediated by the simian virus 40 promoter. The presence of additional sequences upstream of the PvuII fragment had an overall negative effect on c-myc promoter activity detectable by titration analysis with small amounts of transfected plasmid DNA. The analysis of numerous deletion constructs in the c-myc promoter-leader region as well as S1 mapping experiments demonstrated that the high CAT activity depended largely on the presence of the second promoter. By cotransfection of c-myc-cat constructs with plasmids carrying different parts of the c-myc promoter locus, targets for positively acting cellular factors were identified. Two positive regulatory elements were mapped within the 862-bp PvuII fragment. One was localized within the 248-bp PvuII-SmaI fragment -101 to -349 bp upstream of the first cap site and the other within the 142-pb XhoI-NaeI fragment of the first exon, comprising positions -95 to +47 relative to the second cap site. We conclude that the dual promotor of the human c-myc gene represents a strong eucaryotic promotor regulated by cooperation of positively and negatively acting cellular transcription factors.
Collapse
|
171
|
Swartwout SG, Preisler H, Guan WD, Kinniburgh AJ. Relatively stable population of c-myc RNA that lacks long poly(A). Mol Cell Biol 1987; 7:2052-8. [PMID: 3037342 PMCID: PMC365325 DOI: 10.1128/mcb.7.6.2052-2058.1987] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We examined the turnover of c-myc RNA in the human promyelocytic cell line HL-60. In whole-cell RNA from rapidly growing cells we observed two major size classes of c-myc RNA, 2.4 and 2.2 kilobases (kb). When HL-60 cells were treated with actinomycin D for 30 min to inhibit transcription, the 2.4-kb c-myc RNA population was rapidly degraded, while the 2.2-kb c-myc RNA was degraded much more slowly. S1 nuclease transcript mapping and promoter-specific probes were utilized to show that both the stable 2.2-kb and the labile 2.4-kb c-myc RNA populations have 5' ends at the second promoter site (P2) and 3' ends at the second poly(A) addition site. To examine further possible structural differences between these two RNA populations, we fractionated RNA on an oligo(dT)-cellulose column to separate RNAs that contained long poly(A) tails from those which did not. We found that the labile 2.4-kb c-myc RNA population bound to oligo(dT)-cellulose, while the more stable 2.2-kb c-myc RNA population did not. Preliminary estimates of their half-lives (t1/2) showed that the poly(A)+ c-myc RNA had a t1/2 of 12 min, while the c-myc RNA that did not bind to oligo(dT)-cellulose had a t1/2 of greater than 1 h. Several other cell types contain both poly(A)+ and nonpoly(A)+ c-myc RNAs including HeLa cells, normal human bone marrow cells, and normal mouse fetal liver cells. In agreement with the results in HL-60 cell, HeLa cell poly(A)+ c-myc RNA was more labile than c-myc RNA that lacked poly(A). The stable, nonpoly(A)+ c-myc RNA population may be important in the posttranscriptional regulation of c-myc expression.
Collapse
|
172
|
Stone J, de Lange T, Ramsay G, Jakobovits E, Bishop JM, Varmus H, Lee W. Definition of regions in human c-myc that are involved in transformation and nuclear localization. Mol Cell Biol 1987; 7:1697-709. [PMID: 3299053 PMCID: PMC365270 DOI: 10.1128/mcb.7.5.1697-1709.1987] [Citation(s) in RCA: 199] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To study the relationship between the primary structure of the c-myc protein and some of its functional properties, we made in-frame insertion and deletion mutants of the normal human c-myc coding domain that was expressed from a retroviral promoter-enhancer. We assessed the effects of these mutations on the ability of c-myc protein to cotransform normal rat embryo cells with a mutant ras gene, induce foci in a Rat-1-derived cell line (Rat-1a), and localize in nuclei. Using the cotransformation assay, we found two regions of the protein (amino acids 105 to 143 and 321 to 439) where integrity was critical: one region (amino acids 1 to 104) that tolerated insertion and small deletion mutations, but not large deletions, and another region (amino acids 144) to 320) that was largely dispensable. Comparison with regions that were important for transformation of Rat-1a cells revealed that some are essential for both activities, but others are important for only one or the other, suggesting that the two assays require different properties of the c-myc protein. Deletion of each of three regions of the c-myc protein (amino acids 106 to 143, 320 to 368, and 370 to 412) resulted in partial cytoplasmic localization, as determined by immunofluorescence or immunoprecipitation following subcellular fractionation. Some abnormally located proteins retained transforming activity; most proteins lacking transforming activity appeared to be normally located.
Collapse
|
173
|
Lipp M, Schilling R, Wiest S, Laux G, Bornkamm GW. Target sequences for cis-acting regulation within the dual promoter of the human c-myc gene. Mol Cell Biol 1987; 7:1393-400. [PMID: 3037316 PMCID: PMC365226 DOI: 10.1128/mcb.7.4.1393-1400.1987] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recombinant plasmids of the human c-myc promoter-leader region and the bacterial chloramphenicol acetyltransferase (cat) gene were constructed. After transfection into different rodent and human cells, the 862-base-pair (bp) PvuII fragment carrying both c-myc promoters and 350 bp of the untranslated leader conferred 1/15 to 1/30 of the CAT activity mediated by the simian virus 40 promoter. The presence of additional sequences upstream of the PvuII fragment had an overall negative effect on c-myc promoter activity detectable by titration analysis with small amounts of transfected plasmid DNA. The analysis of numerous deletion constructs in the c-myc promoter-leader region as well as S1 mapping experiments demonstrated that the high CAT activity depended largely on the presence of the second promoter. By cotransfection of c-myc-cat constructs with plasmids carrying different parts of the c-myc promoter locus, targets for positively acting cellular factors were identified. Two positive regulatory elements were mapped within the 862-bp PvuII fragment. One was localized within the 248-bp PvuII-SmaI fragment -101 to -349 bp upstream of the first cap site and the other within the 142-pb XhoI-NaeI fragment of the first exon, comprising positions -95 to +47 relative to the second cap site. We conclude that the dual promotor of the human c-myc gene represents a strong eucaryotic promotor regulated by cooperation of positively and negatively acting cellular transcription factors.
Collapse
|
174
|
Abstract
A high frequency (greater than or equal to 65%) of thymomas induced by mink cell focus-forming virus 69L1 in AKR/J mice contain proviral integrations which are clustered 0.7-kilobase upstream of the c-myc oncogene predominantly in the opposite transcriptional orientation. Blot hybridization experiments showed that on the average there was only a twofold elevation of steady-state c-myc RNA in the thymomas as compared with levels in normal AKR/J thymocytes. Such an increase would not appear to be sufficient as a mechanism of oncogene activation in this system. In contrast, S1 nuclease analysis of transcripts initiated from the two known c-myc promoters indicated a strong shift in promoter usage in virtually all thymomas tested. In normal thymus the ratio of transcripts initiated from the proximal promoter P1 to the distal promoter P2 was 0.2 to 0.3. In contrast, most of the thymomas tested (18 of 23) showed an average P1/P2 ratio of 1.2 regardless of whether or not proviral integrations could be detected within a 21-kilobase EcoRI fragment containing the three c-myc exons. We conclude that alterations in P1/P2 ratios are good indicators of c-myc deregulation in thymic lymphomas.
Collapse
|
175
|
Abstract
N-myc is a gene whose amplification has been implicated in the genesis of several malignant human tumors. We have identified two proteins with molecular weights of 65,000 and 67,000 encoded by N-myc. The abundance of these proteins in tumor cells was consonant with the extent of amplification of N-myc. The two proteins apparently arose from the same mRNA, were phosphorylated, were exceptionally unstable, were located in the nucleus of cells, and bound to both single- and double-stranded DNA. These properties suggest that the products of N-myc and of the related proto-oncogene c-myc may have similar biochemical functions and that N-myc may be a regulatory gene. Our findings sustain the view that inordinate expression of N-myc may contribute to the genesis of several different human tumors.
Collapse
|
176
|
Abstract
We isolated and characterized Xenopus laevis c-myc cDNAs from an oocyte-specific library. These cDNA clones encompass 2.35 kilobases of the X. laevis c-myc RNA and contain the entire coding domain of 1,257 nucleotides of the 419-amino acid-long X. laevis c-myc protein. The 2.7-kilobase X. laevis c-myc mRNA is expressed in the oocyte, maintained in the egg, and is present throughout the early cleavage stages of embryogenesis. At the time of transcriptional activation in the embryo the c-myc RNA levels show a significant decline and then reaccumulate continuously throughout the remainder of premorphogenic development. At the early neurula stage of embryogenesis the pattern of c-myc RNA expression is elevated in the mesoderm with respect to the endoderm and ectoderm. In the adult X. laevis the c-myc mRNA is expressed in some (e.g., skin, muscle) but not all differentiated tissues. The X. laevis c-myc protein migrates as a doublet of 61,000- and 64,000-dalton species. Both species are phosphorylated in oocytes and somatic cells, exhibit extremely short half-lives of less than 30 min, and are localized to the nuclear fraction of somatic cells. By contrast, the oocyte protein shows both cytoplasmic and germinal vesicle distribution and appears to be stable.
Collapse
|
177
|
Multiple growth-associated nuclear proteins immunoprecipitated by antisera raised against human c-myc peptide antigens. Mol Cell Biol 1986. [PMID: 3534551 DOI: 10.1128/mcb.6.3.942] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Different antisera raised against various regions of the human c-myc protein were used to identify four human c-myc proteins with apparent molecular masses in sodium dodecyl sulfate-polyacrylamide gels ranging from 64 to 68 kilodaltons (phosphoproteins pp64 and pp67 and nonphosphorylated proteins p65 and p68). pp64 and p65 were the major detectable c-myc proteins, and pp67 and p68 were minor but specific components of the immunoprecipitates. The c-myc proteins were all localized in the cell nucleus. Accumulation of [35S]methionine-labeled p65 was observed after pulse-labeling and chase, suggesting that the stable p65 c-myc protein is generated posttranslationally from short-lived precursors. pp64, pp67, and p68 possessed short half-lives and may therefore be precursors of the stable p65. Confirmation of the nuclear localization of the human c-myc proteins was obtained by immunofluorescent staining. The human c-myc proteins were revealed as a pattern of punctate nuclear staining with, particularly for p65, nucleolar enhancement that left an unstained annulus surrounding the nucleolus.
Collapse
|
178
|
Ramsay G, Stanton L, Schwab M, Bishop JM. Human proto-oncogene N-myc encodes nuclear proteins that bind DNA. Mol Cell Biol 1986; 6:4450-7. [PMID: 3796607 PMCID: PMC367228 DOI: 10.1128/mcb.6.12.4450-4457.1986] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
N-myc is a gene whose amplification has been implicated in the genesis of several malignant human tumors. We have identified two proteins with molecular weights of 65,000 and 67,000 encoded by N-myc. The abundance of these proteins in tumor cells was consonant with the extent of amplification of N-myc. The two proteins apparently arose from the same mRNA, were phosphorylated, were exceptionally unstable, were located in the nucleus of cells, and bound to both single- and double-stranded DNA. These properties suggest that the products of N-myc and of the related proto-oncogene c-myc may have similar biochemical functions and that N-myc may be a regulatory gene. Our findings sustain the view that inordinate expression of N-myc may contribute to the genesis of several different human tumors.
Collapse
|
179
|
King MW, Roberts JM, Eisenman RN. Expression of the c-myc proto-oncogene during development of Xenopus laevis. Mol Cell Biol 1986; 6:4499-508. [PMID: 3540613 PMCID: PMC367234 DOI: 10.1128/mcb.6.12.4499-4508.1986] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We isolated and characterized Xenopus laevis c-myc cDNAs from an oocyte-specific library. These cDNA clones encompass 2.35 kilobases of the X. laevis c-myc RNA and contain the entire coding domain of 1,257 nucleotides of the 419-amino acid-long X. laevis c-myc protein. The 2.7-kilobase X. laevis c-myc mRNA is expressed in the oocyte, maintained in the egg, and is present throughout the early cleavage stages of embryogenesis. At the time of transcriptional activation in the embryo the c-myc RNA levels show a significant decline and then reaccumulate continuously throughout the remainder of premorphogenic development. At the early neurula stage of embryogenesis the pattern of c-myc RNA expression is elevated in the mesoderm with respect to the endoderm and ectoderm. In the adult X. laevis the c-myc mRNA is expressed in some (e.g., skin, muscle) but not all differentiated tissues. The X. laevis c-myc protein migrates as a doublet of 61,000- and 64,000-dalton species. Both species are phosphorylated in oocytes and somatic cells, exhibit extremely short half-lives of less than 30 min, and are localized to the nuclear fraction of somatic cells. By contrast, the oocyte protein shows both cytoplasmic and germinal vesicle distribution and appears to be stable.
Collapse
|
180
|
Reicin A, Yang JQ, Marcu KB, Fleissner E, Koehne CF, O'Donnell PV. Deregulation of the c-myc oncogene in virus-induced thymic lymphomas of AKR/J mice. Mol Cell Biol 1986; 6:4088-92. [PMID: 3025631 PMCID: PMC367175 DOI: 10.1128/mcb.6.11.4088-4092.1986] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A high frequency (greater than or equal to 65%) of thymomas induced by mink cell focus-forming virus 69L1 in AKR/J mice contain proviral integrations which are clustered 0.7-kilobase upstream of the c-myc oncogene predominantly in the opposite transcriptional orientation. Blot hybridization experiments showed that on the average there was only a twofold elevation of steady-state c-myc RNA in the thymomas as compared with levels in normal AKR/J thymocytes. Such an increase would not appear to be sufficient as a mechanism of oncogene activation in this system. In contrast, S1 nuclease analysis of transcripts initiated from the two known c-myc promoters indicated a strong shift in promoter usage in virtually all thymomas tested. In normal thymus the ratio of transcripts initiated from the proximal promoter P1 to the distal promoter P2 was 0.2 to 0.3. In contrast, most of the thymomas tested (18 of 23) showed an average P1/P2 ratio of 1.2 regardless of whether or not proviral integrations could be detected within a 21-kilobase EcoRI fragment containing the three c-myc exons. We conclude that alterations in P1/P2 ratios are good indicators of c-myc deregulation in thymic lymphomas.
Collapse
|
181
|
Recombinant interleukin 2 regulates levels of c-myc mRNA in a cloned murine T lymphocyte. Mol Cell Biol 1986. [PMID: 3879814 DOI: 10.1128/mcb.5.12.3361] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cellular oncogene c-myc has been implicated in the regulation of growth of normal and neoplastic cells. Recently, it was suggested that c-myc gene expression may control the G0----G1-phase transition in normal lymphocytes that were stimulated to enter the cell cycle by the lectin concanavalin A (ConA). Here we describe the effects of purified recombinant interleukin 2 (rIL2) and of ConA on levels of c-myc mRNA in the noncytolytic murine T-cell clone L2. In contrast to resting (G0) primary cultures of lymphocytes, quiescent L2 cells have a higher RNA content than resting splenocytes and express receptors for interleukin 2 (IL2). Resting L2 cells are therefore best regarded as early G1-phase cells. Purified rIL2 was found to stimulate the rapid accumulation of c-myc mRNA in L2 cells. Levels of c-myc mRNA became maximal within 1 h and declined gradually thereafter. In contrast, ConA induced slower accumulation of c-myc mRNA in L2 cells, with increased levels of c-myc mRNA becoming detectable 4 to 8 h after stimulation. Experiments with the protein synthesis inhibitor cycloheximide demonstrated that the increase in levels of c-myc mRNA that were induced by ConA was a direct effect of this lectin and not secondary to IL2 production. Cyclosporin A, an immunosuppressive agent, markedly reduced the accumulation of c-myc mRNA that was induced by ConA but only slightly diminished the accumulation of c-myc mRNA that was induced by rIL2. Taken together, these data provide evidence that (i) c-myc gene expression can be regulated by at least two distinct pathways in T lymphocytes, only one of which is sensitive to cyclosporine A, and (ii) the accumulation of c-myc mRNA can be induced in T cells by IL2 during the G1 phase of the cell cycle.
Collapse
|
182
|
Augmented expression of normal c-myc is sufficient for cotransformation of rat embryo cells with a mutant ras gene. Mol Cell Biol 1986. [PMID: 3837844 DOI: 10.1128/mcb.5.12.3345] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the effect of altered c-myc structure and expression upon the ability of c-myc to promote the transformation of normal rat embryo cells when it was supplemented by EJras (the mutant c-H-ras1 gene from EJ/T24 bladder carcinoma cells). We tested several c-myc alleles cloned from normal and tumor tissues of chicken and human origin and found that only LL4myc (derived from a bursal lymphoma in which an avian leukosis virus long terminal repeat resides within the first c-myc intron in the same transcriptional orientation) had cotransforming activity. No activity was observed with normal chicken and human c-myc alleles, two other bursal lymphoma c-myc alleles (LL3myc and LL6myc), and two human c-myc genes (HSRmyc and DMmyc) from human neuroectodermal tumor cell line COLO320, in which c-myc is amplified. Some of these inactive alleles had the following alterations that are frequently found in tumor-derived c-myc: point mutations affecting the encoded protein (LL3myc); a truncated structure with loss of the first, noncoding exon (LL3myc and DMmyc); and proviral integration within or near the myc locus (LL3myc and LL6myc). The following two experimental approaches indicated that cotransforming activity was directly related to the transcriptional activity of the alleles in cultured rat cells: when cotransfected into Rat-2 cells, LL4myc was more highly expressed than the other (inactive) alleles; and augmented expression of HSRmyc, DMmyc, or normal human or normal chicken c-myc placed under the transcriptional control of retroviral long terminal repeats or increased expression of normal human c-myc under the influence of a retroviral enhancer element was accompanied by cotransformation activity. We concluded that augmented expression of even a normal c-myc gene is sufficient for cotransforming activity and that additional structural alterations frequently found in tumor-derived alleles are neither necessary nor sufficient for the gene to acquire rat embryo cell cotransforming properties.
Collapse
|
183
|
Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol 1986. [PMID: 3915782 DOI: 10.1128/mcb.5.12.3610] [Citation(s) in RCA: 1538] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Six monoclonal antibodies have been isolated from mice immunized with synthetic peptide immunogens whose sequences are derived from that of the human c-myc gene product. Five of these antibodies precipitate p62c-myc from human cells, and three of these five also recognize the mouse c-myc gene product. None of the antibodies sees the chicken p110gag-myc protein. All six antibodies recognize immunoblotted p62c-myc. These reagents also provide the basis for an immunoblotting assay by which to quantitate p62c-myc in cells.
Collapse
|
184
|
Chung J, Sinn E, Reed RR, Leder P. Trans-acting elements modulate expression of the human c-myc gene in Burkitt lymphoma cells. Proc Natl Acad Sci U S A 1986; 83:7918-22. [PMID: 3464006 PMCID: PMC386834 DOI: 10.1073/pnas.83.20.7918] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have used a competition assay to identify the targets of trans-acting elements that modulate the expression of the human c-myc gene (designated MYC in human gene nomenclature). For this purpose, a c-myc hybrid indicator gene was formed by joining the c-myc promoter region, first noncoding exon, and intron to the bacterial gene for chloramphenicol acetyltransferase (CAT). The test assay consisted of cotransfecting the indicator gene with competing fragments of DNA derived from suspected control regions of the c-myc gene. Such experiments test the hypothesis that control regions are often targets for the binding of trans-acting regulatory factors that can be diverted to competing fragments of DNA. A negatively acting element will be diverted from the indicator gene, allowing the gene's enhanced expression, whereas a positively acting element will behave oppositely. Control indicator genes driven by non-myc promoters assess the specificity of the effect. Using this approach, we find three c-myc regions that are capable of enhancing the expression of the indicator gene in competition assays (i.e., putative sites of negative modulation). In addition, we find sequences near the c-myc promoters that suppress expression in competition assays (i.e., putative binding sites of positively acting factors). These results, with appropriate controls, suggest the existence of target sites near the c-myc gene that specifically modulate its expression both positively and negatively. Their locations fit well with regions damaged or lost in many Burkitt lymphoma and murine plasmacytoma translocations.
Collapse
|
185
|
Growth-dependent synthesis of c-myc-encoded proteins: early stimulation by serum factors in synchronized mouse 3T3 cells. Mol Cell Biol 1986. [PMID: 3915769 DOI: 10.1128/mcb.5.11.2903] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synthesis of the c-myc gene product was measured during the entire cell cycle of subconfluent mouse 3T3 cells with an antibody raised against a human c-myc synthetic peptide. The antiserum recognized two mouse c-myc-encoded proteins with apparent molecular weights in sodium dodecyl sulfate-polyacrylamide gels of 62,000 and 60,000. Cell-derived p62 was compared with the mouse c-myc gene product synthesized in vitro. Immunoprecipitation, electrophoretic analyses, and peptide mapping provided evidence that p62 is encoded by the mouse c-myc gene. The rate of synthesis of the c-myc proteins was tightly coupled to the cellular growth state of nontransformed A31 3T3 cells, but not to that of their benzo(a)pyrene-transformed derivative (BPA31). Furthermore, the synthesis of the c-myc proteins was stimulated by the exposure of confluent, density-arrested A31 cells to platelet-derived growth factor or fibroblast growth factor. Tightly synchronized cell populations were obtained on the addition of serum factors to subconfluent, serum-deprived A31 cells, and c-myc expression could be monitored for more than one complete cell cycle. One hour after stimulation the steady-state level of the 2.2 kilobase c-myc transcript increased 30-fold relative to that of quiescent cells and decreased thereafter to the level observed during exponential growth. The rate of synthesis of c-myc-encoded proteins was determined by immunoprecipitation after a 2-h labeling period. After an initial sevenfold increase detectable 2 h after serum addition, the rate of synthesis remained constant throughout the rest of the cell cycle. No further changes associated with the late prereplicative period, S phase, G2, or mitosis could be demonstrated. Pulse-chase and long-term labeling experiments revealed different half-lives for the two c-myc-encoded proteins. The half-lives of the c-myc proteins, however, were independent of the cellular growth state. The sustained expression observed throughout the cell cycle suggests that the growth-related function of c-myc may be required during the G0-G1 transition and in all phases of the cycle of the growing cell.
Collapse
|
186
|
Abstract
The influence of untranslated 5' sequences on c-myc expression was compared by measuring the translational efficiencies of mRNAs which contain leaders derived from exon 1 or intron 1 of the human c-myc gene. Expression plasmids were constructed and introduced into COS cells, and the levels of c-myc mRNA and protein were examined. Our results show that mRNAs transcribed from constructs containing exon 1 or intron 1, which have different folding potential, are translated with approximately equal efficiencies. This suggests that the translation of c-myc mRNA is not controlled by secondary structure alone. In addition, we observed that transcripts in which exon 1 was deleted are not translated more efficiently, but are present at a higher steady-state level. Thus, this example provides evidence for possible control at the transcriptional level. Finally, since the c-myc product was produced in each of our test systems, the results suggest that this protein does not regulate its own transcription or translation via a specific interaction with c-myc exon 1 alone.
Collapse
|
187
|
Production of human c-myc protein in insect cells infected with a baculovirus expression vector. Mol Cell Biol 1986. [PMID: 3915537 DOI: 10.1128/mcb.5.10.2860] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cDNA fragment coding for human c-myc was inserted into the genome of the baculovirus Autographa californica nuclear polyhedrosis virus adjacent to the strong polyhedrin promoter. Insect cells infected with the recombinant virus produced significant amounts of c-myc protein, which constituted the major phosphoprotein component in these cells. By immunoprecipitation and immunoblot analysis, two proteins of 61 and 64 kilodaltons were detected with c-myc-specific antisera. The insect-derived proteins were compared with recombinant human c-myc-encoded proteins synthesized in Escherichia coli and Saccharomyces cerevisiae cells. The c-myc gene product was found predominantly in the nucleus by subcellular fractionation of infected insect cells.
Collapse
|
188
|
Ikegaki N, Bukovsky J, Kennett RH. Identification and characterization of the NMYC gene product in human neuroblastoma cells by monoclonal antibodies with defined specificities. Proc Natl Acad Sci U S A 1986; 83:5929-33. [PMID: 2426708 PMCID: PMC386410 DOI: 10.1073/pnas.83.16.5929] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Increased N-myc (now designated NMYC in human gene nomenclature) gene expression has been detected at the transcriptional level in certain types of neoplasms. As yet, the N-myc gene product has not been identified. To detect and characterize the N-myc gene product, we have developed monoclonal antibodies against the putative N-myc gene product made in Escherichia coli as a fusion protein. The antibodies that recognize the N-myc-specific regions were selected on the basis of their reactivities to different portions of the fusion protein. These monoclonal antibodies detect a pair of closely migrating polypeptides of 60 and 63 kDa in nuclear fractions of human neuroblastoma cells. The relative levels of the polypeptides are roughly proportional to the level of N-myc transcripts present in a panel of neuroblastoma lines. These two polypeptides have a half-life of approximately equal to 35 min, and they are indistinguishable from each other by their epitopic profiles.
Collapse
|
189
|
Wurm FM, Gwinn KA, Kingston RE. Inducible overproduction of the mouse c-myc protein in mammalian cells. Proc Natl Acad Sci U S A 1986; 83:5414-8. [PMID: 3526329 PMCID: PMC386297 DOI: 10.1073/pnas.83.15.5414] [Citation(s) in RCA: 114] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have made Chinese hamster ovary (CHO) cell lines that contain up to 2000 copies of the coding region of the mouse c-myc gene fused to the promoter of the Drosophila gene (hsp70) encoding a Mr 70,000 heat shock protein. Incubation of these cells at 43 degrees C results in an estimated 100-fold induction of c-myc mRNA. Translation of this mRNA occurs when the cells are returned to 37 degrees C, and during the first 3 hr of recovery at 37 degrees C, the c-myc protein is one of the most abundantly synthesized proteins in the cells. The products of the induced c-myc gene are phosphoproteins of apparent Mr 64,000, 66,000, and 75,000. Induced cells die, suggesting that elevated levels of c-myc are cytotoxic. Amplification of genes placed under control of the Drosophila hsp70 promoter may provide a general method for inducibly over expressing proteins in mammalian cells.
Collapse
|
190
|
Johnson BE, Battey J, Linnoila I, Becker KL, Makuch RW, Snider RH, Carney DN, Minna JD. Changes in the phenotype of human small cell lung cancer cell lines after transfection and expression of the c-myc proto-oncogene. J Clin Invest 1986; 78:525-32. [PMID: 3016030 PMCID: PMC423589 DOI: 10.1172/jci112604] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Small cell lung cancer growing in cell culture possesses biologic properties that allow classification into two categories: classic and variant. Compared with classic small cell lung cancer cell lines, variant lines have altered large cell morphology, shorter doubling times, higher cloning efficiencies in soft agarose, and very low levels of L dopa decarboxylase production and bombesin-like immunoreactivity. C-myc is amplified and expressed in some small cell lung cancer cell lines and all c-myc amplified lines studied to date display the variant phenotype. To investigate if c-myc amplification and expression is responsible for the variant phenotype, a normal human c-myc gene was transfected into a cloned classic small cell lung cancer cell line not amplified for or expressing detectable c-myc messenger RNA (mRNA). Clones were isolated with one to six copies of c-myc stably integrated into DNA that expressed c-myc mRNA. In addition, one clone with an integrated neo gene but a deleted c-myc gene was isolated and in this case c-myc was not expressed. C-myc expression in transfected clones was associated with altered large cell morphology, a shorter doubling time, and increased cloning efficiency, but no difference in L dopa decarboxylase levels and bombesin-like immunoreactivity. We conclude increased c-myc expression observed here in transfected clones correlates with some of the phenotypic properties distinguishing c-myc amplified variants from unamplified classic small cell lung cancer lines.
Collapse
|
191
|
Persson H, Gray HE, Godeau F, Braunhut S, Bellvé AR. Multiple growth-associated nuclear proteins immunoprecipitated by antisera raised against human c-myc peptide antigens. Mol Cell Biol 1986; 6:942-9. [PMID: 3534551 PMCID: PMC367595 DOI: 10.1128/mcb.6.3.942-949.1986] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Different antisera raised against various regions of the human c-myc protein were used to identify four human c-myc proteins with apparent molecular masses in sodium dodecyl sulfate-polyacrylamide gels ranging from 64 to 68 kilodaltons (phosphoproteins pp64 and pp67 and nonphosphorylated proteins p65 and p68). pp64 and p65 were the major detectable c-myc proteins, and pp67 and p68 were minor but specific components of the immunoprecipitates. The c-myc proteins were all localized in the cell nucleus. Accumulation of [35S]methionine-labeled p65 was observed after pulse-labeling and chase, suggesting that the stable p65 c-myc protein is generated posttranslationally from short-lived precursors. pp64, pp67, and p68 possessed short half-lives and may therefore be precursors of the stable p65. Confirmation of the nuclear localization of the human c-myc proteins was obtained by immunofluorescent staining. The human c-myc proteins were revealed as a pattern of punctate nuclear staining with, particularly for p65, nucleolar enhancement that left an unstained annulus surrounding the nucleolus.
Collapse
|
192
|
Gowda SD, Koler RD, Bagby GC. Regulation of C-myc expression during growth and differentiation of normal and leukemic human myeloid progenitor cells. J Clin Invest 1986; 77:271-8. [PMID: 3511091 PMCID: PMC423336 DOI: 10.1172/jci112287] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
C-myc proto-oncogene transcripts from serially harvested, colony-stimulating activity (CSA)-stimulated, normal progenitor-enriched human bone marrow cells were compared to those of the promyelocytic leukemia cell line HL-60 and to those of freshly obtained human myeloid leukemic cells. During the early culture period both normal and leukemic cells expressed the c-myc oncogene. In normal cells maximal expression occurred after 24 h of culture and did not occur in the absence of CSA. At this time, progranulocytes predominated in the cultured cells. Although cellular proliferation occurred for 96 h in vitro, c-myc expression ceased after 24-36 h. Terminally differentiated cells predominated in these cultures by 120 h. In contrast, although leukemic cells also expressed c-myc in vitro, transcription persisted throughout the culture period and, in the case of HL-60 cells, occurred in the absence of exogenous CSA. We also noted that normal cells with only one diploid gene copy exhibited, after 24 h of culture, only twofold fewer transcripts than did HL-60 cells in which there were 16 myc copies. Furthermore, c-myc mRNA degradation rates were similar in normal cells and in HL-60 cells. We conclude that c-myc transcription is a normal event in granulopoiesis linked to proliferative activity as well as to primitive developmental stage. Furthermore, the most consistent abnormality in leukemic cells in vitro is their failure to suppress transcriptional activity of this gene. We suggest that c-myc transcription in HL-60 cells may be appropriate for cells arrested at that developmental stage and that the amplified genes in HL-60 cells are quiescent relative to c-myc in normal cells at the same differentiation stage. The techniques described herein may be of value in identifying mechanisms by which normal hematopoietic cells suppress c-myc expression and aberrancies of these mechanisms in leukemic cells.
Collapse
|
193
|
Lee WM, Schwab M, Westaway D, Varmus HE. Augmented expression of normal c-myc is sufficient for cotransformation of rat embryo cells with a mutant ras gene. Mol Cell Biol 1985; 5:3345-56. [PMID: 3837844 PMCID: PMC369162 DOI: 10.1128/mcb.5.12.3345-3356.1985] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We studied the effect of altered c-myc structure and expression upon the ability of c-myc to promote the transformation of normal rat embryo cells when it was supplemented by EJras (the mutant c-H-ras1 gene from EJ/T24 bladder carcinoma cells). We tested several c-myc alleles cloned from normal and tumor tissues of chicken and human origin and found that only LL4myc (derived from a bursal lymphoma in which an avian leukosis virus long terminal repeat resides within the first c-myc intron in the same transcriptional orientation) had cotransforming activity. No activity was observed with normal chicken and human c-myc alleles, two other bursal lymphoma c-myc alleles (LL3myc and LL6myc), and two human c-myc genes (HSRmyc and DMmyc) from human neuroectodermal tumor cell line COLO320, in which c-myc is amplified. Some of these inactive alleles had the following alterations that are frequently found in tumor-derived c-myc: point mutations affecting the encoded protein (LL3myc); a truncated structure with loss of the first, noncoding exon (LL3myc and DMmyc); and proviral integration within or near the myc locus (LL3myc and LL6myc). The following two experimental approaches indicated that cotransforming activity was directly related to the transcriptional activity of the alleles in cultured rat cells: when cotransfected into Rat-2 cells, LL4myc was more highly expressed than the other (inactive) alleles; and augmented expression of HSRmyc, DMmyc, or normal human or normal chicken c-myc placed under the transcriptional control of retroviral long terminal repeats or increased expression of normal human c-myc under the influence of a retroviral enhancer element was accompanied by cotransformation activity. We concluded that augmented expression of even a normal c-myc gene is sufficient for cotransforming activity and that additional structural alterations frequently found in tumor-derived alleles are neither necessary nor sufficient for the gene to acquire rat embryo cell cotransforming properties.
Collapse
|
194
|
Reed JC, Sabath DE, Hoover RG, Prystowsky MB. Recombinant interleukin 2 regulates levels of c-myc mRNA in a cloned murine T lymphocyte. Mol Cell Biol 1985; 5:3361-8. [PMID: 3879814 PMCID: PMC369164 DOI: 10.1128/mcb.5.12.3361-3368.1985] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The cellular oncogene c-myc has been implicated in the regulation of growth of normal and neoplastic cells. Recently, it was suggested that c-myc gene expression may control the G0----G1-phase transition in normal lymphocytes that were stimulated to enter the cell cycle by the lectin concanavalin A (ConA). Here we describe the effects of purified recombinant interleukin 2 (rIL2) and of ConA on levels of c-myc mRNA in the noncytolytic murine T-cell clone L2. In contrast to resting (G0) primary cultures of lymphocytes, quiescent L2 cells have a higher RNA content than resting splenocytes and express receptors for interleukin 2 (IL2). Resting L2 cells are therefore best regarded as early G1-phase cells. Purified rIL2 was found to stimulate the rapid accumulation of c-myc mRNA in L2 cells. Levels of c-myc mRNA became maximal within 1 h and declined gradually thereafter. In contrast, ConA induced slower accumulation of c-myc mRNA in L2 cells, with increased levels of c-myc mRNA becoming detectable 4 to 8 h after stimulation. Experiments with the protein synthesis inhibitor cycloheximide demonstrated that the increase in levels of c-myc mRNA that were induced by ConA was a direct effect of this lectin and not secondary to IL2 production. Cyclosporin A, an immunosuppressive agent, markedly reduced the accumulation of c-myc mRNA that was induced by ConA but only slightly diminished the accumulation of c-myc mRNA that was induced by rIL2. Taken together, these data provide evidence that (i) c-myc gene expression can be regulated by at least two distinct pathways in T lymphocytes, only one of which is sensitive to cyclosporine A, and (ii) the accumulation of c-myc mRNA can be induced in T cells by IL2 during the G1 phase of the cell cycle.
Collapse
|
195
|
Evan GI, Lewis GK, Ramsay G, Bishop JM. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol 1985; 5:3610-6. [PMID: 3915782 PMCID: PMC369192 DOI: 10.1128/mcb.5.12.3610-3616.1985] [Citation(s) in RCA: 859] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Six monoclonal antibodies have been isolated from mice immunized with synthetic peptide immunogens whose sequences are derived from that of the human c-myc gene product. Five of these antibodies precipitate p62c-myc from human cells, and three of these five also recognize the mouse c-myc gene product. None of the antibodies sees the chicken p110gag-myc protein. All six antibodies recognize immunoblotted p62c-myc. These reagents also provide the basis for an immunoblotting assay by which to quantitate p62c-myc in cells.
Collapse
|
196
|
Butnick NZ, Miyamoto C, Chizzonite R, Cullen BR, Ju G, Skalka AM. Regulation of the human c-myc gene: 5' noncoding sequences do not affect translation. Mol Cell Biol 1985; 5:3009-16. [PMID: 3018494 PMCID: PMC369113 DOI: 10.1128/mcb.5.11.3009-3016.1985] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The influence of untranslated 5' sequences on c-myc expression was compared by measuring the translational efficiencies of mRNAs which contain leaders derived from exon 1 or intron 1 of the human c-myc gene. Expression plasmids were constructed and introduced into COS cells, and the levels of c-myc mRNA and protein were examined. Our results show that mRNAs transcribed from constructs containing exon 1 or intron 1, which have different folding potential, are translated with approximately equal efficiencies. This suggests that the translation of c-myc mRNA is not controlled by secondary structure alone. In addition, we observed that transcripts in which exon 1 was deleted are not translated more efficiently, but are present at a higher steady-state level. Thus, this example provides evidence for possible control at the transcriptional level. Finally, since the c-myc product was produced in each of our test systems, the results suggest that this protein does not regulate its own transcription or translation via a specific interaction with c-myc exon 1 alone.
Collapse
|
197
|
Miyamoto C, Chizzonite R, Crowl R, Rupprecht K, Kramer R, Schaber M, Kumar G, Poonian M, Ju G. Molecular cloning and regulated expression of the human c-myc gene in Escherichia coli and Saccharomyces cerevisiae: comparison of the protein products. Proc Natl Acad Sci U S A 1985; 82:7232-6. [PMID: 3903749 PMCID: PMC390823 DOI: 10.1073/pnas.82.21.7232] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
mRNA from human HL-60 cells was used to prepare a cDNA library, from which two full-length clones that encompass the complete c-myc coding region were isolated. One clone, pM1-11, contains all three exons of human c-myc. The second clone, pM4-10, represents a relatively rare transcript that initiated in the first intron and includes the coding exons 2 and 3. The cDNA insert in pM1-11 was used to express the human c-myc protein in both prokaryotic and eukaryotic cells. Insertion of the coding sequences in exons 2 and 3 into the appropriate expression vectors yielded detectable c-myc protein in Escherichia coli lacking the Lon protease and in Saccharomyces cerevisiae upon induction. The protein produced in E. coli has an apparent size of 60 kDa and appears to be unmodified, as it is identical in size to the protein synthesized in an in vitro system. In contrast, yeast cells synthesize two myc proteins, of 60 kDa and 62 kDa. The difference in apparent molecular mass between the two proteins appears to be due, in part, to phosphorylation. Subcellular fractionation of yeast cells showed that the c-myc phosphoprotein is located predominantly in the nuclear fraction.
Collapse
|
198
|
Persson H, Gray HE, Godeau F. Growth-dependent synthesis of c-myc-encoded proteins: early stimulation by serum factors in synchronized mouse 3T3 cells. Mol Cell Biol 1985; 5:2903-12. [PMID: 3915769 PMCID: PMC369101 DOI: 10.1128/mcb.5.11.2903-2912.1985] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Synthesis of the c-myc gene product was measured during the entire cell cycle of subconfluent mouse 3T3 cells with an antibody raised against a human c-myc synthetic peptide. The antiserum recognized two mouse c-myc-encoded proteins with apparent molecular weights in sodium dodecyl sulfate-polyacrylamide gels of 62,000 and 60,000. Cell-derived p62 was compared with the mouse c-myc gene product synthesized in vitro. Immunoprecipitation, electrophoretic analyses, and peptide mapping provided evidence that p62 is encoded by the mouse c-myc gene. The rate of synthesis of the c-myc proteins was tightly coupled to the cellular growth state of nontransformed A31 3T3 cells, but not to that of their benzo(a)pyrene-transformed derivative (BPA31). Furthermore, the synthesis of the c-myc proteins was stimulated by the exposure of confluent, density-arrested A31 cells to platelet-derived growth factor or fibroblast growth factor. Tightly synchronized cell populations were obtained on the addition of serum factors to subconfluent, serum-deprived A31 cells, and c-myc expression could be monitored for more than one complete cell cycle. One hour after stimulation the steady-state level of the 2.2 kilobase c-myc transcript increased 30-fold relative to that of quiescent cells and decreased thereafter to the level observed during exponential growth. The rate of synthesis of c-myc-encoded proteins was determined by immunoprecipitation after a 2-h labeling period. After an initial sevenfold increase detectable 2 h after serum addition, the rate of synthesis remained constant throughout the rest of the cell cycle. No further changes associated with the late prereplicative period, S phase, G2, or mitosis could be demonstrated. Pulse-chase and long-term labeling experiments revealed different half-lives for the two c-myc-encoded proteins. The half-lives of the c-myc proteins, however, were independent of the cellular growth state. The sustained expression observed throughout the cell cycle suggests that the growth-related function of c-myc may be required during the G0-G1 transition and in all phases of the cycle of the growing cell.
Collapse
|
199
|
Miyamoto C, Smith GE, Farrell-Towt J, Chizzonite R, Summers MD, Ju G. Production of human c-myc protein in insect cells infected with a baculovirus expression vector. Mol Cell Biol 1985; 5:2860-5. [PMID: 3915537 PMCID: PMC367028 DOI: 10.1128/mcb.5.10.2860-2865.1985] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A cDNA fragment coding for human c-myc was inserted into the genome of the baculovirus Autographa californica nuclear polyhedrosis virus adjacent to the strong polyhedrin promoter. Insect cells infected with the recombinant virus produced significant amounts of c-myc protein, which constituted the major phosphoprotein component in these cells. By immunoprecipitation and immunoblot analysis, two proteins of 61 and 64 kilodaltons were detected with c-myc-specific antisera. The insect-derived proteins were compared with recombinant human c-myc-encoded proteins synthesized in Escherichia coli and Saccharomyces cerevisiae cells. The c-myc gene product was found predominantly in the nucleus by subcellular fractionation of infected insect cells.
Collapse
|
200
|
Rabbitts PH, Watson JV, Lamond A, Forster A, Stinson MA, Evan G, Fischer W, Atherton E, Sheppard R, Rabbitts TH. Metabolism of c-myc gene products: c-myc mRNA and protein expression in the cell cycle. EMBO J 1985; 4:2009-15. [PMID: 4065102 PMCID: PMC554455 DOI: 10.1002/j.1460-2075.1985.tb03885.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence and synthesis of c-myc protein and mRNA in the cell cycle has been studied. We find that c-myc mRNA is present, at equivalent levels, at all times in the cell cycle with the possible exception of mitosis. Furthermore, we demonstrate that this mRNA is transcribed in both G1 and G2 phases. An analysis of the c-myc protein in vivo shows that de novo synthesis occurs in G1 and G2 and the protein turns over with a half-life of approximately 20-30 min in both phases. Furthermore, the level of c-myc protein rapidly increases in cell populations when they re-initiate the cell cycle, thereafter decreasing as the culture reaches quiescence. The results therefore suggest that expression of c-myc can be rapidly modulated and that it is activated during the G0 to G1 transition, but is expressed thereafter in the cell cycle.
Collapse
|