151
|
Boutet I, Long Ky CL, Bonhomme F. A transcriptomic approach of salinity response in the euryhaline teleost, Dicentrarchus labrax. Gene 2006; 379:40-50. [PMID: 16737785 DOI: 10.1016/j.gene.2006.04.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 04/11/2006] [Accepted: 04/17/2006] [Indexed: 11/23/2022]
Abstract
Euryhaline teleosts possess the capacity to osmoregulate under various environmental conditions (freshwater to hypersaline water). This physiological capacity is generally monitored using enzyme activity assays (Na+/K+ -ATPase...), hormones quantification (prolactine, growth hormone) or their mRNAs expression. To date, few studies addressed the genetic correlates of adaptation to varying salinity at a molecular level in such fish. In the sea bass Dicentrarchus labrax, genetic differentiation was observed at specific allozyme loci between lagoon- and open-sea populations. In the present study, we investigated transcriptomic response of D. labrax to salt- and freshwater acclimation in two organs involved in osmoregulation, gill and intestine. By using suppression subtractive hybridisation, we characterised 586 partial cDNA sequences encoding proteins potentially involved in the metabolism of sea bass acclimated to salt- or freshwater under experimental conditions. Using these results, we first characterised complete genomic sequence of a carbonic anhydrase and then analysed mRNA expression of genes potentially involved in osmoregulation mechanisms (Na+/K+ -ATPase, carbonic anhydrase, angiotensin-converting enzyme and claudin-3), cell-cycle regulation (secretagogin) and immune system (nephrosin) in gill and intestine of wild fish from open sea and lagoons. Our analyses indicate a strong tissue- and environmental-dependant expression pattern for all the genes studied. A transcriptomic approach such as described in the present paper provides thus a first description of genes involved in metabolic or structural functions important for coping with environmental salinity variations in a euryhaline fish like the common sea bass D. labrax. It should be supplemented by proteomics to check the direct involvement of the gene products at the protein level, and by polymorphism analyses if one is to understand population or individual fluctuations in acclimation to salinity variation.
Collapse
Affiliation(s)
- I Boutet
- UMR CNRS-IFREMER 5171 Génome, Populations, Interactions, Adaptation, Station Méditerranéenne de l'Environnement Littoral, 1 Quai de la Daurade, 34200 Sète, France.
| | | | | |
Collapse
|
152
|
Fiol DF, Chan SY, Kültz D. Regulation of osmotic stress transcription factor 1 (Ostf1) in tilapia(Oreochromis mossambicus) gill epithelium during salinity stress. J Exp Biol 2006; 209:3257-65. [PMID: 16888073 DOI: 10.1242/jeb.02352] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYMechanisms of induction of osmotic stress transcription factor 1 (Ostf1)were analyzed in gill epithelium of tilapia exposed to salinity stress. Experiments with primary cultures of gill epithelial cells revealed that hyperosmotic Ostf1 induction was independent of systemic factors. In addition,the synthetic glucocorticoid receptor agonist dexamethasone did not affect Ostf1 levels, arguing against cortisol being the signal for Ostf1 induction during hyperosmotic stress. Exposure of primary gill cell cultures to a hyperosmotic agent that is cell permeable and non-hypertonic (glycerol) did not trigger Ostf1 induction. However, when gill cells were exposed to hypertonicity (either in the form of NaCl or other forms) Ostf1 was rapidly and significantly induced. Analysis of hnRNA and mRNA levels revealed that Ostf1 upregulation in gill cells of intact fish and primary cultures of gill epithelial cells was mediated by transient mRNA stabilization. In addition to the initial transient mRNA stabilization a subsequent transcriptional induction of Ostf1 was observed. In cultured gill cells increase in Ostf1 mRNA synthesis was stable and very potent, whereas in gill cells of intact fish this increase was transient. This observation suggests positive feedback by Ostf1 or one of its targets and negative feedback by systemic factors on Ostf1 transcription.We conclude that Ostf1 induction in gill epithelial cells of tilapia exposed to salinity stress (1) is independent of cortisol or other systemic factors; (2) depends on hypertonicity as the signal; and (3) is based on transient mRNA stabilization. Moreover, our data on primary cell cultures show that systemic signals are necessary to prevent sustained transcriptional induction of Ostf1 during hyperosmotic stress, indicating feedback regulation and a high degree of complexity of osmosensing and signaling networks in euryhaline fishes.
Collapse
Affiliation(s)
- Diego F Fiol
- Physiological Genomics Group, Department of Animal Science, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| | | | | |
Collapse
|
153
|
Sangiao-Alvarellos S, Arjona FJ, Martín del Río MP, Míguez JM, Mancera JM, Soengas JL. Time course of osmoregulatory and metabolic changes during osmotic acclimation in Sparus auratus. ACTA ACUST UNITED AC 2006; 208:4291-304. [PMID: 16272252 DOI: 10.1242/jeb.01900] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Changes in different osmoregulatory and metabolic parameters over time were assessed in gills, kidney, liver and brain of gilthead sea bream Sparus auratus transferred either from seawater (SW, 38 p.p.t.) to hypersaline water (HSW, 55 p.p.t.) or from SW to low salinity water (LSW, 6 p.p.t.) for 14 days. Changes displayed by osmoregulatory parameters revealed two stages during hyperosmotic and hypo-osmotic acclimation: (i) an adaptive period during the first days of acclimation (1-3 days), with important changes in these parameters, and (ii) a chronic regulatory period (after 3 days of transfer) where osmotic parameters reached homeostasis. From a metabolic point of view, two clear phases can also be distinguished during acclimation to hyperosmotic or hypo-osmotic conditions. The first one coincides with the adaptive period and is characterized by enhanced levels of plasma metabolites (glucose, lactate, triglycerides and protein), and use of these metabolites by different tissues in processes directly or indirectly involved in osmoregulatory work. The second stage coincides with the chronic regulatory period observed for the osmoregulatory parameters and is metabolically characterized in HSW-transferred fish by lower energy expenditure and a readjustment of metabolic parameters to levels returning to normality, indicative of reduced osmoregulatory work in this stage. In LSW-transferred fish, major changes in the second stage include: (i) decreased glycolytic potential, capacity for exporting glucose and potential for amino acid catabolism in liver; (ii) enhanced use of exogenous glucose through glycolysis, pentose phosphate and glycogenesis in gills; (iii) increased glycolytic potential in kidney; and (iv) increased glycogenolytic potential and capacity for use of exogenous glucose in brain.
Collapse
Affiliation(s)
- Susana Sangiao-Alvarellos
- Laboratorio de Fisioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, 36310 Vigo, Spain
| | | | | | | | | | | |
Collapse
|
154
|
Tse WKF, Au DWT, Wong CKC. Characterization of ion channel and transporter mRNA expressions in isolated gill chloride and pavement cells of seawater acclimating eels. Biochem Biophys Res Commun 2006; 346:1181-90. [PMID: 16793006 DOI: 10.1016/j.bbrc.2006.06.028] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 06/05/2006] [Indexed: 11/24/2022]
Abstract
Ion channels and transporters (i.e. cystic fibrosis transmembrane regulator (CFTR), inward rectifier potassium channel (eKir), Na/K-ATPase, Na/K/Cl2 co-transporter (NKCC), aquaporin-3 (AQP-3), and Na/H exchanger-1 (NHE-1)) are known to be expressed in gill epithelia of teleost fish. Owing to the anatomical complexity of gill structures, their temporal expression profile in seawater acclimating gill pavement (PVCs) and chloride cells (CCs) are limited. In this study, we isolated the gill PVCs and CCs from seawater acclimating Japanese eels to address the issue. In the gill epithelia of freshwater adapted eels, CCs expressed the highest mRNA and/or protein levels of Na/K-ATPase, NKCC, and eKir as demonstrated by real-time PCR and/or immunohistochemical staining. AQP-3 mRNA was highly expressed in freshwater PVCs and its protein was in general expressed in all gill cells. The NHE-1 transcripts were expressed in similar levels in both PVCs and CCs. CFTR mRNA transcript was almost undetectable in all the freshwater gill cell samples. Seawater acclimation induced the transcript and/or protein levels of Na/K-ATPase, NKCC, CFTR, and eKir in CCs. The upregulation and the coexpression of these transporters in CCs suggested their cohort function in mediating Na+, K+, and Cl- transport. The expression of CFTR was found to be tightly regulated as its expression was restricted only in "seawater CCs". AQP-3 transcript and protein levels in PVCs reduced significantly during the acclimation. Interestingly immunocytochemical (ICC) staining of seawater gill epithelia revealed that AQP-3 immunoreactivities were mainly localized in seawater CCs. In the acclimation, there was no significant reduction of NHE-1 mRNA in both PVCs and CCs, however its protein level dropped significantly in the seawater condition. The present study is the first to demonstrate the activation of the mRNA transcripts for the ion channels and transporters in isolated gill CCs during seawater acclimation. The activating mechanism is found to be confined primarily in CCs. These results indicated that in addition to the increase in size and number of CCs, the molecular remodeling and the functional plasticity of CCs were essential in the ion transport process during seawater acclimation.
Collapse
Affiliation(s)
- William K F Tse
- Department of Biology, Hong Kong Baptist University, Hong Kong
| | | | | |
Collapse
|
155
|
Choe KP, Havird J, Rose R, Hyndman K, Piermarini P, Evans DH. COX2 in a euryhaline teleost, Fundulus heteroclitus: primary sequence, distribution, localization, and potential function in gills during salinity acclimation. J Exp Biol 2006; 209:1696-708. [PMID: 16621950 DOI: 10.1242/jeb.02198] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
In the kidneys of mammals, cyclooxygenase type 2 (COX2) is expressed in medullary interstitial cells, the macula densa and epithelial cells of the cortical thick ascending limb where it generates prostaglandins that regulate hormone secretion, inhibit ion transport, and support cell survival during salt loading and dehydration. In teleosts, the gills are in direct contact with an aquatic environment and are the dominant site of osmoregulation. During transfers between salinities, specialized cells in the gills (chloride cells) rapidly regulate NaCl secretion for systemic osmoregulation while they simultaneously are exposed to acute osmotic shock. This study was conducted to determine if COX2 is expressed in the gills, and if so, to evaluate its function in cellular and systemic osmoregulation. Degenerate primers, reverse transcription–PCR and rapid amplification of cDNA ends were used to deduce the complete cDNA sequence of a putative COX2 enzyme from the gills of the euryhaline killifish (Fundulus heteroclitus). The 2738 base pair cDNA includes a coding region for a 610 amino acid protein that is over 70%identical to mammalian COX2. A purified antibody generated against a conserved region of mouse COX2 labeled chloride cells, suggesting that the enzyme may control NaCl secretion as an autocrine agent. Real-time PCR was then used to demonstrate that mRNA expression of the COX2 homologue was threefold greater in gills from chronic seawater killifish than in gills from chronic freshwater killifish. Expression of Na+/K+/2Cl–cotransporter and the cystic fibrosis transmembrane conductance regulator were also greater in seawater, suggesting that chronic COX2 expression in the gills is regulated in parallel to the key ion transporters that mediate NaCl secretion. Real-time PCR was also used to demonstrate that acute transfer from seawater to freshwater and from freshwater to seawater led to rapid, transient inductions of COX2 expression. Together with previous physiological evidence,the present molecular and immunological data suggest that constitutive branchial COX2 expression is enhanced in seawater, where prostaglandins can regulate NaCl secretion in chloride cells. Our data also suggest that branchial COX2 expression may play a role in cell survival during acute osmotic shock.
Collapse
Affiliation(s)
- Keith P Choe
- Department of Zoology, University of Florida, Gainesville, 32611, USA.
| | | | | | | | | | | |
Collapse
|
156
|
Lin YM, Chen CN, Yoshinaga T, Tsai SC, Shen ID, Lee TH. Short-term effects of hyposmotic shock on Na+/K+-ATPase expression in gills of the euryhaline milkfish, Chanos chanos. Comp Biochem Physiol A Mol Integr Physiol 2006; 143:406-15. [PMID: 16459117 DOI: 10.1016/j.cbpa.2005.12.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 12/21/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
Changes in expression of gill Na+/K+ -ATPase (NKA) on a short-term (96 h) time-course following hyposmotic shock (direct transfer to fresh water) of the euryhaline, marine milkfish were studied on gene, protein, and cell levels in this paper. Plasma osmolality and [Na+] responded with rapid declines in 3 h post-transfer yet, thereafter, remained constant. Plasma [Cl-] gradually fell to a significantly lower level at 6 h post-transfer. Gills responded to hyposmotic shock by a dual phase enhancement of NKA activity and protein abundance; (a) Before 24 h: NKA activity increased as early as 3 h and reached a maximum level from 6 to 12 h post-transfer coincided with the sustained lower levels of plasma osmolality, [Na+], and [Cl-] since 3 h post-transfer. This was followed by a gradual rise in alpha-subunit protein levels that peaked at 12 h post-transfer. Meanwhile, alpha-mRNA of NKA did no show significant change. (b) After 24 h: NKA activity as well as the amounts of alpha-subunit mRNA and protein increased significantly. Direct freshwater transfer induced a prompt and significant decrease of NKA immunoreactive (NKIR) cell abundance in filaments before 24 h, followed by a significant increase after 24 h due to their development in filaments and lamellae. Increased number of NKIR cells after 24 h of hyposmotic shock may occur in conjunction with rise of NKA activity as well as alpha-subunit mRNA and protein abundance. In conclusion, milkfish is able to avoid an excessive drop in plasma ions immediately upon hyposmotic shock and maintain plasma ions on a marginal lower level in fresh water. Notably, the initial increase in NKA activity (adjustive phase; 3-12 h) and delayed increase in NKA mRNA and protein abundance (regulatory phase; 48-96 h) indicate the importance of a higher level of the gill enzyme in milkfish upon hyposmotic shock.
Collapse
Affiliation(s)
- Y M Lin
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | | | | | | | | | | |
Collapse
|
157
|
Prodocimo V, Freire CA. The Na+, K+, 2Cl- cotransporter of estuarine pufferfishes (Sphoeroides testudineus and S. greeleyi) in hypo- and hyper-regulation of plasma osmolality. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142:347-355. [PMID: 16469544 DOI: 10.1016/j.cbpc.2005.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 11/09/2005] [Accepted: 11/12/2005] [Indexed: 10/25/2022]
Abstract
The pufferfishes Sphoeroides testudineus and Sphoeroides greeleyi are estuarine species that osmoregulate efficiently, but S. testudineus tolerates seawater dilution to a much higher degree than S. greeleyi. This study aimed at testing whether NKCC is involved with their differential tolerance of seawater dilution, through the analysis of in vivo furosemide (NKCC inhibitor) injection both on hypo-regulation (in 35 per thousand salinity) and hyper-regulation (in 5 per thousand salinity). After exposure for 6 h or 5 days to both salinities, blood samples were obtained for determination of plasma osmolality, chloride, sodium and hematocrit, and muscle samples for determination of water content. Furosemide injection led to increased plasma osmolality and sodium in 35 per thousand and decreased osmolality and chloride in 5 per thousand, when compared to saline-injected controls. Furosemide injection led to hematocrit reduction in both salinities, and muscle water content increase in 5 per thousand and decrease in 35 per thousand in S. testudineus. The results are compatible with NKCC working in branchial NaCl secretion in 35 per thousand, in both species, and a higher role in cell volume regulation in blood and muscle cells of S. testudineus, in both salinities, which could partially explain the stronger capacity of S. testudineus to tolerate seawater dilution during low tide.
Collapse
Affiliation(s)
- Viviane Prodocimo
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná, 81531-990, Brazil
| | - Carolina A Freire
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná, 81531-990, Brazil.
| |
Collapse
|
158
|
Stanton CR, Thibodeau R, Lankowski A, Shaw JR, Hamilton JW, Stanton BA. Arsenic Inhibits CFTR-Mediated Chloride Secretion by Killifish (Fundulus heteroclitus) Opercular Membrane. Cell Physiol Biochem 2006; 17:269-78. [PMID: 16791002 DOI: 10.1159/000094139] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Killifish are euryhaline teleosts that normally experience rapid changes in the salinity of the swim water. Acclimation to seawater is mediated by cortisol, which by activating glucocorticoid receptors, upregulates CFTR mediated Cl- secretion in the gill and operculum. Arsenic, a toxic metalloid that naturally occurs in the aquatic environment, has been shown to disrupt glucocorticoid hormone-mediated regulation of genes. Because little is known about the effects of environmentally relevant levels of arsenic on ion channels and salt homeostasis, studies were conducted to examine the effects of arsenic on the ability of killifish to acclimate to increased salinity. Arsenic in the swim water or administered by intraperitoneal injection prevented acclimation. To determine if arsenic blocked acclimation by inhibiting CFTR mediated Cl- secretion (Isc), opercular membranes were isolated and mounted in Ussing chambers and the effects of arsenic on Isc were measured. Arsenic (24 hr exposure) reduced Isc in opercular membranes isolated from salt water acclimated killifish. In addition, arsenic acutely (5-10 minutes) and reversibly inhibited Isc with an IC50 = 4.1 microM (305 ppb) when applied to the apical (seawater) side of the operculum, but not when added to the basolateral side of the operculum. Arsenic (4 microM for 60 minutes) also reduced mitochondrial respiration. Thus, environmentally relevant levels of arsenic block acclimation to seawater in killifish by reversibly inhibiting CFTR-mediated Cl- secretion by the opercular membrane, in part by inhibiting mitochondrial respiration.
Collapse
Affiliation(s)
- Caitlin R Stanton
- Department of Physiology, Dartmouth Medical School, Hanover, Germany
| | | | | | | | | | | |
Collapse
|
159
|
Kato A, Doi H, Nakada T, Sakai H, Hirose S. Takifugu obscurus is a euryhaline fugu species very close to Takifugu rubripes and suitable for studying osmoregulation. BMC PHYSIOLOGY 2005; 5:18. [PMID: 16364184 PMCID: PMC1351200 DOI: 10.1186/1472-6793-5-18] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2005] [Accepted: 12/20/2005] [Indexed: 11/25/2022]
Abstract
Background The genome sequence of the pufferfish Takifugu rubripes is an enormously useful tool in the molecular physiology of fish. Euryhaline fish that can survive both in freshwater (FW) and seawater (SW) are also very useful for studying fish physiology, especially osmoregulation. Recently we learned that there is a pufferfish, Takifugu obscurus, common name "mefugu" that migrates into FW to spawn. If T. obscurus is indeed a euryhaline fish and shares a high sequence homology with T. rubripes, it will become a superior animal model for studying the mechanism of osmoregulation. We have therefore determined its euryhalinity and phylogenetic relationship to the members of the Takifugu family. Results The following six Takifugu species were used for the analyses: T. obscurus, T. rubripes, T. niphobles, T. pardalis, T. poecilonotus, and T. porphyreus. When transferred to FW, only T. obscurus could survive while the others could not survive more than ten days in FW. During this course of FW adaptation, serum Na+ concentration of T. obscurus decreased only slightly, but a rapid and large decrease occurred even in the case of T. niphobles, a peripheral fresh water species that is often seen in brackish river mouths. Phylogenetic analysis using nucleotide sequences of the mitochondrial 16S ribosomal RNA gene of each species indicated that the six Takifugu species are very closely related with each other. Conclusion T. obscurus is capable of adapting to both FW and SW. Its genomic sequence shares a very high homology with those of the other Takifugu species such that the existing Takifugu genomic information resources can be utilized. These properties make "mefugu", which has drawn little attention from animal physiologists until this study, a useful model animal for studying the molecular mechanism of maintaining body fluid homeostasis.
Collapse
Affiliation(s)
- Akira Kato
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroyuki Doi
- Shimonoseki Marine Science Museum "Kaikyokan", Shimonoseki Academy of Marine Science, Shimonoseki, Japan
| | - Tsutomu Nakada
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Harumi Sakai
- Department of Applied Aquabiology, National Fisheries University, Shimonoseki, Japan
| | - Shigehisa Hirose
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
160
|
Shivkamat P, Roy R. Regulation of membrane lipid bilayer structure during salinity adaptation: a study with the gill epithelial cell membranes of Oreochromis niloticus. Comp Biochem Physiol B Biochem Mol Biol 2005; 142:28-36. [PMID: 16000254 DOI: 10.1016/j.cbpc.2005.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 05/10/2005] [Accepted: 05/10/2005] [Indexed: 10/25/2022]
Abstract
A significant variation in the membrane fluidity (as assessed by DPH-fluorescence polarisation) and membrane lipid bilayer composition is noticed in the subcellular membranes of the gill epithelial cells of Oreochromis niloticus due to exposure of the fish to 1% saline water for 1 month. Also, a 70% enhanced activity of Na(+)-K(+)-ATPase in plasma membranes and a 2.5-fold increase of glucose-6-phosphate dehydrogenase in microsomal membranes are recorded in the treated fish. The changed membrane structure and fluidity along with the changed enzymatic activity of Na(+)-K(+)-ATPase help the influx the Na(+) rather than the efflux of K(+) through the gill epithelial cells during salinity adaptation.
Collapse
Affiliation(s)
- P Shivkamat
- Department of Zoology, Goa University, Taleigao, Panaji, Goa.403206, India
| | | |
Collapse
|
161
|
Scott GR, Claiborne JB, Edwards SL, Schulte PM, Wood CM. Gene expression after freshwater transfer in gills and opercular epithelia of killifish: insight into divergent mechanisms of ion transport. ACTA ACUST UNITED AC 2005; 208:2719-29. [PMID: 16000541 DOI: 10.1242/jeb.01688] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have explored the molecular basis for differences in physiological function between the gills and opercular epithelium of the euryhaline killifish Fundulus heteroclitus. These tissues are functionally similar in seawater, but in freshwater the gills actively absorb Na+ but not Cl-, whereas the opercular epithelium actively absorbs Cl- but not Na+. These differences in freshwater physiology are likely due to differences in absolute levels of gene expression (measured using real-time PCR), as several proteins important for Na+ transport, namely Na+,H+-exchanger 2 (NHE2), carbonic anhydrase 2 (CA2), Na+,HCO3- cotransporter 1, and V-type H+-ATPase, were expressed at 3- to over 30-fold higher absolute levels in the gills. In gills, transfer from 10% seawater to freshwater increased the activity of Na+,K+-ATPase by twofold (from 12 h to 7 days), increased the expression of NHE2 (at 12 h) and CA2 (from 12 h to 7 days), and decreased the expression of NHE3 (from 12 h to 3 days). In opercular epithelium, NHE2 was not expressed; furthermore, Na+,K+-ATPase activity was unchanged after transfer to freshwater, CA2 mRNA levels decreased, and NHE3 levels increased. Consistent with their functional similarities in seawater, killifish gills and opercular epithelium expressed Na+,K+-ATPase alpha 1a, Na+,K+,2Cl- cotransporter 1 (NKCC1), cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel and the signalling protein 14-3-3a at similar absolute levels. Furthermore, NKCC1 and CFTR were suppressed equally in each tissue after freshwater transfer, and 14-3-3a mRNA increased in both. These results provide insight into the mechanisms of ion transport by killifish gills and opercular epithelia, and demonstrate a potential molecular basis for the differences in physiological function between these two organs.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Zoology, University of British Columbia, Vancouver BC, Canada V6T 1Z4.
| | | | | | | | | |
Collapse
|
162
|
Scott GR, Keir KR, Schulte PM. Effects of spironolactone and RU486 on gene expression and cell proliferation after freshwater transfer in the euryhaline killifish. J Comp Physiol B 2005; 175:499-510. [PMID: 16088394 DOI: 10.1007/s00360-005-0014-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 04/20/2005] [Accepted: 06/14/2005] [Indexed: 10/25/2022]
Abstract
We have explored the possible mechanisms by which mineralocorticoid (MR) and glucocorticoid (GR) receptors regulate the response to freshwater transfer in the gills of the euryhaline killifish Fundulus heteroclitus. Killifish were implanted with RU486 (GR antagonist) or spironolactone (MR antagonist) at doses of 0.1-1.0 mg g(-1), and subsequently transferred from 10 per thousand brackish water to freshwater. Compared to brackish water sham fish, mRNA expression of CFTR and NKCC1 decreased in the gills of sham fish transferred to freshwater, whereas Na(+), K(+)-ATPase alpha(1a) mRNA expression and alpha protein abundance, as well as cell proliferation (detected using BrdU) increased. Spironolactone inhibited the normal increase in cell proliferation and Na(+), K(+)-ATPase expression after freshwater transfer. RU486 increased plasma cortisol levels and may have slightly inhibited Na(+), K(+)-ATPase activity, but did not change alpha(1a ) expression. RU486 had no effect on cell proliferation in the non-lamellar region of the gills, but increased proliferation in the lamellar region. Neither antagonist inhibited the suppression of CFTR or NKCC1 expression after freshwater transfer. Glucocorticoid receptor expression was reduced in all sham and antagonist treatments compared to untreated controls, but no other consistent differences were observed. The effects of spironolactone suggest that MR is important for regulating ion transport in killifish gills after freshwater transfer.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | | | | |
Collapse
|
163
|
Scott GR, Schulte PM. Intraspecific variation in gene expression after seawater transfer in gills of the euryhaline killifish Fundulus heteroclitus. Comp Biochem Physiol A Mol Integr Physiol 2005; 141:176-82. [PMID: 15953746 DOI: 10.1016/j.cbpb.2005.05.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 05/04/2005] [Accepted: 05/05/2005] [Indexed: 10/25/2022]
Abstract
Previous research has suggested that northern populations of the euryhaline killifish (Fundulus heteroclitus) are better adapted to freshwater environments than their southern counterparts. In this study, we examined whether this adaptation has come at an ionoregulatory cost in seawater, by comparing published data for northern killifish to newly acquired data on the molecular responses of southern killifish to seawater transfer. After abrupt transfer from brackish water (10 per thousand) to seawater, Na,K-ATPase activity, Na,K-ATPase alpha(1a) mRNA expression, and NKCC1 mRNA expression increased 1 and 4 days after transfer in the gills of southern fish (by 2-3-fold), but increased at 1 day and not 4 days after transfer in northern fish. Small increases in mRNA expression were observed in both populations at 14 days. CFTR expression also increased in southern and northern fish at 1 and 4 days into seawater, and was also elevated at 14 days in northern fish. Because fish from both southern and northern populations maintained plasma Na(+) and Cl(-) balance after seawater transfer, the differences in activity and expression could not have been caused by differences in plasma ion levels. Instead, some other regulatory factor may account for the differences in expression between populations. This study shows that freshwater adaptation in northern populations of killifish has not necessarily come at a significant ionoregulatory cost in seawater, but has altered the molecular responses of their gills to seawater transfer compared to southern killifish.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Zoology, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
164
|
Marshall WS, Ossum CG, Hoffmann EK. Hypotonic shock mediation by p38 MAPK, JNK, PKC, FAK, OSR1 and SPAK in osmosensing chloride secreting cells of killifish opercular epithelium. ACTA ACUST UNITED AC 2005; 208:1063-77. [PMID: 15767308 DOI: 10.1242/jeb.01491] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hypotonic shock rapidly inhibits Cl(-) secretion by chloride cells, an effect that is osmotic and not produced by NaCl-depleted isosmotic solutions, yet the mechanism for the inhibition and its recovery are not known. We exposed isolated opercular epithelia, mounted in Ussing chambers, to hypotonic shock in the presence of a variety of chemicals: a general protein kinase C (PKC) inhibitor chelerythrine, Gö6976 that selectively blocks PKC alpha and beta subtypes, H-89 that blocks PKA, SB203580 that blocks p38 mitogen-activated protein kinase (MAPK), as well as serine/threonine protein phosphatase (PP1 and 2A) inhibitor okadaic acid, and finally tamoxifen, a blocker of volume-activated anion channels (VSOAC). Chelerythrine has no effect on hypotonic inhibition but blocked the recovery, indicating PKC involvement in stimulation. Gö6976 had little effect, suggesting that PKC alpha and PKC beta subtypes are not involved. H-89 did not block hypotonic inhibition but decreased the recovery, indicating PKA may be involved in the recovery and overshoot (after restoration of isotonic conditions). SB203580 significantly enhanced the decrease in current by hypotonic shock, suggesting an inhibitory role of p38 MAPK in the hypotonic inhibition. Okadaic acid increased the steady state current, slowed the hypotonic inhibition but made the decrease in current larger; also the recovery and overshoot were completely blocked. Hypotonic stress rapidly and transiently increased phosphorylated p38 MAPK (pp38) MAPK (measured by western analysis) by eightfold at 5 min, then more slowly again to sevenfold at 60 min. Hypertonic shock slowly increased p38 by sevenfold at 60 min. Phosphorylated JNK kinase was increased by 40-50% by both hypotonic and hypertonic shock and was still elevated at 30 min in hypertonic medium. By immunoblot analysis it was found that the stress protein kinase (SPAK) and oxidation stress response kinase 1 (OSR1) were present in salt and freshwater acclimated fish with higher expression in freshwater. By immunocytochemistry, SPAK, OSR1 and phosphorylated focal adhesion kinase (pFAK) were colocalized with NKCC at the basolateral membrane. The protein tyrosine kinase inhibitor genistein (100 micromol l(-1)) inhibited Cl(-) secretion that was high, increased Cl(-) secretion that was low and reduced immunocytochemical staining for phosphorylated FAK. We present a model for rapid control of CFTR and NKCC in chloride cells that includes: (1) activation of NKCC and CFTR via cAMP/PKA, (2) activation of NKCC by PKC, myosin light chain kinase (MLCK), p38, OSR1 and SPAK, (3) deactivation of NKCC by hypotonic cell swelling, Ca(2+) and an as yet unidentified protein phosphatase and (4) involvement of protein tyrosine kinase (PTK) acting on FAK to set levels of NKCC activity.
Collapse
Affiliation(s)
- W S Marshall
- Department of Biology, St Francis Xavier University, PO Box 5000 Antigonish, Nova Scotia, Canada B2G 2W5.
| | | | | |
Collapse
|
165
|
Brauer PR, Sanmann JN, Petzel DH. Effects of warm acclimation on Na+,K+-ATPase α-subunit expression in chloride cells of Antarctic fish. ACTA ACUST UNITED AC 2005; 285:600-9. [PMID: 15912523 DOI: 10.1002/ar.a.20203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The teleosts Trematomus bernacchii thrive in southern oceanic waters with temperatures below 0 degrees C. These fish have serum osmolalities almost double those found in fish of temperate waters, thereby lowering their serum's freezing point and the energy needed for ionic homeostasis. Upon warm acclimation to 4 degrees C, T. bernacchii decrease their serum osmolality and increase the Na+,K+-ATPase activity in their gills. Na+,K+-ATPase alpha1-, alpha2-, and alpha3-subunit isoforms are expressed in the gills of T. bernacchii and it is thought that Na+,K+-ATPase subunit composition in chloride cells changes with warm acclimation. Using immunohistochemistry, we compared the number of chloride cells expressing various alpha-isoforms of the Na+,K+-ATPase in the gills of cold- and warm-acclimated T. bernacchii. We found no change in the number of alpha2- or alpha3-immunopositive cells in warm-acclimated fish gills or in the number of cells immunopositive for the Na+,K+,2Cl- cotransporter. However, the number of pan-alpha-immunopositive (recognizing all three alpha-isoforms) and alpha1-immunopositive cells both increased in warm-acclimated fish. This suggests that changes in the number of alpha1-isoform-expressing chloride cells could contribute to the increased Na+,K+-ATPase activity that occurs with warm-acclimation.
Collapse
Affiliation(s)
- Philip R Brauer
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178, USA.
| | | | | |
Collapse
|
166
|
Evans DH, Piermarini PM, Choe KP. The Multifunctional Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste. Physiol Rev 2005; 85:97-177. [PMID: 15618479 DOI: 10.1152/physrev.00050.2003] [Citation(s) in RCA: 1612] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fish gill is a multipurpose organ that, in addition to providing for aquatic gas exchange, plays dominant roles in osmotic and ionic regulation, acid-base regulation, and excretion of nitrogenous wastes. Thus, despite the fact that all fish groups have functional kidneys, the gill epithelium is the site of many processes that are mediated by renal epithelia in terrestrial vertebrates. Indeed, many of the pathways that mediate these processes in mammalian renal epithelial are expressed in the gill, and many of the extrinsic and intrinsic modulators of these processes are also found in fish endocrine tissues and the gill itself. The basic patterns of gill physiology were outlined over a half century ago, but modern immunological and molecular techniques are bringing new insights into this complicated system. Nevertheless, substantial questions about the evolution of these mechanisms and control remain.
Collapse
Affiliation(s)
- David H Evans
- Department of Zoology, University of Florida, Gainesville 32611, USA.
| | | | | |
Collapse
|
167
|
|
168
|
ITUARTE ROMINAB, SPIVAK EDUARDOD, ANGER KLAUS. Effects of salinity on embryonic development ofPalaemonetes argentinus(Crustacea: Decapoda: Palaemonidae) culturedin vitro. INVERTEBR REPROD DEV 2005. [DOI: 10.1080/07924259.2005.9652162] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
169
|
Schulte PM. Changes in gene expression as biochemical adaptations to environmental change: a tribute to Peter Hochachka. Comp Biochem Physiol B Biochem Mol Biol 2004; 139:519-29. [PMID: 15544973 DOI: 10.1016/j.cbpc.2004.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 05/21/2004] [Accepted: 06/05/2004] [Indexed: 10/26/2022]
Abstract
Changes in gene expression are likely to play a critical role in both acclimation and adaptation to a changing environment. There is a rapidly growing body of literature implicating quantitative changes in gene expression during acclimation to environmental change, but less is known about the role of qualitative changes in gene expression, such as switching between alternative isoforms. Alternative isoforms can arise via gene duplication, alternative splicing, or alternative promoter usage. Organisms that have undergone recent genome duplication events may make use of environment-specific isoforms coded by multiple genes, but their role in other organisms is less well known. However, recent data suggest that isoforms arising from alternative splicing may be an under-appreciated source of physiological variation. The role of changes in gene expression during evolutionary adaptation has received comparatively limited attention, but novel approaches to addressing the adaptive significance of changes in gene expression have been applied to a few cases of differences in gene expression among taxa. Recent advances in genomics, including microarray technology, knock-out and knock-down approaches, and the wealth of data coming from large-scale sequencing projects have provided (and will continue to provide at ever increasing rates) new insights into these classic questions in comparative biochemistry.
Collapse
Affiliation(s)
- Patricia M Schulte
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4.
| |
Collapse
|
170
|
Scott GR, Rogers JT, Richards JG, Wood CM, Schulte PM. Intraspecific divergence of ionoregulatory physiology in the euryhaline teleostFundulus heteroclitus: possible mechanisms of freshwater adaptation. J Exp Biol 2004; 207:3399-410. [PMID: 15326216 DOI: 10.1242/jeb.01130] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWe examined intraspecific variation in ionoregulatory physiology within euryhaline killifish, Fundulus heteroclitus, to understand possible mechanisms of freshwater adaptation in fish. Pronounced differences in freshwater tolerance existed between northern (2% mortality) and southern (19%mortality) killifish populations after transfer from brackish water (10 g l-1) to freshwater. Differences in Na+ regulation between each population might partially account for this difference in tolerance, because plasma Na+ was decreased for a longer period in southern survivors than in northerns. Furthermore, northern fish increased Na+/K+-ATPase mRNA expression and activity in their gills to a greater extent 1-14 days after transfer than did southerns, which preceded higher whole-body net flux and unidirectional influx of Na+ at 14 days. All observed differences in Na+regulation were small, however, and probably cannot account for the large differences in mortality. Differences in Cl- regulation also existed between populations. Plasma Cl- was maintained in northern fish, but in southerns, plasma Cl- decreased rapidly and remained low for the duration of the experiment. Correspondingly, net Cl-loss from southern fish remained high after transfer, while northerns eliminated Cl- loss altogether. Elevated Cl- loss from southern fish in freshwater was possibly due to a persistence of seawater gill morphology, as paracellular permeability (indicated by extrarenal clearance rate of PEG-4000) and apical crypt density in the gills (detected using scanning electron microscopy) were both higher than in northern fish. These large differences in the regulation of Cl- balance probably contributed to the marked differences in mortality after freshwater transfer. Glomerular filtration rate and urination frequency were also lower in southerns. Taken together, these data suggest that northern killifish are better adapted to freshwater environments and that minimizing Cl-imbalance appears to be the key physiological difference accounting for their greater freshwater tolerance.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Zoology, University of British Columbia, Vancouver BC, Canada.
| | | | | | | | | |
Collapse
|