151
|
Ikeda Y, Fukuoka SI. Phosphatidic acid production, required for cholecystokinin octapeptide-stimulated amylase secretion from pancreatic acinar AR42J cells, is regulated by a wortmannin-sensitive process. Biochem Biophys Res Commun 2003; 306:943-7. [PMID: 12821133 DOI: 10.1016/s0006-291x(03)01078-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To investigate the role of phospholipids in exocytotic secretory events, we utilized rat pancreatic acinar AR42J cells that secreted amylase in response to cholecystokinin octapeptide (CCK-8). Wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K), was found to inhibit the secretion in a dose-dependent manner. When changes in cell membrane phospholipids were investigated before and after CCK-8 stimulation using [32P]orthophosphoric acid-labeled AR42J cells, we observed a rapid increase in phosphatidic acid (PtdOH) levels right after stimulation, which was not observed in non-stimulated cells. The increase, however, was suppressed by wortmannin pre-treatment, which also inhibited amylase secretion. Changes in other major phospholipids were not significant. These results indicate that CCK-8 induces amylase secretion through PI3K-regulated production of PtdOH in cell membranes.
Collapse
Affiliation(s)
- Yoshiki Ikeda
- Department of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | |
Collapse
|
152
|
Pace A, García-Marin LJ, Tapia JA, Bragado MJ, Jensen RT. Phosphospecific site tyrosine phosphorylation of p125FAK and proline-rich kinase 2 is differentially regulated by cholecystokinin receptor type A activation in pancreatic acini. J Biol Chem 2003; 278:19008-16. [PMID: 12651850 DOI: 10.1074/jbc.m300832200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The focal adhesion kinases, p125FAK and proline-rich kinase 2 (PYK2), are involved in numerous processes as adhesion, cytoskeletal changes, and growth. These kinases have 45% homology and share three tyrosine phosphorylation (TyrP) sites. Little information exists on the ability of stimulants to cause TyrP of each kinase site and the cellular mechanism involved. We explored the ability of the neurotransmitter/hormone, CCK, to stimulate TyrP at each site. In rat pancreatic acini, CCK stimulated TyrP at each site in both kinases. TyrP was rapid except for pY397FAK. The magnitude of TyrP differed with the different FAK and PYK2 sites. The CCK dose-response curve for TyrP for sites in each kinase was similar. CCK-JMV, an agonist of the high affinity receptor state and antagonist of the low affinity receptor state, was less efficacious than CCK at each FAK/PYK2 site and inhibited CCK maximal stimulation. Thapsigargin decreased CCK-stimulated TyrP of pY402PYK2 and pY925FAK but not the other sites. GF109203X reduced TyrP of only the PYK2 sites, pY402 and pY580. GF109203X with thapsigargin decreased TyrP of pY402PYK2 and the three FAK sites more than either inhibitor alone. Basal TyrP of pY397FAK was greater than other sites. These results demonstrate that CCK stimulates tyrosine phosphorylation of each of the three homologous phosphorylation sites in FAK and PYK2. However, CCK-stimulated TyrP at these sites differs in kinetics, magnitude, and participation of the high/low affinity receptor states and by protein kinase C and [Ca2+]i. These results show that phosphorylation of these different sites is differentially regulated and involves different intracellular mechanisms in the same cell.
Collapse
Affiliation(s)
- Andrea Pace
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
153
|
Lee KK, Uhm DY, Park MK. Low affinity cholecystokinin receptor inhibits cholecystokinin- and bombesin-induced oscillations of cytosolic Ca2+ concentration. FEBS Lett 2003; 538:134-8. [PMID: 12633866 DOI: 10.1016/s0014-5793(03)00165-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have investigated whether low affinity cholecystokinin (CCK) receptors suppress agonist-induced rises of cytosolic free Ca(2+) concentration ([Ca(2+)]c) in pancreatic acinar cells by using properties of caffeine. A high concentration of caffeine (20 mM) completely blocked inositol 1,4,5-trisphosphate (InsP(3))-induced [Ca(2+)]c rises but spared the InsP(3)-independent long-lasting [Ca(2+)]c oscillations. In the presence of 20 mM caffeine, only high concentrations of CCK, but not bombesin or JMV-180, suppressed the caffeine-resistant CCK or bombesin-induced [Ca(2+)]c oscillations, indicating that low affinity CCK receptors inhibit agonist-induced [Ca(2+)]c oscillations. It could be one of the underlying mechanisms by which low affinity CCK receptors suppress secretion in pancreatic acinar cells.
Collapse
Affiliation(s)
- Kwang Kook Lee
- Department of Physiology, Sungkyunkwan University School of Medicine, 300 Chunchundong, Janganku, Suwon 440-746, South Korea
| | | | | |
Collapse
|
154
|
Thévenod F, Roussa E, Benos DJ, Fuller CM. Relationship between a HCO3- -permeable conductance and a CLCA protein from rat pancreatic zymogen granules. Biochem Biophys Res Commun 2003; 300:546-54. [PMID: 12504118 DOI: 10.1016/s0006-291x(02)02871-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ca(2+)-induced enzyme secretion in the exocrine pancreas is not completely understood. We have proposed that Ca(2+)-induced enzyme secretion in the exocrine pancreas involves activation of ion conductances in the membrane of zymogen granules (ZG). Here we have identified a Ca(2+)-activated anion conductance in rat pancreatic ZG membranes (ZGM). Ca(2+) (2.5-50 microM) increased the conductance for I(-), NO(3)(-), Br(-), or HCO(3)(-), but not for Cl(-), as determined by the rate of valinomycin-induced osmotic lysis of ZG suspended in isotonic K(+)-salts. 4,4'-Diisothiocyanatodihydrostilbene-2,2'-disulfonate (100 microM) or 25 microM dithiothreitol strongly inhibited Ca(2+)-dependent lysis. The permeability sequence, Ca(2+) dependence, and inhibitor sensitivity of ZG anion conductance are reminiscent of a family of epithelial Ca(2+)-activated anion channels (CLCA). CLCA expression was confirmed by RT-PCR with rat pancreatic mRNA and mouse CLCA1 primers. A PCR product (580bp) exhibited 81%, 77%, and 57% amino acid similarity to the three mouse isoforms mCLCA-1, -2, and -3 (mgob-5), respectively. Antibodies against bovine tracheal CLCA1 showed CLCA expression in ZGM by immunoblotting, immunoperoxidase light microscopy, and immunogold labeling. These findings suggest that a CLCA-related protein could account for the Ca(2+)-activated HCO(3)(-) conductance of rat pancreatic ZGM and contribute to hormone-stimulated enzyme secretion.
Collapse
Affiliation(s)
- Frank Thévenod
- Department of Physiology and Pathophysiology, Medical Faculty, University of Witten/Herdecke, Stockumer Strasse 12, Thyssenhaus, D-58448 Witten, Germany.
| | | | | | | |
Collapse
|
155
|
Tapia JA, Bragado MJ, García-Marín LJ, Jensen RT. Cholecystokinin-stimulated tyrosine phosphorylation of PKC-delta in pancreatic acinar cells is regulated bidirectionally by PKC activation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1593:99-113. [PMID: 12431789 DOI: 10.1016/s0167-4889(02)00346-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PKC-delta is important in cell growth, apoptosis, and secretion. Recent studies show its stability is regulated by tyrosine phosphorylation (TYR-P), which can be stimulated by a number of agents. Many of these stimuli also activate phospholipase C (PLC) cascades and little is known about the relationship between these cascades and PKC-delta TYR-P. Cholecystokinin (CCK) stimulates PKCs but it is unknown if it causes PKC-delta TYR-P and if so, the relationship between these cascades is unknown. In rat pancreatic acini, CCK-8 stimulated rapid PKC-delta TYR-P by activation of the low affinity CCK(A) receptor state. TPA had a similar effect. BAPTA did not decrease CCK-stimulated PKC-delta TYR-P but instead, increased it. A23187 did not stimulate PKC-delta TYR-P. Wortmannin and LY 294002 did not alter CCK-stimulated PKC-delta TYR-P. GF 109203X, at low concentrations, increased PKC-delta TYR-P stimulated by CCK or TPA and at higher concentrations, inhibited it. The cPKC inhibitors, Gö 6976 and safingol, caused a similar increase in TPA- and CCK-stimulated PKC-delta TYR-P. These results demonstrate that CCK(A) receptor activation causes PKC-delta TYR-P through activation of only one of its two receptor affinity states. This PKC-delta TYR-P is not directly influenced by changes in [Ca(2+)](i); however, the resultant activation of PKC-alpha has an inhibitory effect. Therefore, CCK activates both stimulatory and inhibitory PKC cascades regulating PKC-delta TYR-P and, hence, likely plays an important role in regulating PKC-delta degradation and cellular abundance.
Collapse
Affiliation(s)
- Jose A Tapia
- Departamento de Fisiología, Universidad de Extremadura, Cáceres 10071, Spain
| | | | | | | |
Collapse
|
156
|
Williams JA, Sans MD, Tashiro M, Schäfer C, Bragado MJ, Dabrowski A. Cholecystokinin activates a variety of intracellular signal transduction mechanisms in rodent pancreatic acinar cells. PHARMACOLOGY & TOXICOLOGY 2002; 91:297-303. [PMID: 12688372 DOI: 10.1034/j.1600-0773.2002.910606.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cholecystokinin (CCK) acting through its G protein-coupled receptor is now known to activate a variety of intracellular signaling mechanisms and thereby regulate a complex array of cellular functions in pancreatic acinar cells. The best studied mechanism is the coupling through heterotrimeric G proteins of the Gq family to activate a phospholipase C leading to an increase in inositol trisphosphate and release of intracellular Ca2+. This pathway along with protein kinase C activation in response to the increase in diacylglycerol stimulates the secretion of digestive enzymes by the process of exocytosis. CCK also activates signaling pathways in acini more related to other processes. The three mitogen activated protein kinase cascades leading to ERKs, JNKs and p38 MAPK are all activated by CCK. CCK activates the ERK cascade by PKC activation of Raf which in turn activates MEK and ERKs. JNKs are activated by a distinct mechanism which requires higher concentrations of CCK. Both ERKs and JNKs are presumed to regulate gene expression. CCK activation of p38 MAPK also plays a role in regulating the actin cytoskeleton through phosphorylation of the small heat shock protein HSP27. The PI3K-PKB-mTOR pathway is activated by CCK and plays a major role in regulating protein synthesis at the translational level. This includes both activation of p70 S6K leading to phosphorylation of ribosomal protein S6 and the phosphorylation of the binding protein for initiation factor 4E leading to formation of the mRNA cap binding complex. Other signaling pathways activated by CCK receptors include NF-kappaB and a variety of tyrosine kinases. Further work is needed to understand how CCK receptors activate most of the above pathways and to better understand the biological events regulated by these diverse signaling pathways.
Collapse
Affiliation(s)
- John A Williams
- Department of Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
157
|
Abstract
Gustatory perception arises not only from intracellular transduction cascades within taste receptor cells but also from cell-to-cell communication among the cells of the taste bud. This study presents novel data demonstrating that the brain-gut peptide cholecystokinin (CCK) is expressed in subsets of taste receptor cells, and that it may play a signaling role unknown previously within the taste bud. Immunocytochemistry revealed positively stained subsets of cells within taste buds throughout the oral cavity. These cells typically displayed round nuclei with full processes, similar to those classified as light cells. Peptide expression was verified using nested PCR on template cDNA derived from mRNA extracted from isolated posterior taste buds. Multiple physiological actions of cholecystokinin on taste receptor cells were observed. An outward potassium current, recorded with the patch-clamp technique, was inhibited by exogenous application of sulfated cholecystokinin octapeptide in a reversible and concentration-dependent manner. Pharmacological analysis suggests that this inhibition is mediated by CCK-A receptors and involves PKC phosphorylation. An inwardly rectifying potassium current, typically invariant to stimulation, was also inhibited by cholecystokinin. Additionally, exogenous cholecystokinin was effective in elevating intracellular calcium as measured by ratiometric techniques with the calcium-sensitive dye fura-2. Pharmacology similarly demonstrated that these calcium elevations were mediated by CCK-A receptors and were dependent on intracellular calcium stores. Collectively, these observations suggest a newly discovered role for peptide neuromodulation in the peripheral processing of taste information.
Collapse
|
158
|
Shelden EA, Weinberg JM, Sorenson DR, Edwards CA, Pollock FM. Site-specific alteration of actin assembly visualized in living renal epithelial cells during ATP depletion. J Am Soc Nephrol 2002; 13:2667-80. [PMID: 12397036 DOI: 10.1097/01.asn.0000033353.21502.31] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Disruption of normal actin organization in renal tubular epithelial cells is an important element of renal injury induced by ischemia. Studies of fixed cells indicate that the cytoskeleton is disrupted by both ischemia and ATP depletion in a site-specific manner. However, few studies have examined these effects in living cells, and the relationship between the time course of ATP reduction and alteration of the cytoskeleton remains unclear. Here, time-lapse video images of cultured renal epithelial cells expressing an enhanced green fluorescent protein (EGFP)-actin fusion protein were obtained, and the kinetics of fluorescence actin distribution before and during ATP depletion is quantified and compared with measured ATP levels. This study found that assembly of lamellar actin is inhibited rapidly as cellular ATP levels are reduced, whereas disruption of actin in stress fibers is more gradual and persistent. Actin associated with focal adhesions is largely resistant to ATP depletion in these experiments, and, consistent with previous studies, particulate aggregates of actin were formed within the cytoplasm of ATP-depleted cells. Most surprisingly, time-lapse imaging of EGFP-actin distribution, quantitative fluorescence imaging of phalloidin-stained cells, and ultrastructural studies indicate that assembly of actin filaments occurs at sites of epithelial cell-cell attachment in ATP-depleted cells. This assembly is initiated early during ATP depletion and continues after ATP levels are maximally reduced. Assembly of actin at sites of cell-cell attachment may be an element of the pathology of injury induced by ischemia, or alternatively, could reflect the function of a protective mechanism. These studies directly demonstrate site-specific alteration of actin assembly in living epithelial cells during ATP depletion. The results also reveal that actin reorganization continues after ATP levels are maximally decreased and that epithelial cell-cell attachments are sites of actin assembly in ATP-depleted cells.
Collapse
Affiliation(s)
- Eric A Shelden
- Department of Cell and Developmental Biology, Division of Nephrology, University of Michigan Medical School, Ann Arbor 48109, USA.
| | | | | | | | | |
Collapse
|
159
|
Thévenod F. Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins. Am J Physiol Cell Physiol 2002; 283:C651-72. [PMID: 12176723 DOI: 10.1152/ajpcell.00600.2001] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulated secretion in exocrine and neuroendocrine cells occurs through exocytosis of secretory granules and the subsequent release of stored small molecules and proteins. The introduction of biophysical techniques with high temporal and spatial resolution, and the identification of Ca(2+)-dependent and -independent "docking" and "fusion" proteins, has greatly enhanced our understanding of exocytosis. The cloning of families of ion channel proteins, including intracellular ion channels, has also revived interest in the role of secretory granule ion channels in exocytotic secretion. Thus secretory granules of pancreatic acinar cell express a ClC-2 Cl(-) channel, a HCO-permeable member of the CLCA Ca(2+)-dependent anion channel family, and a KCNQ1 K(+) channel. Evidence suggests that these channels may facilitate the release of digestive enzymes and/or prevent exocytosed granules from collapsing during "kiss and run" recycling. In pancreatic beta-cells, a granular ClC-3 Cl(-) channel provides a shunt pathway for a vacuolar-type H(+)-ATPase. Acidification "primes" the granules for Ca(2+)-dependent exocytosis and release of insulin. In summary, secretory granules are equipped with specific sets of ion channels, which modulate regulated exocytosis and the release of macromolecules. These channels could represent excellent targets for therapeutic interventions to control exocytotic secretion in relevant diseases, such as pancreatitis, cystic fibrosis, or diabetes mellitus.
Collapse
Affiliation(s)
- Frank Thévenod
- School of Biological Sciences, University of Manchester, United Kingdom.
| |
Collapse
|
160
|
Abstract
Continuing progress is being made in understanding the regulation of pancreatic acinar cell function by receptor-activated intracellular signaling mechanisms. Knowledge of how ligands interact at the molecular level with their receptors and activate heterotrimeric G proteins is increasing. In addition to inositol trisphosphate, intracellular messengers include cyclic ADP ribose, nicotinic acid adenine dinucleotide phosphate, arachidonic acid, and diacylglycerol. Ca signaling involves the interaction of inositol trisphosphate, cyclic ADP ribose, and nicotinic acid adenine dinucleotide phosphate with distinct subcellular Ca stores. Ca signals ultimately induce exocytosis of zymogen granules and identification of the proteins involved on the granule and plasma membrane, and understanding of their roles is continuing. Other receptor-activated signaling pathways primarily regulate nonsecretory events. Considerable progress has been made in understanding how the mammalian target of rapamycin pathway regulates protein synthesis through translation factors and ribosomal proteins. Other pathways in acinar cells include the mitogen-activated protein kinases, the tyrosine kinases, and the transforming growth factor-beta-Smad pathways.
Collapse
Affiliation(s)
- John A Williams
- Department of Physiology, University of Michigan, Ann Arbor, Michigan 48109-0622, USA.
| |
Collapse
|
161
|
Kiehne K, Herzig KH, Fölsch UR. Differential activation of p42ERK2 and p125FAK by cholecystokinin and bombesin in the secretion and proliferation of the pancreatic amphicrine cell line AR42J. Pancreatology 2002; 2:46-53. [PMID: 12120007 DOI: 10.1159/000049448] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AR42J rat pancreatic acinar carcinoma cells have retained the potential to secrete digestive enzymes in addition to their ability to proliferate upon stimulation with regulatory peptides. We investigated the involvement of p42ERK2 and p125FAK (extracellular signal-regulated protein kinase and focal adhesion protein kinase, respectively) by cholecystokinin and bombesin stimulation with regard to secretion and mitogenesis. METHODS The p42ERK2 activity was measured by kinase assay and the activation of p125FAK by antiphosphotyrosine Western blot analysis of p125FAK immunoprecipitates. The expression of both kinases was determined by Western blot analysis, the amylase secretion by colorimetry, and the DNA synthesis by [3H]thymidine incorporation. RESULTS p42ERK2 and p125FAK were activated by cholecystokinin and bombesin with maximum stimulation at concentrations above 10 nM. Bombesin was a weaker activator of p42ERK2 and p125FAK, causing only half of the kinase activity induced by stimulation with cholecystokinin. PD98059 was shown to inhibit p42ERK2, while tyrphostin 25 blocked p125FAK tyrosine phosphorylation. Preincubation of AR42J cells with PD98059 or tyrphostin 25 was without influence on cholecystokinin- or bombesin-stimulated secretion in normal or 72-hour dexamethasone-pretreated cells. In contrast, inhibition of both protein kinases leads to reduced cholecystokinin-stimulated [3H]thymidine incorporation rates. CONCLUSIONS Cholecystokinin induced proliferation of AR42J cells by strong activation of p42ERK2 and p125FAK. Bombesin failed to stimulate DNA synthesis, probably due to its reduced potency to stimulate these kinases. Both protein kinases are not implicated in the process of enzyme secretion.
Collapse
Affiliation(s)
- Karlheinz Kiehne
- 1st Department of Internal Medicine, Christian Albrechts University, Schittenhelmstrasse 12, D-24105 Kiel, Germany.
| | | | | |
Collapse
|
162
|
Gukovskaya AS, Gukovsky I, Jung Y, Mouria M, Pandol SJ. Cholecystokinin induces caspase activation and mitochondrial dysfunction in pancreatic acinar cells. Roles in cell injury processes of pancreatitis. J Biol Chem 2002; 277:22595-604. [PMID: 11964411 DOI: 10.1074/jbc.m202929200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Apoptosis and necrosis are critical parameters of pancreatitis, the mechanisms of which remain unknown. Many characteristics of pancreatitis can be studied in vitro in pancreatic acini treated with high doses of cholecystokinin (CCK). We show here that CCK stimulates apoptosis and death signaling pathways in rat pancreatic acinar cells, including caspase activation, cytochrome c release, and mitochondrial depolarization. The mitochondrial dysfunction is mediated by upstream caspases (possibly caspase-8) and, in turn, leads to activation of caspase-3. CCK causes mitochondrial alterations through both permeability transition pore-dependent (cytochrome c release) and permeability transition pore-independent (mitochondrial depolarization) mechanisms. Caspase activation and mitochondrial alterations also occur in untreated pancreatic acinar cells; however, the underlying mechanisms are different. In particular, caspases protect untreated acinar cells from mitochondrial damage. We found that caspases not only mediate apoptosis but also regulate other parameters of CCK-induced acinar cell injury that are characteristic of pancreatitis; in particular, caspases negatively regulate necrosis and trypsin activation in acinar cells. The results suggest that the observed signaling pathways regulate parenchymal cell injury and death in CCK-induced pancreatitis. Protection against necrosis and trypsin activation by caspases can explain why the severity of pancreatitis in experimental models correlates inversely with the extent of apoptosis.
Collapse
Affiliation(s)
- Anna S Gukovskaya
- Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System and the UCLA, Los Angeles, California 90073, USA.
| | | | | | | | | |
Collapse
|
163
|
Chen X, Edwards JAS, Logsdon CD, Ernst SA, Williams JA. Dominant negative Rab3D inhibits amylase release from mouse pancreatic acini. J Biol Chem 2002; 277:18002-9. [PMID: 11875077 DOI: 10.1074/jbc.m201248200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab3 proteins are believed to play an important role in regulated exocytosis and previous work has demonstrated the presence of Rab3D on pancreatic zymogen granules. To further understand the function of Rab3D in acinar cell exocytosis, adenoviral constructs were prepared encoding hemagglutinin-tagged wild type Rab3D and three mutant forms, N135I and T36N (both deficient in guanine nucleotide binding) and Q81L (deficient in GTP hydrolysis), which also expressed enhanced green fluorescent protein driven by a separate promoter. When isolated mouse pancreatic acini were cultured with 5 x 10(6) pfu/ml adenovirus, nearly 100% of acini were infected as visualized by expression of green fluorescent protein. Cultured acini showed a biphasic dose-response to cholecystokinin (CCK); basal amylase secretion was 1.8 +/- 0.3%/30 min, peak release was 7.3 +/- 0.2%/30 min at 30 pm CCK and reduced secretion was observed at higher CCK concentrations. Control beta-galactosidase virus infection had no effect on either basal or CCK-induced secretion in the titer range from 0.5 to 10 x 10(6) pfu/ml. While the expression of Rab3D and Rab3D Q81L had no effect on amylase secretion, Rab3D N135I and T36N functioned as dominant negative mutants and inhibited CCK-induced amylase release by 40-50% at all points on the CCK dose-response curve from 3 to 300 pm. Inhibition was stronger during the first 5 min (71 +/- 5%) than over 30 min (36%+/-5%). Similar inhibition was found using other agonists including bombesin, carbachol, and cAMP. Localization of adenoviral expressed Rab protein showed wild type Rab3D localized to zymogen granules. The two dominant negative mutants did not localize to granules and were primarily in the basolateral region of the cell. Since both dominant negative Rab3D mutants had no effect on intracellular calcium increase induced by CCK, it is unlikely that they acted at receptors or transmembrane signaling. These results suggest that Rab3D plays an important role in regulating the terminal steps of acinar exocytosis and that this effect is greatest on the early phase of amylase release.
Collapse
Affiliation(s)
- Xuequn Chen
- Department of Physiology, The University of Michigan, Ann Arbor, Michigan 48109-0622, USA.
| | | | | | | | | |
Collapse
|
164
|
Kiehne K, Herzig KH, Otte JM, Fölsch UR. Low-affinity CCK-1 receptors inhibit bombesin-stimulated secretion in rat pancreatic acini--implication of the actin cytoskeleton. REGULATORY PEPTIDES 2002; 105:131-7. [PMID: 11891013 DOI: 10.1016/s0167-0115(02)00015-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
EXPERIMENTAL OBJECTIVES Stimulation of low-affinity CCK-1 receptors on pancreatic acini leads to inhibition of enzyme secretion. We studied signal transduction mechanisms to identify potential causes for the reduced secretion. RESULTS Co-stimulation experiments with CCK, CCK-JMV-180, and bombesin revealed an inhibition of bombesin-stimulated enzyme secretion by low-affinity CCK-1 receptors. Binding of 125I-gastrin-releasing peptide (the mammalian analogue of bombesin) to acini after CCK preincubation was not altered. After a short preincubation of acini with high concentrations of CCK, intracellular calcium remained responsive to bombesin. In contrast to bombesin or CCK at concentrations of 10(-10) M or lower, high concentrations of CCK caused a strong activation of p125 focal adhesion kinase (p125(FAK)) and a marked reorganisation of the actin cytoskeleton. CONCLUSIONS Inhibitory mechanisms triggered by low-affinity CCK-1 receptors interrupt enzyme secretion from pancreatic acini at late stages in the signal transduction cascades since bombesin receptor binding and early signalling events remained intact after CCK preincubation. A reorganisation of the actin cytoskeleton is suggested to be the mechanism by which low-affinity CCK-1 receptors actively interrupt enzyme secretion stimulated by other receptors.
Collapse
Affiliation(s)
- Karlheinz Kiehne
- I. Medizinische Universitätsklinik, Christian-Albrechts Universität Kiel, Schittenhelmstr. 12, 24105, Kiel, Germany.
| | | | | | | |
Collapse
|
165
|
Voronina S, Longbottom R, Sutton R, Petersen OH, Tepikin A. Bile acids induce calcium signals in mouse pancreatic acinar cells: implications for bile-induced pancreatic pathology. J Physiol 2002; 540:49-55. [PMID: 11927668 PMCID: PMC2290202 DOI: 10.1113/jphysiol.2002.017525] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The effect of the natural bile acid, taurolithocholic acid 3-sulfate (TLC-S), on calcium signalling in pancreatic acinar cells has been investigated. TLC-S induced global calcium oscillations and extended calcium transients as well as calcium signals localised to the secretory granule (apical) region of acinar cells. These calcium signals could still be triggered by TLC-S in a calcium-free external solution. TLC-S-induced calcium signals were not inhibited by atropine, but were abolished by caffeine or by depletion of calcium stores, due to prolonged application of ACh. Global calcium signals, produced by TLC-S application, displayed vectorial apical-to-basal polarity. The signals originated in the apical part and were then propagated to the basal region. Other natural bile acids, taurocholate (TC) and taurodeoxycholate (TDC), were also able to produce local and global calcium oscillations (but at higher concentrations than TLC-S). Bile, which can enter pancreas by reflux, has been implicated in the pathology of acute pancreatitis. The calcium releasing properties of bile acids suggest that calcium toxicity could be an important contributing factor in the bile acid-induced cellular damage.
Collapse
Affiliation(s)
- Svetlana Voronina
- The Physiological Laboratory, The University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | | | | | | | | |
Collapse
|
166
|
Abstract
The pancreatic acinar cell synthesises a variety of digestive enzymes. In transit through the secretory pathway, these enzymes are separated from constitutively secreted proteins and packaged into zymogen granules, which are localised in the apical pole of the cell. Stimulation of the cell by secretagogues such as acetylcholine and cholecystokinin, acting at receptors on the basolateral plasma membrane, causes the generation of an intracellular Ca(2+) signal. This signal, in turn, triggers the fusion of the zymogen granules with the apical plasma membrane, leading to the polarised secretion of the enzymes. This review describes recent advances in our understanding of the control of secretion in the acinar cell. In particular, we discuss the mechanisms underlying the sorting of digestive enzymes into the zymogen granules, the molecular components of the exocytotic "membrane fusion machine," the generation and propagation of the Ca(2+ signal and the development of new techniques for the visualisation of single granule fusion events.
Collapse
Affiliation(s)
- Barbara Wäsle
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1QJ, Cambridge, UK
| | | |
Collapse
|
167
|
Campos-Toimil M, Bagrij T, Edwardson JM, Thomas P. Two modes of secretion in pancreatic acinar cells: involvement of phosphatidylinositol 3-kinase and regulation by capacitative Ca(2+) entry. Curr Biol 2002; 12:211-5. [PMID: 11839273 DOI: 10.1016/s0960-9822(01)00661-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In pancreatic acinar cells, muscarinic agonists stimulate both the release of Ca(2+) from intracellular stores and the influx of extracellular Ca(2+). The part played by Ca(2+) released from intracellular stores in the regulation of secretion is well established; however, the role of Ca(2+) influx in exocytosis is unclear. Recently, we observed that supramaximal concentrations of acetylcholine (>or=10 microM) elicited an additional component of exocytosis despite reducing Ca(2+) influx. In the present study, we found that supramaximal exocytosis was substantially inhibited (approximately 70%) by wortmannin (100 nM), an inhibitor of phosphatidylinositol 3-kinase. In contrast, exocytosis evoked by a lower concentration of acetylcholine (1 microM) was potentiated (approximately 45%) by wortmannin. Exocytosis stimulated by 1 microM acetylcholine in the absence of extracellular Ca(2+) was, like supramaximal exocytosis, inhibited by wortmannin. The switch to a wortmannin-inhibitable form of exocytosis depended upon a reduction in Ca(2+) entry through store-operated Ca(2+) channels, as the switch in exocytotic mode could also be brought about by the selective blockade of these channels by Gd(3+) (2 microM), but not by inhibition of noncapacitative Ca(2+) entry by SB203580 (10 microM). We conclude that supramaximal doses of acetylcholine lead to a switch in the mode of zymogen granule exocytosis by inhibiting store-dependent Ca(2+) influx.
Collapse
Affiliation(s)
- Manuel Campos-Toimil
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom
| | | | | | | |
Collapse
|
168
|
Pin CL, Rukstalis JM, Johnson C, Konieczny SF. The bHLH transcription factor Mist1 is required to maintain exocrine pancreas cell organization and acinar cell identity. J Cell Biol 2001; 155:519-30. [PMID: 11696558 PMCID: PMC2198859 DOI: 10.1083/jcb.200105060] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pancreas is a complex organ that consists of separate endocrine and exocrine cell compartments. Although great strides have been made in identifying regulatory factors responsible for endocrine pancreas formation, the molecular regulatory circuits that control exocrine pancreas properties are just beginning to be elucidated. In an effort to identify genes involved in exocrine pancreas function, we have examined Mist1, a basic helix-loop-helix transcription factor expressed in pancreatic acinar cells. Mist1-null (Mist1(KO)) mice exhibit extensive disorganization of exocrine tissue and intracellular enzyme activation. The exocrine disorganization is accompanied by increases in p8, RegI/PSP, and PAP1/RegIII gene expression, mimicking the molecular changes observed in pancreatic injury. By 12 m, Mist1(KO) mice develop lesions that contain cells coexpressing acinar and duct cell markers. Analysis of the factors involved in cholecystokinin (CCK) signaling reveal inappropriate levels of the CCK receptor A and the inositol-1,4,5-trisphosphate receptor 3, suggesting that a functional defect exists in the regulated exocytosis pathway of Mist1(KO) mice. Based on these observations, we propose that Mist1(KO) mice represent a new genetic model for chronic pancreas injury and that the Mist1 protein serves as a key regulator of acinar cell function, stability, and identity.
Collapse
Affiliation(s)
- C L Pin
- Department of Paediatrics, Child Health Research Institute, University of Western Ontario, London, Ontario N6C 2V5, Canada
| | | | | | | |
Collapse
|
169
|
Abstract
Gastrin, produced by G cells in the gastric antrum, has been identified as the circulating hormone responsible for stimulation of acid secretion from the parietal cell. Gastrin also acts as a potent cell-growth factor that has been implicated in a variety of normal and abnormal biological processes including maintenance of the gastric mucosa, proliferation of enterochromaffin-like cells, and neoplastic transformation. Here, we review the models used to study the effects of gastrin on cell proliferation in vivo and in vitro with respect to mechanisms by which this hormone might influence normal and cancerous cell growth. Specifically, human and animal models of hypergastrinemia and hypogastrinemia have been described in vivo, and several cells that express cholecystokinin (CCK)B/gastrin receptors have been used for analysis of intracellular signaling pathways initiated by biologically active amidated gastrins. The binding of gastrin or CCK to their common cognate receptor triggers the activation of multiple signal transduction pathways that relay the mitogenic signal to the nucleus and promote cell proliferation. A rapid increase in the synthesis of lipid-derived second messengers with subsequent activation of protein phosphorylation cascades, including mitogen-activated protein kinase, is an important early response to these signaling peptides. Gastrin and CCK also induce rapid Rho-dependent actin remodeling and coordinate tyrosine phosphorylation of cellular proteins including the non-receptor tyrosine kinases p125fak and Src and the adaptor proteins p130cas and paxillin. This article reviews recent advances in defining the role of gastrin and CCK in the control of cell proliferation in normal and cancer cells and in dissecting the signal transduction pathways that mediate the proliferative responses induced by these hormonal GI peptides in a variety of normal and cancer cell model systems.
Collapse
Affiliation(s)
- E Rozengurt
- Department of Medicine, School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|