151
|
Signalling assemblies: the odds of symmetry. Biochem Soc Trans 2017; 45:599-611. [PMID: 28620024 DOI: 10.1042/bst20170009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 02/06/2023]
Abstract
The assembly of proteins into complexes is fundamental to nearly all biological signalling processes. Symmetry is a dominant feature of the structures of experimentally determined protein complexes, observed in the vast majority of homomers and many heteromers. However, some asymmetric structures exist, and asymmetry also often forms transiently, intractable to traditional structure determination methods. Here, we explore the role of protein complex symmetry and asymmetry in cellular signalling, focusing on receptors, transcription factors and transmembrane channels, among other signalling assemblies. We highlight a recurrent tendency for asymmetry to be crucial for signalling function, often being associated with activated states. We conclude with a discussion of how consideration of protein complex symmetry and asymmetry has significant potential implications and applications for pharmacology and human disease.
Collapse
|
152
|
Dominguez-Rodriguez M, Drobny H, Boehm S, Salzer I. Electrophysiological Investigation of the Subcellular Fine Tuning of Sympathetic Neurons by Hydrogen Sulfide. Front Pharmacol 2017; 8:522. [PMID: 28824437 PMCID: PMC5543101 DOI: 10.3389/fphar.2017.00522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/25/2017] [Indexed: 11/20/2022] Open
Abstract
H2S is well-known as hypotensive agent, whether it is synthetized endogenously or administered systemically. Moreover, the H2S donor NaHS has been shown to inhibit vasopressor responses triggered by stimulation of preganglionic sympathetic fibers. In contradiction with this latter result, NaHS has been reported to facilitate transmission within sympathetic ganglia. To resolve this inconsistency, H2S and NaHS were applied to primary cultures of dissociated sympathetic ganglia to reveal how this gasotransmitter might act at different subcellular compartments of such neurons. At the somatodendritic region of ganglionic neurons, NaHS raised the frequency, but not the amplitudes, of cholinergic miniature postsynaptic currents via a presynaptic site of action. In addition, the H2S donor as well as H2S itself caused membrane hyperpolarization and decreased action potential firing in response to current injection. Submillimolar NaHS concentrations did not affect currents through Kυ7 channels, but did evoke currents through KATP channels. Similarly to NaHS, the KATP channel activator diazoxide led to hyperpolarization and decreased membrane excitability; the effects of both, NaHS and diazoxide, were prevented by the KATP channel blocker tolbutamide. At postganglionic sympathetic nerve terminals, H2S and NaHS enhanced noradrenaline release due to a direct action at the level of vesicle exocytosis. Taken together, H2S may facilitate transmitter release within sympathetic ganglia and at sympatho-effector junctions, but causes hyperpolarization and reduced membrane excitability in ganglionic neurons. As this latter action was due to KATP channel gating, this channel family is hereby established as another previously unrecognized determinant in the function of sympathetic ganglia.
Collapse
Affiliation(s)
- Manuel Dominguez-Rodriguez
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| | - Helmut Drobny
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| | - Stefan Boehm
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| | - Isabella Salzer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| |
Collapse
|
153
|
Deryagin OG, Gavrilova SA, Gainutdinov KL, Golubeva AV, Andrianov VV, Yafarova GG, Buravkov SV, Koshelev VB. Molecular Bases of Brain Preconditioning. Front Neurosci 2017; 11:427. [PMID: 28790886 PMCID: PMC5524930 DOI: 10.3389/fnins.2017.00427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/11/2017] [Indexed: 12/20/2022] Open
Abstract
Preconditioning of the brain induces tolerance to the damaging effects of ischemia and prevents cell death in ischemic penumbra. The development of this phenomenon is mediated by mitochondrial adenosine triphosphate-sensitive potassium (KATP+) channels and nitric oxide signaling (NO). The aim of this study was to investigate the dynamics of molecular changes in mitochondria after ischemic preconditioning (IP) and the effect of pharmacological preconditioning (PhP) with the KATP+-channels opener diazoxide on NO levels after ischemic stroke in rats. Immunofluorescence-histochemistry and laser-confocal microscopy were applied to evaluate the cortical expression of electron transport chain enzymes, mitochondrial KATP+-channels, neuronal and inducible NO-synthases, as well as the dynamics of nitrosylation and nitration of proteins in rats during the early and delayed phases of IP. NO cerebral content was studied with electron paramagnetic resonance (EPR) spectroscopy using spin trapping. We found that 24 h after IP in rats, there is a two-fold decrease in expression of mitochondrial KATP+-channels (p = 0.012) in nervous tissue, a comparable increase in expression of cytochrome c oxidase (p = 0.008), and a decrease in intensity of protein S-nitrosylation and nitration (p = 0.0004 and p = 0.001, respectively). PhP led to a 56% reduction of free NO concentration 72 h after ischemic stroke simulation (p = 0.002). We attribute this result to the restructuring of tissue energy metabolism, namely the provision of increased catalytic sites to mitochondria and the increased elimination of NO, which prevents a decrease in cell sensitivity to oxygen during subsequent periods of severe ischemia.
Collapse
Affiliation(s)
- Oleg G Deryagin
- Department of Physiology and General Pathology, Medical Faculty, Lomonosov Moscow State UniversityMoscow, Russia
| | - Svetlana A Gavrilova
- Department of Physiology and General Pathology, Medical Faculty, Lomonosov Moscow State UniversityMoscow, Russia
| | - Khalil L Gainutdinov
- Laboratory of Neurorehabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia.,Laboratory of Spin Physics and Spin Chemistry, Zavoisky Physical-Technical Institute of the Russian Academy of SciencesKazan, Russia
| | - Anna V Golubeva
- Department of Physiology and General Pathology, Medical Faculty, Lomonosov Moscow State UniversityMoscow, Russia
| | - Vyatcheslav V Andrianov
- Laboratory of Neurorehabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia.,Laboratory of Spin Physics and Spin Chemistry, Zavoisky Physical-Technical Institute of the Russian Academy of SciencesKazan, Russia
| | - Guzel G Yafarova
- Laboratory of Neurorehabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia.,Laboratory of Spin Physics and Spin Chemistry, Zavoisky Physical-Technical Institute of the Russian Academy of SciencesKazan, Russia
| | - Sergey V Buravkov
- Research Laboratory of Cellular Structure and Tissue Imaging Analysis, Medical Faculty, Lomonosov Moscow State UniversityMoscow, Russia
| | - Vladimir B Koshelev
- Department of Physiology and General Pathology, Medical Faculty, Lomonosov Moscow State UniversityMoscow, Russia
| |
Collapse
|
154
|
Liu J, Xu J, Li Z, Huang Y, Wang H, Gao Y, Guo T, Ouyang P, Guo K. Carbocation Organocatalysis in Interrupted Povarov Reactions to cis
-Fused Pyrano- and Furanobenzodihydropyrans. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700634] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jingjing Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu Road South 211816 Nanjing China
| | - Jiaxi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu Road South 211816 Nanjing China
| | - Zhenjiang Li
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu Road South 211816 Nanjing China
| | - Yu Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu Road South 211816 Nanjing China
| | - Haixin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu Road South 211816 Nanjing China
| | - Yu Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu Road South 211816 Nanjing China
| | - Tianfo Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu Road South 211816 Nanjing China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu Road South 211816 Nanjing China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu Road South 211816 Nanjing China
| |
Collapse
|
155
|
Dean M, Lassak A, Wilk A, Zapata A, Marrero L, Molina P, Reiss K. Acute Ethanol Increases IGF-I-Induced Phosphorylation of ERKs by Enhancing Recruitment of p52-Shc to the Grb2/Shc Complex. J Cell Physiol 2017; 232:1275-1286. [PMID: 27607558 PMCID: PMC5381968 DOI: 10.1002/jcp.25586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/06/2016] [Indexed: 12/13/2022]
Abstract
Ethanol plays a detrimental role in the development of the brain. Multiple studies have shown that ethanol inhibits insulin-like growth factor I receptor (IGF-IR) function. Because the IGF-IR contributes to brain development by supporting neural growth, survival, and differentiation, we sought to determine the molecular mechanism(s) involved in ethanol's effects on this membrane-associated tyrosine kinase. Using multiple neuronal cell types, we performed Western blot, immunoprecipitation, and GST-pulldowns following acute (1-24 h) or chronic (3 weeks) treatment with ethanol. Surprisingly, exposure of multiple neuronal cell types to acute (up to 24 h) ethanol (50 mM) enhanced IGF-I-induced phosphorylation of extracellular regulated kinases (ERKs), without affecting IGF-IR tyrosine phosphorylation itself, or Akt phosphorylation. This acute increase in ERKs phosphorylation was followed by the expected inhibition of the IGF-IR signaling following 3-week ethanol exposure. We then expressed a GFP-tagged IGF-IR construct in PC12 cells and used them to perform fluorescence recovery after photobleaching (FRAP) analysis. Using these fluorescently labeled cells, we determined that 50 mM ethanol decreased the half-time of the IGF-IR-associated FRAP, which implied that cell membrane-associated signaling events could be affected. Indeed, co-immunoprecipitation and GST-pulldown studies demonstrated that the acute ethanol exposure increased the recruitment of p52-Shc to the Grb2-Shc complex, which is known to engage the Ras-Raf-ERKs pathway following IGF-1 stimulation. These experiments indicate that even a short and low-dose exposure to ethanol may dysregulate function of the receptor, which plays a critical role in brain development. J. Cell. Physiol. 232: 1275-1286, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matthew Dean
- Alcohol and Drug Abuse Center of Excellence, Department of Physiology, LSU Health New Orleans, New Orleans, LA, 70112
- Department of Genetics, LSU Health New Orleans
- Stanley S. Scott Cancer Center, LSU Health New Orleans
| | - Adam Lassak
- Stanley S. Scott Cancer Center, LSU Health New Orleans
| | - Anna Wilk
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, 36604
| | | | - Luis Marrero
- Morphology and Imaging Core, LSU Health New Orleans
| | - Patricia Molina
- Alcohol and Drug Abuse Center of Excellence, Department of Physiology, LSU Health New Orleans, New Orleans, LA, 70112
| | | |
Collapse
|
156
|
Yang M, Chadwick AE, Dart C, Kamishima T, Quayle JM. Bioenergetic profile of human coronary artery smooth muscle cells and effect of metabolic intervention. PLoS One 2017; 12:e0177951. [PMID: 28542339 PMCID: PMC5438125 DOI: 10.1371/journal.pone.0177951] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/05/2017] [Indexed: 12/23/2022] Open
Abstract
Bioenergetics of artery smooth muscle cells is critical in cardiovascular health and disease. An acute rise in metabolic demand causes vasodilation in systemic circulation while a chronic shift in bioenergetic profile may lead to vascular diseases. A decrease in intracellular ATP level may trigger physiological responses while dedifferentiation of contractile smooth muscle cells to a proliferative and migratory phenotype is often observed during pathological processes. Although it is now possible to dissect multiple building blocks of bioenergetic components quantitatively, detailed cellular bioenergetics of artery smooth muscle cells is still largely unknown. Thus, we profiled cellular bioenergetics of human coronary artery smooth muscle cells and effects of metabolic intervention. Mitochondria and glycolysis stress tests utilizing Seahorse technology revealed that mitochondrial oxidative phosphorylation accounted for 54.5% of ATP production at rest with the remaining 45.5% due to glycolysis. Stress tests also showed that oxidative phosphorylation and glycolysis can increase to a maximum of 3.5 fold and 1.25 fold, respectively, indicating that the former has a high reserve capacity. Analysis of bioenergetic profile indicated that aging cells have lower resting oxidative phosphorylation and reduced reserve capacity. Intracellular ATP level of a single cell was estimated to be over 1.1 mM. Application of metabolic modulators caused significant changes in mitochondria membrane potential, intracellular ATP level and ATP:ADP ratio. The detailed breakdown of cellular bioenergetics showed that proliferating human coronary artery smooth muscle cells rely more or less equally on oxidative phosphorylation and glycolysis at rest. These cells have high respiratory reserve capacity and low glycolysis reserve capacity. Metabolic intervention influences both intracellular ATP concentration and ATP:ADP ratio, where subtler changes may be detected by the latter.
Collapse
Affiliation(s)
- Mingming Yang
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Amy E. Chadwick
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Caroline Dart
- Department of Biochemistry, University of Liverpool, Liverpool, United Kingdom
| | - Tomoko Kamishima
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - John M. Quayle
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
157
|
Hundahl LA, Tfelt-Hansen J, Jespersen T. Rat Models of Ventricular Fibrillation Following Acute Myocardial Infarction. J Cardiovasc Pharmacol Ther 2017; 22:514-528. [PMID: 28381093 DOI: 10.1177/1074248417702894] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A number of animal models have been designed in order to unravel the underlying mechanisms of acute ischemia-induced arrhythmias and to test compounds and interventions for antiarrhythmic therapy. This is important as acute myocardial infarction (AMI) continues to be the major cause of sudden cardiac death, and we are yet to discover safe and effective treatments of the lethal arrhythmias occurring in the acute setting. Animal models therefore continue to be relevant for our understanding and treatment of acute ischemic arrhythmias. This review discusses the applicability of the rat as a model for ventricular arrhythmias occurring during the acute phase of AMI. It provides a description of models developed, advantages and disadvantages of rats, as well as an overview of the most important interventions investigated and the relevance for human pathophysiology.
Collapse
Affiliation(s)
- Laura A Hundahl
- 1 Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- 2 Department of Cardiology, Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Jespersen
- 1 Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
158
|
Feng Y, Liu J, Wang M, Liu M, Shi L, Yuan W, Ye J, Hu D, Wan J. The E23K variant of the Kir6.2 subunit of the ATP-sensitive potassium channel increases susceptibility to ventricular arrhythmia in response to ischemia in rats. Int J Cardiol 2017; 232:192-198. [DOI: 10.1016/j.ijcard.2017.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022]
|
159
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
160
|
Garrott K, Kuzmiak-Glancy S, Wengrowski A, Zhang H, Rogers J, Kay MW. K ATP channel inhibition blunts electromechanical decline during hypoxia in left ventricular working rabbit hearts. J Physiol 2017; 595:3799-3813. [PMID: 28177123 DOI: 10.1113/jp273873] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/01/2017] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Heart function is critically dependent upon the balance of energy production and utilization. Sarcolemmal ATP-sensitive potassium channels (KATP channels) in cardiac myocytes adjust contractile function to compensate for the level of available energy. Understanding the activation of KATP channels in working myocardium during high-stress situations is crucial to the treatment of cardiovascular disease, especially ischaemic heart disease. Using a new optical mapping approach, we measured action potentials from the surface of excised contracting rabbit hearts to assess when sarcolemmal KATP channels were activated during physiologically relevant workloads and during gradual reductions in myocardial oxygenation. We demonstrate that left ventricular pressure is closely linked to KATP channel activation and that KATP channel inhibition with a low concentration of tolbutamide prevents electromechanical decline when oxygen availability is reduced. As a result, KATP channel inhibition probably exacerbates a mismatch between energy demand and energy production when myocardial oxygenation is low. ABSTRACT Sarcolemmal ATP-sensitive potassium channel (KATP channel) activation in isolated cells is generally understood, although the relationship between myocardial oxygenation and KATP activation in excised working rabbit hearts remains unknown. We optically mapped action potentials (APs) in excised rabbit hearts to test the hypothesis that hypoxic changes would be more severe in left ventricular (LV) working hearts (LWHs) than Langendorff (LANG) perfused hearts. We further hypothesized that KATP inhibition would prevent those changes. Optical APs were mapped when measuring LV developed pressure (LVDP), coronary flow rate and oxygen consumption in LANG and LWHs. Hearts were paced to increase workload and perfusate was deoxygenated to study the effects of myocardial hypoxia. A subset of hearts was perfused with 1 μm tolbutamide (TOLB) to identify the level of AP duration (APD) shortening attributed to KATP channel activation. During sinus rhythm, APD was shorter in LWHs compared to LANG hearts. APD in both LWHs and LANG hearts dropped steadily during deoxygenation. With TOLB, APDs in LWHs were longer at all workloads and APD reductions during deoxygenation were blunted in both LWHs and LANG hearts. At 50% perfusate oxygenation, APD and LVDP were significantly higher in LWHs perfused with TOLB (199 ± 16 ms; 92 ± 5.3 mmHg) than in LWHs without TOLB (109 ± 14 ms, P = 0.005; 65 ± 6.5 mmHg, P = 0.01). Our results indicate that KATP channels are activated to a greater extent in perfused hearts when the LV performs pressure-volume work. The results of the present study demonstrate the critical role of KATP channels in modulating myocardial function over a wide range of physiological conditions.
Collapse
Affiliation(s)
- Kara Garrott
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Sarah Kuzmiak-Glancy
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Anastasia Wengrowski
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Hanyu Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jack Rogers
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| |
Collapse
|
161
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
162
|
Krzesiak A, Delpech N, Sebille S, Cognard C, Chatelier A. Structural, Contractile and Electrophysiological Adaptations of Cardiomyocytes to Chronic Exercise. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:75-90. [PMID: 29022258 DOI: 10.1007/978-981-10-4307-9_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cardiac beneficial effects of chronic exercise is well admitted. These effects mainly studied at the organ and organism integrated levels find their origin in cardiomyocyte adaptation. This chapter try to highlight the main trends of the data related to the different parameters subject to such adaptations. This is addressed through cardiomyocytes size and structure, calcium and contractile properties, and finally electrophysiological alterations induced by training as they transpire from the literature. Despite the clarifications needed to decipher healthy cardiomyocyte remodeling, this overview clearly show that cardiac cell plasticity ensure the cardiac adaptation to exercise training and offers an interesting mean of action to counteract physiological disturbances induced by cardiac pathologies.
Collapse
Affiliation(s)
- A Krzesiak
- Equipe Transferts Ioniques et Rythmicité Cardiaque (TIRC), Lab. Signalisation et Transports Ioniques Membranaires (STIM), ERL CNRS/Université de Poitiers n°7368, Faculté des Sciences Fondamentales et Appliquées, Pôle Biologie Santé Bât B36/B37, 1 rue Georges Bonnet TSA 51106, 86073, Poitiers Cedex 9, France.,Laboratoire Mobilité, Vieillissement & Exercice (MOVE) - EA 6314, Faculté des Sciences du Sport Bât C6, 8, allée Jean Monnet, TSA 31113, 86073, Poitiers Cedex 9, France
| | - N Delpech
- Laboratoire Mobilité, Vieillissement & Exercice (MOVE) - EA 6314, Faculté des Sciences du Sport Bât C6, 8, allée Jean Monnet, TSA 31113, 86073, Poitiers Cedex 9, France
| | - S Sebille
- Equipe Transferts Ioniques et Rythmicité Cardiaque (TIRC), Lab. Signalisation et Transports Ioniques Membranaires (STIM), ERL CNRS/Université de Poitiers n°7368, Faculté des Sciences Fondamentales et Appliquées, Pôle Biologie Santé Bât B36/B37, 1 rue Georges Bonnet TSA 51106, 86073, Poitiers Cedex 9, France
| | - C Cognard
- Equipe Transferts Ioniques et Rythmicité Cardiaque (TIRC), Lab. Signalisation et Transports Ioniques Membranaires (STIM), ERL CNRS/Université de Poitiers n°7368, Faculté des Sciences Fondamentales et Appliquées, Pôle Biologie Santé Bât B36/B37, 1 rue Georges Bonnet TSA 51106, 86073, Poitiers Cedex 9, France
| | - A Chatelier
- Equipe Transferts Ioniques et Rythmicité Cardiaque (TIRC), Lab. Signalisation et Transports Ioniques Membranaires (STIM), ERL CNRS/Université de Poitiers n°7368, Faculté des Sciences Fondamentales et Appliquées, Pôle Biologie Santé Bât B36/B37, 1 rue Georges Bonnet TSA 51106, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
163
|
Yang HQ, Subbotina E, Ramasamy R, Coetzee WA. Cardiovascular K ATP channels and advanced aging. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2016; 6:32517. [PMID: 27733235 PMCID: PMC5061878 DOI: 10.3402/pba.v6.32517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022]
Abstract
With advanced aging, there is a decline in innate cardiovascular function. This decline is not general in nature. Instead, specific changes occur that impact the basic cardiovascular function, which include alterations in biochemical pathways and ion channel function. This review focuses on a particular ion channel that couple the latter two processes, namely the KATP channel, which opening is promoted by alterations in intracellular energy metabolism. We show that the intrinsic properties of the KATP channel changes with advanced aging and argue that the channel can be further modulated by biochemical changes. The importance is widespread, given the ubiquitous nature of the KATP channel in the cardiovascular system where it can regulate processes as diverse as cardiac function, blood flow and protection mechanisms against superimposed stress, such as cardiac ischemia. We highlight questions that remain to be answered before the KATP channel can be considered as a viable target for therapeutic intervention.
Collapse
Affiliation(s)
- Hua-Qian Yang
- Department of Pediatrics, NYU School of Medicine, New York, NY, USA
| | | | - Ravichandran Ramasamy
- Department of Medicine, NYU School of Medicine, New York, NY, USA.,Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, USA
| | - William A Coetzee
- Department of Pediatrics, NYU School of Medicine, New York, NY, USA.,Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, USA.,Department of Physiology & Neuroscience, NYU School of Medicine, New York, NY, USA;
| |
Collapse
|
164
|
Sabino JPJ, Traslaviña GAA, Branco LG. Role of central hydrogen sulfide on ventilatory and cardiovascular responses to hypoxia in spontaneous hypertensive rats. Respir Physiol Neurobiol 2016; 231:21-7. [DOI: 10.1016/j.resp.2016.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 11/24/2022]
|
165
|
Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:89-144. [PMID: 28212804 DOI: 10.1016/bs.apha.2016.07.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+, and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. VSM cells express multiple isoforms of at least five classes of K+ channels that contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression, and function of large conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells.
Collapse
|
166
|
Liu X, Duan P, Hu X, Li R, Zhu Q. Altered KATP Channel Subunits Expression and Vascular Reactivity in Spontaneously Hypertensive Rats With Age. J Cardiovasc Pharmacol 2016; 68:143-9. [PMID: 27035370 PMCID: PMC4979625 DOI: 10.1097/fjc.0000000000000394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/12/2016] [Indexed: 11/25/2022]
Abstract
ATP-sensitive potassium (KATP) channels link membrane excitability to metabolic state to regulate a series of biological activities including the vascular tone. However, their ability to influence hypertension is controversial. Here we aim to investigate possible alteration of KATP channel in vascular smooth muscles (VSMs) during hypertension development process. In this study, we used 16-week-old spontaneously hypertensive rats (SHRs), 49-week-old SHRs, and their age-matched Wistar-Kyoto rats to study the expression of VSM KATP subunits at the mRNA and protein level and the function of VSM KATP by observing the relaxation reactivity of isolated aorta rings to KATP modulators. We found that the expression of VSM KATP subunits Kir6.1 and sulfonylurea receptor (SUR2B) decreased during hypertension. Moreover, the expression of SUR2B and Kir6.1 in 49-week-old SHRs decreased much more than that in 16-week-old SHRs. Furthermore, the aorta rings of 49-week-old SHRs showed lower reactivity to diazoxide than 16-week-old SHRs. This study suggests that KATP channels in VSM subunits Kir6.1 and SUR2B contribute to modify the functionality of this channel in hypertension with age.
Collapse
MESH Headings
- Age Factors
- Aging/metabolism
- Animals
- Aorta/metabolism
- Aorta/physiopathology
- Blood Pressure/drug effects
- Diazoxide/pharmacology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Down-Regulation
- Hypertension/drug therapy
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/physiopathology
- KATP Channels/genetics
- KATP Channels/metabolism
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Potassium Channel Blockers/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Inbred SHR
- Rats, Inbred WKY
- Sulfonylurea Receptors/genetics
- Sulfonylurea Receptors/metabolism
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China; and
| | - Peng Duan
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China; and
| | - Xingxing Hu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China; and
| | - Ruisheng Li
- Research and Technology Service Center, 302 Hospital of PLA, Beijing, China
| | - Qinglei Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China; and
| |
Collapse
|
167
|
Yang HQ, Foster MN, Jana K, Ho J, Rindler MJ, Coetzee WA. Plasticity of sarcolemmal KATP channel surface expression: relevance during ischemia and ischemic preconditioning. Am J Physiol Heart Circ Physiol 2016; 310:H1558-66. [PMID: 27037371 DOI: 10.1152/ajpheart.00158.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/30/2016] [Indexed: 11/22/2022]
Abstract
Myocardial ischemia remains the primary cause of morbidity and mortality in the United States. Ischemic preconditioning (IPC) is a powerful form of endogenous protection against myocardial infarction. We studied alterations in KATP channels surface density as a potential mechanism of the protection of IPC. Using cardiac-specific knockout of Kir6.2 subunits, we demonstrated an essential role for sarcolemmal KATP channels in the infarct-limiting effect of IPC in the mouse heart. With biochemical membrane fractionation, we demonstrated that sarcolemmal KATP channel subunits are distributed both to the sarcolemma and intracellular endosomal compartments. Global ischemia causes a loss of sarcolemmal KATP channel subunit distribution and internalization to endosomal compartments. Ischemia-induced internalization of KATP channels was prevented by CaMKII inhibition. KATP channel subcellular redistribution was also observed with immunohistochemistry. Ischemic preconditioning before the index ischemia reduced not only the infarct size but also prevented KATP channel internalization. Furthermore, not only did adenosine mimic IPC by preventing infarct size, but it also prevented ischemia-induced KATP channel internalization via a PKC-mediated pathway. We show that preventing endocytosis with dynasore reduced both KATP channel internalization and strongly mitigated infarct development. Our data demonstrate that plasticity of KATP channel surface expression must be considered as a potentially important mechanism of the protective effects of IPC and adenosine.
Collapse
Affiliation(s)
| | | | | | | | | | - William A Coetzee
- Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| |
Collapse
|
168
|
Schulz R, Di Lisa F. Mitochondrial potassium homeostasis: a central player in cardioprotection. Cardiovasc Res 2016; 110:4-5. [DOI: 10.1093/cvr/cvw041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
169
|
Gao Z, Sierra A, Zhu Z, Koganti SRK, Subbotina E, Maheshwari A, Anderson ME, Zingman LV, Hodgson-Zingman DM. Loss of ATP-Sensitive Potassium Channel Surface Expression in Heart Failure Underlies Dysregulation of Action Potential Duration and Myocardial Vulnerability to Injury. PLoS One 2016; 11:e0151337. [PMID: 26964104 PMCID: PMC4786327 DOI: 10.1371/journal.pone.0151337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/26/2016] [Indexed: 11/18/2022] Open
Abstract
The search for new approaches to treatment and prevention of heart failure is a major challenge in medicine. The adenosine triphosphate-sensitive potassium (KATP) channel has been long associated with the ability to preserve myocardial function and viability under stress. High surface expression of membrane KATP channels ensures a rapid energy-sparing reduction in action potential duration (APD) in response to metabolic challenges, while cellular signaling that reduces surface KATP channel expression blunts APD shortening, thus sacrificing energetic efficiency in exchange for greater cellular calcium entry and increased contractile force. In healthy hearts, calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylates the Kir6.2 KATP channel subunit initiating a cascade responsible for KATP channel endocytosis. Here, activation of CaMKII in a transaortic banding (TAB) model of heart failure is coupled with a 35–40% reduction in surface expression of KATP channels compared to hearts from sham-operated mice. Linkage between KATP channel expression and CaMKII is verified in isolated cardiomyocytes in which activation of CaMKII results in downregulation of KATP channel current. Accordingly, shortening of monophasic APD is slowed in response to hypoxia or heart rate acceleration in failing compared to non-failing hearts, a phenomenon previously shown to result in significant increases in oxygen consumption. Even in the absence of coronary artery disease, failing myocardium can be further injured by ischemia due to a mismatch between metabolic supply and demand. Ischemia-reperfusion injury, following ischemic preconditioning, is diminished in hearts with CaMKII inhibition compared to wild-type hearts and this advantage is largely eliminated when myocardial KATP channel expression is absent, supporting that the myocardial protective benefit of CaMKII inhibition in heart failure may be substantially mediated by KATP channels. Recognition of CaMKII-dependent downregulation of KATP channel expression as a mechanism for vulnerability to injury in failing hearts points to strategies targeting this interaction for potential preventives or treatments.
Collapse
Affiliation(s)
- Zhan Gao
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ana Sierra
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Zhiyong Zhu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Siva Rama Krishna Koganti
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ekaterina Subbotina
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ankit Maheshwari
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Mark E. Anderson
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- François Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, United States of America
| | - Leonid V. Zingman
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- François Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, United States of America
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States of America
- Veterans Affairs Medical Center, Iowa City, Iowa, United States of America
| | - Denice M. Hodgson-Zingman
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- François Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
170
|
Köhler R, Oliván-Viguera A, Wulff H. Endothelial Small- and Intermediate-Conductance K Channels and Endothelium-Dependent Hyperpolarization as Drug Targets in Cardiovascular Disease. ADVANCES IN PHARMACOLOGY 2016; 77:65-104. [DOI: 10.1016/bs.apha.2016.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|