151
|
Torchetti EM, Navarro B, Di Serio F. A single polyprobe for detecting simultaneously eight pospiviroids infecting ornamentals and vegetables. J Virol Methods 2012; 186:141-6. [PMID: 22935607 DOI: 10.1016/j.jviromet.2012.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/20/2012] [Accepted: 08/17/2012] [Indexed: 10/27/2022]
Abstract
The spread of viroids belonging to the genus Pospiviroid (family Pospiviroidae), recorded recently in ornamentals and vegetables in several European countries, calls for fast, efficient and sensitive detection methods. Based on bioinformatics analyses of sequence identity among all pospiviroids, a digoxigenin-labeled polyprobe (POSPIprobe) was developed that, when tested by dot-blot and Northern-blot hybridization, detected Potato spindle tuber viroid, Citrus exocortis viroid, Columnea latent viroid, Mexican papita viroid, Tomato planta macho viroid, Tomato apical stunt viroid, Pepper chat fruit viroid and Chrysanthemum stunt viroid. The end-point detection limits of the POSPIprobe ranged from 5(-2) to 5(-4), and from 5(-1) to 5(-3) for nucleic acid preparations obtained by phenol extraction and silica-capture, respectively, similar to those of single probes. Based on sequence identity, the POSPIprobe is expected to detect also the two pospiviroid species not tested in this study (Tomato chlorotic dwarf viroid and Iresine viroid-1). Dot-blot assays with the POSPIprobe were validated by testing 68 samples from tomato, chrysanthemum and argyranthemum infected by different pospiviroids as revealed by RT-PCR, thus confirming the potential of this polyprobe for quarantine, certification and survey programs.
Collapse
Affiliation(s)
- Enza Maria Torchetti
- Istituto di Virologia Vegetale del CNR, UOS Bari, Via Amendola 165/A, 70126 Bari, Italy
| | | | | |
Collapse
|
152
|
Nohales MÁ, Flores R, Daròs JA. Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase. Proc Natl Acad Sci U S A 2012; 109:13805-10. [PMID: 22869737 PMCID: PMC3427106 DOI: 10.1073/pnas.1206187109] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viroids are a unique class of noncoding RNAs: composed of only a circular, single-stranded molecule of 246-401 nt, they manage to replicate, move, circumvent host defenses, and frequently induce disease in higher plants. Viroids replicate through an RNA-to-RNA rolling-circle mechanism consisting of transcription of oligomeric viroid RNA intermediates, cleavage to unit-length strands, and circularization. Though the host RNA polymerase II (redirected to accept RNA templates) mediates RNA synthesis and a type-III RNase presumably cleavage of Potato spindle tuber viroid (PSTVd) and closely related members of the family Pospiviroidae, the host enzyme catalyzing the final circularization step, has remained elusive. In this study we propose that PSTVd subverts host DNA ligase 1, converting it to an RNA ligase, for the final step. To support this hypothesis, we show that the tomato (Solanum lycopersicum L.) DNA ligase 1 specifically and efficiently catalyzes circularization of the genuine PSTVd monomeric linear replication intermediate opened at position G95-G96 and containing 5'-phosphomonoester and 3'-hydroxyl terminal groups. Moreover, we also show a decreased PSTVd accumulation and a reduced ratio of monomeric circular to total monomeric PSTVd forms in Nicotiana benthamiana Domin plants in which the endogenous DNA ligase 1 was silenced. Thus, in a remarkable example of parasitic strategy, viroids reprogram for their replication the template and substrate specificity of a DNA-dependent RNA polymerase and a DNA ligase to act as RNA-dependent RNA polymerase and RNA ligase, respectively.
Collapse
Affiliation(s)
- María-Ángeles Nohales
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| |
Collapse
|
153
|
Nohales MÁ, Molina-Serrano D, Flores R, Daròs JA. Involvement of the chloroplastic isoform of tRNA ligase in the replication of viroids belonging to the family Avsunviroidae. J Virol 2012; 86:8269-76. [PMID: 22623792 PMCID: PMC3421689 DOI: 10.1128/jvi.00629-12] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/15/2012] [Indexed: 11/20/2022] Open
Abstract
Avocado sunblotch viroid, peach latent mosaic viroid, chrysanthemum chlorotic mottle viroid, and eggplant latent viroid (ELVd), the four recognized members of the family Avsunviroidae, replicate through the symmetric pathway of an RNA-to-RNA rolling-circle mechanism in chloroplasts of infected cells. Viroid oligomeric transcripts of both polarities contain embedded hammerhead ribozymes that, during replication, mediate their self-cleavage to monomeric-length RNAs with 5'-hydroxyl and 2',3'-phosphodiester termini that are subsequently circularized. We report that a recombinant version of the chloroplastic isoform of the tRNA ligase from eggplant (Solanum melongena L.) efficiently catalyzes in vitro circularization of the plus [(+)] and minus [(-)] monomeric linear replication intermediates from the four Avsunviroidae. We also show that while this RNA ligase specifically recognizes the genuine monomeric linear (+) ELVd replication intermediate, it does not do so with five other monomeric linear (+) ELVd RNAs with their ends mapping at different sites along the molecule, despite containing the same 5'-hydroxyl and 2',3'-phosphodiester terminal groups. Moreover, experiments involving transient expression of a dimeric (+) ELVd transcript in Nicotiana benthamiana Domin plants preinoculated with a tobacco rattle virus-derived vector to induce silencing of the plant endogenous tRNA ligase show a significant reduction of ELVd circularization. In contrast, circularization of a viroid replicating in the nucleus occurring through a different pathway is unaffected. Together, these results support the conclusion that the chloroplastic isoform of the plant tRNA ligase is the host enzyme mediating circularization of both (+) and (-) monomeric linear intermediates during replication of the viroids belonging to the family Avsunviroidae.
Collapse
Affiliation(s)
- María-Ángeles Nohales
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| | | | | | | |
Collapse
|
154
|
Gómez G, Pallás V. A pathogenic non coding RNA that replicates and accumulates in chloroplasts traffics to this organelle through a nuclear-dependent step. PLANT SIGNALING & BEHAVIOR 2012; 7:882-4. [PMID: 22751312 PMCID: PMC3583980 DOI: 10.4161/psb.20463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Viroids belonging to the family Avsunviroidae are the only functional RNAs known to traffic selectively into chloroplasts. Subcellular targeting is a critical step in guaranteeing their access to the machineries involved in their replication. However, the host mechanisms exploited by these non coding pathogenic RNAs to be selectively imported into chloroplasts are poorly understood. Recently, we provide evidence supporting the idea that the Avsunviroidae have evolved to subvert a signaling mechanism between the nucleus and chloroplasts to regulate their differential compartmentalization into the chloroplast of infected cells. Here, we discuss our model and previous observations that provide biological relevance to our hypothesis.
Collapse
|
155
|
Hyman P, Abedon ST. Smaller fleas: viruses of microorganisms. SCIENTIFICA 2012; 2012:734023. [PMID: 24278736 PMCID: PMC3820453 DOI: 10.6064/2012/734023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 06/20/2012] [Indexed: 05/31/2023]
Abstract
Life forms can be roughly differentiated into those that are microscopic versus those that are not as well as those that are multicellular and those that, instead, are unicellular. Cellular organisms seem generally able to host viruses, and this propensity carries over to those that are both microscopic and less than truly multicellular. These viruses of microorganisms, or VoMs, in fact exist as the world's most abundant somewhat autonomous genetic entities and include the viruses of domain Bacteria (bacteriophages), the viruses of domain Archaea (archaeal viruses), the viruses of protists, the viruses of microscopic fungi such as yeasts (mycoviruses), and even the viruses of other viruses (satellite viruses). In this paper we provide an introduction to the concept of viruses of microorganisms, a.k.a., viruses of microbes. We provide broad discussion particularly of VoM diversity. VoM diversity currently spans, in total, at least three-dozen virus families. This is roughly ten families per category-bacterial, archaeal, fungal, and protist-with some virus families infecting more than one of these microorganism major taxa. Such estimations, however, will vary with further discovery and taxon assignment and also are dependent upon what forms of life one includes among microorganisms.
Collapse
Affiliation(s)
- Paul Hyman
- Department of Biology, Ashland University, 401 College Avenue, Ashland, OH 44805, USA
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, 1680 University Dr., Mansfield, OH 44906, USA
| |
Collapse
|
156
|
Flores R, Serra P, Minoia S, Di Serio F, Navarro B. Viroids: from genotype to phenotype just relying on RNA sequence and structural motifs. Front Microbiol 2012; 3:217. [PMID: 22719735 PMCID: PMC3376415 DOI: 10.3389/fmicb.2012.00217] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/28/2012] [Indexed: 11/13/2022] Open
Abstract
As a consequence of two unique physical properties, small size and circularity, viroid RNAs do not code for proteins and thus depend on RNA sequence/structural motifs for interacting with host proteins that mediate their invasion, replication, spread, and circumvention of defensive barriers. Viroid genomes fold up on themselves adopting collapsed secondary structures wherein stretches of nucleotides stabilized by Watson–Crick pairs are flanked by apparently unstructured loops. However, compelling data show that they are instead stabilized by alternative non-canonical pairs and that specific loops in the rod-like secondary structure, characteristic of Potato spindle tuber viroid and most other members of the family Pospiviroidae, are critical for replication and systemic trafficking. In contrast, rather than folding into a rod-like secondary structure, most members of the family Avsunviroidae adopt multibranched conformations occasionally stabilized by kissing-loop interactions critical for viroid viability in vivo. Besides these most stable secondary structures, viroid RNAs alternatively adopt during replication transient metastable conformations containing elements of local higher-order structure, prominent among which are the hammerhead ribozymes catalyzing a key replicative step in the family Avsunviroidae, and certain conserved hairpins that also mediate replication steps in the family Pospiviroidae. Therefore, different RNA structures – either global or local – determine different functions, thus highlighting the need for in-depth structural studies on viroid RNAs.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC) Valencia, Spain
| | | | | | | | | |
Collapse
|
157
|
Navarro B, Gisel A, Rodio ME, Delgado S, Flores R, Di Serio F. Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:991-1003. [PMID: 22332758 DOI: 10.1111/j.1365-313x.2012.04940.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
How viroids, tiny non-protein-coding RNAs (~250-400 nt), incite disease is unclear. One hypothesis is that viroid-derived small RNAs (vd-sRNAs; 21-24 nt) resulting from the host defensive response, via RNA silencing, may target for cleavage cell mRNAs and trigger a signal cascade, eventually leading to symptoms. Peach latent mosaic viroid (PLMVd), a chloroplast-replicating viroid, is particularly appropriate to tackle this question because it induces an albinism (peach calico, PC) strictly associated with variants containing a specific 12-14-nt hairpin insertion. By dissecting albino and green leaf sectors of Prunus persica (peach) seedlings inoculated with PLMVd natural and artificial variants, and cloning their progeny, we have established that the hairpin insertion sequence is involved in PC. Furthermore, using deep sequencing, semi-quantitative RT-PCR and RNA ligase-mediated rapid amplification of cDNA ends (RACE), we have determined that two PLMVd-sRNAs containing the PC-associated insertion (PC-sRNA8a and PC-sRNA8b) target for cleavage the mRNA encoding the chloroplastic heat-shock protein 90 (cHSP90), thus implicating RNA silencing in the modulation of host gene expression by a viroid. Chloroplast malformations previously reported in PC-expressing tissues are consistent with the downregulation of cHSP90, which participates in chloroplast biogenesis and plastid-to-nucleus signal transduction in Arabidopsis. Besides PC-sRNA8a and PC-sRNA8b, both deriving from the less-abundant PLMVd (-) strand, we have identified other PLMVd-sRNAs potentially targeting peach mRNAs. These results also suggest that sRNAs derived from other PLMVd regions may downregulate additional peach genes, ultimately resulting in other symptoms or in a more favorable host environment for viroid infection.
Collapse
Affiliation(s)
- Beatriz Navarro
- Istituto di Virologia Vegetale-CNR, Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
158
|
Gómez G, Pallas V. Studies on subcellular compartmentalization of plant pathogenic noncoding RNAs give new insights into the intracellular RNA-traffic mechanisms. PLANT PHYSIOLOGY 2012; 159:558-64. [PMID: 22474218 PMCID: PMC3375924 DOI: 10.1104/pp.112.195214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/02/2012] [Indexed: 05/22/2023]
MESH Headings
- 5' Untranslated Regions
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Chloroplasts/genetics
- Chloroplasts/metabolism
- Chromosomes, Plant/genetics
- Chromosomes, Plant/metabolism
- Cloning, Molecular
- Cytoplasm/genetics
- Cytoplasm/metabolism
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Physical Chromosome Mapping
- Plant Diseases/virology
- Plant Viruses/genetics
- Plant Viruses/metabolism
- Plant Viruses/pathogenicity
- RNA Stability
- RNA Transport
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Signal Transduction
- Nicotiana/genetics
- Nicotiana/metabolism
- Nicotiana/virology
Collapse
Affiliation(s)
- Gustavo Gómez
- Department of Molecular and Evolutionary Plant Virology, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Vicente Pallas
- Department of Molecular and Evolutionary Plant Virology, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| |
Collapse
|
159
|
Owens RA, Tech KB, Shao JY, Sano T, Baker CJ. Global analysis of tomato gene expression during Potato spindle tuber viroid infection reveals a complex array of changes affecting hormone signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:582-98. [PMID: 22217247 DOI: 10.1094/mpmi-09-11-0258] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Viroids like Potato spindle tuber viroid (PSTVd) are the smallest known agents of infectious disease-small, highly structured, circular RNA molecules that lack detectable messenger RNA activity, yet are able to replicate autonomously in susceptible plant species. To better understand the possible role of RNA silencing in disease induction, a combination of microarray analysis and large-scale RNA sequence analysis was used to compare changes in tomato gene expression and microRNA levels associated with PSTVd infection in two tomato cultivars plus a third transformed line expressing small PSTVd small interfering RNAs in the absence of viroid replication. Changes in messenger (m)RNA levels for the sensitive cultivar 'Rutgers' were extensive, involving more than half of the approximately 10,000 genes present on the array. Chloroplast biogenesis was down-regulated in both sensitive and tolerant cultivars, and effects on mRNAs encoding enzymes involved in the biosynthesis of gibberellin and other hormones were accompanied by numerous changes affecting their respective signaling pathways. In the dwarf cultivar 'MicroTom', a marked upregulation of genes involved in response to stress and other stimuli was observed only when exogenous brassinosteroid was applied to infected plants, thereby providing the first evidence for the involvement of brassinosteroid-mediated signaling in viroid disease induction.
Collapse
Affiliation(s)
- Robert A Owens
- Molecular Plant Pathology Laboratory (USDA/ARS), 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| | | | | | | | | |
Collapse
|
160
|
Ding B. Viroids: self-replicating, mobile, and fast-evolving noncoding regulatory RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:362-75. [PMID: 21956936 DOI: 10.1002/wrna.22] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Viroids are small, circular, and noncoding RNAs that infect plants. They replicate in the nucleus or chloroplast and then traffic from cell to cell and from organ to organ to establish systemic infection. Viroids achieve nearly all of the biological functions by directly interacting with host cellular factors. Viroid replication, together with replication of human hepatitis delta virus, demonstrates the biological novelty and significance of RNA-dependent RNA polymerase activities of DNA-dependent RNA polymerases. Viroid systemic infection uncovers a new biological principle--the role of three-dimensional RNA structural motifs mediating RNA trafficking between specific cells. Viroid diseases are virtually the consequences of host gene regulation by noncoding RNAs. A viroid RNA has the highest in vivo mutation rate among all known nucleic acid replicons. The host range of many viroids is expanding, essentially as a result of continuing and fast evolution of noncoding sequences/structures to gain new biological functions. Here, I discuss recent progress in these areas, emphasizing the broad significance of viroid research to the discovery of fundamental biological principles.
Collapse
Affiliation(s)
- Biao Ding
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Center for RNA Biology, and Molecular, Cellular and Developmental Biology Program, The Ohio State University, 207 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA.
| |
Collapse
|
161
|
Molina-Serrano D, Marqués J, Nohales MÁ, Flores R, Daròs JA. A chloroplastic RNA ligase activity analogous to the bacterial and archaeal 2´-5' RNA ligase. RNA Biol 2012; 9:326-33. [PMID: 22336712 DOI: 10.4161/rna.19218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bacteria and archaea contain a 2'-5' RNA ligase that seals in vitro 2',3'-cyclic phosphodiester and 5'-hydroxyl RNA termini, generating a 2',5'-phosphodiester bond. In our search for an RNA ligase able to circularize the monomeric linear replication intermediates of viroids belonging to the family Avsunviroidae, which replicate in the chloroplast, we have identified in spinach (Spinacea oleracea L.) chloroplasts a new RNA ligase activity whose properties resemble those of the bacterial and archaeal 2'-5' RNA ligase. The spinach chloroplastic RNA ligase recognizes the 5'-hydroxyl and 2',3'-cyclic phosphodiester termini of Avocado sunblotch viroid and Eggplant latent viroid RNAs produced by hammerhead-mediated self-cleavage, yielding circular products linked through an atypical, most likely 2',5'-phosphodiester, bond. The enzyme neither requires divalent cations as cofactors, nor NTPs as substrate. The reaction apparently reaches equilibrium at a low ratio between the final circular product and the linear initial substrate. Even if its involvement in viroid replication seems unlikely, the identification of a 2'-5' RNA ligase activity in higher plant chloroplasts, with properties very similar to an analogous enzyme widely distributed in bacterial and archaeal proteomes, is intriguing and suggests an important biological role so far unknown.
Collapse
Affiliation(s)
- Diego Molina-Serrano
- Instituto de Biología Molecular y Celular de Plantas-Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Avenida de los Naranjos, Valencia, Spain
| | | | | | | | | |
Collapse
|
162
|
Helper virus-independent transcription and multimerization of a satellite RNA associated with cucumber mosaic virus. J Virol 2012; 86:4823-32. [PMID: 22379080 DOI: 10.1128/jvi.00018-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Satellite RNAs are the smallest infectious agents whose replication is thought to be completely dependent on their helper virus (HV). Here we report that, when expressed autonomously in the absence of HV, a variant of satellite RNA (satRNA) associated with Cucumber mosaic virus strain Q (Q-satRNA) has a propensity to localize in the nucleus and be transcribed, generating genomic and antigenomic multimeric forms. The involvement of the nuclear phase of Q-satRNA was further confirmed by confocal microscopy employing in vivo RNA-tagging and double-stranded-RNA-labeling assays. Sequence analyses revealed that the Q-satRNA multimers formed in the absence of HV, compared to when HV is present, are distinguished by the addition of a template-independent heptanucleotide motif at the monomer junctions within the multimers. Collectively, the involvement of a nuclear phase in the replication cycle of Q-satRNA not only provides a valid explanation for its persistent survival in the absence of HV but also suggests a possible evolutionary relationship to viroids that replicate in the nucleus.
Collapse
|
163
|
Navarro B, Gisel A, Rodio ME, Delgado S, Flores R, Di Serio F. Viroids: how to infect a host and cause disease without encoding proteins. Biochimie 2012; 94:1474-80. [PMID: 22738729 DOI: 10.1016/j.biochi.2012.02.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
Despite being composed by a single-stranded, circular, non-protein-coding RNA of just 246-401 nucleotides (nt), viroids can incite in their host plants symptoms similar to those caused by DNA and RNA viruses, which have genomes at least 20-fold bigger and encode proteins. On the other hand, certain non-protein-coding plant satellite RNAs display structural similarities with viroids but for replication and transmission they need to parasitize specific helper viruses (modifying concomitantly the symptoms they induce). While phenotypic alterations accompanying infection by viruses may partly result from expressing the proteins they code for, how the non-protein-coding viroids (and satellite RNAs) cause disease remains a conundrum. Initial ideas on viroid pathogenesis focused on a direct interaction of the genomic RNA with host proteins resulting in their malfunction. With the advent of RNA silencing, it was alternatively proposed that symptoms could be produced by viroid-derived small RNAs (vd-sRNAs) -generated by the host defensive machinery- targeting specific host mRNA or DNA sequences for post-transcriptional or transcriptional gene silencing, respectively, a hypothesis that could also explain pathogenesis of non-protein-coding satellite RNAs. Evidence sustaining this view has been circumstantial, but recent data provide support for it in two cases: i) the yellow symptoms associated with a specific satellite RNA result from a 22-nt small RNA (derived from the 24-nt fragment of the satellite genome harboring the pathogenic determinant), which is complementary to a segment of the mRNA of the chlorophyll biosynthetic gene CHLI and targets it for cleavage by the RNA silencing machinery, and ii) two 21-nt vd-sRNAS containing the pathogenic determinant of the albino phenotype induced by a chloroplast-replicating viroid target for cleavage the mRNA coding for the chloroplastic heat-shock protein 90 via RNA silencing too. This evidence, which is compelling for the satellite RNA, does not exclude alternative mechanisms.
Collapse
Affiliation(s)
- Beatriz Navarro
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
164
|
Homology-independent discovery of replicating pathogenic circular RNAs by deep sequencing and a new computational algorithm. Proc Natl Acad Sci U S A 2012; 109:3938-43. [PMID: 22345560 DOI: 10.1073/pnas.1117815109] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A common challenge in pathogen discovery by deep sequencing approaches is to recognize viral or subviral pathogens in samples of diseased tissue that share no significant homology with a known pathogen. Here we report a homology-independent approach for discovering viroids, a distinct class of free circular RNA subviral pathogens that encode no protein and are known to infect plants only. Our approach involves analyzing the sequences of the total small RNAs of the infected plants obtained by deep sequencing with a unique computational algorithm, progressive filtering of overlapping small RNAs (PFOR). Viroid infection triggers production of viroid-derived overlapping siRNAs that cover the entire genome with high densities. PFOR retains viroid-specific siRNAs for genome assembly by progressively eliminating nonoverlapping small RNAs and those that overlap but cannot be assembled into a direct repeat RNA, which is synthesized from circular or multimeric repeated-sequence templates during viroid replication. We show that viroids from the two known families are readily identified and their full-length sequences assembled by PFOR from small RNAs sequenced from infected plants. PFOR analysis of a grapevine library further identified a viroid-like circular RNA 375 nt long that shared no significant sequence homology with known molecules and encoded active hammerhead ribozymes in RNAs of both plus and minus polarities, which presumably self-cleave to release monomer from multimeric replicative intermediates. A potential application of the homology-independent approach for viroid discovery in plant and animal species where RNA replication triggers the biogenesis of siRNAs is discussed.
Collapse
|
165
|
Di Serio F, De Stradis A, Delgado S, Flores R, Navarro B. Cytopathic Effects Incited by Viroid RNAs and Putative Underlying Mechanisms. FRONTIERS IN PLANT SCIENCE 2012; 3:288. [PMID: 23308076 PMCID: PMC3538276 DOI: 10.3389/fpls.2012.00288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/03/2012] [Indexed: 05/10/2023]
Abstract
Viroids are infectious agents identified only in plants so far. In contrast to viruses, the genome of viroids is composed of a tiny circular RNA (250-400 nt) not coding for proteins, but containing in its compact structure all the information needed for parasitizing the transcriptional and RNA trafficking machineries of their hosts. Viroid infections are frequently accompanied by cellular and developmental disorders that ultimately result in macroscopic symptoms. The molecular events linking the structural domains of viroid RNAs with cellular and macroscopic alterations remain largely unexplored, although significant progress has been lately achieved in one specific viroid-host combination, highlighting the ability of viroids to strongly interfere with their host RNA regulatory networks. Cytopathic effects induced by nuclear-replicating viroids, which were investigated since early studies on viroids, consist in irregular proliferations of cell membranes (paramural bodies or plasmalemmasomes), cell wall distortions, and chloroplast malformations. Different alternatives have been proposed regarding how these cytological alterations may influence the onset of macroscopic symptoms. Recently, the cytopathology and histopathology incited by a chloroplast-replicating viroid have been investigated in depth, with defects in chloroplast development having been related to specific molecular events that involve RNA silencing and impairment of chloroplast ribosomal RNA maturation. On this basis, a tentative model connecting specific cytopathologic alterations with symptoms has been put forward. Here, early and more recent studies addressing this issue will be reviewed and reassessed in the light of recent advances in the regulatory roles of small RNAs.
Collapse
Affiliation(s)
- Francesco Di Serio
- Istituto di Virologia Vegetale, UOS Bari, Consiglio Nazionale delle RicercheBari, Italy
- *Correspondence: Francesco Di Serio, Istituto di Virologia Vegetale, UOS Bari, Consiglio Nazionale delle Ricerche, Via Amendola 165/A, 70126 Bari, Italy. e-mail:
| | - Angelo De Stradis
- Istituto di Virologia Vegetale, UOS Bari, Consiglio Nazionale delle RicercheBari, Italy
| | - Sonia Delgado
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Beatriz Navarro
- Istituto di Virologia Vegetale, UOS Bari, Consiglio Nazionale delle RicercheBari, Italy
| |
Collapse
|
166
|
Hajizadeh M, Navarro B, Bashir NS, Torchetti EM, Di Serio F. Development and validation of a multiplex RT-PCR method for the simultaneous detection of five grapevine viroids. J Virol Methods 2011; 179:62-9. [PMID: 22004912 DOI: 10.1016/j.jviromet.2011.09.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/23/2011] [Accepted: 09/28/2011] [Indexed: 11/17/2022]
Abstract
Grapevine yellow speckle viroid 1 (GYSVd-1), Grapevine yellow speckle viroid 2 (GYSVd-2), Australian grapevine viroid (AGVd), Hop stunt viroid (HSVd) and Citrus exocortis viroid (CEVd) are the five viroids known to infect naturally grapevines. We developed a multiplex RT-PCR (mRT-PCR) method for the simultaneous detection of these five viroids and the amplification of the cDNA fragment of a host-derived mRNA (actin mRNA) as an internal positive control. Specific primers for each targeted viroid were designed by taking into account the sequence variability within and between the viroid species and tested in silico. The method was validated by testing 57 grapevine samples from Iran and showed reliability and high sensitivity. The RT-PCR-negative samples were further assayed by Northern-blot hybridization. For this, a method was developed for the simultaneous detection of three different grapevine viroids on a single hybridization membrane. In this survey, HSVd, GYSVd-1, AGVd, and GYSVd-2 were detected in 100, 95, 93, and 65% of the samples tested, respectively, confirming the wide distribution of these viroids in Iran. CEVd was not detected in any of the samples collected. Based on these results, HSVd is proposed as a positive internal control for mRT-PCR in the areas where this viroid is widespread, so as to reduce the time and costs of DNase treatment, which is required when a host-derived internal control is used. The mRT-PCR method has the potential to be used routinely for large-scale surveys and certification programs.
Collapse
Affiliation(s)
- Mohammad Hajizadeh
- Plant Protection Department, University of Tabriz, 29 Bahman, 51664 Tabriz, Iran
| | | | | | | | | |
Collapse
|
167
|
Lee JY, Wang X, Cui W, Sager R, Modla S, Czymmek K, Zybaliov B, van Wijk K, Zhang C, Lu H, Lakshmanan V. A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis. THE PLANT CELL 2011; 23:3353-73. [PMID: 21934146 PMCID: PMC3203451 DOI: 10.1105/tpc.111.087742] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plasmodesmata (PD) are thought to play a fundamental role in almost every aspect of plant life, including normal growth, physiology, and developmental responses. However, how specific signaling pathways integrate PD-mediated cell-to-cell communication is not well understood. Here, we present experimental evidence showing that the Arabidopsis thaliana plasmodesmata-located protein 5 (PDLP5; also known as HOPW1-1-INDUCED GENE1) mediates crosstalk between PD regulation and salicylic acid-dependent defense responses. PDLP5 was found to localize at the central region of PD channels and associate with PD pit fields, acting as an inhibitor to PD trafficking, potentially through its capacity to modulate PD callose deposition. As a regulator of PD, PDLP5 was also essential for conferring enhanced innate immunity against bacterial pathogens in a salicylic acid-dependent manner. Based on these findings, a model is proposed illustrating that the regulation of PD closure mediated by PDLP5 constitutes a crucial part of coordinated control of cell-to-cell communication and defense signaling.
Collapse
Affiliation(s)
- Jung-Youn Lee
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19711, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Hajeri S, Ramadugu C, Manjunath K, Ng J, Lee R, Vidalakis G. In vivo generated Citrus exocortis viroid progeny variants display a range of phenotypes with altered levels of replication, systemic accumulation and pathogenicity. Virology 2011; 417:400-9. [DOI: 10.1016/j.virol.2011.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/11/2011] [Accepted: 06/13/2011] [Indexed: 02/06/2023]
|
169
|
Diermann N, Matoušek J, Junge M, Riesner D, Steger G. Characterization of plant miRNAs and small RNAs derived from potato spindle tuber viroid (PSTVd) in infected tomato. Biol Chem 2011; 391:1379-90. [PMID: 21087089 DOI: 10.1515/bc.2010.148] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To defend against invading pathogens, plants possess RNA silencing mechanisms involving small RNAs (miRNAs, siRNAs). Also viroids - plant infectious, non-coding, unencapsidated RNA - cause the production of viroid-specific small RNAs (vsRNA), but viroids do escape the cytoplasmic silencing mechanism. Viroids with minor sequence variations can produce different symptoms in infected plants, suggesting an involvement of vsRNAs in symptom production. We analyzed by deep sequencing the spectrum of vsRNAs induced by the PSTVd strain AS1, which causes strong symptoms such as dwarfing and necrosis upon infection of tomato plants cv Rutgers. Indeed, vsRNAs found with highest frequency mapped to the pathogenicity-modulating domain of PSTVd, supporting an involvement of vsRNAs in symptom production. Furthermore, in PSTVd AS1-infected plants the accumulation of some endogenous miRNAs, which are involved in leaf development via regulation of transcription factors, is suppressed. The latter finding supports the hypothesis that a miRNA-dependent (mis)regulation of transcription factors causes the viroid symptoms.
Collapse
Affiliation(s)
- Natalie Diermann
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
170
|
Parisi O, Lepoivre P, Jijakli MH. Development of a Quick Quantitative Real-Time PCR for the In Vivo Detection and Quantification of Peach latent mosaic viroid. PLANT DISEASE 2011; 95:137-142. [PMID: 30743421 DOI: 10.1094/pdis-07-10-0512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Viroids are plant pathogens infecting a broad range of herbaceous and tree crops. Among them, the Peach latent mosaic viroid (PLMVd) infects mainly peach trees, causing a loss of production with no curative options. Detecting this viroid is thus important for certification procedures aiming to avoid the release of infected material into orchards. Presented here is a complete detection method based on reverse transcription (RT) followed by a quantitative real-time polymerase chain reaction (PCR). New primers were selected and optimal reaction conditions determined for routine application of the method. The technique is 105 times more sensitive than the endpoint RT-PCR used for PLMVd detection, and permits earlier detection of PLMVd in infected plants. The quick, low-cost extraction procedure used and the quality of the results obtained make this method suitable for routine testing.
Collapse
Affiliation(s)
- Olivier Parisi
- Université de Liège, Gembloux Agro-Bio Tech, Plant Pathology Unit, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Philippe Lepoivre
- Université de Liège, Gembloux Agro-Bio Tech, Plant Pathology Unit, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - M Haissam Jijakli
- Université de Liège, Gembloux Agro-Bio Tech, Plant Pathology Unit, Passage des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
171
|
Abstract
Viroids are the smallest known pathogenic agents. They are noncoding, single-stranded, closed-circular, "naked" RNAs, which replicate through RNA-RNA transcription. Viroids of the Avsunviroidae family possess a hammerhead ribozyme in their sequence, allowing self-cleavage during their replication. To date, viroids have only been detected in plant cells. Here, we investigate the replication of Avocado sunblotch viroid (ASBVd) of the Avsunviroidae family in a nonconventional host, the yeast Saccharomyces cerevisiae. We demonstrate that ASBVd RNA strands of both polarities are able to self-cleave and to replicate in a unicellular eukaryote cell. We show that the viroid monomeric RNA is destabilized by the nuclear 3' and the cytoplasmic 5' RNA degradation pathways. For the first time, our results provide evidence that viroids can replicate in other organisms than plants and that yeast contains all of the essential cellular elements for the replication of ASBVd.
Collapse
|
172
|
Takeda R, Petrov AI, Leontis NB, Ding B. A three-dimensional RNA motif in Potato spindle tuber viroid mediates trafficking from palisade mesophyll to spongy mesophyll in Nicotiana benthamiana. THE PLANT CELL 2011; 23:258-72. [PMID: 21258006 PMCID: PMC3051236 DOI: 10.1105/tpc.110.081414] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/13/2010] [Accepted: 12/25/2010] [Indexed: 05/04/2023]
Abstract
Cell-to-cell trafficking of RNA is an emerging biological principle that integrates systemic gene regulation, viral infection, antiviral response, and cell-to-cell communication. A key mechanistic question is how an RNA is specifically selected for trafficking from one type of cell into another type. Here, we report the identification of an RNA motif in Potato spindle tuber viroid (PSTVd) required for trafficking from palisade mesophyll to spongy mesophyll in Nicotiana benthamiana leaves. This motif, called loop 6, has the sequence 5'-CGA-3'...5'-GAC-3' flanked on both sides by cis Watson-Crick G/C and G/U wobble base pairs. We present a three-dimensional (3D) structural model of loop 6 that specifies all non-Watson-Crick base pair interactions, derived by isostericity-based sequence comparisons with 3D RNA motifs from the RNA x-ray crystal structure database. The model is supported by available chemical modification patterns, natural sequence conservation/variations in PSTVd isolates and related species, and functional characterization of all possible mutants for each of the loop 6 base pairs. Our findings and approaches have broad implications for studying the 3D RNA structural motifs mediating trafficking of diverse RNA species across specific cellular boundaries and for studying the structure-function relationships of RNA motifs in other biological processes.
Collapse
Affiliation(s)
- Ryuta Takeda
- Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, Ohio 43210
| | - Anton I. Petrov
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio 43403
| | - Neocles B. Leontis
- Department of Chemistry and Center for Biomolecular Sciences, Bowling Green State University, Bowling Green, Ohio 43403
| | - Biao Ding
- Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, Ohio 43210
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, Ohio State University, Columbus, Ohio 43210
- The Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
173
|
Eiras M, Nohales MA, Kitajima EW, Flores R, Daròs JA. Ribosomal protein L5 and transcription factor IIIA from Arabidopsis thaliana bind in vitro specifically Potato spindle tuber viroid RNA. Arch Virol 2010; 156:529-33. [PMID: 21153748 DOI: 10.1007/s00705-010-0867-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/15/2010] [Indexed: 11/25/2022]
Abstract
Potato spindle tuber viroid (PSTVd) contains an element of tertiary structure -loop E- also present in eukaryotic 5S rRNA. The ribosomal protein L5 and transcription factor IIIA (TFIIIA) from Arabidopsis thaliana bind 5S rRNA in vitro and in vivo, mediating different functions that include nucleocytoplasmic transport and transcription activation, respectively. We show that A. thaliana L5 and TFIIIA also bind PSTVd (+) RNA in vitro with the same affinity as they bind 5S rRNA, whereas the affinity for a chloroplastic viroid is significantly lower. These two proteins might participate in the synthesis and delivery of PSTVd RNA in vivo.
Collapse
Affiliation(s)
- Marcelo Eiras
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), Avenida de Naranjos, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
174
|
Eiras M. VIROIDES, PEQUENOS RNAS PATOGÊNICOS CAPAZES DE REPLICAÇÃO AUTÔNOMA: MODELOS MOLECULARES PARA O ESTUDO DE INTERAÇÕES PATÓGENO-HOSPEDEIRO E EVOLUÇÃO. ARQUIVOS DO INSTITUTO BIOLÓGICO 2010. [DOI: 10.1590/1808-1657v77p7512010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO Os viroides, apesar de serem constituídos por um pequeno RNA de fita simples, fortemente estruturado, circular, que não codifica proteínas, são capazes de se replicar de maneira autônoma em plantas superiores e causar doença interagindo diretamente com fatores do hospedeiro. Nesta revisão, serão apresentados e discutidos alguns dos mais recentes trabalhos envolvendo a interação de viroides com fatores do hospedeiro, incluindo aspectos relacionados à replicação, movimento e patogênese, além de suas características evolutivas. Nos últimos anos, alguns grupos de pesquisa têm se aventurado na busca por fatores do hospedeiro e mecanismos moleculares relacionados ao ciclo infeccioso dos viroides, tentando desvendar como esses pequenos RNAs interagem com o hospedeiro induzindo sintomas. Os viroides não codificam proteínas supressoras de silenciamento e, portanto, devem garantir sua existência utilizando estratégias baseadas em sua estrutura secundária, na compartimentalização em organelas, associação com fatores do hospedeiro e eficiência na replicação. A complexidade do ciclo infeccioso desses minúsculos RNAs indica que muitas interações desses patógenos com fatores do hospedeiro ainda devem ser identificadas.
Collapse
Affiliation(s)
- M. Eiras
- Instituto Biológico, Centro de Pesquisa e Desenvolvimento de Sanidade Vegetal, Brasil
| |
Collapse
|
175
|
Gómez G, Pallás V. Can the import of mRNA into chloroplasts be mediated by a secondary structure of a small non-coding RNA? PLANT SIGNALING & BEHAVIOR 2010; 5. [PMID: 21057208 PMCID: PMC3115271 DOI: 10.4161/psb.5.11.13711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The import of diverse nucleus-encoded proteins into chloroplasts is crucial for plant life. Although this crosstalk is mainly dependent on specific transit peptides, it has been recently reported that a non protein-coding RNA (ncRNA) based on a viroid-derived sequence (vdRNA) and acting as a 5´UTR-end mediates the functional import of GFP-mRNA into chloroplasts. This observation unearths a novel plant cell signaling pathway able to control the accumulation of the nuclear-encoded proteins in this organelle. The mechanisms regulating this chloroplast-specific localization remain yet unclear. To unravel the functional nature of this chloroplastic signal, here we dissect the 5´UTR-end responsible for the chloroplast targeting. A confocal microscopy analysis in Nicotiana benthamiana leaves of the transcripts expression carrying partial deletions of the 5`UTR-end indicate that an internal 110 nucleotides-length fragment is sufficient to mediate the traffic of functional GFP-mRNA into chloroplasts. However, the capability of this motif to act as a chloroplastic localization signal was enhanced when fused to either the 5` or the 3`region of the vd-5´UTR sequence. These findings suggest that the chloroplast-specific RNA targeting is dependent on a structural motif rather than on the RNA sequence.
Collapse
Affiliation(s)
- Gustavo Gómez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | | |
Collapse
|
176
|
Gómez G, Pallás V. Can the import of mRNA into chloroplasts be mediated by a secondary structure of a small non-coding RNA? PLANT SIGNALING & BEHAVIOR 2010; 5:1517-9. [PMID: 21057208 PMCID: PMC3115271 DOI: 10.1371/journal.pone.0012269] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 09/21/2010] [Indexed: 04/24/2023]
Abstract
The import of diverse nucleus-encoded proteins into chloroplasts is crucial for plant life. Although this crosstalk is mainly dependent on specific transit peptides, it has been recently reported that a non protein-coding RNA (ncRNA) based on a viroid-derived sequence (vdRNA) and acting as a 5´UTR-end mediates the functional import of GFP-mRNA into chloroplasts. This observation unearths a novel plant cell signaling pathway able to control the accumulation of the nuclear-encoded proteins in this organelle. The mechanisms regulating this chloroplast-specific localization remain yet unclear. To unravel the functional nature of this chloroplastic signal, here we dissect the 5´UTR-end responsible for the chloroplast targeting. A confocal microscopy analysis in Nicotiana benthamiana leaves of the transcripts expression carrying partial deletions of the 5`UTR-end indicate that an internal 110 nucleotides-length fragment is sufficient to mediate the traffic of functional GFP-mRNA into chloroplasts. However, the capability of this motif to act as a chloroplastic localization signal was enhanced when fused to either the 5` or the 3`region of the vd-5´UTR sequence. These findings suggest that the chloroplast-specific RNA targeting is dependent on a structural motif rather than on the RNA sequence.
Collapse
Affiliation(s)
- Gustavo Gómez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | | |
Collapse
|
177
|
Martinez G, Donaire L, Llave C, Pallas V, Gomez G. High-throughput sequencing of Hop stunt viroid-derived small RNAs from cucumber leaves and phloem. MOLECULAR PLANT PATHOLOGY 2010; 11:347-59. [PMID: 20447283 PMCID: PMC6640512 DOI: 10.1111/j.1364-3703.2009.00608.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Small RNA (sRNA)-guided processes, referred to as RNA silencing, regulate endogenous and exogenous gene expression. In plants and some animals, these processes are noncell autonomous and can operate beyond the site of initiation. Viroids, the smallest self-replicating plant pathogens known, are inducers, targets and evaders of this regulatory mechanism and, consequently, the presence of viroid-derived sRNAs (vd-sRNAs) is usually associated with viroid infection. However, the pathways involved in the biogenesis of vd-sRNAs are largely unknown. Here, we analyse, by high-throughput pyrosequencing, the profiling of the Hop stunt viroid (HSVd) vd-sRNAs recovered from the leaves and phloem of infected cucumber (Cucumis sativus) plants. HSVd vd-sRNAs are mostly 21 and 22 nucleotides in length and derived equally from plus and minus HSVd RNA strands. The widespread distribution of vd-sRNAs across the genome reveals that the totality of the HSVd RNA genome contributes to the formation of vd-sRNAs. Our sequence data suggest that viroid-derived double-stranded RNA functions as one of the main precursors of vd-sRNAs. Remarkably, phloem vd-sRNAs accumulated preferentially as 22-nucleotide species with a consensus sequence over-represented. This bias in size and sequence in the HSVd vd-sRNA population recovered from phloem exudate suggests the existence of a selective trafficking of vd-sRNAs to the phloem tissue of infected cucumber plants.
Collapse
Affiliation(s)
- German Martinez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, CPI, Edificio 8 E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
178
|
Vachev T, Ivanova D, Minkov I, Tsagris M, Gozmanova M. Trafficking of the Potato spindle tuber viroid between tomato and Orobanche ramosa. Virology 2010; 399:187-93. [DOI: 10.1016/j.virol.2009.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/11/2009] [Accepted: 12/12/2009] [Indexed: 10/19/2022]
|
179
|
Abstract
Cross-protection is a phenomenon in which infection of a plant with a mild virus or viroid strain protects it from disease resulting from a subsequent encounter with a severe strain of the same virus or viroid. In this chapter, we review the history of cross-protection with regard to the development of ideas concerning its likely mechanisms, including RNA silencing and exclusion, and its influence on the early development of genetically engineered virus resistance. We also examine examples of the practical use of cross-protection in averting crop losses due to viruses, as well as the use of satellite RNAs to ameliorate the impact of virus-induced diseases. We also discuss the potential of cross-protection to contribute in future to the maintenance of crop health in the face of emerging virus diseases and related threats to agricultural production.
Collapse
|
180
|
Di Serio F, Martínez de Alba AE, Navarro B, Gisel A, Flores R. RNA-dependent RNA polymerase 6 delays accumulation and precludes meristem invasion of a viroid that replicates in the nucleus. J Virol 2010; 84:2477-89. [PMID: 20015979 PMCID: PMC2820905 DOI: 10.1128/jvi.02336-09] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 12/08/2009] [Indexed: 12/23/2022] Open
Abstract
The detection of viroid-derived small RNAs (vd-sRNAs) similar to the small interfering RNAs (siRNAs, 21 to 24 nucleotides [nt]) in plants infected by nuclear-replicating members of the family Pospiviroidae (type species, Potato spindle tuber viroid [PSTVd]) indicates that they are inducers and targets of the RNA-silencing machinery of their hosts. RNA-dependent RNA polymerase 6 (RDR6) catalyzes an amplification circuit producing the double-stranded precursors of secondary siRNAs. Recently, the role of RDR6 in restricting systemic spread of certain RNA viruses and precluding their invasion of the apical growing tip has been documented using RDR6-silenced Nicotiana benthamiana (NbRDR6i) plants. Here we show that RDR6 is also engaged in regulating PSTVd levels: accumulation of PSTVd genomic RNA was increased in NbRDR6i plants with respect to the wild-type controls (Nbwt) early in infection, whereas this difference decreased or disappeared in later infection stages. Moreover, in situ hybridization revealed that RDR6 is involved in restricting PSTVd access in floral and vegetative meristems, thus providing firm genetic evidence for an antiviroid RNA silencing mechanism. RNA gel blot hybridization and deep sequencing showed in wt and RDR6i backgrounds that PSTVd sRNAs (i) accumulate to levels paralleling their genomic RNA, (ii) display similar patterns with prevailing 22- or 21-nt plus-strand species, and (iii) adopt strand-specific hot spot profiles along the genomic RNA. Therefore, the surveillance mechanism restraining entry of some RNA viruses into meristems likely also controls PSTVd access in N. benthamiana. Unexpectedly, deep sequencing also disclosed in NbRDR6i plants a profile of RDR6-derived siRNA dominated by 21-nt plus-strand species mapping within a narrow window of the hairpin RNA stem expressed transgenically for silencing RDR6, indicating that minus-strand siRNAs silencing the NbRDR6 mRNA represent a minor fraction of the total siRNA population.
Collapse
Affiliation(s)
- Francesco Di Serio
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus Universidad Politécnica, Avenida de los Naranjos, 46022 Valencia, Spain, Istituto di Tecnologie Biomediche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| | - Angel-Emilio Martínez de Alba
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus Universidad Politécnica, Avenida de los Naranjos, 46022 Valencia, Spain, Istituto di Tecnologie Biomediche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| | - Beatriz Navarro
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus Universidad Politécnica, Avenida de los Naranjos, 46022 Valencia, Spain, Istituto di Tecnologie Biomediche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| | - Andreas Gisel
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus Universidad Politécnica, Avenida de los Naranjos, 46022 Valencia, Spain, Istituto di Tecnologie Biomediche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| | - Ricardo Flores
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus Universidad Politécnica, Avenida de los Naranjos, 46022 Valencia, Spain, Istituto di Tecnologie Biomediche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
181
|
Wang Y, Ding B. Viroids: small probes for exploring the vast universe of RNA trafficking in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:28-39. [PMID: 20074138 DOI: 10.1111/j.1744-7909.2010.00900.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cell-to-cell and long-distance trafficking of RNA is a rapidly evolving frontier of integrative plant biology that broadly impacts studies on plant growth and development, spread of infectious agents and plant defense responses. The fundamental questions being pursued at the forefronts revolve around function, mechanism and evolution. In the present review, we will first use specific examples to illustrate the biological importance of cell-to-cell and long-distance trafficking of RNA. We then focus our discussion on research findings obtained using viroids that have advanced our understanding of the underlying mechanisms involved in RNA trafficking. We further use viroid examples to illustrate the great diversity of trafficking machinery evolved by plants, as well as the promise for new insights in the years ahead. Finally, we discuss the prospect of integrating findings from different experimental systems to achieve a systems-based understanding of RNA trafficking function, mechanism and evolution.
Collapse
Affiliation(s)
- Ying Wang
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
182
|
Kawaguchi-Ito Y, Li SF, Tagawa M, Araki H, Goshono M, Yamamoto S, Tanaka M, Narita M, Tanaka K, Liu SX, Shikata E, Sano T. Cultivated grapevines represent a symptomless reservoir for the transmission of hop stunt viroid to hop crops: 15 years of evolutionary analysis. PLoS One 2009; 4:e8386. [PMID: 20041179 PMCID: PMC2793511 DOI: 10.1371/journal.pone.0008386] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 11/19/2009] [Indexed: 11/22/2022] Open
Abstract
Hop stunt was a mysterious disorder that first emerged in the 1940s in commercial hops in Japan. To investigate the origin of this disorder, we infected hops with natural Hop stunt viroid (HpSVd) isolates derived from four host species (hop, grapevine, plum and citrus), which except for hop represent possible sources of the ancestral viroid. These plants were maintained for 15 years, then analyzed the HpSVd variants present. Here we show that the variant originally found in cultivated grapevines gave rise to various combinations of mutations at positions 25, 26, 54, 193, and 281. However, upon prolonged infection, these variants underwent convergent evolution resulting in a limited number of adapted mutants. Some of them showed nucleotide sequences identical to those currently responsible for hop stunt epidemics in commercial hops in Japan, China, and the United States. Therefore, these results indicate that we have successfully reproduced the original process by which a natural HpSVd variant naturally introduced into cultivated hops was able to mutate into the HpSVd variants that are currently present in commercial hops. Furthermore, and importantly, we have identified cultivated grapevines as a symptomless reservoir in which HSVd can evolve and be transmitted to hop crops to cause epidemics.
Collapse
Affiliation(s)
- Yoko Kawaguchi-Ito
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| | - Shi-Fang Li
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Masaya Tagawa
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Hiroyuki Araki
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Masafumi Goshono
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Shingen Yamamoto
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Mayumi Tanaka
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Masako Narita
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Kazuaki Tanaka
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Sheng-Xue Liu
- Key Oasis Eco-agriculture Laboratory of Xinjiang Production and Construction Group, Shihezi, People's Republic of China
| | - Eishiro Shikata
- Graduate School of Agriculture, Japan Academy, Hokkaido University, Sapporo, Japan
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
183
|
Di Serio F, Gisel A, Navarro B, Delgado S, Martínez de Alba ÁE, Donvito G, Flores R. Deep sequencing of the small RNAs derived from two symptomatic variants of a chloroplastic viroid: implications for their genesis and for pathogenesis. PLoS One 2009; 4:e7539. [PMID: 19847296 PMCID: PMC2760764 DOI: 10.1371/journal.pone.0007539] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 09/25/2009] [Indexed: 01/03/2023] Open
Abstract
Northern-blot hybridization and low-scale sequencing have revealed that plants infected by viroids, non-protein-coding RNA replicons, accumulate 21–24 nt viroid-derived small RNAs (vd-sRNAs) similar to the small interfering RNAs, the hallmarks of RNA silencing. These results strongly support that viroids are elicitors and targets of the RNA silencing machinery of their hosts. Low-scale sequencing, however, retrieves partial datasets and may lead to biased interpretations. To overcome this restraint we have examined by deep sequencing (Solexa-Illumina) and computational approaches the vd-sRNAs accumulating in GF-305 peach seedlings infected by two molecular variants of Peach latent mosaic viroid (PLMVd) inciting peach calico (albinism) and peach mosaic. Our results show in both samples multiple PLMVd-sRNAs, with prevalent 21-nt (+) and (−) RNAs presenting a biased distribution of their 5′ nucleotide, and adopting a hotspot profile along the genomic (+) and (−) RNAs. Dicer-like 4 and 2 (DCL4 and DCL2, respectively), which act hierarchically in antiviral defense, likely also mediate the genesis of the 21- and 22-nt PLMVd-sRNAs. More specifically, because PLMVd replicates in plastids wherein RNA silencing has not been reported, DCL4 and DCL2 should dice the PLMVd genomic RNAs during their cytoplasmic movement or the PLMVd-dsRNAs generated by a cytoplasmic RNA-dependent RNA polymerase (RDR), like RDR6, acting in concert with DCL4 processing. Furthermore, given that vd-sRNAs derived from the 12–14-nt insertion containing the pathogenicity determinant of peach calico are underrepresented, it is unlikely that symptoms may result from the accidental targeting of host mRNAs by vd-sRNAs from this determinant guiding the RNA silencing machinery.
Collapse
Affiliation(s)
| | - Andreas Gisel
- Istituto di Tecnologie Biomediche del CNR, Bari, Italy
| | | | - Sonia Delgado
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Valencia, Spain
| | | | | | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Valencia, Spain
- * E-mail:
| |
Collapse
|
184
|
Viroid replication: rolling-circles, enzymes and ribozymes. Viruses 2009; 1:317-34. [PMID: 21994552 PMCID: PMC3185496 DOI: 10.3390/v1020317] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/09/2009] [Accepted: 09/09/2009] [Indexed: 12/05/2022] Open
Abstract
Viroids, due to their small size and lack of protein-coding capacity, must rely essentially on their hosts for replication. Intriguingly, viroids have evolved the ability to replicate in two cellular organella, the nucleus (family Pospiviroidae) and the chloroplast (family Avsunviroidae). Viroid replication proceeds through an RNA-based rolling-circle mechanism with three steps that, with some variations, operate in both polarity strands: i) synthesis of longer-than-unit strands catalyzed by either the nuclear RNA polymerase II or a nuclear-encoded chloroplastic RNA polymerase, in both instances redirected to transcribe RNA templates, ii) cleavage to unit-length, which in the family Avsunviroidae is mediated by hammerhead ribozymes embedded in both polarity strands, while in the family Pospiviroidae the oligomeric RNAs provide the proper conformation but not the catalytic activity, and iii) circularization. The host RNA polymerases, most likely assisted by additional host proteins, start transcription from specific sites, thus implying the existence of viroid promoters. Cleavage and ligation in the family Pospiviroidae is probably catalyzed by an RNase III-like enzyme and an RNA ligase able to circularize the resulting 5′ and 3′ termini. Whether a chloroplastic RNA ligase mediates circularization in the family Avsunviroidae, or this reaction is autocatalytic, remains an open issue.
Collapse
|
185
|
Takeda R, Ding B. Viroid intercellular trafficking: RNA motifs, cellular factors and broad impacts. Viruses 2009; 1:210-21. [PMID: 21994546 PMCID: PMC3185492 DOI: 10.3390/v1020210] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 12/30/2022] Open
Abstract
Viroids are noncoding RNAs that infect plants. In order to establish systemic infection, these RNAs must traffic from an initially infected host cell into neighboring cells and ultimately throughout a whole plant. Recent studies have identified structural motifs in a viroid that are required for trafficking, enabling further studies on the mechanisms of their function. Some cellular proteins interact with viroids in vivo and may play a role in viroid trafficking, which can now be directly tested by using a virus-induced gene silencing system that functions efficiently in plant species from which these factors were identified. This review discusses these recent advances, unanswered questions and the use of viroid infection as an highly productive model to elucidate mechanisms of RNA trafficking that is of broad biological significance.
Collapse
Affiliation(s)
- Ryuta Takeda
- Department of Plant Cellular and Molecular Biology and Molecular, Cellular and Developmental Biology Program, Ohio State University, 207 Rightmire Hall, 1060 Carmack Road, Columbus, 43210 USA; E-Mail:
| | | |
Collapse
|
186
|
Martínez F, Marqués J, Salvador ML, Daròs JA. Mutational analysis of eggplant latent viroid RNA processing in Chlamydomonas reinhardtii chloroplast. J Gen Virol 2009; 90:3057-3065. [PMID: 19675190 DOI: 10.1099/vir.0.013425-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viroids of the family Avsunviroidae, such as eggplant latent viroid (ELVd), contain hammerhead ribozymes and replicate in the chloroplasts of the host plant through an RNA-based symmetrical rolling-circle mechanism in which oligomeric RNAs of both polarity are processed to monomeric linear RNAs (by cleavage) and to monomeric circular RNAs (by ligation). Using an experimental system consisting of transplastomic lines of the alga Chlamydomonas reinhardtii, a mutational analysis of sequence and structural elements in the ELVd molecule that are involved in transcript processing in vivo in a chloroplastic context was carried out. A collection of six insertion and three deletion ELVd mutants was created and expressed in C. reinhardtii chloroplast. All mutants cleaved efficiently except for the control with an insertion inside the hammerhead ribozyme domain, supporting the prediction that this domain is necessary and sufficient to mediate transcript cleavage in vivo. However, two deletion mutants that cleaved efficiently showed ligation defects, indicating that during RNA circularization, other parts of the molecule are involved in addition to the hammerhead ribozyme domain. This is probably a quasi double-stranded structure present in the central part of the molecule which contains the ligation site in an internal loop. However, the mutations prevented the viroid from infecting its natural host, eggplant, indicating that they affected other essential functions in ELVd infectious cycle. The insertion in the terminal loop of the right upper hairpin of ELVd did not have this effect; it was tolerated and partially maintained in the progeny.
Collapse
Affiliation(s)
- Fernando Martínez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Avenida de los Naranjos, 46022 Valencia, Spain
| | - Jorge Marqués
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Avenida de los Naranjos, 46022 Valencia, Spain
| | - María L Salvador
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Avenida Dr Moliner, 46100 Burjassot, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Avenida de los Naranjos, 46022 Valencia, Spain
| |
Collapse
|