151
|
Pruneda JN, Nguyen JV, Nagai H, Kubori T. Bacterial usurpation of the OTU deubiquitinase fold. FEBS J 2024; 291:3303-3316. [PMID: 36636866 PMCID: PMC10338644 DOI: 10.1111/febs.16725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/10/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
The extensive cellular signalling events controlled by posttranslational ubiquitination are tightly regulated through the action of specialized proteases termed deubiquitinases. Among them, the OTU family of deubiquitinases can play very specialized roles in the regulation of discrete subtypes of ubiquitin signals that control specific cellular functions. To exert control over host cellular functions, some pathogenic bacteria have usurped the OTU deubiquitinase fold as a secreted virulence factor that interferes with ubiquitination inside infected cells. Herein, we provide a review of the function of bacterial OTU deubiquitinases during infection, the structural basis for their deubiquitinase activities and the bioinformatic approaches leading to their identification. Understanding bacterial OTU deubiquitinases holds the potential for discoveries not only in bacterial pathogenesis but in eukaryotic biology as well.
Collapse
Affiliation(s)
- Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Justine V. Nguyen
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hiroki Nagai
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Gifu 501-1194, Japan
| | - Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan
| |
Collapse
|
152
|
Liu W, Wang Y, Liu S, Zhang X, Cao X, Jiang M. E3 Ubiquitin Ligase RNF13 Suppresses TLR Lysosomal Degradation by Promoting LAMP-1 Proteasomal Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309560. [PMID: 39031743 PMCID: PMC11348240 DOI: 10.1002/advs.202309560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/27/2024] [Indexed: 07/22/2024]
Abstract
As a highly organized system, endo-lysosomes play a crucial role in maintaining immune homeostasis. However, the mechanisms involved in regulating endo-lysosome progression and subsequent inflammatory responses are not fully understood. By screening 103 E3 ubiquitin ligases in regulating endo-lysosomal acidification, it is discovered that lysosomal RNF13 inhibits lysosome maturation and promotes inflammatory responses mediated by endosomal Toll-like receptors (TLRs) in macrophages. Mechanistically, RNF13 mediates K48-linked polyubiquitination of LAMP-1 at residue K128 for proteasomal degradation. Upon TLRs activation, LAMP-1 promotes lysosomes maturation, which accelerates lysosomal degradation of TLRs and reduces TLR signaling in macrophages. Furthermore, peripheral blood mononuclear cells (PBMCs) from patients with rheumatoid arthritis (RA) show increased RNF13 levels and decreased LAMP-1 expression. Accordingly, the immunosuppressive agent hydroxychloroquine (HCQ) can increase the polyubiquitination of RNF13. Taken together, the study establishes a linkage between proteasomal and lysosomal degradation mechanisms for the induction of appropriate innate immune response, and offers a promising approach for the treatment of inflammatory diseases by targeting intracellular TLRs.
Collapse
Affiliation(s)
- Wei Liu
- Department of ImmunologyCenter for ImmunotherapyInstitute of Basic Medical SciencesPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing100005China
- Department of RheumatologyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing100730China
| | - Yuyang Wang
- Department of ImmunologyCenter for ImmunotherapyInstitute of Basic Medical SciencesPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing100005China
| | - Shuo Liu
- Department of ImmunologyCenter for ImmunotherapyInstitute of Basic Medical SciencesPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing100005China
| | - Xuan Zhang
- Department of RheumatologyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing100730China
| | - Xuetao Cao
- Department of ImmunologyCenter for ImmunotherapyInstitute of Basic Medical SciencesPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing100005China
| | - Minghong Jiang
- Department of ImmunologyCenter for ImmunotherapyInstitute of Basic Medical SciencesPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing100005China
| |
Collapse
|
153
|
de Fallois J, Sieckmann T, Schönauer R, Petzold F, Münch J, Pauly M, Vasileiou G, Findeisen C, Kampmeier A, Kuechler A, Reis A, Decker E, Bergmann C, Platzer K, Tasic V, Kirschner KM, Shril S, Hildebrandt F, Chung WK, Halbritter J. Pathogenic PHIP Variants are Variably Associated With CAKUT. Kidney Int Rep 2024; 9:2484-2497. [PMID: 39156152 PMCID: PMC11328576 DOI: 10.1016/j.ekir.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Congenital anomalies of the kidney and urinary tract (CAKUT) represent the most common cause of chronic kidney disease in children. Although only 20% of cases can be genetically explained, the majority remain without an identified underlying etiology. The neurodevelopmental disorder Chung-Jansen syndrome (CHUJANS) is caused by haploinsufficiency of Pleckstrin homology domain-interacting protein (PHIP) and was previously associated with genital malformations. Anecdotal coincidence of CHUJANS and CAKUT prompted us to investigate whether urorenal malformations are part of the phenotypic spectrum of CHUJANS. Methods Analysis of existing CHUJANS and CAKUT cohorts, consulting matchmaking platforms, and systematic literature review to look for additional patients with both CHUJANS and CAKUT. Prenatal expression studies in murine and human renal tissues to investigate the role for PHIP in kidney development. Results We identified 4 novel and 8 published cases, indicating variable expressivity with a urorenogenital trait frequency of 5% to 35%. The prenatal expression studies supported a role for PHIP in normal kidney and urinary tract development. Conclusion Pathogenic PHIP gene variants should be considered as causative in patients with syndromal CAKUT. Conversely, patients with CHUJANS should be clinically evaluated for urorenogenital manifestations. Because neurodevelopmental disorders are often associated with kidney phenotypes, an interdisciplinary re-evaluation offers promise in identifying incompletely penetrant kidney associations and uncovering novel molecular mechanisms of disturbed nephrogenesis.
Collapse
Affiliation(s)
- Jonathan de Fallois
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Tobias Sieckmann
- Institute of Translational Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ria Schönauer
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Friederike Petzold
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Johannes Münch
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Melissa Pauly
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Georgia Vasileiou
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christin Findeisen
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Antje Kampmeier
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eva Decker
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | | | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Velibor Tasic
- Faculty of Medicine, University Ss. Cyril and Methodius, Skopje, North Macedonia
| | | | - Shirlee Shril
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wendy K. Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jan Halbritter
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
154
|
Hu Z, Zhang Y, Xie Y, Yang J, Tang H, Fan B, Zeng K, Han Z, Lu J, Jiang H, Peng W, Li H, Chen H, Wu S, Shen B, Lun Z, Yu X. The Toxoplasma Effector GRA4 Hijacks Host TBK1 to Oppositely Regulate Anti-T. Gondii Immunity and Tumor Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400952. [PMID: 39031880 PMCID: PMC11348266 DOI: 10.1002/advs.202400952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/25/2024] [Indexed: 07/22/2024]
Abstract
Toxoplasma gondii (T. gondii)-associated polymorphic effector proteins are crucial in parasite development and regulating host anti-T. gondii immune responses. However, the mechanism remains obscure. Here, it is shown that Toxoplasma effector dense granules 4 (GRA4) restricts host IFN-I activation. Infection with Δgra4 mutant T. gondii strain induces stronger IFN-I responses and poses a severe threat to host health. Mechanistically, GRA4 binds to phosphorylated TBK1 to promote TRIM27-catalyzed K48-ubiquitination at Lys251/Lys372 residues, which enhances its recognition by autophagy receptor p62, ultimately leading to TBK1 autophagic degradation. Furthermore, an avirulent Δgra4 strain (ME49Δompdc/gra4) is constructed for tumor immunotherapy due to its ability to enhance IFN-I production. Earlier vaccination with ME49Δompdc/gra4 confers complete host resistance to the tumor compared with the classical ME49Δompdc treatment. Notably, ME49Δompdc/gra4 vaccination induces a specific CD64+MAR-1+CD11b+ dendritic cell subset, thereby enhancing T cell anti-tumor responses. Overall, these findings identify the negative role of T. gondii GRA4 in modulating host IFN-I signaling and suggest that GRA4 can be a potential target for the development of T. gondii vaccines and tumor immunotherapy.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational MedicineZhejiang University School of MedicineZhejiang UniversityHangzhou310029China
| | - Yufen Zhang
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Yingchao Xie
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jianwu Yang
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Haotian Tang
- State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Bolin Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Ke Zeng
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Zhongxin Han
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jiansen Lu
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Department of Joint Surgerythe Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510900China
| | - Huaji Jiang
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Yue Bei People's Hospital Postdoctoral Innovation Practice BaseSouthern Medical UniversityGuangzhou510515China
| | - Wenqiang Peng
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Hongyu Li
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Huadan Chen
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Sha Wu
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of ProteomicsSouthern Medical UniversityGuangzhou510515China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Zhao‐Rong Lun
- State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Department of Clinical Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510000China
| |
Collapse
|
155
|
Shokeen K, Baroi MK, Chahar M, Das D, Saini H, Kumar S. Arginyltransferase 1 (ATE1)-mediated proteasomal degradation of viral haemagglutinin protein: a unique host defence mechanism. J Gen Virol 2024; 105. [PMID: 39207120 DOI: 10.1099/jgv.0.002020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The extensive protein production in virus-infected cells can disrupt protein homeostasis and activate various proteolytic pathways. These pathways utilize post-translational modifications (PTMs) to drive the ubiquitin-mediated proteasomal degradation of surplus proteins. Protein arginylation is the least explored PTM facilitated by arginyltransferase 1 (ATE1) enzyme. Several studies have provided evidence supporting its importance in multiple physiological processes, including ageing, stress, nerve regeneration, actin formation and embryo development. However, its function in viral pathogenesis is still unexplored. The present work utilizes Newcastle disease virus (NDV) as a model to establish the role of the ATE1 enzyme and its activity in pathogenesis. Our data indicate a rise in levels of N-arginylated cellular proteins in the infected cells. Here, we also explore the haemagglutinin-neuraminidase (HN) protein of NDV as a presumable target for arginylation. The data indicate that the administration of Arg amplifies the arginylation process, resulting in reduced stability of the HN protein. ATE1 enzyme activity inhibition and gene expression knockdown studies were also conducted to analyse modulation in HN protein levels, which further substantiated the findings. Moreover, we also observed Arg addition and probable ubiquitin modification to the HN protein, indicating engagement of the proteasomal degradation machinery. Lastly, we concluded that the enhanced levels of the ATE1 enzyme could transfer the Arg residue to the N-terminus of the HN protein, ultimately driving its proteasomal degradation.
Collapse
Affiliation(s)
- Kamal Shokeen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Malay Kumar Baroi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Manjeet Chahar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Harimohan Saini
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
156
|
Alfaro GF, Palombo V, D’Andrea M, Cao W, Zhang Y, Beever JE, Muntifering RB, Pacheco WJ, Rodning SP, Wang X, Moisá SJ. Hepatic transcript profiling in beef cattle: Effects of feeding endophyte-infected tall fescue seeds. PLoS One 2024; 19:e0306431. [PMID: 39058685 PMCID: PMC11280227 DOI: 10.1371/journal.pone.0306431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
The objective of our study was to evaluate the effect of endophyte-infected tall fescue (E+) seeds intake on liver tissue transcriptome in growing Angus × Simmental steers and heifers through RNA-seq analysis. Normal weaned calves (~8 months old) received either endophyte-free tall fescue (E-; n = 3) or infected tall fescue (E+; n = 6) seeds for a 30-d period. The diet offered was ad libitum bermudagrass (Cynodon dactylon) hay combined with a nutritional supplement of 1.61 kg (DM basis) of E+ or E- tall fescue seeds, and 1.61 kg (DM basis) of energy/protein supplement pellets for a 30-d period. Dietary E+ tall fescue seeds were included in a rate of 20 μg of ergovaline/kg BW/day. Liver tissue was individually obtained through biopsy at d 30. After preparation and processing of the liver samples for RNA sequencing, we detected that several metabolic pathways were activated (i.e., upregulated) by the consumption of E+ tall fescue. Among them, oxidative phosphorylation, ribosome biogenesis, protein processing in endoplasmic reticulum and apoptosis, suggesting an active mechanism to cope against impairment in normal liver function. Interestingly, hepatic protein synthesis might increase due to E+ consumption. In addition, there was upregulation of "thermogenesis" KEGG pathway, showing a possible increase in energy expenditure in liver tissue due to consumption of E+ diet. Therefore, results from our study expand the current knowledge related to liver metabolism of growing beef cattle under tall fescue toxicosis.
Collapse
Affiliation(s)
- Gastón F. Alfaro
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| | - Valentino Palombo
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, Campobasso, Italy
| | - MariaSilvia D’Andrea
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, Campobasso, Italy
| | - Wenqi Cao
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Yue Zhang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Jonathan E. Beever
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, United States of America
| | | | - Wilmer J. Pacheco
- Department of Poultry Sciences, Auburn University, Auburn, AL, United States of America
| | - Soren P. Rodning
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Sonia J. Moisá
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
157
|
McDade E, Liu H, Bui Q, Hassenstab J, Gordon B, Benzinger T, Shen Y, Timsina J, Wang L, Sung YJ, Karch C, Renton A, Daniels A, Morris J, Xiong C, Ibanez L, Perrin R, Llibre-Guerra JJ, Day G, Supnet-Bell C, Xu X, Berman S, Chhatwal J, Ikeuchi T, Kasuga K, Niimi Y, Huey E, Schofield P, Brooks W, Ryan N, Jucker M, Laske C, Levin J, Vöglein J, Roh JH, Lopera F, Bateman R, Cruchaga C. Ubiquitin-Proteasome System in the Different Stages of Dominantly Inherited Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-4202125. [PMID: 39108475 PMCID: PMC11302696 DOI: 10.21203/rs.3.rs-4202125/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This study explored the role of the ubiquitin-proteasome system (UPS) in dominantly inherited Alzheimer's disease (DIAD) by examining changes in cerebrospinal fluid (CSF) levels of UPS proteins along with disease progression, AD imaging biomarkers (PiB PET, tau PET), neurodegeneration imaging measures (MRI, FDG PET), and Clinical Dementia Rating® (CDR®). Using the SOMAscan assay, we detected subtle increases in specific ubiquitin enzymes associated with proteostasis in mutation carriers (MCs) up to two decades before the estimated symptom onset. This was followed by more pronounced elevations of UPS-activating enzymes, including E2 and E3 proteins, and ubiquitin-related modifiers. Our findings also demonstrated consistent correlations between UPS proteins and CSF biomarkers such as Aβ42/40 ratio, total tau, various phosphorylated tau species to total tau ratios (ptau181/T181, ptauT205/T205, ptauS202/S202, ptauT217/T217), and MTBR-tau243, alongside Neurofilament light chain (NfL) and the CDR®. Notably, a positive association was observed with imaging markers (PiB PET, tau PET) and a negative correlation with markers of neurodegeneration (FDG PET, MRI), highlighting a significant link between UPS dysregulation and neurodegenerative processes. The correlations suggest that the increase in multiple UPS proteins with rising tau levels and tau-tangle associated markers, indicating a potential role for the UPS in relation to misfolded tau/neurofibrillary tangles (NFTs) and symptom onset. These findings indicate that elevated CSF UPS proteins in DIAD MCs could serve as early indicators of disease progression and suggest a link between UPS dysregulation and amyloid plaque, tau tangles formation, implicating the UPS as a potential therapeutic target in AD pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Alan Renton
- Nash Family Department of Neuroscience and Ronald Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA: Departments of Neurology and Genetics and Ge
| | | | | | | | | | | | | | | | | | | | | | - Jasmeer Chhatwal
- Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School
| | | | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University
| | | | | | | | | | | | | | | | | | | | | | | | - Randall Bateman
- Department of Neurology, Washington University School of Medicine
| | | |
Collapse
|
158
|
Zhang M, Li J, Liu S, Zhou F, Zhang L. UCHL5 is a putative prognostic marker in renal cell carcinoma: a study of UCHL family. MOLECULAR BIOMEDICINE 2024; 5:28. [PMID: 39034372 PMCID: PMC11265068 DOI: 10.1186/s43556-024-00192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
A macroscopic perspective is indispensable for understanding the intricate relationship between deubiquitinases and tumorigenesis. Proteomics has been proposed as a viable approach for elucidating the complex role of deubiquitylation in cellular progression. Instead of studying the function of a single ubiquitinase, research on a deubiquitinase family with similar catalytic core(s) may provide a new perspective for the pathological understanding of cancer. The Ubiquitin C-terminal hydrolase L (UCHL) family consists of four members: UCHL1, UCHL3, UCHL5, and BRAC1 associated protein-1 (BAP1), and they have been implicated in tumorigenesis and metastasis. Some members are considered hallmarks of intracranial lesions, colon cancer, chromatin remodeling, and histone stability. The present study uncovered an unknown correlation between the UCHL family and renal cancer. We discovered that UCHLs exhibit diverse regulatory effects in renal cancer, establishing connections between the renal cancer and truncated gene mutations, mitochondrial energetic metastasis, immune cell infiltration, and chromosomal stability of UCHLs family. Notably, we found that the increase of UCHL5 expression in renal cancer cells decreases the antigen processing and presentation of RCC tumor-infiltrating B cells. Further research identified that the expression of UCHL5 in RCC tumors is correlated with transport proteins, which led us to find that the abundance of UCHL5 in the blood of late-stage renal cell cancer patients is upregulated from 18 ng/L to 500 ng/L. Therefore, we propose that the abundance of UCHL5 in patients' blood can be a possible indicator of poor prognosis for renal cell cancer.
Collapse
Affiliation(s)
- Mengdi Zhang
- Life Sciences Institute, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Jingxian Li
- Life Sciences Institute, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Sijia Liu
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310058, PR China
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, PR China
| | - Long Zhang
- Life Sciences Institute, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310058, PR China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
159
|
Shi W, Ding R, Chen Y, Ji F, Ji J, Ma W, Jin J. The HRD1-SEL1L ubiquitin ligase regulates stress granule homeostasis in couple with distinctive signaling branches of ER stress. iScience 2024; 27:110196. [PMID: 38979013 PMCID: PMC11228786 DOI: 10.1016/j.isci.2024.110196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/22/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Stress granules (SGs) are membrane-less cellular compartments which are dynamically assembled via biomolecular condensation mechanism when eukaryotic cells encounter environmental stresses. SGs are important for gene expression and cell fate regulation. Dysregulation of SG homeostasis has been linked to human neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we report that the HRD1-SEL1L ubiquitin ligase complex specifically regulates the homeostasis of heat shock-induced SGs through the ubiquitin-proteasome system (UPS) and the UPS-associated ATPase p97. Mechanistically, the HRD1-SEL1L complex mediates SG homeostasis through the BiP-coupled PERK-eIF2α signaling axis of endoplasmic reticulum (ER) stress, thereby coordinating the unfolded protein response (UPR) with SG dynamics. Furthermore, we show that the distinctive branches of ER stress play differential roles in SG homeostasis. Our study indicates that the UPS and the UPR together via the HRD1-SEL1L ubiquitin ligase to maintain SG homeostasis in a stressor-dependent manner.
Collapse
Affiliation(s)
- Wenbo Shi
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ran Ding
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yilin Chen
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Fubo Ji
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Junfang Ji
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing 321000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Weirui Ma
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jianping Jin
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing 321000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
160
|
Yang X, Zhu X, Sheng J, Fu Y, Nie D, You X, Chen Y, Yang X, Ling Q, Zhang H, Li X, Hu S. RNF213 promotes Treg cell differentiation by facilitating K63-linked ubiquitination and nuclear translocation of FOXO1. Nat Commun 2024; 15:5961. [PMID: 39013878 PMCID: PMC11252262 DOI: 10.1038/s41467-024-50392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
Autoreactive CD4+ T helper cells are critical players that orchestrate the immune response both in multiple sclerosis (MS) and in other neuroinflammatory autoimmune diseases. Ubiquitination is a posttranslational protein modification involved in regulating a variety of cellular processes, including CD4+ T cell differentiation and function. However, only a limited number of E3 ubiquitin ligases have been characterized in terms of their biological functions, particularly in CD4+ T cell differentiation and function. In this study, we found that the RING finger protein 213 (RNF213) specifically promoted regulatory T (Treg) cell differentiation in CD4+ T cells and attenuated autoimmune disease development in an FOXO1-dependent manner. Mechanistically, RNF213 interacts with Forkhead Box Protein O1 (FOXO1) and promotes nuclear translocation of FOXO1 by K63-linked ubiquitination. Notably, RNF213 expression in CD4+ T cells was induced by IFN-β and exerts a crucial role in the therapeutic efficacy of IFN-β for MS. Together, our study findings collectively emphasize the pivotal role of RNF213 in modulating adaptive immune responses. RNF213 holds potential as a promising therapeutic target for addressing disorders associated with Treg cells.
Collapse
MESH Headings
- Ubiquitination
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Cell Differentiation
- Animals
- Forkhead Box Protein O1/metabolism
- Forkhead Box Protein O1/genetics
- Mice
- Humans
- Interferon-beta/metabolism
- Mice, Inbred C57BL
- Cell Nucleus/metabolism
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/genetics
- Multiple Sclerosis/pathology
- Active Transport, Cell Nucleus
- Female
- Mice, Knockout
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- HEK293 Cells
Collapse
Affiliation(s)
- Xiaofan Yang
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaotong Zhu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junli Sheng
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yuling Fu
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Dingnai Nie
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaolong You
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yitian Chen
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaodan Yang
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Qiao Ling
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Huili Zhang
- Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
| | - Xiaomin Li
- Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Shengfeng Hu
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
161
|
Valero Y, Chaves-Pozo E, Cuesta A. Fish HERC7: Phylogeny, Characterization, and Potential Implications for Antiviral Immunity in European Sea Bass. Int J Mol Sci 2024; 25:7751. [PMID: 39062994 PMCID: PMC11277259 DOI: 10.3390/ijms25147751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
E3 ubiquitin ligases, key components of the ubiquitin proteasome system, orchestrate protein degradation through ubiquitylation and profoundly impact cellular biology. Small HERC E3 ligases (HERC3-6) have diverse functions in mammals, including roles in spermatogenesis, protein degradation, and immunity. Until now, only mammals' HERC3, HERC5, and HERC6 are known to participate in immune responses, with major involvement in the antiviral response. Interestingly, an exclusive HERC7 has been characterized in fish showing great molecular conservation and antiviral roles. Thus, this study identifies and characterizes the herc7 gene in the European sea bass teleost. The European sea bass herc7 gene and the putative protein show good conservation of the promoter binding sites for interferons and the RCC1 and HECT domains characteristic of HERC proteins, respectively. The phylogenetic analysis shows a unique cluster with the fish-exclusive HERC7 orthologues. During ontogeny, the herc7 gene is expressed from 3 days post-fertilization onwards, being constitutively and widely distributed in adult tissues. In vitro, stimulated leucocytes up-regulate the herc7 gene in response to mitogens and viruses, pointing to a role in the immune response. Furthermore, sea bass herc7 expression is related to the interferon response intensity and viral load in different tissues upon in vivo infection with red-grouper betanodavirus (RGNNV), suggesting the potential involvement of fish HERC7 in ISGylation-based antiviral activity, similarly to mammalian HERC5. This study broadens the understanding of small HERC proteins in fish species and highlights HERC7 as a potential contributor to the immune response in European sea bass, with implications for antiviral defense mechanisms. Future research is needed to unravel the precise actions and functions of HERC7 in teleost fish immunity, providing insights into direct antiviral activity and viral evasion.
Collapse
Affiliation(s)
- Yulema Valero
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain;
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain;
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain;
| |
Collapse
|
162
|
Ślusarz MJ. How kelch domain-containing protein 3 distinguishes between the C-end degron of herpesviral protein UL49.5 and its mutants - Insights from molecular dynamics. Bioorg Med Chem 2024; 109:117795. [PMID: 38878709 DOI: 10.1016/j.bmc.2024.117795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/13/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
The C-terminal residues of proteins can function as degrons recognized by ubiquitin ligases for proteasomal degradation. Kelch domain-containing protein 3 (KLHDC3) is a substrate receptor for E3 ubiquitin ligase (Cullin2-RING ligase) that targets the C-terminal degrons. UL49.5 is 96 amino-acid type 1 transmembrane protein from bovine herpesvirus 1. Herpesviruses have evolved highly effective strategies to evade the antiviral immune response. One of these strategies is inhibition of the antigen processing and presentation pathway by MHC I, thereby reducing the presentation of the antigenic peptides on the surface of the infected cell. Recently, it has been demonstrated that UL49.5 triggers TAP degradation via recruiting the E3 ubiquitin ligase to TAP. Moreover, the mutagenesis revealed that the mutations within the UL49.5 C-degron sequence (93RGRG96) affect binding of UL49.5 to KLHDC3. In this work the molecular dynamics of KLHDC3 in complexes with the C-terminal decapeptide of the herpesviral protein UL4.95 and its three mutants has been employed to provide a framework for understanding molecular recognition of UL49.5 by KLHDC3. The findings of this study give insights into the interactions of the various degrons with KLHDC3. During the molecular dynamics, an active RGKG mutant adopts a conformation similar to that of the wild type decapeptide, whereas the conformations of two inactive mutants, KGRG and RGRD are significantly different. Both R93K and G96D mutations impair the interactions of the C-terminal glycine with KLHDC3. The findings of this study expand the existing knowledge about the mechanism of protein recognition by Cullin2-RING ligases thus contributing to the design of antiviral and anticancer drugs that can selectively promote or inhibit degradation of the proteins of interest.
Collapse
Affiliation(s)
- Magdalena J Ślusarz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
163
|
Zhang Y, Lian Q, Nie Y, Zhao W. Identification of atrial fibrillation-related genes through transcriptome data analysis and Mendelian randomization. Front Cardiovasc Med 2024; 11:1414974. [PMID: 39055656 PMCID: PMC11269132 DOI: 10.3389/fcvm.2024.1414974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Background Atrial fibrillation (AF) is a common persistent arrhythmia characterized by rapid and chaotic atrial electrical activity, potentially leading to severe complications such as thromboembolism, heart failure, and stroke, significantly affecting patient quality of life and safety. As the global population ages, the prevalence of AF is on the rise, placing considerable strains on individuals and healthcare systems. This study utilizes bioinformatics and Mendelian Randomization (MR) to analyze transcriptome data and genome-wide association study (GWAS) summary statistics, aiming to identify biomarkers causally associated with AF and explore their potential pathogenic pathways. Methods We obtained AF microarray datasets GSE41177 and GSE79768 from the Gene Expression Omnibus (GEO) database, merged them, and corrected for batch effects to pinpoint differentially expressed genes (DEGs). We gathered exposure data from expression quantitative trait loci (eQTL) and outcome data from AF GWAS through the IEU Open GWAS database. We employed inverse variance weighting (IVW), MR-Egger, weighted median, and weighted model approaches for MR analysis to assess exposure-outcome causality. IVW was the primary method, supplemented by other techniques. The robustness of our results was evaluated using Cochran's Q test, MR-Egger intercept, MR-PRESSO, and leave-one-out sensitivity analysis. A "Veen" diagram visualized the overlap of DEGs with significant eQTL genes from MR analysis, referred to as common genes (CGs). Additional analyses, including Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and immune cell infiltration studies, were conducted on these intersecting genes to reveal their roles in AF pathogenesis. Results The combined dataset revealed 355 differentially expressed genes (DEGs), with 228 showing significant upregulation and 127 downregulated. Mendelian randomization (MR) analysis identified that the autocrine motility factor receptor (AMFR) [IVW: OR = 0.977; 95% CI, 0.956-0.998; P = 0.030], leucine aminopeptidase 3 (LAP3) [IVW: OR = 0.967; 95% CI, 0.934-0.997; P = 0.048], Rab acceptor 1 (RABAC1) [IVW: OR = 0.928; 95% CI, 0.875-0.985; P = 0.015], and tryptase beta 2 (TPSB2) [IVW: OR = 0.971; 95% CI, 0.943-0.999; P = 0.049] are associated with a reduced risk of atrial fibrillation (AF). Conversely, GTPase-activating SH3 domain-binding protein 2 (G3BP2) [IVW: OR = 1.030; 95% CI, 1.004-1.056; P = 0.024], integrin subunit beta 2 (ITGB2) [IVW: OR = 1.050; 95% CI, 1.017-1.084; P = 0.003], glutaminyl-peptide cyclotransferase (QPCT) [IVW: OR = 1.080; 95% CI, 1.010-0.997; P = 1.154], and tripartite motif containing 22 (TRIM22) [IVW: OR = 1.048; 95% CI, 1.003-1.095; P = 0.035] are positively associated with AF risk. Sensitivity analyses indicated a lack of heterogeneity or horizontal pleiotropy (P > 0.05), and leave-one-out analysis did not reveal any single nucleotide polymorphisms (SNPs) impacting the MR results significantly. GO and KEGG analyses showed that CG is involved in processes such as protein polyubiquitination, neutrophil degranulation, specific and tertiary granule formation, protein-macromolecule adaptor activity, molecular adaptor activity, and the SREBP signaling pathway, all significantly enriched. The analysis of immune cell infiltration demonstrated associations of CG with various immune cells, including plasma cells, CD8T cells, resting memory CD4T cells, regulatory T cells (Tregs), gamma delta T cells, activated NK cells, activated mast cells, and neutrophils. Conclusion By integrating bioinformatics and MR approaches, genes such as AMFR, G3BP2, ITGB2, LAP3, QPCT, RABAC1, TPSB2, and TRIM22 are identified as causally linked to AF, enhancing our understanding of its molecular foundations. This strategy may facilitate the development of more precise biomarkers and therapeutic targets for AF diagnosis and treatment.
Collapse
Affiliation(s)
- Yujun Zhang
- Data Management Center, Xianyang Hospital, Yan'an University, Xianyang, China
| | - Qiufang Lian
- Department of Cardiology, Xianyang Hospital, Yan'an University, Xianyang, China
| | - Yanwu Nie
- School of Public Health, Nanchang University, Nanchang, China
| | - Wei Zhao
- Department of Cardiology, Xianyang Hospital, Yan'an University, Xianyang, China
| |
Collapse
|
164
|
Ctortecka C, Clark NM, Boyle BW, Seth A, Mani DR, Udeshi ND, Carr SA. Automated single-cell proteomics providing sufficient proteome depth to study complex biology beyond cell type classifications. Nat Commun 2024; 15:5707. [PMID: 38977691 PMCID: PMC11231172 DOI: 10.1038/s41467-024-49651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
The recent technological and computational advances in mass spectrometry-based single-cell proteomics have pushed the boundaries of sensitivity and throughput. However, reproducible quantification of thousands of proteins within a single cell remains challenging. To address some of those limitations, we present a dedicated sample preparation chip, the proteoCHIP EVO 96 that directly interfaces with the Evosep One. This, in combination with the Bruker timsTOF demonstrates double the identifications without manual sample handling and the newest generation timsTOF Ultra identifies up to 4000 with an average of 3500 protein groups per single HEK-293T without a carrier or match-between runs. Our workflow spans 4 orders of magnitude, identifies over 50 E3 ubiquitin-protein ligases, and profiles key regulatory proteins upon small molecule stimulation. This study demonstrates that the proteoCHIP EVO 96-based sample preparation with the timsTOF Ultra provides sufficient proteome depth to study complex biology beyond cell-type classifications.
Collapse
Affiliation(s)
| | | | - Brian W Boyle
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - D R Mani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
165
|
Elgazzaz M, Filipeanu C, Lazartigues E. Angiotensin-Converting Enzyme 2 Posttranslational Modifications and Implications for Hypertension and SARS-CoV-2: 2023 Lewis K. Dahl Memorial Lecture. Hypertension 2024; 81:1438-1449. [PMID: 38567498 PMCID: PMC11168885 DOI: 10.1161/hypertensionaha.124.22067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
ACE2 (angiotensin-converting enzyme 2), a multifunctional transmembrane protein, is well recognized as an important member of the (RAS) renin-angiotensin system with important roles in the regulation of cardiovascular function by opposing the harmful effects of Ang-II (angiotensin II) and AT1R (Ang-II type 1 receptor) activation. More recently, ACE2 was found to be the entry point for the SARS-CoV-2 virus into cells, causing COVID-19. This finding has led to an exponential rise in the number of publications focused on ACE2, albeit these studies often have opposite objectives to the preservation of ACE2 in cardiovascular regulation. However, notwithstanding accumulating data of the role of ACE2 in the generation of angiotensin-(1-7) and SARS-CoV-2 internalization, numerous other putative roles of this enzyme remain less investigated and not yet characterized. Currently, no drug modulating ACE2 function or expression is available in the clinic, and the development of new pharmacological tools should attempt targeting each step of the lifespan of the protein from synthesis to degradation. The present review expands on our presentation during the 2023 Lewis K. Dahl Memorial Lecture Sponsored by the American Heart Association Council on Hypertension. We provide a critical summary of the current knowledge of the mechanisms controlling ACE2 internalization and intracellular trafficking, the mutual regulation with GPCRs (G-protein-coupled receptors) and other proteins, and posttranslational modifications. A major focus is on ubiquitination which has become a critical step in the modulation of ACE2 cellular levels.
Collapse
Affiliation(s)
- Mona Elgazzaz
- Department of Physiology, Augusta University, Medical College of Georgia, Augusta, GA 30912, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Catalin Filipeanu
- Department of Pharmacology, Howard University, Washington, DC 20059, USA
| | - Eric Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
| |
Collapse
|
166
|
Rukmini D, Kannan B, Pandi C, Pandi A, Prasad P, Jayaseelan VP, Arumugam P. Aberrated PSMA1 expression associated with clinicopathological features and prognosis in oral squamous cell carcinoma. Odontology 2024; 112:950-958. [PMID: 38216818 DOI: 10.1007/s10266-023-00883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 01/14/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a globally prevalent cancer with significant mortality rates. OSCC a predominant subtype of head and neck squamous cell carcinoma (HNSCC), poses a substantial health burden. Despite advancements in diagnosis and therapy, OSCC prognosis remains poor. The 26S proteasome, a cellular protein degradation complex, is associated with cancer, including PSMA1, a proteasomal subunit, which is upregulated in various cancers. We analyzed PSMA1 expression using TCGA data, validated it in OSCC samples using real-time PCR, and explored its role through various databases. Tumor and adjacent normal tissues from OSCC patients were examined, and PSMA1 expression was analyzed. Survival analysis assessed the impact of PSMA1 on patient outcomes, while immune infiltration was examined using the TIMER database. GeneMANIA, STRING, and Metascape were utilized for gene interaction and pathway analysis. PSMA1 was significantly upregulated in OSCC and HNSCC. Its overexpression correlated with advanced clinicopathological features and poorer prognosis in HNSCC patients. PSMA1 expression is also related to immune cell infiltration. Gene interaction analysis revealed PSMA1 involvement in proteolysis regulation, suggesting its potential as a therapeutic target. PSMA1 upregulation in HNSCC association with adverse clinicopathological features and prognosis underscores its potential significance. Further research is warranted to elucidate its molecular mechanisms and therapeutic potential in OSCC management.
Collapse
Affiliation(s)
- Dodla Rukmini
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602 105, TN, India
| | - Balachander Kannan
- Center for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, TN, India
| | - Chandra Pandi
- Center for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, TN, India
| | - Anitha Pandi
- Center for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, TN, India
| | - Prathibha Prasad
- College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vijayashree Priyadharsini Jayaseelan
- Center for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, TN, India
| | - Paramasivam Arumugam
- Center for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, TN, India.
| |
Collapse
|
167
|
Crane HM, Asher S, Conway L, Drivas TG, Kallish S. Unraveling a history of overlap: A phenotypic comparison of RBCK1-related disease and glycogen storage disease type IV. Am J Med Genet A 2024; 194:e63574. [PMID: 38436530 DOI: 10.1002/ajmg.a.63574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
RBCK1-related disease is a rare, multisystemic disorder for which our current understanding of the natural history is limited. A number of individuals initially carried clinical diagnoses of glycogen storage disease IV (GSD IV), but were later found to harbor RBCK1 pathogenic variants, demonstrating challenges of correctly diagnosing RBCK1-related disease. This study carried out a phenotypic comparison between RBCK1-related disease and GSD IV to identify features that clinically differentiate these diagnoses. Literature review and retrospective chart review identified 25 individuals with RBCK1-related disease and 36 with the neuromuscular subtype of GSD IV. Clinical features were evaluated to assess for statistically significant differences between the conditions. At a system level, any cardiac, autoinflammation, immunodeficiency, growth, or dermatologic involvement were suggestive of RBCK1, whereas any respiratory involvement suggested GSD IV. Several features warrant further exploration as predictors of RBCK1, such as generalized weakness, heart transplant, and recurrent infections, among others. Distinguishing RBCK1-related disease will facilitate correct diagnoses and pave the way for accurately identifying affected individuals, as well as for developing management recommendations, treatment, and an enhanced understanding of the natural history. This knowledge may also inform which individuals thought to have GSD IV should undergo reevaluation for RBCK1.
Collapse
Affiliation(s)
- Haley M Crane
- Master of Science in Genetic Counseling Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephanie Asher
- Penn Medicine, Department of Medicine, Division of Translational Medicine and Human Genetics, Philadelphia, Pennsylvania, USA
| | - Laura Conway
- Master of Science in Genetic Counseling Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Theodore G Drivas
- Penn Medicine, Department of Medicine, Division of Translational Medicine and Human Genetics, Philadelphia, Pennsylvania, USA
| | - Staci Kallish
- Penn Medicine, Department of Medicine, Division of Translational Medicine and Human Genetics, Philadelphia, Pennsylvania, USA
| |
Collapse
|
168
|
Wang X, Liu X, Song K, Du L. An insight into the roles of ubiquitin-specific proteases in plants: development and growth, morphogenesis, and stress response. FRONTIERS IN PLANT SCIENCE 2024; 15:1396634. [PMID: 38993940 PMCID: PMC11236618 DOI: 10.3389/fpls.2024.1396634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024]
Abstract
Ubiquitination is a highly conserved and dynamic post-translational modification in which protein substrates are modified by ubiquitin to influence their activity, localization, or stability. Deubiquitination enzymes (DUBs) counter ubiquitin signaling by removing ubiquitin from the substrates. Ubiquitin-specific proteases (UBPs), the largest subfamily of DUBs, are conserved in plants, serving diverse functions across various cellular processes, although members within the same group often exhibit functional redundancy. Here, we briefly review recent advances in understanding the biological roles of UBPs, particularly the molecular mechanism by which UBPs regulate plant development and growth, morphogenesis, and stress response, which sheds light on the mechanistic roles of deubiquitination in plants.
Collapse
Affiliation(s)
- Xiuwen Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xuan Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kaixuan Song
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
169
|
Huang Y, Yang G, Yao X, Fang Y, Lin Q, Zhou M, Yang Y, Meng Q, Zhang Q, Wang S. Proteomic profiling of prostate cancer reveals molecular signatures under antiandrogen treatment. Clin Proteomics 2024; 21:44. [PMID: 38918720 PMCID: PMC11202386 DOI: 10.1186/s12014-024-09490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Tumorigenesis and progression of prostate cancer (PCa) are indispensably dependent on androgen receptor (AR). Antiandrogen treatment is the principal preference for patients with advanced PCa. However, the molecular characteristics of PCa with antiandrogen intervention have not yet been fully uncovered. METHODS We first performed proteome analysis with 32 PCa tumor samples and 10 adjacent tissues using data-independent acquisition (DIA)- parallel accumulation serial fragmentation (PASEF) proteomics. Then label-free quantification (LFQ) mass spectrometry was employed to analyze protein profiles in LNCaP and PC3 cells. RESULTS M-type creatine kinase CKM and cartilage oligomeric matrix protein COMP were demonstrated to have the potential to be diagnostic biomarkers for PCa at both mRNA and protein levels. Several E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) were significantly altered in PCa and PCa cells under enzalutamide treatment, and these proteins might reprogram proteostasis at protein levels in PCa. Finally, we discovered 127 significantly varied proteins in PCa samples with antiandrogen therapy and further uncovered 4 proteins in LNCaP cells upon enzalutamide treatment. CONCLUSIONS Our research reveals new potential diagnostic biomarkers for prostate cancer and might help resensitize resistance to antiandrogen therapy.
Collapse
Affiliation(s)
- Yurun Huang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Guanglin Yang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Xinpeng Yao
- The First Clinical Medical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Fang
- The First Clinical Medical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiliang Lin
- The First Clinical Medical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Menghan Zhou
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yiping Yang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Qinggui Meng
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Qingyun Zhang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.
| | - Shan Wang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.
| |
Collapse
|
170
|
Miao Y, Wang S, Zhang J, Liu H, Zhang C, Jin S, Bai D. Strategic advancement of E3 ubiquitin ligase in the management of hepatocellular carcinoma. Med Oncol 2024; 41:178. [PMID: 38888684 DOI: 10.1007/s12032-024-02411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health challenge due to its high incidence, poor prognosis, and limited treatment options. As a pivotal regulator of protein stability, E3 ubiquitin ligase plays a crucial role in tumorigenesis and development. This review provides an overview of the latest research on the involvement of E3 ubiquitin ligase in hepatocellular carcinoma and elucidates its significance in hepatocellular carcinoma cell proliferation, invasion, and evasion from immune surveillance. Special attention is given to the functions of RING, HECT, and RBR E3 ubiquitin ligases and their association with hepatocellular carcinoma progression. By dissecting the molecular mechanisms and regulatory networks governed by E3 ubiquitin ligase, several potential therapeutic strategies are proposed: including the development of specific inhibitors targeting E3 ligases; augmentation of their tumor suppressor activity through drug or gene therapy; utilization of E3 ubiquitin ligase to modulate immune checkpoint proteins for improved efficacy of immunotherapy; combination strategies integrating traditional therapies with E3 ubiquitin ligase inhibitors; as well as biomarker development based on E3 ubiquitin ligase activity. Furthermore, this review discusses the prospect of overcoming drug resistance in hepatocellular carcinoma treatment through these novel approaches. Overall, this review establishes a theoretical foundation and offers fresh insights into harnessing the potential of E3 ubiquitin ligase for treating hepatocellular carcinoma while highlighting future research directions that pave the way for clinical translation studies and new drug discoveries.
Collapse
Affiliation(s)
- Yangyang Miao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Rd, Yangzhou, 225000, Jiangsu, China
| | - Shunyi Wang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Rd, Yangzhou, 225000, Jiangsu, China
| | - Jiahao Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Rd, Yangzhou, 225000, Jiangsu, China
- Dalian Medical University, Dalian, 116000, China
| | - Huanxiang Liu
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Rd, Yangzhou, 225000, Jiangsu, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Rd, Yangzhou, 225000, Jiangsu, China.
| | - Shengjie Jin
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Rd, Yangzhou, 225000, Jiangsu, China.
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Rd, Yangzhou, 225000, Jiangsu, China.
| |
Collapse
|
171
|
Lin M, Zheng X, Yan J, Huang F, Chen Y, Ding R, Wan J, Zhang L, Wang C, Pan J, Cao X, Fu K, Lou Y, Feng XH, Ji J, Zhao B, Lan F, Shen L, He X, Qiu Y, Jin J. The RNF214-TEAD-YAP signaling axis promotes hepatocellular carcinoma progression via TEAD ubiquitylation. Nat Commun 2024; 15:4995. [PMID: 38862474 PMCID: PMC11167002 DOI: 10.1038/s41467-024-49045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
RNF214 is an understudied ubiquitin ligase with little knowledge of its biological functions or protein substrates. Here we show that the TEAD transcription factors in the Hippo pathway are substrates of RNF214. RNF214 induces non-proteolytic ubiquitylation at a conserved lysine residue of TEADs, enhances interactions between TEADs and YAP, and promotes transactivation of the downstream genes of the Hippo signaling. Moreover, YAP and TAZ could bind polyubiquitin chains, implying the underlying mechanisms by which RNF214 regulates the Hippo pathway. Furthermore, RNF214 is overexpressed in hepatocellular carcinoma (HCC) and inversely correlates with differentiation status and patient survival. Consistently, RNF214 promotes tumor cell proliferation, migration, and invasion, and HCC tumorigenesis in mice. Collectively, our data reveal RNF214 as a critical component in the Hippo pathway by forming a signaling axis of RNF214-TEAD-YAP and suggest that RNF214 is an oncogene of HCC and could be a potential drug target of HCC therapy.
Collapse
Affiliation(s)
- Mengjia Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaoyun Zheng
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jianing Yan
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Fei Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yilin Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Ran Ding
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jinkai Wan
- International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Zhang
- International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenliang Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jinchang Pan
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaolei Cao
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Kaiyi Fu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yan Lou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Xin-Hua Feng
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, 321000, China
| | - Junfang Ji
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, 321000, China
| | - Bin Zhao
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, 321000, China
| | - Fei Lan
- International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li Shen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Department of Orthopedics Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Xianglei He
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, 3100014, Zhejiang, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
| | - Jianping Jin
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, 321000, China.
| |
Collapse
|
172
|
Velez-Brochero M, Behera P, Afreen KS, Odle A, Rajsbaum R. Ubiquitination in viral entry and replication: Mechanisms and implications. Adv Virus Res 2024; 119:1-38. [PMID: 38897707 DOI: 10.1016/bs.aivir.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The ubiquitination process is a reversible posttranslational modification involved in many essential cellular functions, such as innate immunity, cell signaling, trafficking, protein stability, and protein degradation. Viruses can use the ubiquitin system to efficiently enter host cells, replicate and evade host immunity, ultimately enhancing viral pathogenesis. Emerging evidence indicates that enveloped viruses can carry free (unanchored) ubiquitin or covalently ubiquitinated viral structural proteins that can increase the efficiency of viral entry into host cells. Furthermore, viruses continuously evolve and adapt to take advantage of the host ubiquitin machinery, highlighting its importance during virus infection. This review discusses the battle between viruses and hosts, focusing on how viruses hijack the ubiquitination process at different steps of the replication cycle, with a specific emphasis on viral entry. We discuss how ubiquitination of viral proteins may affect tropism and explore emerging therapeutics strategies targeting the ubiquitin system for antiviral drug discovery.
Collapse
Affiliation(s)
- Maria Velez-Brochero
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Padmanava Behera
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Kazi Sabrina Afreen
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Abby Odle
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Ricardo Rajsbaum
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States.
| |
Collapse
|
173
|
Ma K, Shu R, Liu H, Ge J, Liu J, Lu Q, Fu J, Liu X, Qiu J. Legionella effectors SidC/SdcA ubiquitinate multiple small GTPases and SNARE proteins to promote phagosomal maturation. Cell Mol Life Sci 2024; 81:249. [PMID: 38836877 PMCID: PMC11335287 DOI: 10.1007/s00018-024-05271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024]
Abstract
Protein ubiquitination is one of the most important posttranslational modifications (PTMs) in eukaryotes and is involved in the regulation of almost all cellular signaling pathways. The intracellular bacterial pathogen Legionella pneumophila translocates at least 26 effectors to hijack host ubiquitination signaling via distinct mechanisms. Among these effectors, SidC/SdcA are novel E3 ubiquitin ligases with the adoption of a Cys-His-Asp catalytic triad. SidC/SdcA are critical for the recruitment of endoplasmic reticulum (ER)-derived vesicles to the Legionella-containing vacuole (LCV). However, the ubiquitination targets of SidC/SdcA are largely unknown, which restricts our understanding of the mechanisms used by these effectors to hijack the vesicle trafficking pathway. Here, we demonstrated that multiple Rab small GTPases and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are bona fide ubiquitination substrates of SidC/SdcA. SidC/SdcA-mediated ubiquitination of syntaxin 3 and syntaxin 4 promotes their unconventional pairing with the vesicle-SNARE protein Sec22b, thereby contributing to the membrane fusion of ER-derived vesicles with the phagosome. In addition, our data reveal that ubiquitination of Rab7 by SidC/SdcA is critical for its association with the LCV membrane. Rab7 ubiquitination could impair its binding with the downstream effector Rab-interacting lysosomal protein (RILP), which partially explains why LCVs avoid fusion with lysosomes despite the acquisition of Rab7. Taken together, our study reveals the biological mechanisms employed by SidC/SdcA to promote the maturation of the LCVs.
Collapse
Affiliation(s)
- Kelong Ma
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Rundong Shu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jinli Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Qian Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jiaqi Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
174
|
Wu X, Zhong S, Zhou N, Luo L. TRAF6 Inhibitors from Marine Compound Library: Pharmacophore, Virtual Screening, Fragment Replacement, ADMET, and Molecular Dynamics. Mar Drugs 2024; 22:260. [PMID: 38921571 PMCID: PMC11204769 DOI: 10.3390/md22060260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024] Open
Abstract
TRAF6 is an E3 ubiquitin ligase that plays a crucial role in cell signaling. It is known that MMP is involved in tumor metastasis, and TRAF6 induces MMP-9 expression by binding to BSG. However, inhibiting TRAF6's ubiquitinase activity without disrupting the RING domain is a challenge that requires further research. To address this, we conducted computer-based drug screening to identify potential TRAF6 inhibitors. Using a ligand-receptor complex pharmacophore based on the inhibitor EGCG, known for its anti-tumor properties, we screened 52,765 marine compounds. After the molecular docking of 405 molecules with TRAF6, six compounds were selected for further analysis. By replacing fragments of non-binding compounds and conducting second docking, we identified two promising molecules, CMNPD9212-16 and CMNPD12791-8, with strong binding activity and favorable pharmacological properties. ADME and toxicity predictions confirmed their potential as TRAF6 inhibitors. Molecular dynamics simulations showed that CMNPD12791-8 maintained a stable structure with the target protein, comparable to EGCG. Therefore, CMNPD12791-8 holds promise as a potential inhibitor of TRAF6 for inhibiting tumor growth and metastasis.
Collapse
Affiliation(s)
- Xuexuan Wu
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China; (X.W.); (N.Z.)
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Nan Zhou
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China; (X.W.); (N.Z.)
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
175
|
Zeng L, Gomez Mendez MF, Guo J, Jiang J, Zhang B, Chen H, Le B, Ke H, Dehesh K. Activation of stress-response genes by retrograde signaling-mediated destabilization of nuclear importin IMPα-9 and its interactor TPR2. MOLECULAR PLANT 2024; 17:884-899. [PMID: 38693693 DOI: 10.1016/j.molp.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Stress-induced retrograde signal transmission from the plastids to the nucleus has long puzzled plant biologists. To address this, we performed a suppressor screen of the ceh1 mutant, which contains elevated 2-C-methyl-d-erythritol-2,4-cyclopyrophosphate (MEcPP) levels, and identified the gain-of-function mutant impα-9, which shows reversed dwarfism and suppressed expression of stress-response genes in the ceh1 background despite heightened MEcPP. Subsequent genetic and biochemical analyses established that the accumulation of MEcPP initiates an upsurge in Arabidopsis SKP1-like 1 (ASK1) abundance, a pivotal component in the proteasome degradation pathway. This increase in ASK1 prompts the degradation of IMPα-9. Moreover, we uncovered a protein-protein interaction between IMPα-9 and TPR2, a transcriptional co-suppressor and found that a reduction in IMPα-9 levels coincides with a decrease in TPR2 abundance. Significantly, the interaction between IMPα-9 and TPR2 was disrupted in impα-9 mutants, highlighting the critical role of a single amino acid alteration in maintaining their association. Disruption of their interaction results in the reversal of MEcPP-associated phenotypes. Chromatin immunoprecipitation coupled with sequencing analyses revealed that TPR2 binds globally to stress-response genes and suggested that IMPα-9 associates with the chromatin. They function together to suppress the expression of stress-response genes under normal conditions, but this suppression is alleviated in response to stress through the degradation of the suppressing machinery. The biological relevance of our discoveries was validated under high light stress, marked by MEcPP accumulation, elevated ASK1 levels, IMPα-9 degredation, reduced TPR2 abundance, and subsequent activation of a network of stress-response genes. In summary, our study collectively unveils fresh insights into plant adaptive mechanisms, highlighting intricate interactions among retrograde signaling, the proteasome, and nuclear transport machinery.
Collapse
Affiliation(s)
- Liping Zeng
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Maria Fernanda Gomez Mendez
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jingzhe Guo
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jishan Jiang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Bailong Zhang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA; School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Hao Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Brandon Le
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Haiyan Ke
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
176
|
Cao S, Shi H, Garcia SF, Kito Y, Shi H, Goldberg HV, Ponce J, Ueberheide B, Lignitto L, Pagano M, Zheng N. Distinct Perception Mechanisms of BACH1 Quaternary Structure Degrons by Two F-box Proteins under Oxidative Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.594717. [PMID: 38895309 PMCID: PMC11185555 DOI: 10.1101/2024.06.03.594717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The transcription factor BACH1 regulates heme homeostasis and oxidative stress responses and promotes cancer metastasis upon aberrant accumulation. Its stability is controlled by two F-box protein ubiquitin ligases, FBXO22 and FBXL17. Here we show that the homodimeric BTB domain of BACH1 functions as a previously undescribed quaternary structure degron, which is deciphered by the two F-box proteins via distinct mechanisms. After BACH1 is released from chromatin by heme, FBXO22 asymmetrically recognizes a cross-protomer interface of the intact BACH1 BTB dimer, which is otherwise masked by the co-repressor NCOR1. If the BACH1 BTB dimer escapes the surveillance by FBXO22 due to oxidative modifications, its quaternary structure integrity is probed by a pair of FBXL17, which simultaneously engage and remodel the two BTB protomers into E3-bound monomers for ubiquitination. By unveiling the multifaceted regulatory mechanisms of BACH1 stability, our studies highlight the abilities of ubiquitin ligases to decode high-order protein assemblies and reveal therapeutic opportunities to block cancer invasion via compound-induced BACH1 destabilization.
Collapse
Affiliation(s)
- Shiyun Cao
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Huigang Shi
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Sheena Faye Garcia
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yuki Kito
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hui Shi
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Hailey V. Goldberg
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jackeline Ponce
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Luca Lignitto
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ning Zheng
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Lead contact
| |
Collapse
|
177
|
Patel RS, Pannala NM, Das C. Reading and Writing the Ubiquitin Code Using Genetic Code Expansion. Chembiochem 2024; 25:e202400190. [PMID: 38588469 PMCID: PMC11161312 DOI: 10.1002/cbic.202400190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Deciphering ubiquitin proteoform signaling and its role in disease has been a long-standing challenge in the field. The effects of ubiquitin modifications, its relation to ubiquitin-related machineries, and its signaling output has been particularly limited by its reconstitution and means of characterization. Advances in genetic code expansion have contributed towards addressing these challenges by precision incorporation of unnatural amino acids through site selective codon suppression. This review discusses recent advances in studying the 'writers', 'readers', and 'erasers' of the ubiquitin code using genetic code expansion. Highlighting strategies towards genetically encoded protein ubiquitination, ubiquitin phosphorylation, acylation, and finally surveying ubiquitin interactions, we strive to bring attention to this unique approach towards addressing a widespread proteoform problem.
Collapse
Affiliation(s)
- Rishi S Patel
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Nipuni M Pannala
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| |
Collapse
|
178
|
Shi Y, Fang N, Wu Y, Xu H, Ning A, Zhang W, Liu Y, Tao X, Chen Q, Tian T, Zhang L, Chu M, Cui J. NEDD4L mediates ITGB4 ubiquitination and degradation to suppress esophageal carcinoma progression. Cell Commun Signal 2024; 22:302. [PMID: 38831335 PMCID: PMC11145805 DOI: 10.1186/s12964-024-01685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
The ubiquitination-mediated protein degradation exerts a vital role in the progression of multiple tumors. NEDD4L, which belongs to the E3 ubiquitin ligase NEDD4 family, is related to tumor genesis, metastasis and drug resistance. However, the anti-tumor role of NEDD4L in esophageal carcinoma, and the potential specific recognition substrate remain unclear. Based on public esophageal carcinoma database and clinical sample data, it was discovered in this study that the expression of NEDD4L in esophageal carcinoma was apparently lower than that in atypical hyperplastic esophageal tissue and esophageal squamous epithelium. Besides, patients with high expression of NEDD4L in esophageal carcinoma tissue had longer progression-free survival than those with low expression. Experiments in vivo and in vitro also verified that NEDD4L suppressed the growth and metastasis of esophageal carcinoma. Based on co-immunoprecipitation and proteome analysis, the NEDD4L ubiquitination-degraded protein ITGB4 was obtained. In terms of the mechanism, the HECT domain of NEDD4L specifically bound to the Galx-β domain of ITGB4, which modified the K915 site of ITGB4 in an ubiquitination manner, and promoted the ubiquitination degradation of ITGB4, thus suppressing the malignant phenotype of esophageal carcinoma.
Collapse
Affiliation(s)
- Yijun Shi
- Department of Thoracic and Cardiovascular Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Na Fang
- Department of Oncology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Yutong Wu
- Department of Epidemiology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Anhui Ning
- Department of Epidemiology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Wendi Zhang
- Department of Epidemiology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Yiran Liu
- Department of Epidemiology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Xiaobo Tao
- Department of Epidemiology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Qiong Chen
- Department of Epidemiology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Lei Zhang
- Department of Epidemiology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China.
| | - Jiahua Cui
- Department of Epidemiology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China.
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
179
|
Zhao Y, Zhong X, Xu G, Zhu X, Shi Y, Liu M, Wang R, Kang H, You X, Ning Y, Wang G, Wang X. The F-box protein OsFBX156 positively regulates rice defence against the blast fungus Magnaporthe oryzae by mediating ubiquitination-dependent degradation of OsHSP71.1. MOLECULAR PLANT PATHOLOGY 2024; 25:e13459. [PMID: 38808386 PMCID: PMC11134189 DOI: 10.1111/mpp.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 05/30/2024]
Abstract
F-box protein is a subunit of the SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complex, which plays a critical role in regulating different pathways in plant immunity. In this study, we identified the rice (Oryza sativa) F-box protein OsFBX156, which targets the heat shock protein 70 (OsHSP71.1) to regulate resistance to the rice blast fungus Magnaporthe oryzae. Overexpression of OsFBX156 or knockout of OsHSP71.1 in rice resulted in the elevation of pathogenesis-related (PR) genes and an induction burst of reactive oxygen species (ROS) after flg22 and chitin treatments, thereby enhancing resistance to M. oryzae. Furthermore, OsFBX156 can promote the degradation of OsHSP71.1 through the 26S proteasome pathway. This study sheds lights on a novel mechanism wherein the F-box protein OsFBX156 targets OsHSP71.1 for degradation to promote ROS production and PR gene expression, thereby positively regulating rice innate immunity.
Collapse
Affiliation(s)
- Yudan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xionghui Zhong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Ministry of AgricultureBeijingChina
| | - Guojuan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xiaoying Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yanlong Shi
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Minghao Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xiaoman You
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Guo‐Liang Wang
- Department of Plant PathologyThe Ohio State UniversityColumbusOhioUSA
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
180
|
Goyani S, Shinde A, Shukla S, Saranga MV, Currim F, Mane M, Singh J, Roy M, Gohel D, Chandak N, Vasiyani H, Singh R. Enhanced translocation of TRIM32 to mitochondria sensitizes dopaminergic neuronal cells to apoptosis during stress conditions in Parkinson's disease. FEBS J 2024; 291:2636-2655. [PMID: 38317520 DOI: 10.1111/febs.17065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/29/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by progressive loss of dopamine-producing neurons from the substantia nigra region of the brain. Mitochondrial dysfunction is one of the major causes of oxidative stress and neuronal cell death in PD. E3 ubiquitin ligases such as Parkin (PRKN) modulate mitochondrial quality control in PD; however, the role of other E3 ligases associated with mitochondria in the regulation of neuronal cell death in PD has not been explored. The current study investigated the role of TRIM32, RING E3 ligase, in sensitization to oxidative stress-induced neuronal apoptosis. The expression of TRIM32 sensitizes SH-SY5Y dopaminergic cells to rotenone and 6-OHDA-induced neuronal death, whereas the knockdown increased cell viability under PD stress conditions. The turnover of TRIM32 is enhanced under PD stress conditions and is mediated by autophagy. TRIM32 translocation to mitochondria is enhanced under PD stress conditions and localizes on the outer mitochondrial membrane. TRIM32 decreases complex-I assembly and activity as well as mitochondrial reactive oxygen species (ROS) and ATP levels under PD stress. Deletion of the RING domain of TRIM32 enhanced complex I activity and rescued ROS levels and neuronal viability under PD stress conditions. TRIM32 decreases the level of XIAP, and co-expression of XIAP with TRIM32 rescued the PD stress-induced cell death and mitochondrial ROS level. In conclusion, turnover of TRIM32 increases during stress conditions and translocation to mitochondria is enhanced, regulating mitochondrial functions and neuronal apoptosis by modulating the level of XIAP in PD.
Collapse
Affiliation(s)
- Shanikumar Goyani
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Anjali Shinde
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Shatakshi Shukla
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - M V Saranga
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Fatema Currim
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Minal Mane
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Jyoti Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Milton Roy
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dhruv Gohel
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nisha Chandak
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Hitesh Vasiyani
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| |
Collapse
|
181
|
Zhuang Y, Fischer JB, Nishanth G, Schlüter D. Cross-regulation of Listeria monocytogenes and the host ubiquitin system in listeriosis. Eur J Cell Biol 2024; 103:151401. [PMID: 38442571 DOI: 10.1016/j.ejcb.2024.151401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
The facultative intracellular bacterium Listeria (L.) monocytogenes may cause severe diseases in humans and animals. The control of listeriosis/L. monocytogenes requires the concerted action of cells of the innate and adaptive immune systems. In this regard, cell-intrinsic immunity of infected cells, activated by the immune responses, is crucial for the control and elimination intracellular L. monocytogenes. Both the immune response against L. monocytogenes and cell intrinsic pathogen control are critically regulated by post-translational modifications exerted by the host ubiquitin system and ubiquitin-like modifiers (Ubls). In this review, we discuss our current understanding of the role of the ubiquitin system and Ubls in listeriosis, as well as future directions of research.
Collapse
Affiliation(s)
- Yuan Zhuang
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover 30625, Germany.
| | - Johanna B Fischer
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover 30625, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover 30625, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover 30625, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| |
Collapse
|
182
|
Burge RJ, Jameson KH, Geoghegan V, Dowle AA, Mottram JC, Wilkinson AJ. Formation of functional E3 ligase complexes with UBC2 and UEV1 of Leishmania mexicana. Mol Biochem Parasitol 2024; 258:111619. [PMID: 38556171 DOI: 10.1016/j.molbiopara.2024.111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
In eukaryotic cells, molecular fate and cellular responses are shaped by multicomponent enzyme systems which reversibly attach ubiquitin and ubiquitin-like modifiers to target proteins. The extent of the ubiquitin proteasome system in Leishmania mexicana and its importance for parasite survival has recently been established through deletion mutagenesis and life-cycle phenotyping studies. The ubiquitin conjugating E2 enzyme UBC2, and the E2 enzyme variant UEV1, with which it forms a stable complex in vitro, were shown to be essential for the differentiation of promastigote parasites to the infectious amastigote form. To investigate further, we used immunoprecipitation of Myc-UBC2 or Myc-UEV1 to identify interacting proteins in L. mexicana promastigotes. The interactome of UBC2 comprises multiple ubiquitin-proteasome components including UEV1 and four RING E3 ligases, as well as potential substrates predicted to have roles in carbohydrate metabolism and intracellular trafficking. The smaller UEV1 interactome comprises six proteins, including UBC2 and shared components of the UBC2 interactome consistent with the presence of intracellular UBC2-UEV1 complexes. Recombinant RING1, RING2 and RING4 E3 ligases were shown to support ubiquitin transfer reactions involving the E1, UBA1a, and UBC2 to available substrate proteins or to unanchored ubiquitin chains. These studies define additional components of a UBC2-dependent ubiquitination pathway shown previously to be essential for promastigote to amastigote differentiation.
Collapse
Affiliation(s)
- Rebecca J Burge
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK
| | - Katie H Jameson
- York Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Vincent Geoghegan
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK
| | - Adam A Dowle
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK
| | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK.
| | - Anthony J Wilkinson
- York Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, UK.
| |
Collapse
|
183
|
Cheng N, Pimentel JM, Trejo J. Ubiquitin-driven G protein-coupled receptor inflammatory signaling at the endosome. Am J Physiol Cell Physiol 2024; 326:C1605-C1610. [PMID: 38646783 PMCID: PMC11371321 DOI: 10.1152/ajpcell.00161.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
G protein-coupled receptors (GPCRs) are ubiquitously expressed cell surface receptors that mediate numerous physiological responses and are highly druggable. Upon activation, GPCRs rapidly couple to heterotrimeric G proteins and are then phosphorylated and internalized from the cell surface. Recent studies indicate that GPCRs not only localize at the plasma membrane but also exist in intracellular compartments where they are competent to signal. Intracellular signaling by GPCRs is best described to occur at endosomes. Several studies have elegantly documented endosomal GPCR-G protein and GPCR-β-arrestin signaling. Besides phosphorylation, GPCRs are also posttranslationally modified with ubiquitin. GPCR ubiquitination has been studied mainly in the context of receptor endosomal-lysosomal trafficking. However, new studies indicate that ubiquitination of endogenous GPCRs expressed in endothelial cells initiates the assembly of an intracellular p38 mitogen-activated kinase signaling complex that promotes inflammatory responses from endosomes. In this mini-review, we discuss emerging discoveries that provide critical insights into the function of ubiquitination in regulating GPCR inflammatory signaling at endosomes.
Collapse
Affiliation(s)
- Norton Cheng
- Department of Pharmacology, School of Medicine, University of California, San Diego, California, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, California, United States
| | - Julio M Pimentel
- Department of Pharmacology, School of Medicine, University of California, San Diego, California, United States
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, California, United States
| |
Collapse
|
184
|
Rios-Valencia DG, Estrada K, Calderón-Gallegos A, Tirado-Mendoza R, Bobes RJ, Laclette JP, Cabrera-Bravo M. Effect of Hydroxyurea on Morphology, Proliferation, and Protein Expression on Taenia crassiceps WFU Strain. Int J Mol Sci 2024; 25:6061. [PMID: 38892261 PMCID: PMC11172544 DOI: 10.3390/ijms25116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Flatworms are known for their remarkable regenerative ability, one which depends on totipotent cells known as germinative cells in cestodes. Depletion of germinative cells with hydroxyurea (HU) affects the regeneration of the parasite. Here, we studied the reduction and recovery of germinative cells in T. crassiceps cysticerci after HU treatment (25 mM and 40 mM of HU for 6 days) through in vitro assays. Viability and morphological changes were evaluated. The recovery of cysticerci's mobility and morphology was evaluated at 3 and 6 days, after 6 days of treatment. The number of proliferative cells was evaluated using EdU. Our results show morphological changes in the size, shape, and number of evaginated cysticerci at the 40 mM dose. The mobility of cysticerci was lower after 6 days of HU treatment at both concentrations. On days 3 and 6 of recovery after 25 mM of HU treatment, a partial recovery of the proliferative cells was observed. Proteomic and Gene Ontology analyses identified modifications in protein groups related to DNA binding, DNA damage, glycolytic enzymes, cytoskeleton, skeletal muscle, and RNA binding.
Collapse
Affiliation(s)
- Diana G. Rios-Valencia
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City 04510, Mexico; (D.G.R.-V.); (R.T.-M.)
| | - Karel Estrada
- Unit for Massive Sequencing and Bioinformatics, Biotechnology Institute, Universidad Nacional Autónoma de México, Coyoacan, Mexico City 04510, Mexico;
| | - Arturo Calderón-Gallegos
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico; (A.C.-G.); (R.J.B.)
| | - Rocío Tirado-Mendoza
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City 04510, Mexico; (D.G.R.-V.); (R.T.-M.)
| | - Raúl J. Bobes
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico; (A.C.-G.); (R.J.B.)
| | - Juan P. Laclette
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico; (A.C.-G.); (R.J.B.)
| | - Margarita Cabrera-Bravo
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City 04510, Mexico; (D.G.R.-V.); (R.T.-M.)
| |
Collapse
|
185
|
Morgenstern TJ, Darko-Boateng A, Afriyie E, Shanmugam SK, Zhou X, Choudhury P, Desai M, Kass RS, Clarke OB, Colecraft HM. Ion channel inhibition by targeted recruitment of NEDD4-2 with divalent nanobodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596281. [PMID: 38854018 PMCID: PMC11160594 DOI: 10.1101/2024.05.28.596281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Targeted recruitment of E3 ubiquitin ligases to degrade traditionally undruggable proteins is a disruptive paradigm for developing new therapeutics. Two salient limitations are that <2% of the ~600 E3 ligases in the human genome have been exploited to produce proteolysis targeting chimeras (PROTACs), and the efficacy of the approach has not been demonstrated for a vital class of complex multi-subunit membrane proteins- ion channels. NEDD4-1 and NEDD4-2 are physiological regulators of myriad ion channels, and belong to the 28-member HECT (homologous to E6AP C-terminus) family of E3 ligases with widespread roles in cell/developmental biology and diverse diseases including various cancers, immunological and neurological disorders, and chronic pain. The potential efficacy of HECT E3 ligases for targeted protein degradation is unexplored, constrained by a lack of appropriate binders, and uncertain due to their complex regulation by layered intra-molecular and posttranslational mechanisms. Here, we identified a nanobody that binds with high affinity and specificity to a unique site on the N-lobe of the NEDD4-2 HECT domain at a location physically separate from sites critical for catalysis- the E2 binding site, the catalytic cysteine, and the ubiquitin exosite- as revealed by a 3.1 Å cryo-electron microscopy reconstruction. Recruiting endogenous NEDD4-2 to diverse ion channel proteins (KCNQ1, ENaC, and CaV2.2) using a divalent (DiVa) nanobody format strongly reduced their functional expression with minimal off-target effects as assessed by global proteomics, compared to simple NEDD4-2 overexpression. The results establish utility of a HECT E3 ligase for targeted protein downregulation, validate a class of complex multi-subunit membrane proteins as susceptible to this modality, and introduce endogenous E3 ligase recruitment with DiVa nanobodies as a general method to generate novel genetically-encoded ion channel inhibitors.
Collapse
Affiliation(s)
- Travis J. Morgenstern
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY
| | - Arden Darko-Boateng
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| | - Emmanuel Afriyie
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| | - Sri Karthika Shanmugam
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| | - Xinle Zhou
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY
| | - Papiya Choudhury
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| | | | - Robert S. Kass
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY
| | - Oliver B. Clarke
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY
| | - Henry M. Colecraft
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
186
|
Falsztyn IB, Taylor SM, Baugh LR. Developmental and conditional regulation of DAF-2/INSR ubiquitination in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595723. [PMID: 38854056 PMCID: PMC11160630 DOI: 10.1101/2024.05.24.595723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Insulin/IGF signaling (IIS) regulates developmental and metabolic plasticity. Conditional regulation of insulin-like peptide expression and secretion promotes different phenotypes in different environments. However, IIS can also be regulated by other, less-understood mechanisms. For example, stability of the only known insulin/IGF receptor in C. elegans, DAF-2/INSR, is regulated by CHIP-dependent ubiquitination. Disruption of chn-1/CHIP reduces longevity in C. elegans by increasing DAF-2/INSR abundance and IIS activity in adults. Likewise, mutation of a ubiquitination site causes daf-2(gk390525) to display gain-of-function phenotypes in adults. However, we show that this allele displays loss-of-function phenotypes in larvae, and that its effect on IIS activity transitions from negative to positive during development. In contrast, the allele acts like a gain-of-function in larvae cultured at high temperature, inhibiting temperature-dependent dauer formation. Disruption of chn-1/CHIP causes an increase in IIS activity in starved L1 larvae, unlike daf-2(gk390525). CHN-1/CHIP ubiquitinates DAF-2/INSR at multiple sites. These results suggest that the sites that are functionally relevant to negative regulation of IIS vary in larvae and adults, at different temperatures, and in nutrient-dependent fashion, revealing additional layers of IIS regulation.
Collapse
Affiliation(s)
| | - Seth M. Taylor
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - L. Ryan Baugh
- Department of Biology, Duke University, Durham, NC 27708, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
187
|
Reddien PW. The purpose and ubiquity of turnover. Cell 2024; 187:2657-2681. [PMID: 38788689 DOI: 10.1016/j.cell.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Turnover-constant component production and destruction-is ubiquitous in biology. Turnover occurs across organisms and scales, including for RNAs, proteins, membranes, macromolecular structures, organelles, cells, hair, feathers, nails, antlers, and teeth. For many systems, turnover might seem wasteful when degraded components are often fully functional. Some components turn over with shockingly high rates and others do not turn over at all, further making this process enigmatic. However, turnover can address fundamental problems by yielding powerful properties, including regeneration, rapid repair onset, clearance of unpredictable damage and errors, maintenance of low constitutive levels of disrepair, prevention of stable hazards, and transitions. I argue that trade-offs between turnover benefits and metabolic costs, combined with constraints on turnover, determine its presence and rates across distinct contexts. I suggest that the limits of turnover help explain aging and that turnover properties and the basis for its levels underlie this fundamental component of life.
Collapse
Affiliation(s)
- Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
188
|
Clausen L, Okarmus J, Voutsinos V, Meyer M, Lindorff-Larsen K, Hartmann-Petersen R. PRKN-linked familial Parkinson's disease: cellular and molecular mechanisms of disease-linked variants. Cell Mol Life Sci 2024; 81:223. [PMID: 38767677 PMCID: PMC11106057 DOI: 10.1007/s00018-024-05262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Parkinson's disease (PD) is a common and incurable neurodegenerative disorder that arises from the loss of dopaminergic neurons in the substantia nigra and is mainly characterized by progressive loss of motor function. Monogenic familial PD is associated with highly penetrant variants in specific genes, notably the PRKN gene, where homozygous or compound heterozygous loss-of-function variants predominate. PRKN encodes Parkin, an E3 ubiquitin-protein ligase important for protein ubiquitination and mitophagy of damaged mitochondria. Accordingly, Parkin plays a central role in mitochondrial quality control but is itself also subject to a strict protein quality control system that rapidly eliminates certain disease-linked Parkin variants. Here, we summarize the cellular and molecular functions of Parkin, highlighting the various mechanisms by which PRKN gene variants result in loss-of-function. We emphasize the importance of high-throughput assays and computational tools for the clinical classification of PRKN gene variants and how detailed insights into the pathogenic mechanisms of PRKN gene variants may impact the development of personalized therapeutics.
Collapse
Affiliation(s)
- Lene Clausen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230, Odense, Denmark
| | - Vasileios Voutsinos
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230, Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000, Odense, Denmark
- Department of Clinical Research, BRIDGE, Brain Research Inter Disciplinary Guided Excellence, University of Southern Denmark, 5230, Odense, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
189
|
Wei M, Hong T, Liu Y, Luo H. Inhibition of SENP5 reduces brain injury in TBI rats by regulating NEDD4L/TCF3 axis. Int J Neurosci 2024:1-10. [PMID: 38712596 DOI: 10.1080/00207454.2024.2350669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/27/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND The underlying mechanism of SENP5 influences neuronal regeneration and apoptosis in the context of TBI remains largely unexplored. METHODS In the present study, PC12 cells treated with scratch for 24 h were regarded as a TBI cell model. The expression of SENP5 in PC12 cells was measured via Quantitative Real-Time PCR (qRT-PCR) and western blot assays. Cell Counting Kit 8 (CCK-8) and Flow cytometry assays were used to evaluate the activity of TBI cells. In addition, we assessed the effect of inhibiting SENP5 in vivo on neurological function deficits and apoptosis in the hippocampal tissues of TBI rats. The relationship between SENP5 and NEDD4L/TCF3 axis was proved via immunoprecipitation (IP) and double luciferase assays. RESULTS Following TBI cell modeling, an increase in SENP5 expression has been found. Moreover, TBI modeling resulted in reduced cell viability and increased apoptosis, which was rescue by inhibition of SENP5. In vivo experiments demonstrated that SENP5 inhibition could mitigate TBI-induced brain injury in rats. Specifically, this inhibition led to lower neurological impairment scores, improved neuronal morphology and structure, and decreased neuronal apoptosis. In addition, NEDD4L has been proved to be relevant to the enhanced stability of the transcription factor TCF3, which in turn promoted the expression of SENP5. CONCLUSIONS This study reveals that inhibiting SENP5 can alleviate brain injury following TBI. NEDD4L/TCF3 axis can regulate the expression of SENP5 to affect the development of TBI. However, SENP5 regulates downstream targets of TBI and important mechanisms need to be further explored.
Collapse
Affiliation(s)
- Minjun Wei
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ying Liu
- Department of Nephrology, Jiangxi Cancer Hospital, Nanchang, China
| | - Hai Luo
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
190
|
Xu J, Jiang W, Hu T, Long Y, Shen Y. NEDD4 and NEDD4L: Ubiquitin Ligases Closely Related to Digestive Diseases. Biomolecules 2024; 14:577. [PMID: 38785984 PMCID: PMC11117611 DOI: 10.3390/biom14050577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Protein ubiquitination is an enzymatic cascade reaction and serves as an important protein post-translational modification (PTM) that is involved in the vast majority of cellular life activities. The key enzyme in the ubiquitination process is E3 ubiquitin ligase (E3), which catalyzes the binding of ubiquitin (Ub) to the protein substrate and influences substrate specificity. In recent years, the relationship between the subfamily of neuron-expressed developmental downregulation 4 (NEDD4), which belongs to the E3 ligase system, and digestive diseases has drawn widespread attention. Numerous studies have shown that NEDD4 and NEDD4L of the NEDD4 family can regulate the digestive function, as well as a series of related physiological and pathological processes, by controlling the subsequent degradation of proteins such as PTEN, c-Myc, and P21, along with substrate ubiquitination. In this article, we reviewed the appropriate functions of NEDD4 and NEDD4L in digestive diseases including cell proliferation, invasion, metastasis, chemotherapeutic drug resistance, and multiple signaling pathways, based on the currently available research evidence for the purpose of providing new ideas for the prevention and treatment of digestive diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yueming Shen
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha 410000, China; (J.X.); (W.J.); (T.H.); (Y.L.)
| |
Collapse
|
191
|
Niu MY, Liu YJ, Shi JJ, Chen RY, Zhang S, Li CY, Cao JF, Yang GJ, Chen J. The Emerging Role of Ubiquitin-Specific Protease 36 (USP36) in Cancer and Beyond. Biomolecules 2024; 14:572. [PMID: 38785979 PMCID: PMC11118191 DOI: 10.3390/biom14050572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
The balance between ubiquitination and deubiquitination is instrumental in the regulation of protein stability and maintenance of cellular homeostasis. The deubiquitinating enzyme, ubiquitin-specific protease 36 (USP36), a member of the USP family, plays a crucial role in this dynamic equilibrium by hydrolyzing and removing ubiquitin chains from target proteins and facilitating their proteasome-dependent degradation. The multifaceted functions of USP36 have been implicated in various disease processes, including cancer, infections, and inflammation, via the modulation of numerous cellular events, including gene transcription regulation, cell cycle regulation, immune responses, signal transduction, tumor growth, and inflammatory processes. The objective of this review is to provide a comprehensive summary of the current state of research on the roles of USP36 in different pathological conditions. By synthesizing the findings from previous studies, we have aimed to increase our understanding of the mechanisms underlying these diseases and identify potential therapeutic targets for their treatment.
Collapse
Affiliation(s)
- Meng-Yao Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Shun Zhang
- Ningbo No.2 Hospital, Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China;
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
- Ningbo No.2 Hospital, Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China;
| |
Collapse
|
192
|
Lin Y, Jiang S, Su J, Xie W, Rahmati M, Wu Y, Yang S, Ru Q, Li Y, Deng Z. Novel insights into the role of ubiquitination in osteoarthritis. Int Immunopharmacol 2024; 132:112026. [PMID: 38583240 DOI: 10.1016/j.intimp.2024.112026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Ubiquitination (Ub) and deubiquitination are crucial post-translational modifications (PTMs) that precisely regulate protein degradation. Under the catalysis of a cascade of E1-E2-E3 ubiquitin enzymes, ubiquitination extensively regulates protein degradation exerting direct impact on various cellular processes, while deubiquitination opposes the effect of ubiquitination and prevents proteins from degradation. Notably, such dynamic modifications have been widely investigated to be implicated in cell cycle, transcriptional regulation, apoptosis and so on. Therefore, dysregulation of ubiquitination and deubiquitination could lead to certain diseases through abnormal protein accumulation and clearance. Increasing researches have revealed that the dysregulation of catalytic regulators of ubiquitination and deubiquitination triggers imbalance of cartilage homeostasis that promotes osteoarthritis (OA) progression. Hence, it is now believed that targeting on Ub enzymes and deubiquitinating enzymes (DUBs) would provide potential therapeutic pathways. In the following sections, we will summarize the biological role of Ub enzymes and DUBs in the development and progression of OA by focusing on the updating researches, with the aim of deepening our understanding of the underlying molecular mechanism of OA pathogenesis concerning ubiquitination and deubiquitination, so as to explore novel potential therapeutic targets of OA treatment.
Collapse
Affiliation(s)
- Yuzhe Lin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China; Xiangya School of Medicine, Central South University, Changsha, China
| | - Shide Jiang
- Department of Orthopedics, The Central Hospital of Yongzhou, Yongzhou, 425000, China
| | - Jingyue Su
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran; Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Shengwu Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qin Ru
- Xiangya School of Medicine, Central South University, Changsha, China; Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Zhenhan Deng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
193
|
Xiao MC, Jiang N, Chen LL, Liu F, Liu SQ, Ding CH, Wu SH, Wang KQ, Luo YY, Peng Y, Yan FZ, Zhang X, Qian H, Xie WF. TRIB3-TRIM8 complex drives NAFLD progression by regulating HNF4α stability. J Hepatol 2024; 80:778-791. [PMID: 38237865 DOI: 10.1016/j.jhep.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/24/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND & AIMS Endoplasmic reticulum (ER) stress of hepatocytes plays a causative role in non-alcoholic fatty liver disease (NAFLD). Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. Whether ER stress regulates HNF4α expression remains unknown. The aim of this study was to delineate the machinery of HNF4α protein degradation and explore a therapeutic strategy based on protecting HNF4α stability during NAFLD progression. METHODS Correlation of HNF4α and tribbles homologue 3 (TRIB3), an ER stress sensor, was evaluated in human and mouse NAFLD tissues. RNA-sequencing, mass spectrometry analysis, co-immunoprecipitation, in vivo and in vitro ubiquitination assays were used to elucidate the mechanisms of TRIB3-mediated HNF4α degradation. Molecular docking and co-immunoprecipitation analyses were performed to identify a cell-penetrating peptide that ablates the TRIB3-HNF4α interaction. RESULTS TRIB3 directly interacts with HNF4α and mediates ER stress-induced HNF4α degradation. TRIB3 recruits tripartite motif containing 8 (TRIM8) to form an E3 ligase complex that catalyzes K48-linked polyubiquitination of HNF4α on lysine 470. Abrogating the degradation of HNF4α attenuated the effect of TRIB3 on a diet-induced NAFLD model. Moreover, the TRIB3 gain-of-function variant p.Q84R is associated with NAFLD progression in patients, and induces lower HNF4α levels and more severe hepatic steatosis in mice. Importantly, disrupting the TRIB3-HNF4α interaction using a cell-penetrating peptide restores HNF4α levels and ameliorates NAFLD progression in mice. CONCLUSIONS Our findings unravel the machinery of HNF4α protein degradation and indicate that targeting TRIB3-TRIM8 E3 complex-mediated HNF4α polyubiquitination may be an ideal strategy for NAFLD therapy. IMPACT AND IMPLICATIONS Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. However, the mechanism of HNF4α protein degradation remains unknown. Herein, we reveal that TRIB3-TRIM8 E3 ligase complex is responsible for HNF4α degradation during NAFLD. Inhibiting the TRIB3-HNF4α interaction effectively stabilized HNF4α protein levels and transcription factor activity in the liver and ameliorated TRIB3-mediated NAFLD progression. Our findings demonstrate that disturbing the TRIM8-TRIB3-HNF4α interaction may provide a novel approach to treat NAFLD and even other liver diseases by stabilizing the HNF4α protein.
Collapse
Affiliation(s)
- Meng-Chao Xiao
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Nan Jiang
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Li-Lin Chen
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fang Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shu-Qing Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chen-Hong Ding
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Si-Han Wu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ke-Qi Wang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Yuan Luo
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yu Peng
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fang-Zhi Yan
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Hui Qian
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Wei-Fen Xie
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China.
| |
Collapse
|
194
|
Weng Y, Chen W, Kong Q, Wang R, Zeng R, He A, Liu Y, Mao Y, Qin Y, Ngai WSC, Zhang H, Ke M, Wang J, Tian R, Chen PR. DeKinomics pulse-chases kinase functions in living cells. Nat Chem Biol 2024; 20:615-623. [PMID: 38167916 DOI: 10.1038/s41589-023-01497-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024]
Abstract
Cellular context is crucial for understanding the complex and dynamic kinase functions in health and disease. Systematic dissection of kinase-mediated cellular processes requires rapid and precise stimulation ('pulse') of a kinase of interest, as well as global and in-depth characterization ('chase') of the perturbed proteome under living conditions. Here we developed an optogenetic 'pulse-chase' strategy, termed decaging kinase coupled proteomics (DeKinomics), for proteome-wide profiling of kinase-driven phosphorylation at second-timescale in living cells. We took advantage of the 'gain-of-function' feature of DeKinomics to identify direct kinase substrates and further portrayed the global phosphorylation of understudied receptor tyrosine kinases under native cellular settings. DeKinomics offered a general activation-based strategy to study kinase functions with high specificity and temporal resolution under living conditions.
Collapse
Affiliation(s)
- Yicheng Weng
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Wendong Chen
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China
- South China Institute of Biomedicine, Academy of Phronesis Medicine, Guangzhou, China
| | - Qian Kong
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China
| | - Ruixiang Wang
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Ruxin Zeng
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - An He
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China
| | - Yanjun Liu
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yiheng Mao
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China
| | - Yunqiu Qin
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China
| | | | - Heng Zhang
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Mi Ke
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China
| | - Jie Wang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, China
| | - Ruijun Tian
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Peng R Chen
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
195
|
Gao H, Chen Z, Zhao L, Ji C, Xing F. Cellular functions, molecular signalings and therapeutic applications: Translational potential of deubiquitylating enzyme USP9X as a drug target in cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189099. [PMID: 38582329 DOI: 10.1016/j.bbcan.2024.189099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/13/2023] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Protein ubiquitination, one of the most significant post-translational modifications, plays an important role in controlling the proteins activity in diverse cellular processes. The reversible process of protein ubiquitination, known as deubiquitination, has emerged as a critical mechanism for maintaining cellular homeostasis. The deubiquitinases (DUBs), which participate in deubiquitination process are increasingly recognized as potential candidates for drug discovery. Among these DUBs, ubiquitin-specific protease 9× (USP9X), a highly conserved member of the USP family, exhibits versatile functions in various cellular processes, including the regulation of cell cycle, protein endocytosis, apoptosis, cell polarity, immunological microenvironment, and stem cell characteristics. The dysregulation and abnormal activities of USP9X are influenced by intricate cellular signaling pathway crosstalk and upstream non-coding RNAs. The complex expression patterns and controversial clinical significance of USP9X in cancers suggest its potential as a prognostic biomarker. Furthermore, USP9X inhibitors has shown promising antitumor activity and holds the potential to overcome therapeutic resistance in preclinical models. However, a comprehensive summary of the role and molecular functions of USP9X in cancer progression is currently lacking. In this review, we provide a comprehensive delineation of USP9X participation in numerous critical cellular processes, complicated signaling pathways within the tumor microenvironment, and its potential translational applications to combat therapeutic resistance. By systematically summarizing the updated molecular mechanisms of USP9X in cancer biology, this review aims to contribute to the advancement of cancer therapeutics and provide essential insights for specialists and clinicians in the development of improved cancer treatment strategies.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Liang Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ce Ji
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
196
|
Chen X, Raiff A, Li S, Guo Q, Zhang J, Zhou H, Timms RT, Yao X, Elledge SJ, Koren I, Zhang K, Xu C. Mechanism of Ψ-Pro/C-degron recognition by the CRL2 FEM1B ubiquitin ligase. Nat Commun 2024; 15:3558. [PMID: 38670995 PMCID: PMC11053023 DOI: 10.1038/s41467-024-47890-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The E3 ligase-degron interaction determines the specificity of the ubiquitin‒proteasome system. We recently discovered that FEM1B, a substrate receptor of Cullin 2-RING ligase (CRL2), recognizes C-degrons containing a C-terminal proline. By solving several cryo-EM structures of CRL2FEM1B bound to different C-degrons, we elucidate the dimeric assembly of the complex. Furthermore, we reveal distinct dimerization states of unmodified and neddylated CRL2FEM1B to uncover the NEDD8-mediated activation mechanism of CRL2FEM1B. Our research also indicates that, FEM1B utilizes a bipartite mechanism to recognize both the C-terminal proline and an upstream aromatic residue within the substrate. These structural findings, complemented by in vitro ubiquitination and in vivo cell-based assays, demonstrate that CRL2FEM1B-mediated polyubiquitination and subsequent protein turnover depend on both FEM1B-degron interactions and the dimerization state of the E3 ligase complex. Overall, this study deepens our molecular understanding of how Cullin-RING E3 ligase substrate selection mediates protein turnover.
Collapse
Affiliation(s)
- Xinyan Chen
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Anat Raiff
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shanshan Li
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Qiong Guo
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Jiahai Zhang
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Hualin Zhou
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Richard T Timms
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Itay Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| | - Kaiming Zhang
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China.
| | - Chao Xu
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China.
| |
Collapse
|
197
|
Wang Z, Fan F, Li Z, Ye F, Wang Q, Gao R, Qiu J, Lv Y, Lin M, Xu W, Luo C, Yu X. Structural insights into the functional mechanism of the ubiquitin ligase E6AP. Nat Commun 2024; 15:3531. [PMID: 38670961 PMCID: PMC11053172 DOI: 10.1038/s41467-024-47586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
E6AP dysfunction is associated with Angelman syndrome and Autism spectrum disorder. Additionally, the host E6AP is hijacked by the high-risk HPV E6 to aberrantly ubiquitinate the tumor suppressor p53, which is linked with development of multiple types of cancer, including most cervical cancers. Here we show that E6AP and the E6AP/E6 complex exist, respectively, as a monomer and a dimer of the E6AP/E6 protomer. The short α1-helix of E6AP transforms into a longer helical structure when in complex with E6. The extended α1-helices of the dimer intersect symmetrically and contribute to the dimerization. The two protomers sway around the crossed region of the two α1-helices to promote the attachment and detachment of substrates to the catalytic C-lobe of E6AP, thus facilitating ubiquitin transfer. These findings, complemented by mutagenesis analysis, suggest that the α1-helix, through conformational transformations, controls the transition between the inactive monomer and the active dimer of E6AP.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fengying Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihai Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qingxia Wang
- Cryo-Electron Microscopy Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Rongchao Gao
- Cryo-Electron Microscopy Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiaxuan Qiu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixin Lv
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Min Lin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenwen Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528437, China.
- Department of Pharmacy, Guiyang University of Traditional Chinese Medicine, South Dong Qing Road, Huaxi District, Guizhou, 550025, China.
| | - Xuekui Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Cryo-Electron Microscopy Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
198
|
Zhou Y, Zhang Q, Zhao Z, Hu X, You Q, Jiang Z. Targeting kelch-like (KLHL) proteins: achievements, challenges and perspectives. Eur J Med Chem 2024; 269:116270. [PMID: 38490062 DOI: 10.1016/j.ejmech.2024.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Kelch-like proteins (KLHLs) are a large family of BTB-containing proteins. KLHLs function as the substrate adaptor of Cullin 3-RING ligases (CRL3) to recognize substrates. KLHLs play pivotal roles in regulating various physiological and pathological processes by modulating the ubiquitination of their respective substrates. Mounting evidence indicates that mutations or abnormal expression of KLHLs are associated with various human diseases. Targeting KLHLs is a viable strategy for deciphering the KLHLs-related pathways and devising therapies for associated diseases. Here, we comprehensively review the known KLHLs inhibitors to date and the brilliant ideas underlying their development.
Collapse
Affiliation(s)
- Yangguo Zhou
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiong Zhang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziquan Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiuqi Hu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
199
|
Kim J, Byun I, Kim DY, Joh H, Kim HJ, Lee MJ. Targeted protein degradation directly engaging lysosomes or proteasomes. Chem Soc Rev 2024; 53:3253-3272. [PMID: 38369971 DOI: 10.1039/d3cs00344b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Targeted protein degradation (TPD) has been established as a viable alternative to attenuate the function of a specific protein of interest in both biological and clinical contexts. The unique TPD mode-of-action has allowed previously undruggable proteins to become feasible targets, expanding the landscape of "druggable" properties and "privileged" target proteins. As TPD continues to evolve, a range of innovative strategies, which do not depend on recruiting E3 ubiquitin ligases as in proteolysis-targeting chimeras (PROTACs), have emerged. Here, we present an overview of direct lysosome- and proteasome-engaging modalities and discuss their perspectives, advantages, and limitations. We outline the chemical composition, biochemical activity, and pharmaceutical characteristics of each degrader. These alternative TPD approaches not only complement the first generation of PROTACs for intracellular protein degradation but also offer unique strategies for targeting pathologic proteins located on the cell membrane and in the extracellular space.
Collapse
Affiliation(s)
- Jiseong Kim
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Insuk Byun
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Do Young Kim
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Hyunhi Joh
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Hak Joong Kim
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Min Jae Lee
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
200
|
Song X, Xia B, Gao X, Liu X, Lv H, Wang S, Xiao Q, Luo H. Related cellular signaling and consequent pathophysiological outcomes of ubiquitin specific protease 24. Life Sci 2024; 342:122512. [PMID: 38395384 DOI: 10.1016/j.lfs.2024.122512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Ubiquitin-specific protease 24 (USP24) is an essential member of the deubiquitinating protease family found in eukaryotes. It engages in interactions with multiple proteins, including p53, MCL-1, E2F4, and FTH1, among others. Through these interactions, USP24 plays a critical role in regulating vital cellular processes such as cell cycle control, DNA damage response, cellular iron autophagy, and apoptosis. Increased levels of USP24 have been observed in various cancer types, including bladder cancer, lung cancer, myeloma, hepatocellular carcinoma, and gastric cancer. However, in certain tumors like kidney cancer, USP24 is significantly downregulated, and the specific mechanism behind this remains unclear. Currently, there are no officially approved USP24 inhibitors available for clinical use. Some existing inhibitors targeting USP24 have shown promising effects in treating malignancies; however, their precise mode of action and information regarding binding sites are not well understood. Moreover, further optimization is required to enhance the selectivity and efficacy of these inhibitors. This review aims to provide a comprehensive overview of recent advancements in understanding the cellular functions of USP24, its association with various diseases, and the development of small-molecule inhibitors that target this protein. In conclusion, USP24 represents a promising therapeutic target for various diseases, and ongoing research will contribute to validating its role and facilitating the development of effective treatments.
Collapse
Affiliation(s)
- Xiaoyang Song
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Boyu Xia
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xinrong Gao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xinying Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Hongyuan Lv
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Shiwei Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Qinpei Xiao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Hao Luo
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|