151
|
Kosuge H, Nakakido M, Nagatoishi S, Fukuda T, Bando Y, Ohnuma SI, Tsumoto K. Proteomic identification and validation of novel interactions of the putative tumor suppressor PRELP with membrane proteins including IGFI-R and p75NTR. J Biol Chem 2021; 296:100278. [PMID: 33428936 PMCID: PMC7948961 DOI: 10.1016/j.jbc.2021.100278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 01/19/2023] Open
Abstract
Proline and arginine-rich end leucine-rich repeat protein (PRELP) is a member of the small leucine-rich repeat proteoglycans (SLRPs) family. Levels of PRELP mRNA are downregulated in many types of cancer, and PRELP has been reported to have suppressive effects on tumor cell growth, although the molecular mechanism has yet to be fully elucidated. Given that other SLRPs regulate signaling pathways through interactions with various membrane proteins, we reasoned that PRELP likely interacts with membrane proteins to maintain cellular homeostasis. To identify membrane proteins that interact with PRELP, we carried out coimmunoprecipitation coupled with mass spectrometry (CoIP-MS). We prepared membrane fractions from Expi293 cells transfected to overexpress FLAG-tagged PRELP or control cells and analyzed samples precipitated with anti-FLAG antibody by mass spectrometry. Comparison of membrane proteins in each sample identified several that seem to interact with PRELP; among them, we noted two growth factor receptors, insulin-like growth factor I receptor (IGFI-R) and low-affinity nerve growth factor receptor (p75NTR), interactions with which might help to explain PRELP's links to cancer. We demonstrated that PRELP directly binds to extracellular domains of these two growth factor receptors with low micromolar affinities by surface plasmon resonance analysis using recombinant proteins. Furthermore, cell-based analysis using recombinant PRELP protein showed that PRELP suppressed cell growth and affected cell morphology of A549 lung carcinoma cells, also at micromolar concentration. These results suggest that PRELP regulates cellular functions through interactions with IGFI-R and p75NTR and provide a broader set of candidate partners for further exploration.
Collapse
Affiliation(s)
- Hirofumi Kosuge
- School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakakido
- School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Satoru Nagatoishi
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | - Shin-Ichi Ohnuma
- The Institute of Ophthalmology, University College London, London, United Kingdom
| | - Kouhei Tsumoto
- School of Engineering, The University of Tokyo, Tokyo, Japan; The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
152
|
Abstract
Molecular dynamics (MD) simulations have become increasingly useful in the modern drug development process. In this review, we give a broad overview of the current application possibilities of MD in drug discovery and pharmaceutical development. Starting from the target validation step of the drug development process, we give several examples of how MD studies can give important insights into the dynamics and function of identified drug targets such as sirtuins, RAS proteins, or intrinsically disordered proteins. The role of MD in antibody design is also reviewed. In the lead discovery and lead optimization phases, MD facilitates the evaluation of the binding energetics and kinetics of the ligand-receptor interactions, therefore guiding the choice of the best candidate molecules for further development. The importance of considering the biological lipid bilayer environment in the MD simulations of membrane proteins is also discussed, using G-protein coupled receptors and ion channels as well as the drug-metabolizing cytochrome P450 enzymes as relevant examples. Lastly, we discuss the emerging role of MD simulations in facilitating the pharmaceutical formulation development of drugs and candidate drugs. Specifically, we look at how MD can be used in studying the crystalline and amorphous solids, the stability of amorphous drug or drug-polymer formulations, and drug solubility. Moreover, since nanoparticle drug formulations are of great interest in the field of drug delivery research, different applications of nano-particle simulations are also briefly summarized using multiple recent studies as examples. In the future, the role of MD simulations in facilitating the drug development process is likely to grow substantially with the increasing computer power and advancements in the development of force fields and enhanced MD methodologies.
Collapse
|
153
|
Sample Preparation and Data Collection for Electron Crystallographic Studies on Membrane Protein Structures and Lipid-Protein Interaction. Methods Mol Biol 2020. [PMID: 33368007 DOI: 10.1007/978-1-0716-0966-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Electron crystallography is a unique tool to study membrane protein structures and lipid-protein interactions in their native-like environments. Two-dimensional (2D) protein crystallization enables the lipids immobilized by the proteins, and the generated high-resolution density map allows us to model the atomic coordinates of the surrounding lipids to study lipid-protein interaction. This protocol describes the sample preparation for electron crystallographic studies, including back-injection method and carbon sandwich method. The protocols of data collection for electron crystallography, including electron imaging and diffraction, of the 2D membrane crystal will be followed.
Collapse
|
154
|
Fishing for nucleic acid with a coiled hook. Nat Chem 2020; 13:5-6. [PMID: 33353968 DOI: 10.1038/s41557-020-00615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
155
|
Qian S, Sharma VK, Clifton LA. Understanding the Structure and Dynamics of Complex Biomembrane Interactions by Neutron Scattering Techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15189-15211. [PMID: 33300335 DOI: 10.1021/acs.langmuir.0c02516] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The membrane is one of the key structural materials of biology at the cellular level. Composed predominantly of a bilayer of lipids with embedded and bound proteins, it defines the boundaries of the cell and many organelles essential to life and therefore is involved in almost all biological processes. Membrane-specific interactions, such as drug binding to a membrane receptor or the interactions of an antimicrobial compound with the lipid matrix of a pathogen membrane, are of interest across the scientific disciplines. Herein we present a review, aimed at nonexperts, of the major neutron scattering techniques used in membrane studies: small-angle neutron scattering, neutron membrane diffraction, neutron reflectometry, quasielastic neutron scattering, and neutron spin echo. Neutron scattering techniques are well suited to studying biological membranes. The nondestructive nature of cold neutrons means that samples can be measured for long periods without fear of beam damage from ultraviolet, electron, or X-ray radiation, and neutron beams are highly penetrating, thus offering flexibility in samples and sample environments. Most important is the strong difference in neutron scattering lengths between the two most abundant forms of hydrogen, protium and deuterium. Changing the relative amounts of protium/deuterium in a sample allows the production of a series of neutron scattering data sets, enabling the observation of differing components within complex membrane architectures. This approach can be as simple as using the naturally occurring neutron contrast between different biomolecules to study components in a complex by changing the solution H2O/D2O ratio or as complex as selectively labeling individual components with hydrogen isotopes. This review presents an overview of each experimental technique with the neutron instrument configuration, related sample preparation and sample environment, and data analysis, highlighted by a special emphasis on using prominent neutron contrast to understand structure and dynamics. This review gives researchers a practical introduction to the often enigmatic suite of neutron beamlines, thereby lowering the barrier to taking advantage of these large-facility techniques to achieve new understandings of membranes and their interactions with other molecules.
Collapse
Affiliation(s)
- Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Veerendra Kumar Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Luke A Clifton
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, U.K. OX11 0QX
| |
Collapse
|
156
|
Huang Y, Meng L, Nie Q, Zhou Y, Chen L, Yang S, Fung YME, Li X, Huang C, Cao Y, Li Y, Li X. Selection of DNA-encoded chemical libraries against endogenous membrane proteins on live cells. Nat Chem 2020; 13:77-88. [PMID: 33349694 DOI: 10.1038/s41557-020-00605-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 11/10/2020] [Indexed: 12/30/2022]
Abstract
Membrane proteins on the cell surface perform a myriad of biological functions; however, ligand discovery for membrane proteins is highly challenging, because a natural cellular environment is often necessary to maintain protein structure and function. DNA-encoded chemical libraries (DELs) have emerged as a powerful technology for ligand discovery, but they are mainly limited to purified proteins. Here we report a method that can specifically label membrane proteins with a DNA tag, and thereby enable target-specific DEL selections against endogenous membrane proteins on live cells without overexpression or any other genetic manipulation. We demonstrate the generality and performance of this method by screening a 30.42-million-compound DEL against the folate receptor, carbonic anhydrase 12 and the epidermal growth factor receptor on live cells, and identify and validate a series of novel ligands for these targets. Given the high therapeutic significance of membrane proteins and their intractability to traditional high-throughput screening approaches, this method has the potential to facilitate membrane-protein-based drug discovery by harnessing the power of DEL.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ling Meng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Qigui Nie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Langdong Chen
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Shilian Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yi Man Eva Fung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaomeng Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Cen Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yan Cao
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China. .,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China. .,Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK, Hong Kong SAR, China.
| |
Collapse
|
157
|
Chan HJ, Lin XH, Fan SY, Ru Hwu J, Tan KT. Rapid and Selective Labeling of Endogenous Transmembrane Proteins in Living Cells with a Difluorophenyl Ester Affinity-Based Probe. Chem Asian J 2020; 15:3416-3420. [PMID: 32931625 DOI: 10.1002/asia.202001049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 12/28/2022]
Abstract
The long-term stability of affinity-based protein labeling probes is crucial to obtain reproducible protein labeling results. However, highly stable probes generally suffer from low protein labeling efficiency and pose significant challenges when labeling low abundance native proteins in living cells. In this paper, we report that protein labeling probes based on an ortho-difluorophenyl ester reactive module exhibit long-term stability in DMSO stock solution and aqueous buffer, yet they can undergo rapid and selective labeling of native proteins. This novel electrophile can be customized with a wide range of different protein ligands and is particularly well-suited for the labeling and imaging of transmembrane proteins. With this probe design, the identity and relative levels of basal and hypoxia-induced transmembrane carbonic anhydrases were revealed by live cell imaging and in-gel fluorescence analysis. We believe that the extension of this difluorophenyl ester reactive module would allow for the specific labeling of various endogenous membrane proteins, facilitating in-depth studies of their distribution and functions in biological processes.
Collapse
Affiliation(s)
- Hsin-Ju Chan
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan (Republic of China
| | - Xin-Hui Lin
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan (Republic of China
| | - Syuan-Yun Fan
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan (Republic of China
| | - Jih Ru Hwu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan (Republic of China.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan (Republic of China
| | - Kui-Thong Tan
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan (Republic of China.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan (Republic of China.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan (Republic of China
| |
Collapse
|
158
|
Complexity of seemingly simple lipid nanodiscs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183420. [DOI: 10.1016/j.bbamem.2020.183420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
|
159
|
Pappa AM, Liu HY, Traberg-Christensen W, Thiburce Q, Savva A, Pavia A, Salleo A, Daniel S, Owens RM. Optical and Electronic Ion Channel Monitoring from Native Human Membranes. ACS NANO 2020; 14:12538-12545. [PMID: 32469490 DOI: 10.1021/acsnano.0c01330] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Transmembrane proteins represent a major target for modulating cell activity, both in terms of therapeutics drugs and for pathogen interactions. Work on screening such therapeutics or identifying toxins has been severely limited by the lack of available methods that would give high content information on functionality (ideally multimodal) and that are suitable for high-throughput. Here, we have demonstrated a platform that is capable of multimodal (optical and electronic) screening of ligand gated ion-channel activity in human-derived membranes. The TREK-1 ion-channel was expressed within supported lipid bilayers, formed via vesicle fusion of blebs obtained from the HEK cell line overexpressing TREK-1. The resulting reconstituted native membranes were confirmed via fluorescence recovery after photobleaching to form mobile bilayers on top of films of the polymeric electroactive transducer poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS). PEDOT:PSS electrodes were then used for quantitative electrochemical impedance spectroscopy measurements of ligand-mediated TREK-1 interactions with two compounds, spadin and arachidonic acid, known to suppress and activate TREK-1 channels, respectively. PEDOT:PSS-based organic electrochemical transistors were then used for combined optical and electronic measurements of TREK-1 functionality. The technology demonstrated here is highly promising for future high-throughput screening of transmembrane protein modulators owing to the robust nature of the membrane integrated device and the highly quantitative electrical signals obtained. This is in contrast with live-cell-based electrophysiology assays (e.g., patch clamp) which compare poorly in terms of cost, usability, and compatibility with optical transduction.
Collapse
Affiliation(s)
- Anna-Maria Pappa
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, United Kingdom
| | - Han-Yuan Liu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, New York 14853, United States
| | - Walther Traberg-Christensen
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, United Kingdom
| | - Quentin Thiburce
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, United Kingdom
| | - Aimie Pavia
- Department of Flexible Electronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, 13541 Gardanne, France
- Panaxium SAS, 13100 Aix-en-Provence, France
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, New York 14853, United States
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, United Kingdom
| |
Collapse
|
160
|
Syu GD, Johansen E, Zhu H. Virion Display: A High-Throughput Method to Express Functional Membrane Proteins. ACTA ACUST UNITED AC 2020; 132:e126. [PMID: 32965799 DOI: 10.1002/cpmb.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transmembrane proteins are responsible for many critical cellular functions and represent one of the largest families of drug targets. However, these proteins, especially multipass transmembrane proteins, are difficult to study because they must be embedded in a lipid bilayer to maintain their native conformations. The development of the virion display (VirD) technology enables transmembrane proteins to be integrated into the viral envelope of herpes simplex virus 1 (HSV-1). Combining high-throughput cloning, expression, and purification techniques, VirD technology has been applied to the largest set of human transmembrane proteins, namely G-protein-coupled receptors, and has allowed the identification of interactions that are both specific and functional. This article describes the procedures to integrate an open reading frame for any transmembrane protein into the HSV-1 genome and produce recombinant HSV-1 virus to ultimately generate pure VirD virions for biological and pharmaceutical studies. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Gateway cloning of transmembrane proteins Support Protocol 1: Ethanol precipitation of bacterial artificial chromosomal DNA Support Protocol 2: Preparation of competent cells Basic Protocol 2: Production of recombinant HSV-1 virions.
Collapse
Affiliation(s)
- Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan, Republic of China.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan, Republic of China.,Research Center of Excellence in Regenerative Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Eric Johansen
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
161
|
Plasma Membrane MCC/Eisosome Domains Promote Stress Resistance in Fungi. Microbiol Mol Biol Rev 2020; 84:84/4/e00063-19. [PMID: 32938742 DOI: 10.1128/mmbr.00063-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is growing appreciation that the plasma membrane orchestrates a diverse array of functions by segregating different activities into specialized domains that vary in size, stability, and composition. Studies with the budding yeast Saccharomyces cerevisiae have identified a novel type of plasma membrane domain known as the MCC (membrane compartment of Can1)/eisosomes that correspond to stable furrows in the plasma membrane. MCC/eisosomes maintain proteins at the cell surface, such as nutrient transporters like the Can1 arginine symporter, by protecting them from endocytosis and degradation. Recent studies from several fungal species are now revealing new functional roles for MCC/eisosomes that enable cells to respond to a wide range of stressors, including changes in membrane tension, nutrition, cell wall integrity, oxidation, and copper toxicity. The different MCC/eisosome functions are often intertwined through the roles of these domains in lipid homeostasis, which is important for proper plasma membrane architecture and cell signaling. Therefore, this review will emphasize the emerging models that explain how MCC/eisosomes act as hubs to coordinate cellular responses to stress. The importance of MCC/eisosomes is underscored by their roles in virulence for fungal pathogens of plants, animals, and humans, which also highlights the potential of these domains to act as novel therapeutic targets.
Collapse
|
162
|
Stoichiometric analysis of protein complexes by cell fusion and single molecule imaging. Sci Rep 2020; 10:14866. [PMID: 32913201 PMCID: PMC7483473 DOI: 10.1038/s41598-020-71630-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022] Open
Abstract
The composition, stoichiometry and interactions of supramolecular protein complexes are a critical determinant of biological function. Several techniques have been developed to study molecular interactions and quantify subunit stoichiometry at the single molecule level. However, these typically require artificially low expression levels or detergent isolation to achieve the low fluorophore concentrations required for single molecule imaging, both of which may bias native subunit interactions. Here we present an alternative approach where protein complexes are assembled at physiological concentrations and subsequently diluted in situ for single-molecule level observations while preserving them in a near-native cellular environment. We show that coupling this dilution strategy with fluorescence correlation spectroscopy permits quantitative assessment of cytoplasmic oligomerization, while stepwise photobleaching and single molecule colocalization may be used to study the subunit stoichiometry of membrane receptors. Single protein recovery after dilution (SPReAD) is a simple and versatile means of extending the concentration range of single molecule measurements into the cellular regime while minimizing potential artifacts and perturbations of protein complex stoichiometry.
Collapse
|
163
|
Design and Applications of Bifunctional Small Molecules in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140534. [PMID: 32871274 DOI: 10.1016/j.bbapap.2020.140534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
|
164
|
Krohl PJ, Kim KB, Lew L, VanDyke D, Ludwig SD, Spangler JB. A suspension cell‐based interaction platform for interrogation of membrane proteins. AIChE J 2020. [DOI: 10.1002/aic.16995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Patrick J. Krohl
- Department of Chemical & Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
| | - Kook Bum Kim
- Department of Chemical & Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
| | - Lance Lew
- Department of Biophysics Johns Hopkins University Baltimore Maryland USA
| | - Derek VanDyke
- Department of Chemical & Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
| | - Seth D. Ludwig
- Department of Chemical & Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
| | - Jamie B. Spangler
- Department of Chemical & Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
- Department of Biomedical Engineering Johns Hopkins University School of Medicine Baltimore Maryland USA
- Translational Tissue Engineering Center Johns Hopkins University School of Medicine Baltimore Maryland USA
| |
Collapse
|
165
|
Horne JE, Brockwell DJ, Radford SE. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J Biol Chem 2020; 295:10340-10367. [PMID: 32499369 PMCID: PMC7383365 DOI: 10.1074/jbc.rev120.011473] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/03/2020] [Indexed: 01/09/2023] Open
Abstract
β-Barrel outer membrane proteins (OMPs) represent the major proteinaceous component of the outer membrane (OM) of Gram-negative bacteria. These proteins perform key roles in cell structure and morphology, nutrient acquisition, colonization and invasion, and protection against external toxic threats such as antibiotics. To become functional, OMPs must fold and insert into a crowded and asymmetric OM that lacks much freely accessible lipid. This feat is accomplished in the absence of an external energy source and is thought to be driven by the high thermodynamic stability of folded OMPs in the OM. With such a stable fold, the challenge that bacteria face in assembling OMPs into the OM is how to overcome the initial energy barrier of membrane insertion. In this review, we highlight the roles of the lipid environment and the OM in modulating the OMP-folding landscape and discuss the factors that guide folding in vitro and in vivo We particularly focus on the composition, architecture, and physical properties of the OM and how an understanding of the folding properties of OMPs in vitro can help explain the challenges they encounter during folding in vivo Current models of OMP biogenesis in the cellular environment are still in flux, but the stakes for improving the accuracy of these models are high. OMP folding is an essential process in all Gram-negative bacteria, and considering the looming crisis of widespread microbial drug resistance it is an attractive target. To bring down this vital OMP-supported barrier to antibiotics, we must first understand how bacterial cells build it.
Collapse
Affiliation(s)
- Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
166
|
Van Truong T, Ghosh M, Wachtel E, Friedman N, Jung KH, Sheves M, Patchornik G. Promoting crystallization of intrinsic membrane proteins with conjugated micelles. Sci Rep 2020; 10:12199. [PMID: 32699228 PMCID: PMC7376161 DOI: 10.1038/s41598-020-68689-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/29/2020] [Indexed: 11/09/2022] Open
Abstract
A new technique for promoting nucleation and growth of membrane protein (MP) crystals from micellar environments is reported. It relies on the conjugation of micelles that sequester MPs in protein detergent complexes (PDCs). Conjugation via amphiphilic [metal:chelator] complexes presumably takes place at the micelle/water interface, thereby bringing the PDCs into proximity, promoting crystal nucleation and growth. We have successfully applied this approach to two light-driven proton pumps: bacteriorhodopsin (bR) and the recently discovered King Sejong 1-2 (KS1-2), using the amphiphilic 4,4'-dinonyl-2,2'-dipyridyl (Dinonyl) (0.7 mM) chelator in combination with Zn2+, Fe2+, or Ni2+ (0.1 mM). Crystal growth in the presence of the [metal-chelator] complexes leads to purple, hexagonal crystals (50-75 µm in size) of bR or pink, rectangular/square crystals (5-15 µm) of KS1-2. The effects of divalent cation identity and concentration, chelator structure and concentration, ionic strength and pH on crystal size, morphology and process kinetics, are described.
Collapse
Affiliation(s)
- Thien Van Truong
- Department of Chemical Sciences, Ariel University, 40700, Ariel, Israel
| | - Mihir Ghosh
- Faculty of Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ellen Wachtel
- Faculty of Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Noga Friedman
- Faculty of Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 121-742, South Korea
| | - Mordechai Sheves
- Faculty of Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Guy Patchornik
- Department of Chemical Sciences, Ariel University, 40700, Ariel, Israel.
| |
Collapse
|
167
|
Nikolaev A, Makarchuk I, Thesseling A, Hoeser J, Friedrich T, Melin F, Hellwig P. Stabilization of the Highly Hydrophobic Membrane Protein, Cytochrome bd Oxidase, on Metallic Surfaces for Direct Electrochemical Studies. Molecules 2020; 25:molecules25143240. [PMID: 32708635 PMCID: PMC7397230 DOI: 10.3390/molecules25143240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 11/23/2022] Open
Abstract
The cytochrome bd oxidase catalyzes the reduction of oxygen to water in bacteria and it is thus an interesting target for electrocatalytic studies and biosensor applications. The bd oxidase is completely embedded in the phospholipid membrane. In this study, the variation of the surface charge of thiol-modified gold nanoparticles, the length of the thiols and the other crucial parameters including optimal phospholipid content and type, have been performed, giving insight into the role of these factors for the optimal interaction and direct electron transfer of an integral membrane protein. Importantly, all three tested factors, the lipid type, the electrode surface charge and the thiol length mutually influenced the stability of films of the cytochrome bd oxidase. The best electrocatalytic responses were obtained on the neutral gold surface when the negatively charged phosphatidylglycerol (PG) was used and on the charged gold surface when the zwitterionic phosphatidylethanolamine (PE) was used. The advantages of the covalent binding of the membrane protein to the electrode surface over the non-covalent binding are also discussed.
Collapse
Affiliation(s)
- Anton Nikolaev
- Laboratoire de Bioelectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg, CNRS, 67081 Strasbourg, France; (A.N.); (I.M.)
| | - Iryna Makarchuk
- Laboratoire de Bioelectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg, CNRS, 67081 Strasbourg, France; (A.N.); (I.M.)
| | - Alexander Thesseling
- Institut für Biochemie, Fakultät für Chemie und Pharmazie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany; (A.T.); (J.H.); (T.F.)
| | - Jo Hoeser
- Institut für Biochemie, Fakultät für Chemie und Pharmazie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany; (A.T.); (J.H.); (T.F.)
| | - Thorsten Friedrich
- Institut für Biochemie, Fakultät für Chemie und Pharmazie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany; (A.T.); (J.H.); (T.F.)
| | - Frédéric Melin
- Laboratoire de Bioelectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg, CNRS, 67081 Strasbourg, France; (A.N.); (I.M.)
- Correspondence: (F.M.); (P.H.)
| | - Petra Hellwig
- Laboratoire de Bioelectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg, CNRS, 67081 Strasbourg, France; (A.N.); (I.M.)
- Correspondence: (F.M.); (P.H.)
| |
Collapse
|
168
|
Patra MC, Achek A, Kim GY, Panneerselvam S, Shin HJ, Baek WY, Lee WH, Sung J, Jeong U, Cho EY, Kim W, Kim E, Suh CH, Choi S. A Novel Small-Molecule Inhibitor of Endosomal TLRs Reduces Inflammation and Alleviates Autoimmune Disease Symptoms in Murine Models. Cells 2020; 9:E1648. [PMID: 32660060 PMCID: PMC7407930 DOI: 10.3390/cells9071648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptors (TLRs) play a fundamental role in the inflammatory response against invading pathogens. However, the dysregulation of TLR-signaling pathways is implicated in several autoimmune/inflammatory diseases. Here, we show that a novel small molecule TLR-inhibitor (TAC5) and its derivatives TAC5-a, TAC5-c, TAC5-d, and TAC5-e predominantly antagonized poly(I:C) (TLR3)-, imiquimod (TLR7)-, TL8-506 (TLR8)-, and CpG-oligodeoxynucleotide (TLR9)-induced signaling pathways. TAC5 and TAC5-a significantly hindered the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), reduced the phosphorylation of mitogen-activated protein kinases, and inhibited the secretion of tumor necrosis factor-α (TNF-α) and interleukin-6. Besides, TAC5-a prevented the progression of psoriasis and systemic lupus erythematosus (SLE) in mice. Interestingly, TAC5 and TAC5-a did not affect Pam3CSK4 (TLR1/2)-, FSL-1 (TLR2/6)-, or lipopolysaccharide (TLR4)-induced TNF-α secretion, indicating their specificity towards endosomal TLRs (TLR3/7/8/9). Collectively, our data suggest that the TAC5 series of compounds are potential candidates for treating autoimmune diseases such as psoriasis or SLE.
Collapse
Affiliation(s)
- Mahesh Chandra Patra
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - Asma Achek
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - Gi-Young Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - Suresh Panneerselvam
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - Hyeon-Jun Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - Wook-Yong Baek
- Department of Rheumatology, Ajou University School of Medicine, Suwon 16499, Korea; (W.-Y.B.); (C.-H.S.)
| | - Wang Hee Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - June Sung
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - Uisuk Jeong
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - Eun-Young Cho
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - Eunha Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Suwon 16499, Korea; (W.-Y.B.); (C.-H.S.)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| |
Collapse
|
169
|
de Albuquerque CDL, Schultz ZD. Super-resolution Surface-Enhanced Raman Scattering Imaging of Single Particles in Cells. Anal Chem 2020; 92:9389-9398. [PMID: 32484329 PMCID: PMC7364441 DOI: 10.1021/acs.analchem.0c01864] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to locate and identify molecular interactions in cells has significant importance for understanding protein function and molecular biology. Functionalized metallic nanoparticles have been used as probes for protein tracking and drug delivery because of their ability to carry therapeutic agents and readily functionalized surfaces. In this work, we present a super-resolution surface-enhanced Raman scattering (SERS) approach for imaging and tracking membrane receptors interacting with peptide-functionalized gold nanostars (AuNS). The αvβ3 integrin receptors in colon cancer cells are successfully targeted and imaged using AuNS with the high-affinity amino acid sequence arginine-glycine-aspartic acid-phenylalanine-cysteine (RGDFC) attached. The RGDFC peptide interaction with the integrin receptor provides a bright and fluctuating SERS signal that can be analyzed with localization microscopy algorithms. Additionally, the observed SERS spectrum is used to confirm protein-peptide interaction. Experiments with functionalized and bare AuNS illustrate specific and nonspecific binding events. Specific binding is monitored with a localization precision of ∼6 nm. The observed spatial resolution is associated with tight binding, which was confirmed by the slower diffusion coefficient measured from 4.4 × 10-11 cm2/s for the AuNS-RGDFC compared to 7.8 × 10-10 cm2/s for the bare AuNS. Super-resolution SERS images at different focal planes show evidence of internalized particles and suggest insights into protein orientation on the surface of cells. Our work demonstrates super-resolution SERS imaging to probe membrane receptor interactions in cells, providing chemical information and spatial resolution with potential for diverse applications in life science and biomedicine.
Collapse
Affiliation(s)
| | - Zachary D. Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
170
|
Saikia S, Bordoloi M, Sarmah R. Established and In-trial GPCR Families in Clinical Trials: A Review for Target Selection. Curr Drug Targets 2020; 20:522-539. [PMID: 30394207 DOI: 10.2174/1389450120666181105152439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Abstract
The largest family of drug targets in clinical trials constitute of GPCRs (G-protein coupled receptors) which accounts for about 34% of FDA (Food and Drug Administration) approved drugs acting on 108 unique GPCRs. Factors such as readily identifiable conserved motif in structures, 127 orphan GPCRs despite various de-orphaning techniques, directed functional antibodies for validation as drug targets, etc. has widened their therapeutic windows. The availability of 44 crystal structures of unique receptors, unexplored non-olfactory GPCRs (encoded by 50% of the human genome) and 205 ligand receptor complexes now present a strong foundation for structure-based drug discovery and design. The growing impact of polypharmacology for complex diseases like schizophrenia, cancer etc. warrants the need for novel targets and considering the undiscriminating and selectivity of GPCRs, they can fulfill this purpose. Again, natural genetic variations within the human genome sometimes delude the therapeutic expectations of some drugs, resulting in medication response differences and ADRs (adverse drug reactions). Around ~30 billion US dollars are dumped annually for poor accounting of ADRs in the US alone. To curb such undesirable reactions, the knowledge of established and currently in clinical trials GPCRs families can offer huge understanding towards the drug designing prospects including "off-target" effects reducing economical resource and time. The druggability of GPCR protein families and critical roles played by them in complex diseases are explained. Class A, class B1, class C and class F are generally established family and GPCRs in phase I (19%), phase II(29%), phase III(52%) studies are also reviewed. From the phase I studies, frizzled receptors accounted for the highest in trial targets, neuropeptides in phase II and melanocortin in phase III studies. Also, the bioapplications for nanoparticles along with future prospects for both nanomedicine and GPCR drug industry are discussed. Further, the use of computational techniques and methods employed for different target validations are also reviewed along with their future potential for the GPCR based drug discovery.
Collapse
Affiliation(s)
- Surovi Saikia
- Natural Products Chemistry Group, CSIR North East Institute of Science & Technology, Jorhat-785006, Assam, India
| | - Manobjyoti Bordoloi
- Natural Products Chemistry Group, CSIR North East Institute of Science & Technology, Jorhat-785006, Assam, India
| | - Rajeev Sarmah
- Allied Health Sciences, Assam Down Town University, Panikhaiti, Guwahati 781026, Assam, India
| |
Collapse
|
171
|
Gong J, Chen Y, Pu F, Sun P, He F, Zhang L, Li Y, Ma Z, Wang H. Understanding Membrane Protein Drug Targets in Computational Perspective. Curr Drug Targets 2020; 20:551-564. [PMID: 30516106 DOI: 10.2174/1389450120666181204164721] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 01/16/2023]
Abstract
Membrane proteins play crucial physiological roles in vivo and are the major category of drug targets for pharmaceuticals. The research on membrane protein is a significant part in the drug discovery. The biological process is a cycled network, and the membrane protein is a vital hub in the network since most drugs achieve the therapeutic effect via interacting with the membrane protein. In this review, typical membrane protein targets are described, including GPCRs, transporters and ion channels. Also, we conclude network servers and databases that are referring to the drug, drug-target information and their relevant data. Furthermore, we chiefly introduce the development and practice of modern medicines, particularly demonstrating a series of state-of-the-art computational models for the prediction of drug-target interaction containing network-based approach and machine-learningbased approach as well as showing current achievements. Finally, we discuss the prospective orientation of drug repurposing and drug discovery as well as propose some improved framework in bioactivity data, created or improved predicted approaches, alternative understanding approaches of drugs bioactivity and their biological processes.
Collapse
Affiliation(s)
- Jianting Gong
- School of Information Science and Technology, Northeast Normal University, Changchun, China.,Institution of Computational Biology, Northeast Normal University, Changchun, China
| | - Yongbing Chen
- School of Information Science and Technology, Northeast Normal University, Changchun, China.,Institution of Computational Biology, Northeast Normal University, Changchun, China
| | - Feng Pu
- School of Information Science and Technology, Northeast Normal University, Changchun, China.,Institution of Computational Biology, Northeast Normal University, Changchun, China
| | - Pingping Sun
- School of Information Science and Technology, Northeast Normal University, Changchun, China.,Institution of Computational Biology, Northeast Normal University, Changchun, China
| | - Fei He
- School of Information Science and Technology, Northeast Normal University, Changchun, China.,Institution of Computational Biology, Northeast Normal University, Changchun, China
| | - Li Zhang
- School of Computer Science and Engineering, Changchun University of Technology, Changchun, China
| | - Yanwen Li
- School of Information Science and Technology, Northeast Normal University, Changchun, China.,Institution of Computational Biology, Northeast Normal University, Changchun, China
| | - Zhiqiang Ma
- School of Information Science and Technology, Northeast Normal University, Changchun, China.,Institution of Computational Biology, Northeast Normal University, Changchun, China
| | - Han Wang
- School of Information Science and Technology, Northeast Normal University, Changchun, China.,Institution of Computational Biology, Northeast Normal University, Changchun, China
| |
Collapse
|
172
|
Sankaran J, Wohland T. Fluorescence strategies for mapping cell membrane dynamics and structures. APL Bioeng 2020; 4:020901. [PMID: 32478279 PMCID: PMC7228782 DOI: 10.1063/1.5143945] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
Fluorescence spectroscopy has been a cornerstone of research in membrane dynamics and organization. Technological advances in fluorescence spectroscopy went hand in hand with discovery of various physicochemical properties of membranes at nanometric spatial and microsecond timescales. In this perspective, we discuss the various challenges associated with quantification of physicochemical properties of membranes and how various modes of fluorescence spectroscopy have overcome these challenges to shed light on the structure and organization of membranes. Finally, we discuss newer measurement strategies and data analysis tools to investigate the structure, dynamics, and organization of membranes.
Collapse
|
173
|
Comparative sequence, structure and functional analysis of Skp protein, a molecular chaperone among members of Pasteurellaceae and its homologues in Gram-negative bacteria. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
174
|
Pannwitt S, Kaltbeitzel J, Ahlers P, Spitzer D, Hellmann N, Depoix F, Besenius P, Schneider D. Lipid Bilayer Interactions of Peptidic Supramolecular Polymers and Their Impact on Membrane Permeability and Stability. Biochemistry 2020; 59:1845-1853. [PMID: 32320213 DOI: 10.1021/acs.biochem.0c00114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The synthesis and physicochemical characterization of supramolecular polymers with tunable assembly profiles offer exciting opportunities, involving the development of new biomedical carriers. Because synthetic nanocarriers aim to transport substances across or toward cellular membranes, we evaluated the interactions of amphiphilic peptide-based supramolecular polymers with lipid bilayers. Here, we focused on nanorod-like supramolecular polymers, obtained from two C3-symmetric dendritic peptide amphiphiles with alternating Phe/His sequences, equipped with a peripheral tetraethylene glycol dendron (C3-PH) or charged ethylenediamine end groups (C3-PH+). Triggered by pH changes, these amphiphiles assemble reversibly. Our results show that the supramolecular polymers have an impact on the lipid order in model membranes. Changes in the lipid order were observed depending on the charge state of the amphiphilic building blocks, as well as the chemical composition and physical properties of the bilayer. Furthermore, we further performed cell viability assays with the C3-PH+ and C3-PH supramolecular polymers. For C3-PH, the cell viability and extent of proliferation were decreased and the membrane permeability was enhanced, indicating a strong interaction of the polymer with cellular membranes. The results have implications for the design of novel pH-switchable supramolecular drug carriers and delivery vehicles that can respond to an altered microenvironment of tumorous or inflamed tissue.
Collapse
Affiliation(s)
- Stefanie Pannwitt
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - Jonas Kaltbeitzel
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - Patrick Ahlers
- Department of Chemistry, Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Daniel Spitzer
- Department of Chemistry, Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Nadja Hellmann
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - Frank Depoix
- Institute of Molecular Physiology, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 9-11, 55128 Mainz, Germany
| | - Pol Besenius
- Department of Chemistry, Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| |
Collapse
|
175
|
Farkas B, Csizmadia G, Katona E, Tusnády GE, Hegedűs T. MemBlob database and server for identifying transmembrane regions using cryo-EM maps. Bioinformatics 2020; 36:2595-2598. [PMID: 31290936 PMCID: PMC7178402 DOI: 10.1093/bioinformatics/btz539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/31/2019] [Accepted: 07/09/2019] [Indexed: 11/14/2022] Open
Abstract
SUMMARY The identification of transmembrane helices in transmembrane proteins is crucial, not only to understand their mechanism of action but also to develop new therapies. While experimental data on the boundaries of membrane-embedded regions are sparse, this information is present in cryo-electron microscopy (cryo-EM) density maps and it has not been utilized yet for determining membrane regions. We developed a computational pipeline, where the inputs of a cryo-EM map, the corresponding atomistic structure, and the potential bilayer orientation determined by TMDET algorithm of a given protein result in an output defining the residues assigned to the bulk water phase, lipid interface and the lipid hydrophobic core. Based on this method, we built a database involving published cryo-EM protein structures and a server to be able to compute this data for newly obtained structures. AVAILABILITY AND IMPLEMENTATION http://memblob.hegelab.org. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Bianka Farkas
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest 1094, Hungary.,MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest 1094, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest 1083, Hungary
| | - Georgina Csizmadia
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest 1094, Hungary.,MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest 1094, Hungary
| | - Eszter Katona
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest 1094, Hungary.,Faculty of Brain Sciences, University College London, London W1T 7NF, UK
| | - Gábor E Tusnády
- 'Momentum' Membrane Protein Bioinformatics Research Group, Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest 1094, Hungary.,MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest 1094, Hungary
| |
Collapse
|
176
|
Kharche SA, Sengupta D. Dynamic protein interfaces and conformational landscapes of membrane protein complexes. Curr Opin Struct Biol 2020; 61:191-197. [DOI: 10.1016/j.sbi.2020.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 12/15/2022]
|
177
|
Torres M, Rosselló CA, Fernández-García P, Lladó V, Kakhlon O, Escribá PV. The Implications for Cells of the Lipid Switches Driven by Protein-Membrane Interactions and the Development of Membrane Lipid Therapy. Int J Mol Sci 2020; 21:ijms21072322. [PMID: 32230887 PMCID: PMC7177374 DOI: 10.3390/ijms21072322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
The cell membrane contains a variety of receptors that interact with signaling molecules. However, agonist-receptor interactions not always activate a signaling cascade. Amphitropic membrane proteins are required for signal propagation upon ligand-induced receptor activation. These proteins localize to the plasma membrane or internal compartments; however, they are only activated by ligand-receptor complexes when both come into physical contact in membranes. These interactions enable signal propagation. Thus, signals may not propagate into the cell if peripheral proteins do not co-localize with receptors even in the presence of messengers. As the translocation of an amphitropic protein greatly depends on the membrane's lipid composition, regulation of the lipid bilayer emerges as a novel therapeutic strategy. Some of the signals controlled by proteins non-permanently bound to membranes produce dramatic changes in the cell's physiology. Indeed, changes in membrane lipids induce translocation of dozens of peripheral signaling proteins from or to the plasma membrane, which controls how cells behave. We called these changes "lipid switches", as they alter the cell's status (e.g., proliferation, differentiation, death, etc.) in response to the modulation of membrane lipids. Indeed, this discovery enables therapeutic interventions that modify the bilayer's lipids, an approach known as membrane-lipid therapy (MLT) or melitherapy.
Collapse
Affiliation(s)
- Manuel Torres
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Department of R&D, Laminar Pharmaceuticals SL. ParcBit, Ed. Naorte B, E-07121 Palma, Spain
| | - Catalina Ana Rosselló
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Department of R&D, Laminar Pharmaceuticals SL. ParcBit, Ed. Naorte B, E-07121 Palma, Spain
| | - Paula Fernández-García
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Department of R&D, Laminar Pharmaceuticals SL. ParcBit, Ed. Naorte B, E-07121 Palma, Spain
| | - Victoria Lladó
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Department of R&D, Laminar Pharmaceuticals SL. ParcBit, Ed. Naorte B, E-07121 Palma, Spain
| | - Or Kakhlon
- Department of Neurology, Hadassah-Hebrew University Medical Center, Ein Kerem, 91120 Jerusalem, Israel;
| | - Pablo Vicente Escribá
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Correspondence:
| |
Collapse
|
178
|
Abstract
Protein semisynthesis-defined herein as the assembly of a protein from a combination of synthetic and recombinant fragments-is a burgeoning field of chemical biology that has impacted many areas in the life sciences. In this review, we provide a comprehensive survey of this area. We begin by discussing the various chemical and enzymatic methods now available for the manufacture of custom proteins containing noncoded elements. This section begins with a discussion of methods that are more chemical in origin and ends with those that employ biocatalysts. We also illustrate the commonalities that exist between these seemingly disparate methods and show how this is allowing for the development of integrated chemoenzymatic methods. This methodology discussion provides the technical foundation for the second part of the review where we cover the great many biological problems that have now been addressed using these tools. Finally, we end the piece with a short discussion on the frontiers of the field and the opportunities available for the future.
Collapse
Affiliation(s)
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
179
|
Clifton LA, Campbell RA, Sebastiani F, Campos-Terán J, Gonzalez-Martinez JF, Björklund S, Sotres J, Cárdenas M. Design and use of model membranes to study biomolecular interactions using complementary surface-sensitive techniques. Adv Colloid Interface Sci 2020; 277:102118. [PMID: 32044469 DOI: 10.1016/j.cis.2020.102118] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 01/07/2023]
Abstract
Cellular membranes are complex structures and simplified analogues in the form of model membranes or biomembranes are used as platforms to understand fundamental properties of the membrane itself as well as interactions with various biomolecules such as drugs, peptides and proteins. Model membranes at the air-liquid and solid-liquid interfaces can be studied using a range of complementary surface-sensitive techniques to give a detailed picture of both the structure and physicochemical properties of the membrane and its resulting interactions. In this review, we will present the main planar model membranes used in the field to date with a focus on monolayers at the air-liquid interface, supported lipid bilayers at the solid-liquid interface and advanced membrane models such as tethered and floating membranes. We will then briefly present the principles as well as the main type of information on molecular interactions at model membranes accessible using a Langmuir trough, quartz crystal microbalance with dissipation monitoring, ellipsometry, atomic force microscopy, Brewster angle microscopy, Infrared spectroscopy, and neutron and X-ray reflectometry. A consistent example for following biomolecular interactions at model membranes is used across many of the techniques in terms of the well-studied antimicrobial peptide Melittin. The overall objective is to establish an understanding of the information accessible from each technique, their respective advantages and limitations, and their complementarity.
Collapse
Affiliation(s)
- Luke A Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 OQX, United Kingdom
| | - Richard A Campbell
- Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Federica Sebastiani
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - José Campos-Terán
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe, Delegación Cuajimalpa de Morelos, 05348, Mexico; Lund Institute of advanced Neutron and X-ray Science, Lund University, Scheelevägen 19, 223 70 Lund, Sweden
| | - Juan F Gonzalez-Martinez
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Sebastian Björklund
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Javier Sotres
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Marité Cárdenas
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden.
| |
Collapse
|
180
|
Burridge KM, Harding BD, Sahu ID, Kearns MM, Stowe RB, Dolan MT, Edelmann RE, Dabney-Smith C, Page RC, Konkolewicz D, Lorigan GA. Simple Derivatization of RAFT-Synthesized Styrene-Maleic Anhydride Copolymers for Lipid Disk Formulations. Biomacromolecules 2020; 21:1274-1284. [PMID: 31961664 DOI: 10.1021/acs.biomac.0c00041] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Styrene-maleic acid copolymers have received significant attention because of their ability to interact with lipid bilayers and form styrene-maleic acid copolymer lipid nanoparticles (SMALPs). However, these SMALPs are limited in their chemical diversity, with only phenyl and carboxylic acid functional groups, resulting in limitations because of sensitivity to low pH and high concentrations of divalent metals. To address this limitation, various nucleophiles were reacted with the anhydride unit of well-defined styrene-maleic anhydride copolymers in order to assess the potential for a new lipid disk nanoparticle-forming species. These styrene-maleic anhydride copolymer derivatives (SMADs) can form styrene-maleic acid derivative lipid nanoparticles (SMADLPs) when they interact with lipid molecules. Polymers were synthesized, purified, characterized by Fourier-transform infrared spectroscopy, gel permeation chromatography, and nuclear magnetic resonance and then used to make disk-like SMADLPs, whose sizes were measured by dynamic light scattering (DLS). The SMADs form lipid nanoparticles, observable by DLS and transmission electron microscopy, and were used to reconstitute a spin-labeled transmembrane protein, KCNE1. The polymer method reported here is facile and scalable and results in functional and robust polymers capable of forming lipid nanodisks that are stable against a wide pH range and 100 mM magnesium.
Collapse
Affiliation(s)
- Kevin M Burridge
- Department of Chemistry and Biochemistry, Miami University of Oxford Ohio, Oxford, Ohio 45056, United States
| | - Benjamin D Harding
- Department of Chemistry and Biochemistry, Miami University of Oxford Ohio, Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University of Oxford Ohio, Oxford, Ohio 45056, United States.,Natural Science Division, Campbellsville University, Campbellsville, KY 42718, United States
| | - Madison M Kearns
- Department of Chemistry and Biochemistry, Miami University of Oxford Ohio, Oxford, Ohio 45056, United States
| | - Rebecca B Stowe
- Department of Chemistry and Biochemistry, Miami University of Oxford Ohio, Oxford, Ohio 45056, United States
| | - Madison T Dolan
- Department of Chemistry and Biochemistry, Miami University of Oxford Ohio, Oxford, Ohio 45056, United States
| | - Richard E Edelmann
- Center for Advanced Microscopy & Imaging, Miami University, Oxford, Ohio 45056, United States
| | - Carole Dabney-Smith
- Department of Chemistry and Biochemistry, Miami University of Oxford Ohio, Oxford, Ohio 45056, United States
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University of Oxford Ohio, Oxford, Ohio 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University of Oxford Ohio, Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University of Oxford Ohio, Oxford, Ohio 45056, United States
| |
Collapse
|
181
|
Rose-Sperling D, Tran MA, Lauth LM, Goretzki B, Hellmich UA. 19F NMR as a versatile tool to study membrane protein structure and dynamics. Biol Chem 2020; 400:1277-1288. [PMID: 31004560 DOI: 10.1515/hsz-2018-0473] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/17/2019] [Indexed: 12/25/2022]
Abstract
To elucidate the structures and dynamics of membrane proteins, highly advanced biophysical methods have been developed that often require significant resources, both for sample preparation and experimental analyses. For very complex systems, such as membrane transporters, ion channels or G-protein coupled receptors (GPCRs), the incorporation of a single reporter at a select site can significantly simplify the observables and the measurement/analysis requirements. Here we present examples using 19F nuclear magnetic resonance (NMR) spectroscopy as a powerful, yet relatively straightforward tool to study (membrane) protein structure, dynamics and ligand interactions. We summarize methods to incorporate 19F labels into proteins and discuss the type of information that can be readily obtained for membrane proteins already from relatively simple NMR spectra with a focus on GPCRs as the membrane protein family most extensively studied by this technique. In the future, these approaches may be of particular interest also for many proteins that undergo complex functional dynamics and/or contain unstructured regions and thus are not amenable to X-ray crystallography or cryo electron microscopy (cryoEM) studies.
Collapse
Affiliation(s)
- Dania Rose-Sperling
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany.,Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Mai Anh Tran
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany.,Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Luca M Lauth
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany
| | - Benedikt Goretzki
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany.,Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Ute A Hellmich
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany.,Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| |
Collapse
|
182
|
Hernando M, Orriss G, Perodeau J, Lei S, Ferens FG, Patel TR, Stetefeld J, Nieuwkoop AJ, O'Neil JD. Solution structure and oligomeric state of the E. coliglycerol facilitator. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183191. [PMID: 31953232 DOI: 10.1016/j.bbamem.2020.183191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/05/2019] [Accepted: 01/10/2020] [Indexed: 12/11/2022]
Abstract
Protein dynamics at atomic resolution can provide deep insights into the biological activities of proteins and enzymes but they can also make structure and dynamics studies challenging. Despite their well-known biological and pharmaceutical importance, integral membrane protein structure and dynamics studies lag behind those of water-soluble proteins mainly owing to solubility problems that result upon their removal from the membrane. Escherichia coli glycerol facilitator (GF) is a member of the aquaglyceroporin family that allows for the highly selective passive diffusion of its substrate glycerol across the inner membrane of the bacterium. Previous molecular dynamics simulations and hydrogen-deuterium exchange studies suggested that protein dynamics play an important role in the passage of glycerol through the protein pore. With the aim of studying GF dynamics by solution and solid-state nuclear magnetic resonance (NMR) spectroscopy we optimized the expression of isotope-labelled GF and explored various solubilizing agents including detergents, osmolytes, amphipols, random heteropolymers, lipid nanodiscs, bicelles and other buffer additives to optimize the solubility and polydispersity of the protein. The GF protein is most stable and soluble in lauryl maltose neopentyl glycol (LMNG), where it exists in a tetramer-octamer equilibrium. The solution structures of the GF tetramer and octamer were determined by negative-stain transmission electron microscopy (TEM), size-exclusion chromatography small-angle X-ray scattering (SEC-SAXS) and solid-state magic-angle spinning NMR spectroscopy. Although NMR sample preparation still needs optimization for full structure and dynamics studies, negative stain TEM and SEC-SAXS revealed low-resolution structures of the detergent-solubilized tetramer and octamer particles. The non-native octamer appears to form from the association of the cytoplasmic faces of two tetramers, the interaction apparently mediated by their disordered N- and C-termini. This information may be useful in future studies directed at reducing the heterogeneity and self-association of the protein.
Collapse
Affiliation(s)
- Mary Hernando
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - George Orriss
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Jacqueline Perodeau
- Department of Chemistry and Chemical Biology, Rutgers School of Arts and Sciences, 123 Bevier Rd., Piscataway, NJ 08854, USA
| | - Shixing Lei
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Fraser G Ferens
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Trushar R Patel
- Alberta RNA Research & Training Institute, Department of Chemistry & Biochemistry, Lethbridge University, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Andrew J Nieuwkoop
- Department of Chemistry and Chemical Biology, Rutgers School of Arts and Sciences, 123 Bevier Rd., Piscataway, NJ 08854, USA
| | - Joe D O'Neil
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
183
|
Karanji AK, Beasely M, Sharif D, Ranjbaran A, Legleiter J, Valentine SJ. Investigating the interactions of the first 17 amino acid residues of Huntingtin with lipid vesicles using mass spectrometry and molecular dynamics. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4470. [PMID: 31756784 PMCID: PMC7342490 DOI: 10.1002/jms.4470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/04/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
The first 17 amino acid residues of Huntingtin protein (Nt17 of htt) are thought to play an important role in the protein's function; Nt17 is one of two membrane binding domains in htt. In this study the binding ability of Nt17 peptide with vesicles comprised of two subclasses of phospholipids is studied using electrospray ionization - mass spectrometry (ESI-MS) and molecular dynamics (MD) simulations. Overall, the peptide is shown to have a greater propensity to interact with vesicles of phosphatidylcholine (PC) rather than phosphatidylethanolamine (PE) lipids. Mass spectra show an increase in lipid-bound peptide adducts where the ordering of the number of such specie is 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) > 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) > 1-palmitoyl-2-oleoyl-sn-glycero-3 phosphoethanolamine (POPE). MD simulations suggest that the compactness of the bilayer plays a role in governing peptide interactions. The peptide shows greater disruption of the DOPC bilayer order at the surface and interacts with the hydrophobic tails of lipid molecules via hydrophobic residues. Conversely, the POPE vesicle remains ordered and lipids display transient interactions with the peptide through the formation of hydrogen bonds with hydrophilic residues. The POPC system displays intermediate behavior with regard to the degree of peptide-membrane interaction. Finally, the simulations suggest a helix stabilizing effect resulting from the interactions between hydrophobic residues and the lipid tails of the DOPC bilayer.
Collapse
Affiliation(s)
- Ahmad Kiani Karanji
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26506
| | - Maryssa Beasely
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26506
| | - Daud Sharif
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26506
| | - Ali Ranjbaran
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown WV 26506
| | - Justin Legleiter
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26506
- Blanchette Rockefeller Neurosciences Institute, Robert C. Byrd Health Sciences Center, P.O. Box 9304, West Virginia University, Morgantown, West Virginia 26506, United States
- NanoSAFE, P.O. Box 6223, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Stephen J. Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26506
| |
Collapse
|
184
|
Westerfield JM, Barrera FN. Membrane receptor activation mechanisms and transmembrane peptide tools to elucidate them. J Biol Chem 2019; 295:1792-1814. [PMID: 31879273 DOI: 10.1074/jbc.rev119.009457] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Single-pass membrane receptors contain extracellular domains that respond to external stimuli and transmit information to intracellular domains through a single transmembrane (TM) α-helix. Because membrane receptors have various roles in homeostasis, signaling malfunctions of these receptors can cause disease. Despite their importance, there is still much to be understood mechanistically about how single-pass receptors are activated. In general, single-pass receptors respond to extracellular stimuli via alterations in their oligomeric state. The details of this process are still the focus of intense study, and several lines of evidence indicate that the TM domain (TMD) of the receptor plays a central role. We discuss three major mechanistic hypotheses for receptor activation: ligand-induced dimerization, ligand-induced rotation, and receptor clustering. Recent observations suggest that receptors can use a combination of these activation mechanisms and that technical limitations can bias interpretation. Short peptides derived from receptor TMDs, which can be identified by screening or rationally developed on the basis of the structure or sequence of their targets, have provided critical insights into receptor function. Here, we explore recent evidence that, depending on the target receptor, TMD peptides cannot only inhibit but also activate target receptors and can accommodate novel, bifunctional designs. Furthermore, we call for more sharing of negative results to inform the TMD peptide field, which is rapidly transforming into a suite of unique tools with the potential for future therapeutics.
Collapse
Affiliation(s)
- Justin M Westerfield
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996.
| |
Collapse
|
185
|
Swiecicki JM, Santana JT, Imperiali B. A Strategic Approach for Fluorescence Imaging of Membrane Proteins in a Native-like Environment. Cell Chem Biol 2019; 27:245-251.e3. [PMID: 31831268 DOI: 10.1016/j.chembiol.2019.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/22/2019] [Accepted: 11/14/2019] [Indexed: 01/06/2023]
Abstract
Biological membranes are complex barriers in which membrane proteins and thousands of lipidic species participate in structural and functional interactions. Developing a strategic approach that allows uniform labeling of membrane proteins while maintaining a lipidic environment that retains functional interactions is highly desirable for in vitro fluorescence studies. Herein, we focus on complementing current methods by integrating the powerful processes of unnatural amino acid mutagenesis, bioorthogonal labeling, and the detergent-free membrane protein solubilization based on the amphiphilic styrene-maleic acid (SMA) polymer. Importantly, the SMA polymer preserves a thermodynamically stable shell of phospholipids. The approach that we present is both rapid and generalizable providing a population of uniquely labeled membrane proteins in lipid nanoparticles for quantitative fluorescence-based studies.
Collapse
Affiliation(s)
- Jean-Marie Swiecicki
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jordan Tyler Santana
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
186
|
Darley E, Singh JKD, Surace NA, Wickham SFJ, Baker MAB. The Fusion of Lipid and DNA Nanotechnology. Genes (Basel) 2019; 10:E1001. [PMID: 31816934 PMCID: PMC6947036 DOI: 10.3390/genes10121001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 01/06/2023] Open
Abstract
Lipid membranes form the boundary of many biological compartments, including organelles and cells. Consisting of two leaflets of amphipathic molecules, the bilayer membrane forms an impermeable barrier to ions and small molecules. Controlled transport of molecules across lipid membranes is a fundamental biological process that is facilitated by a diverse range of membrane proteins, including ion-channels and pores. However, biological membranes and their associated proteins are challenging to experimentally characterize. These challenges have motivated recent advances in nanotechnology towards building and manipulating synthetic lipid systems. Liposomes-aqueous droplets enclosed by a bilayer membrane-can be synthesised in vitro and used as a synthetic model for the cell membrane. In DNA nanotechnology, DNA is used as programmable building material for self-assembling biocompatible nanostructures. DNA nanostructures can be functionalised with hydrophobic chemical modifications, which bind to or bridge lipid membranes. Here, we review approaches that combine techniques from lipid and DNA nanotechnology to engineer the topography, permeability, and surface interactions of membranes, and to direct the fusion and formation of liposomes. These approaches have been used to study the properties of membrane proteins, to build biosensors, and as a pathway towards assembling synthetic multicellular systems.
Collapse
Affiliation(s)
- Es Darley
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington 2052, Australia;
| | - Jasleen Kaur Daljit Singh
- School of Chemistry, University of Sydney, Camperdown 2006, Australia; (J.K.D.S.); (N.A.S.)
- School of Chemical and Biomolecular Engineering, University of Sydney, Camperdown 2006, Australia
- Sydney Nanoscience Institute, University of Sydney, Camperdown 2006, Australia
| | - Natalie A. Surace
- School of Chemistry, University of Sydney, Camperdown 2006, Australia; (J.K.D.S.); (N.A.S.)
| | - Shelley F. J. Wickham
- School of Chemistry, University of Sydney, Camperdown 2006, Australia; (J.K.D.S.); (N.A.S.)
- Sydney Nanoscience Institute, University of Sydney, Camperdown 2006, Australia
- School of Physics, University of Sydney, Camperdown 2006, Australia
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington 2052, Australia;
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
| |
Collapse
|
187
|
Li FY, Zhang ZF, Voss S, Wu YW, Zhao YF, Li YM, Chen YX. Inhibition of K-Ras4B-plasma membrane association with a membrane microdomain-targeting peptide. Chem Sci 2019; 11:826-832. [PMID: 34123058 PMCID: PMC8145430 DOI: 10.1039/c9sc04726c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The association of K-Ras4B protein with plasma membrane (PM) is required for its signaling activity. Thus, direct inhibition of K-Ras4B–PM interaction could be a potential anti-Ras therapeutic strategy. However, it remains challenging to modulate such protein–PM interaction. Based on Ras isoform-specific PM microdomain localization patterns, we have developed a potent and isoform-selective peptide inhibitor, Memrasin, for detachment of K-Ras4B from the PM. Memrasin is one of the first direct inhibitors of K-Ras4B–PM interaction, and consists of a membrane ld region-binding sequence derived from the C-terminal region of K-Ras4B and an endosome-escape enhancing motif that can aggregate on membrane. It forms peptide-enriched domains in the ld region, abrogates the tethering of K-Ras4B to the PM and accordingly impairs Ras signaling activity, thereby efficiently decreasing the viability of several human lung cancer cells in a dose-responsive and K-Ras dependent manner. Memrasin provides a useful tool for exploring the biological function of K-Ras4B on or off the PM and a potential starting point for further development into anti-Ras therapeutics. A membrane ld microdomain-targeting hybrid peptide displays potent inhibition effect toward K-Ras4B-plasma membrane interaction and impairs Ras signaling output.![]()
Collapse
Affiliation(s)
- Fang-Yi Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Zhen-Feng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences No. 1 West Beichen Road, Chaoyang District Beijing 100101 China
| | - Stephanie Voss
- Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Str. 15 44227 Dortmund Germany.,Max-Planck-Institute of Molecular Physiology Otto-Hahn-Str. 11 44227 Dortmund Germany
| | - Yao-Wen Wu
- Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Str. 15 44227 Dortmund Germany.,Max-Planck-Institute of Molecular Physiology Otto-Hahn-Str. 11 44227 Dortmund Germany.,Department of Chemistry, Umeå University 90187 Umeå Sweden
| | - Yu-Fen Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
188
|
Martens C, Shekhar M, Lau AM, Tajkhorshid E, Politis A. Integrating hydrogen-deuterium exchange mass spectrometry with molecular dynamics simulations to probe lipid-modulated conformational changes in membrane proteins. Nat Protoc 2019; 14:3183-3204. [PMID: 31605097 PMCID: PMC7058097 DOI: 10.1038/s41596-019-0219-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
Abstract
Biological membranes define the boundaries of cells and are composed primarily of phospholipids and membrane proteins. It has become increasingly evident that direct interactions of membrane proteins with their surrounding lipids play key roles in regulating both protein conformations and function. However, the exact nature and structural consequences of these interactions remain difficult to track at the molecular level. Here, we present a protocol that specifically addresses this challenge. First, hydrogen-deuterium exchange mass spectrometry (HDX-MS) of membrane proteins incorporated into nanodiscs of controlled lipid composition is used to obtain information on the lipid species that are involved in modulating the conformational changes in the membrane protein. Then molecular dynamics (MD) simulations in lipid bilayers are used to pinpoint likely lipid-protein interactions, which can be tested experimentally using HDX-MS. By bringing together the MD predictions with the conformational readouts from HDX-MS, we have uncovered key lipid-protein interactions implicated in stabilizing important functional conformations. This protocol can be applied to virtually any integral membrane protein amenable to classic biophysical studies and for which a near-atomic-resolution structure or homology model is available. This protocol takes ~4 d to complete, excluding the time for data analysis and MD simulations, which depends on the size of the protein under investigation.
Collapse
Affiliation(s)
- Chloe Martens
- Department of Chemistry, King's College London, London, UK
- Department of Chemistry, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Mrinal Shekhar
- Center for Biophysics and Quantitative Biology, Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andy M Lau
- Department of Chemistry, King's College London, London, UK
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | | |
Collapse
|
189
|
Li Y, Qin H, Ye M. An overview on enrichment methods for cell surface proteome profiling. J Sep Sci 2019; 43:292-312. [PMID: 31521063 DOI: 10.1002/jssc.201900700] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
Cell surface proteins are essential for many important biological processes, including cell-cell interactions, signal transduction, and molecular transportation. With the characteristics of low abundance, high hydrophobicity, and high heterogeneity, it is difficult to get a comprehensive view of cell surface proteome by direct analysis. Thus, it is important to selectively enrich the cell surface proteins before liquid chromatography with mass spectrometry analysis. In recent years, a variety of enrichment methods have been developed. Based on the separation mechanism, these methods could be mainly classified into three types. The first type is based on their difference in the physicochemical property, such as size, density, charge, and hydrophobicity. The second one is based on the bimolecular affinity interaction with lectin or antibody. And the third type is based on the chemical covalent coupling to free side groups of surface-exposed proteins or carbohydrate chains, such as primary amines, carboxyl groups, glycan side chains. In addition, metabolic labeling and enzymatic reaction-based methods have also been employed to selectively isolate cell surface proteins. In this review, we will provide a comprehensive overview of the enrichment methods for cell surface proteome profiling.
Collapse
Affiliation(s)
- Yanan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| |
Collapse
|
190
|
Kawatkar A, Schefter M, Hermansson NO, Snijder A, Dekker N, Brown DG, Lundbäck T, Zhang AX, Castaldi MP. CETSA beyond Soluble Targets: a Broad Application to Multipass Transmembrane Proteins. ACS Chem Biol 2019; 14:1913-1920. [PMID: 31329413 DOI: 10.1021/acschembio.9b00399] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Demonstration of target binding is a key requirement for understanding the mode of action of new therapeutics. The cellular thermal shift assay (CETSA) has been introduced as a powerful label-free method to assess target engagement in physiological environments. Here, we present the application of live-cell CETSA to different classes of integral multipass transmembrane proteins using three case studies, the first showing a large and robust stabilization of the outer mitochondrial five-pass transmembrane protein TSPO, the second being a modest stabilization of SERCA2, and the last describing an atypical compound-driven stabilization of the GPCR PAR2. Our data demonstrated that using modified protocols with detergent extraction after the heating step, CETSA can reliably be applied to several membrane proteins of different complexity. By showing examples with distinct CETSA behaviors, we aim to provide the scientific community with an overview of different scenarios to expect during CETSA experiments, especially for challenging, membrane bound targets.
Collapse
Affiliation(s)
- Aarti Kawatkar
- Discovery Sciences, BioPharmaceutical R&D, AstraZeneca, Boston, United States
| | - Michelle Schefter
- Discovery Sciences, BioPharmaceutical R&D, AstraZeneca, Boston, United States
| | - Nils-Olov Hermansson
- Discovery Sciences, BioPharmaceutical R&D, AstraZeneca, Pepparedsleden 1, Gothenburg, Sweden
| | - Arjan Snijder
- Discovery Sciences, BioPharmaceutical R&D, AstraZeneca, Pepparedsleden 1, Gothenburg, Sweden
| | - Niek Dekker
- Discovery Sciences, BioPharmaceutical R&D, AstraZeneca, Pepparedsleden 1, Gothenburg, Sweden
| | - Dean G. Brown
- Discovery Sciences, BioPharmaceutical R&D, AstraZeneca, Boston, United States
| | - Thomas Lundbäck
- Discovery Sciences, BioPharmaceutical R&D, AstraZeneca, Pepparedsleden 1, Gothenburg, Sweden
| | - Andrew X. Zhang
- Discovery Sciences, BioPharmaceutical R&D, AstraZeneca, Boston, United States
| | - M. Paola Castaldi
- Discovery Sciences, BioPharmaceutical R&D, AstraZeneca, Boston, United States
| |
Collapse
|
191
|
Dang AT, He W, Ivey DB, Coleman MA, Kuhl TL. Lipid and Protein Transfer between Nanolipoprotein Particles and Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12071-12078. [PMID: 31442053 PMCID: PMC7024587 DOI: 10.1021/acs.langmuir.9b01288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A nanolipoprotein particle (NLP) is a lipid bilayer disc stabilized by two amphipathic "scaffold" apolipoproteins. It has been most notably utilized as a tool for solubilizing a variety of membrane proteins while preserving structural and functional properties. Transfer of functional proteins from NLPs into model membrane systems such as supported lipid bilayers (SLBs) would enable new opportunities, for example, two-dimensional protein crystallization and studies on protein-protein interactions. This work used fluorescence microscopy and atomic force microscopy to investigate the interaction between NLPs and SLBs. When incubated with SLBs, NLPs were found to spontaneously deliver lipid and protein cargo. The impact of membrane composition on lipid exchange was explored, revealing a positive correlation between the magnitude of lipid transfer and concentration of defects in the target SLB. Incorporation of lipids capable of binding specifically to polyhistidine tags encoded into the apolipoproteins also boosted transfer of NLP cargo. Optimal conditions for lipid and protein delivery from NLPs to SLBs are proposed based on interaction mechanisms.
Collapse
Affiliation(s)
- Amanda T. Dang
- Department of Materials Science and Engineering, University of California, Davis CA 95616
| | - Wei He
- Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Daniela B. Ivey
- Department of Chemical Engineering, University of California, Davis CA 95616
| | | | - Tonya L. Kuhl
- Department of Chemical Engineering, University of California, Davis CA 95616
| |
Collapse
|
192
|
Rivera-Calzada A, Carroni M. Editorial: Technical Advances in Cryo-Electron Microscopy. Front Mol Biosci 2019; 6:72. [PMID: 31508425 PMCID: PMC6713907 DOI: 10.3389/fmolb.2019.00072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/07/2019] [Indexed: 11/13/2022] Open
|
193
|
Aloia A, Müllhaupt D, Chabbert CD, Eberhart T, Flückiger-Mangual S, Vukolic A, Eichhoff O, Irmisch A, Alexander LT, Scibona E, Frederick DT, Miao B, Tian T, Cheng C, Kwong LN, Wei Z, Sullivan RJ, Boland GM, Herlyn M, Flaherty KT, Zamboni N, Dummer R, Zhang G, Levesque MP, Krek W, Kovacs WJ. A Fatty Acid Oxidation-dependent Metabolic Shift Regulates the Adaptation of BRAF-mutated Melanoma to MAPK Inhibitors. Clin Cancer Res 2019; 25:6852-6867. [PMID: 31375515 DOI: 10.1158/1078-0432.ccr-19-0253] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/23/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Treatment of BRAFV600E -mutant melanomas with MAPK inhibitors (MAPKi) results in significant tumor regression, but acquired resistance is pervasive. To understand nonmutational mechanisms underlying the adaptation to MAPKi and to identify novel vulnerabilities of melanomas treated with MAPKi, we focused on the initial response phase during treatment with MAPKi. EXPERIMENTAL DESIGN By screening proteins expressed on the cell surface of melanoma cells, we identified the fatty acid transporter CD36 as the most consistently upregulated protein upon short-term treatment with MAPKi. We further investigated the effects of MAPKi on fatty acid metabolism using in vitro and in vivo models and analyzing patients' pre- and on-treatment tumor specimens. RESULTS Melanoma cells treated with MAPKi displayed increased levels of CD36 and of PPARα-mediated and carnitine palmitoyltransferase 1A (CPT1A)-dependent fatty acid oxidation (FAO). While CD36 is a useful marker of melanoma cells during adaptation and drug-tolerant phases, the upregulation of CD36 is not functionally involved in FAO changes that characterize MAPKi-treated cells. Increased FAO is required for BRAFV600E -mutant melanoma cells to survive under the MAPKi-induced metabolic stress prior to acquiring drug resistance. The upfront and concomitant inhibition of FAO, glycolysis, and MAPK synergistically inhibits tumor cell growth in vitro and in vivo. CONCLUSIONS Thus, we identified a clinically relevant therapeutic approach that has the potential to improve initial responses and to delay acquired drug resistance of BRAFV600E -mutant melanoma.
Collapse
Affiliation(s)
- Andrea Aloia
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| | - Daniela Müllhaupt
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Tanja Eberhart
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Ana Vukolic
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Ossia Eichhoff
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Anja Irmisch
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Leila T Alexander
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Ernesto Scibona
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | | | - Benchun Miao
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Tian Tian
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Chaoran Cheng
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Genevieve M Boland
- Department of Surgery, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Gao Zhang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | | | - Wilhelm Krek
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
194
|
Marks C, Deane CM. Increasing the accuracy of protein loop structure prediction with evolutionary constraints. Bioinformatics 2019; 35:2585-2592. [PMID: 30535347 DOI: 10.1093/bioinformatics/bty996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/28/2018] [Accepted: 12/07/2018] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Accurate prediction of loop structures remains challenging. This is especially true for long loops where the large conformational space and limited coverage of experimentally determined structures often leads to low accuracy. Co-evolutionary contact predictors, which provide information about the proximity of pairs of residues, have been used to improve whole-protein models generated through de novo techniques. Here we investigate whether these evolutionary constraints can enhance the prediction of long loop structures. RESULTS As a first stage, we assess the accuracy of predicted contacts that involve loop regions. We find that these are less accurate than contacts in general. We also observe that some incorrectly predicted contacts can be identified as they are never satisfied in any of our generated loop conformations. We examined two different strategies for incorporating contacts, and on a test set of long loops (10 residues or more), both approaches improve the accuracy of prediction. For a set of 135 loops, contacts were predicted and hence our methods were applicable in 97 cases. Both strategies result in an increase in the proportion of near-native decoys in the ensemble, leading to more accurate predictions and in some cases improving the root-mean-square deviation of the final model by more than 3 Å. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Claire Marks
- Department of Statistics, University of Oxford, Oxford, UK
| | | |
Collapse
|
195
|
Geesala R, Issuree PD, Maretzky T. Novel functions of inactive rhomboid proteins in immunity and disease. J Leukoc Biol 2019; 106:823-835. [PMID: 31369701 DOI: 10.1002/jlb.3vmr0219-069r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/03/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022] Open
Abstract
iRhoms are related to a family of intramembrane serine proteinases called rhomboids but lack proteolytic activity. In mammals, there are two iRhoms, iRhom1 and iRhom2, which have similar domain structures and overlapping specificities as well as distinctive functions. These catalytically inactive rhomboids are essential regulators for the maturation and trafficking of the disintegrin metalloprotease ADAM17 from the endoplasmic reticulum to the cell surface, and are required for the cleavage and release of a variety of membrane-associated proteins, including the IL-6 receptor, l-selectin, TNF, and EGFR ligands. iRhom2-dependent regulation of ADAM17 function has been recently implicated in the development and progression of several autoimmune diseases including rheumatoid arthritis, lupus nephritis, as well as hemophilic arthropathy. In this review, we discuss our current understanding of iRhom biology, their implications in autoimmune pathologies, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Ramasatyaveni Geesala
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| | - Priya D Issuree
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| | - Thorsten Maretzky
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
196
|
Zhang Y, Jin X, Liang J, Guo Y, Sun G, Zeng X, Yin H. Extracellular vesicles derived from ODN-stimulated macrophages transfer and activate Cdc42 in recipient cells and thereby increase cellular permissiveness to EV uptake. SCIENCE ADVANCES 2019; 5:eaav1564. [PMID: 31355328 PMCID: PMC6656539 DOI: 10.1126/sciadv.aav1564] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 06/17/2019] [Indexed: 05/29/2023]
Abstract
Endosomal Toll-like receptors (TLRs) mediate intracellular innate immunity via the recognition of DNA and RNA sequences. Recent work has reported a role for extracellular vesicles (EVs), known to transfer various nucleic acids, in uptake of TLR-activating molecules, raising speculation about possible roles of EVs in innate immune surveillance. Whether EV-mediated uptake is a general mechanism, however, was unresolved; and the molecular machinery that might be involved was unknown. We show that, when macrophages are stimulated with the TLR9 agonist CpG oligodeoxynucleotides (ODN), the secreted EVs transport ODN into naïve macrophages and induce the release of chemokine TNF-α. In addition, these EVs transfer Cdc42 into recipient cells, resulting in further enhancement of their cellular uptake. Transport of ODN and Cdc42 from TLR9-activated macrophages to naïve cells via EVs exerts synergetic effects in propagation of the intracellular immune response, suggesting a general mechanism of EV-mediated uptake of pathogen-associated molecular patterns.
Collapse
Affiliation(s)
- Ying Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100082, China
- Tsinghua University–Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Xue Jin
- Tsinghua University–Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100082, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiaqi Liang
- Tsinghua University–Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yilan Guo
- Tsinghua University–Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100082, China
| | - Gaoge Sun
- Tsinghua University–Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Xianfeng Zeng
- Tsinghua University–Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Hang Yin
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100082, China
- Tsinghua University–Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
197
|
Graefe CT, Punihaole D, Harris CM, Lynch MJ, Leighton R, Frontiera RR. Far-Field Super-Resolution Vibrational Spectroscopy. Anal Chem 2019; 91:8723-8731. [PMID: 31251563 DOI: 10.1021/acs.analchem.9b01731] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Potential label-free alternatives to super-resolution fluorescence techniques have been the focus of considerable research due to the challenges intrinsic in the reliance on fluorescent tags. In this Feature, we discuss efforts to develop super-resolution techniques based on vibrational spectroscopies and address possible sample applications as well as future potential resolution enhancements.
Collapse
Affiliation(s)
- Christian T Graefe
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - David Punihaole
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Celina M Harris
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Michael J Lynch
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Ryan Leighton
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Renee R Frontiera
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
198
|
Devanand T, Krishnaswamy S, Vemparala S. Interdigitation of Lipids Induced by Membrane–Active Proteins. J Membr Biol 2019; 252:331-342. [DOI: 10.1007/s00232-019-00072-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
|
199
|
The Structural and Functional Diversity of Intrinsically Disordered Regions in Transmembrane Proteins. J Membr Biol 2019; 252:273-292. [DOI: 10.1007/s00232-019-00069-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
|
200
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|