151
|
Thibault PA, Wilson JA. Targeting miRNAs to treat Hepatitis C Virus infections and liver pathology: Inhibiting the virus and altering the host. Pharmacol Res 2013; 75:48-59. [PMID: 23541631 DOI: 10.1016/j.phrs.2013.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/10/2013] [Accepted: 03/11/2013] [Indexed: 02/06/2023]
Abstract
Hepatitis C Virus (HCV) infection-induced liver disease is a growing problem worldwide, and is the primary cause of liver failure requiring liver transplantation in North America. Improved therapeutic strategies are required to control and possibly eradicate HCV infections, and to modulate HCV-induced liver disease. Cellular microRNAs anneal to and regulate mRNA translation and stability and form a regulatory network that modulates virtually every cellular process. Thus, miRNAs are promising cellular targets for therapeutic intervention for an array of diseases including cancer, metabolic diseases, and virus infections. In this review we outline the features of miRNA regulation and how miRNAs may be targeted in strategies to modulate HCV replication and pathogenesis. In particular, we highlight miR-122, a miRNA that directly modulates the HCV life cycle using an unusual mechanism. This miRNA is very important since miR-122 antagonists dramatically reduced HCV titres in HCV-infected chimpanzees and humans and currently represents the most likely candidate to be the first miRNA-based therapy licensed for use. However, we also discuss other miRNAs that directly or indirectly alter HCV replication efficiency, liver cirrhosis, fibrosis and the development of hepatocellular carcinoma (HCC). We also discuss a few miRNAs that might be targets to treat HCV in cases of HCV/HIV co-infection. Finally, we review methods to deliver miRNA antagonists and mimics to the liver. In the future, it may be possible to design and deliver specific combinations of miRNA antagonists and mimics to cure HCV infection or to limit liver pathogenesis.
Collapse
Affiliation(s)
- Patricia A Thibault
- Department of Microbiology and Immunology and Vaccine and Infectious Disease Organization, University of Saskatchewan, Rm 2D01, HSc Bldg, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | | |
Collapse
|
152
|
Hua Y, Larsen N, Kalyana-Sundaram S, Kjems J, Chinnaiyan AM, Peter ME. miRConnect 2.0: identification of oncogenic, antagonistic miRNA families in three human cancers. BMC Genomics 2013; 14:179. [PMID: 23497354 PMCID: PMC3637148 DOI: 10.1186/1471-2164-14-179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 03/06/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Based on their function in cancer micro(mi)RNAs are often grouped as either tumor suppressors or oncogenes. However, miRNAs regulate multiple tumor relevant signaling pathways raising the question whether two oncogenic miRNAs could be functional antagonists by promoting different steps in tumor progression. We recently developed a method to connect miRNAs to biological function by comparing miRNA and gene array expression data from the NCI60 cell lines without using miRNA target predictions (miRConnect). RESULTS We have now extended this analysis to three primary human cancers (ovarian cancer, glioblastoma multiforme, and kidney renal clear cell carcinoma) available at the Cancer Genome Atlas (TCGA), and have correlated the expression of the clustered miRNAs with 158 oncogenic signatures (miRConnect 2.0). We have identified functionally antagonistic groups of miRNAs. One group (the agonists), which contains many of the members of the miR-17 family, correlated with c-Myc induced genes and E2F gene signatures. A group that was directly antagonistic to the agonists in all three primary cancers contains miR-221 and miR-222. Since both miR-17 ~ 92 and miR-221/222 are considered to be oncogenic this points to a functional antagonism of different oncogenic miRNAs. Analysis of patient data revealed that in certain patients agonistic miRNAs predominated, whereas in other patients antagonists predominated. In glioblastoma a high ratio of miR-17 to miR-221/222 was predictive of better overall survival suggesting that high miR-221/222 expression is more adverse for patients than high miR-17 expression. CONCLUSION miRConnect 2.0 is useful for identifying activities of miRNAs that are relevant to primary cancers. The new correlation data on miRNAs and mRNAs deregulated in three primary cancers are available at miRConnect.org.
Collapse
Affiliation(s)
- Youjia Hua
- Feinberg School of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
153
|
Takahashi K, Yan I, Wen HJ, Patel T, Ravikumar R, Mohan V, Balasubramanyam M. microRNAs in liver disease: from diagnostics to therapeutics. Clin Biochem 2013. [PMID: 23396165 DOI: 10.1016/j.clinbiochem] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is a need to identify effective biomarkers for diagnosis, prognosis and prediction of treatment efficacy for many liver diseases such as hepatocellular cancer, and chronic viral hepatitis. The identification of disease-specific alterations in microRNA expression and the ability to detect microRNAs in the circulation provide the basis for identifying novel clinically effective treatments and biomarkers. Knowledge regarding miRNA in human liver disease may eventually lead to serum or tissue biomarkers with clinical utility. A selection of relevant studies is reviewed. There are major challenges that need to be addressed prior to clinical application such as the need for careful validation of diagnostic miRNA candidates in well described clinical cohorts, and technical issues such as quantitation and standardization of assays. The rapid progress in therapeutic interventions using miRNA based strategies for chronic hepatitis C and hepatocellular cancer provides optimism for novel approaches that will build on the existing and emerging knowledge regarding miRNA in liver diseases.
Collapse
|
154
|
MicroRNAs in hepatocellular carcinoma: regulation, function, and clinical implications. ScientificWorldJournal 2013; 2013:924206. [PMID: 23431261 PMCID: PMC3575633 DOI: 10.1155/2013/924206] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/13/2013] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and the third cause of cancer-related death. Poor understanding of the mechanisms underlying the pathogenesis of HCC makes it difficult to be diagnosed and treated at early stage. MicroRNAs (miRNAs), a class of noncoding single-stranded RNAs of ~22 nucleotides in length, posttranscriptionally regulate gene expression by base pairing with the 3' untranslated regions (3'UTRs) of target messenger RNAs (mRNAs). Aberrant expression of miRNAs is found in many if not all cancers, and many deregulated miRNAs have been proved to play crucial roles in the initiation and progression of cancers by regulating the expression of various oncogenes or tumor suppressor genes. In this Paper, we will summarize the regulations and functions of miRNAs aberrantly expressed in HCC and discuss the potential application of miRNAs as diagnostic and prognostic biomarkers of HCC and their potential roles in the intervention of HCC.
Collapse
|
155
|
Giordano S, Columbano A. MicroRNAs: new tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma? Hepatology 2013; 57:840-7. [PMID: 23081718 DOI: 10.1002/hep.26095] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/22/2012] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved small noncoding RNAs involved in the regulation of gene expression and protein translation. Many studies have shown that they play a crucial role in driving organ and tissue differentiation during embryogenesis and in the fine-tuning of fundamental biological processes, such as proliferation and apoptosis. Growing evidence indicates that their deregulation plays an important role in cancer onset and progression as well, where they act as oncogenes or oncosuppressors. In this review, we highlight the most recent findings regarding the role of miRNAs in hepatocellular carcinoma (HCC) by analyzing the possible mechanisms by which they contribute to this neoplasm. Moreover, we discuss the possible role of circulating miRNAs as biomarkers, a field that needs urgent improvement in the clinical surveillance of HCC, and the fascinating possibility of using them as therapeutic targets or drugs themselves.
Collapse
Affiliation(s)
- Silvia Giordano
- Institute for Cancer Research at Candiolo, University of Torino Medical School, Turin, Italy.
| | | |
Collapse
|
156
|
Monroig PDC, Calin GA. MicroRNA and Epigenetics: Diagnostic and Therapeutic Opportunities. CURRENT PATHOBIOLOGY REPORTS 2013; 1:43-52. [PMID: 23515489 DOI: 10.1007/s40139-013-0008-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a large family of post-transcriptional regulators of gene expression that control cellular and developmental processes by targeting messenger RNAs (mRNA). These small non-coding RNAs (ncRNAs) are aberrantly expressed in cancer, and are known to contribute to tumorigenesis and disease progression. Therapeutic strategies based on modulating miRNAs activity are emerging due to the ability of these ncRNAs to influence cellular behavior. MiRNA levels predict disease prognosis and overall patient survival, and reconstituting their basal levels has been proven to inhibit tumor growth and metastasis. Different delivery mechanisms have been tested in vivo, however many challenges need to be overcome before their utilization in the clinic. Moreover, it has been found that circulating miRNAs in body fluids have the potential to reshape cancer diagnosis and prognosis by functioning as biomarkers and indicators of progression and metastasis. These miRNAs as biofluids-based biomarkers provide an alternative strategy for early diagnosis and treatment of cancer patients.
Collapse
Affiliation(s)
- Paloma Del C Monroig
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston TX 77030, USA
| | | |
Collapse
|
157
|
Zhang H, Shykind B, Sun T. Approaches to manipulating microRNAs in neurogenesis. Front Neurosci 2013; 6:196. [PMID: 23335878 PMCID: PMC3547386 DOI: 10.3389/fnins.2012.00196] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/21/2012] [Indexed: 12/21/2022] Open
Abstract
Neurogenesis in the nervous system is regulated by both protein coding genes and non-coding RNA molecules. microRNAs (miRNAs) are endogenous small non-coding RNAs and usually negatively regulate gene expression by binding to the 3′ untranslated region (3′UTR) of target messenger RNAs (mRNAs). miRNAs have been shown to play an essential role in neurogenesis, regulating neuronal proliferation, differentiation, maturation, and migration. An important strategy used to reveal miRNA function is the manipulation of their expression levels and patterns in specific regions and cell types in the nervous system. In this review we will systemically highlight established and new approaches used to achieve gain-of-function and loss-of-function of miRNAs in vitro and in vivo, and will also summarize miRNA delivery techniques. As the development of these leading edge techniques come online, more exciting discoveries of the roles miRNAs play in neural development and function will be uncovered.
Collapse
Affiliation(s)
- Haijun Zhang
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University New York, NY, USA
| | | | | |
Collapse
|
158
|
Rong M, Chen G, Dang Y. Increased miR-221 expression in hepatocellular carcinoma tissues and its role in enhancing cell growth and inhibiting apoptosis in vitro. BMC Cancer 2013; 13:21. [PMID: 23320393 PMCID: PMC3551704 DOI: 10.1186/1471-2407-13-21] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 01/11/2013] [Indexed: 02/07/2023] Open
Abstract
Background MiR-221 is over-expressed in human hepatocellular carcinoma (HCC), but its clinical significance and function in HCC remains uncertain. The aim of the study was to investigate the relationship between miR-221 overexpression and clinicopathological parameters in HCC formalin-fixed paraffin-embedded (FFPE) tissues, and the effect of miR-221 inhibitor and mimic on different HCC cell lines in vitro. Methods MiR-221 expression was detected using real time RT-qPCR in FFPE HCC and the adjacent noncancerous liver tissues. The relationship between miR-221 level and clinicopathological features was also analyzed. Furthermore, miR-221 inhibitor and mimic were transfected into HCC cell lines HepB3, HepG2 and SNU449. The effects of miR-221 on cell growth, cell cycle, caspase activity and apoptosis were also investigated by spectrophotometry, fluorimetry, fluorescence microscopy and flow cytometry, respectively. Results The relative expression of miR-221 in clinical TNM stages III and IV was significantly higher than that in the stages I and II. The miR-221 level was also upregulated in the metastatic group compared to the nonmetastatic group. Furthermore, miR-221 over-expression was related to the status of tumor capsular infiltration in HCC clinical samples. Functionally, cell growth was inhibited, cell cycle was arrested in G1/S-phase and apoptosis was increased by miR-221 inhibitor in vitro. Likewise, miR-221 mimic accelerated the cell growth. Conclusions Expression of miR-221 in FFPE tissues could provide predictive significance for prognosis of HCC patients. Moreover, miR-221 inhibitor could be useful to suppress proliferation and induce apoptosis in HCC cells. Thus miR-221 might be a critical targeted therapy strategy for HCC.
Collapse
Affiliation(s)
- Minhua Rong
- Research Department, Affiliated Cancer Hospital, Guangxi Medical University, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| | | | | |
Collapse
|
159
|
Abstract
MicroRNAs (miRNAs), a class of short non-coding RNAs, have been studied intensely and extensively in the past decade in every aspect of biological processes, including cell differentiation, proliferation and death. These findings pointed out the pivotal role of miRNA in posttranscriptional control of gene expression in animals and established miRNAs as therapeutic targets for different pathophysiological processes, including liver disease. Here we have discussed the recent advances made in identifying the miRNAs deregulated in different liver diseases such as obesity, hepatitis, alcoholic and nonalcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma, as well as pathophysiological conditions such as developmental abnormality. We have specifically reviewed the role of miRNAs in these diseases and discussed critically potential impacts of these miRNAs as biomarkers and/or therapeutic targets in liver pathobiology in the clinical setting. Finally, we have highlighted the latest techniques or preclinical and/or clinical trials that are being developed to replenish or inhibit the deregulated miRNAs.
Collapse
Affiliation(s)
- Shu-Hao Hsu
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA. Comprehensive Cancer Center, The Ohio State University, 420 West 12th Avenue, 606 TMRF Building, Columbus, OH 43210, USA
| | | |
Collapse
|
160
|
Yuan Q, Loya K, Rani B, Möbus S, Balakrishnan A, Lamle J, Cathomen T, Vogel A, Manns MP, Ott M, Cantz T, Sharma AD. MicroRNA-221 overexpression accelerates hepatocyte proliferation during liver regeneration. Hepatology 2013; 57:299-310. [PMID: 22821679 DOI: 10.1002/hep.25984] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/06/2012] [Indexed: 02/06/2023]
Abstract
UNLABELLED The tightly controlled replication of hepatocytes in liver regeneration and uncontrolled proliferation of tumor cells in hepatocellular carcinoma (HCC) are often modulated by common regulatory pathways. Several microRNAs (miRNAs) are involved in HCC progression by modulating posttranscriptional expression of multiple target genes. miR-221, which is frequently up-regulated in HCCs, delays fulminant liver failure in mice by inhibiting apoptosis, indicating a pleiotropic role of miR-221 in hepatocytes. Here, we hypothesize that modulation of miR-221 targets in primary hepatocytes enhances proliferation, providing novel clues for enhanced liver regeneration. We demonstrate that miR-221 enhances proliferation of in vitro cultivated primary hepatocytes. Furthermore, applying two-thirds partial hepatectomy as a surgically induced liver regeneration model we show that adeno-associated virus-mediated overexpression of miR-221 in the mouse liver also accelerates hepatocyte proliferation in vivo. miR-221 overexpression leads to rapid S-phase entry of hepatocytes during liver regeneration. In addition to the known targets p27 and p57, we identify Aryl hydrocarbon nuclear translocator (Arnt) messenger RNA (mRNA) as a novel target of miR-221, which contributes to the pro-proliferative activity of miR-221. CONCLUSION miR-221 overexpression accelerates hepatocyte proliferation. Pharmacological intervention targeting miR-221 may thus be therapeutically beneficial in liver failure by preventing apoptosis and by inducing liver regeneration.
Collapse
Affiliation(s)
- Qinggong Yuan
- Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Abstract
With the advent of next generation sequencing techniques a previously unknown world of non-coding RNA molecules have been discovered. Non-coding RNA transcripts likely outnumber the group of protein coding sequences and hold promise of many new discoveries and mechanistic explanations for essential biological phenomena and pathologies. The best characterized non-coding RNA family consists in humans of about 1400 microRNAs for which abundant evidence have demonstrated fundamental importance in normal development, differentiation, growth control and in human diseases such as cancer. In this review, we summarize the current knowledge and concepts concerning the involvement of microRNAs in cancer, which have emerged from the study of cell culture and animal model systems, including the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response. Importantly, microRNA molecules are already entering the clinic as diagnostic and prognostic biomarkers for patient stratification and also as therapeutic targets and agents.
Collapse
Affiliation(s)
- Martin D Jansson
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|
162
|
Abstract
MicroRNAs (miRNAs) have been uncovered as important posttranscriptional regulators of nearly every biological process in the cell. Furthermore, mounting evidence implies that miRNAs play key roles in the pathogenesis of cancer and that many miRNAs can function either as oncogenes or tumor suppressors. Thus, miRNAs have rapidly emerged as promising targets for the development of novel anticancer therapeutics. The development of miRNA-based cancer therapeutics relies on restoring the activity of tumor suppressor miRNAs using double-stranded miRNA mimics or inhibition of oncogenic miRNAs using single-stranded antisense oligonucleotides, termed antimiRs. In the present review, we focus on recent advancements in the discovery and development of miRNA-based cancer therapeutics using these 2 approaches. In addition, we summarize selected studies, in which modulation of miRNA activity in preclinical cancer models in vivo has demonstrated promising therapeutic potential.
Collapse
|
163
|
Braconi C, Patel T. Non-coding RNAs as therapeutic targets in hepatocellular cancer. Curr Cancer Drug Targets 2012; 12:1073-1080. [PMID: 22873215 PMCID: PMC3916140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/14/2011] [Accepted: 03/11/2012] [Indexed: 06/01/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy that affects a large number of patients worldwide, with an increasing incidence in the United States and Europe. The therapies that are currently available for patients with inoperable HCC have limited benefits. Although molecular targeted therapies against selected cell signaling pathways have shown some promising results, their impact has been minimal. There is a need to identify and explore other targets for the development of novel therapeutics. Several non-protein coding RNAs (ncRNA) have recently been implicated in hepatocarcinogenesis and tumor progression. These ncRNA genes represent promising targets for cancer. However, therapeutic targeting of ncRNA genes has not been employed for HCC. The use of antisense oligonucleotides and viral vector delivery approaches have been shown to be feasible approaches to modulate ncRNA expression. HCC is an optimal cancer to evaluate novel RNA based therapeutic approaches because of the potential of effective delivery and uptake of therapeutic agents to the liver. In this review, we discuss selected ncRNA that could function as potential targets in HCC treatment and outline approaches to target ncRNA expression. Future challenges include the need to achieve site-specific targeting with acceptable safety and efficacy.
Collapse
Affiliation(s)
- Chiara Braconi
- The Ohio State University Medical Center, 460 West 12 Avenue, Columbus, OH 43212, USA
| | - Tushar Patel
- Mayo Clinic, 4500 San Pablo Boulevard, Jacksonville, FL 32224, USA
| |
Collapse
|
164
|
Cho WCS. [Exploiting the therapeutic potential of microRNAs in human cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2012; 15:C8-12. [PMID: 23066553 PMCID: PMC6134410 DOI: 10.3779/j.issn.1009-3419.2012.08.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
大量研究表明microRNAs(miRNAs)的异常调节与癌症的发生和进展相关。新近研究发现了若干在各种人类癌症中具有可作为治疗靶标巨大潜能的miRNAs。这些肿瘤miRNAs的抑制或过表达可调节相关基因的表达,从而抑制各种癌症的增殖或转移。一些miRNAs可逆转上皮-间质转化的表型,有些则可用于增强细胞对抗癌药物的敏感性。它们大部分的抗癌作用均已在临床前动物模型中得到验证。miRNA治疗的一个优点是它可靶向作用于不同信号通路中的许多基因,但同时亦伴有许多未知的脱靶效应的缺点。此外,对于有效的miRNA治疗来说,成功转运也是一个主要的挑战。然而,新近研究的发现及药物转运系统的高速发展为该领域的飞跃展现了一个乐观的前景。
Collapse
Affiliation(s)
- William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong.
| |
Collapse
|
165
|
Abstract
With the advent of next generation sequencing techniques a previously unknown world of non-coding RNA molecules have been discovered. Non-coding RNA transcripts likely outnumber the group of protein coding sequences and hold promise of many new discoveries and mechanistic explanations for essential biological phenomena and pathologies. The best characterized non-coding RNA family consists in humans of about 1400 microRNAs for which abundant evidence have demonstrated fundamental importance in normal development, differentiation, growth control and in human diseases such as cancer. In this review, we summarize the current knowledge and concepts concerning the involvement of microRNAs in cancer, which have emerged from the study of cell culture and animal model systems, including the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response. Importantly, microRNA molecules are already entering the clinic as diagnostic and prognostic biomarkers for patient stratification and also as therapeutic targets and agents.
Collapse
Affiliation(s)
- Martin D Jansson
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|
166
|
Chang L, Hu W, Ye C, Yao B, Song L, Wu X, Ding N, Wang J, Zhou G. miR-3928 activates ATR pathway by targeting Dicer. RNA Biol 2012; 9:1247-54. [PMID: 22922797 DOI: 10.4161/rna.21821] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Alterations in microRNA (miRNA) expression have been observed in cells subjected to exogenous stresses, implying that miRNAs play an important role in cellular stress response; however, the underlying mechanism is still largely unknown. In the present study, we found that miR-3928 was implicated in cellular response to ionizing radiation. After exposed to X-rays, miR-3928 expression increased in 1.5 h and then decreased, meanwhile Dicer, a key component in the miRNA processing machinery, increased gradually. An oscillation was observed in the expression of both mature miR-3928 and Dicer mRNA from 2 h to 3.5 h in irradiated cells. Then, we verified that miR-3928 directly bound to the 3'-untranslated region of Dicer mRNA. Consequently, Dicer expression was suppressed and the maturation of other miRNAs including miR-185, miR-300, and miR-663, was inhibited. Overexpression of miR-3928 induced DNA damage, activated ATR, and phosphorylated Chk1 accompanied by G1 arrest. Taken together, these findings replenished ATR/Chk1 pathway by revealing a novel miRNA regulatory network in response to exogenous stress, in which miR-3928 plays an important role in regulating the expression of Dicer.
Collapse
Affiliation(s)
- Lei Chang
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
El Tayebi HM, Hosny KA, Esmat G, Breuhahn K, Abdelaziz AI. miR-615-5p is restrictedly expressed in cirrhotic and cancerous liver tissues and its overexpression alleviates the tumorigenic effects in hepatocellular carcinoma. FEBS Lett 2012; 586:3309-16. [PMID: 22819824 DOI: 10.1016/j.febslet.2012.06.054] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 12/12/2022]
Abstract
microRNAs aberrant behavior in heptocellular carcinoma (HCC) plays a major role in HCC pathogenesis. miR-615-5p expression has never been evaluated in HCC. We showed that miR-615-5p was preferentially expressed in HCC, cirrhotic liver tissues and HCC cell lines, but undetected in normal livers. Forced miR-615-5p expression in HCC cell lines led to significant decrease in cell growth and migration. In-silico predication revealed insulin-like growth factor-II (IGF-II) as a potential downstream target for miR-615-5p. Forcing the expression of miR-615-5p showed downregulation of IGF-II mRNA, as well as inhibition of the luciferase activity in a luciferase reporter vector harboring the IGF-II-3'UTR target sequence. miR-615-5p acts as tumor-suppressor in HCC through targeting IGF-II.
Collapse
Affiliation(s)
- H M El Tayebi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | | | | | | | | |
Collapse
|
168
|
WANG XINWEI, HEEGAARD NIELSHH, ØRUM HENRIK. MicroRNAs in liver disease. Gastroenterology 2012; 142:1431-43. [PMID: 22504185 PMCID: PMC6311104 DOI: 10.1053/j.gastro.2012.04.007] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 04/04/2012] [Accepted: 04/09/2012] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding RNA molecules that regulate gene expression posttranscriptionally through complementary base pairing with thousands of messenger RNAs. They regulate diverse physiological, developmental, and pathophysiological processes. Recent studies have uncovered the contribution of microRNAs to the pathogenesis of many human diseases, including liver diseases. Moreover, microRNAs have been identified as biomarkers that can often be detected in the systemic circulation. We review the role of microRNAs in liver physiology and pathophysiology, focusing on viral hepatitis, liver fibrosis, and cancer. We also discuss microRNAs as diagnostic and prognostic markers and microRNA-based therapeutic approaches for liver disease.
Collapse
Affiliation(s)
- XIN WEI WANG
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer institute, National Institutes of Health, Bethesda, Maryland
| | - NIELS H. H. HEEGAARD
- Department of Clinical Biochemistry and Immunology Statens Serum Institut, Copenhagen, Denmark
| | - HENRIK ØRUM
- Santaris Pharma, Kogle Allé 6, Hørsholm, Denmark
| |
Collapse
|
169
|
Koufaris C, Wright J, Currie RA, Gooderham NJ. Hepatic microRNA profiles offer predictive and mechanistic insights after exposure to genotoxic and epigenetic hepatocarcinogens. Toxicol Sci 2012; 128:532-43. [PMID: 22584684 DOI: 10.1093/toxsci/kfs170] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In recent years, accumulating evidence supports the importance of microRNAs in liver physiology and disease; however, few studies have examined the involvement of these noncoding genes in chemical hepatocarcinogenesis. Here, we examined the liver microRNA profile of male Fischer rats exposed through their diet to genotoxic (2-acetylaminofluorene) and epigenetic (phenobarbital, diethylhexylphthalate, methapyrilene HCL, monuron, and chlorendic acid) chemical hepatocarcinogens, as well as to non-hepatocarcinogenic treatments (benzophenone, and diethylthiourea) for 3 months. The effects of these treatments on liver pathology, plasma clinical parameters, and liver mRNAs were also determined. All hepatocarcinogens affected the expression of liver mRNAs, while the hepatic microRNA profiles were associated with the mode of action of the chemical treatments and corresponded to chemical carcinogenicity. The three nuclear receptor-activating chemicals (phenobarbital, benzophenone, and diethylhexylphthalate) were characterized by the highly correlated induction of the miR-200a/200b/429, which is involved in protecting the epithelial status of cells and of the miR-96/182 clusters. The four non-nuclear receptor-activating hepatocarcinogens were characterized by the early, persistent induction of miR-34, which was associated with DNA damage and oxidative stress in vivo and in vitro. Repression of this microRNA in a hepatoma cell line led to increased cell growth; thus, miR-34a could act to block abnormal cell proliferation in cells exposed to DNA damage or oxidative stress. This study supports the proposal that hepatic microRNA profiles could assist in the earlier evaluation and identification of hepatocarcinogens, especially those acting by epigenetic mechanisms.
Collapse
Affiliation(s)
- Costas Koufaris
- Biomolecular Medicine, Imperial College London, London SW72AZ, UK
| | | | | | | |
Collapse
|
170
|
Huang JJ, Yu J, Li JY, Liu YT, Zhong RQ. Circulating microRNA expression is associated with genetic subtype and survival of multiple myeloma. Med Oncol 2012; 29:2402-8. [PMID: 22447484 DOI: 10.1007/s12032-012-0210-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 03/05/2012] [Indexed: 12/17/2022]
Abstract
Circulating microRNAs (miRNAs) have shown potential as non-invasive prognostic biomarkers in cancer. Here, we investigated whether miRNAs present in the plasma of multiple myeloma (MM) patients have prognostic utility. We evaluated global miRNA expression profiles in the plasma of 12 multiple myeloma patients and 8 healthy controls using TaqMan Low-Density Arrays. Six miRNAs (miR-148a, miR-181a, miR-20a, miR-221, miR-625, and miR-99b) that were significantly upregulated in MM were selected and further quantified independently by quantitative reverse transcription PCR in plasma from 28 MM patients and 12 healthy controls. Moreover, within the patient group, the expression levels of miR-99b and miR-221 were associated with chromosomal abnormalities t(4; 14) and del(13q), respectively. High levels of miR-20a and miR-148a were related to shorter relapse-free survival. In summary, we have identified aberrant expression of particular circulating miRNAs that are associated with the genetic subtype and survival of MM. These plasma miRNAs have potential as clinical biomarkers in MM.
Collapse
Affiliation(s)
- Jing-jing Huang
- Department of Laboratory Medicine, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | | | | | | | | |
Collapse
|
171
|
Kasinski AL, Slack FJ. Arresting the Culprit: Targeted Antagomir Delivery to Sequester Oncogenic miR-221 in HCC. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e12. [PMID: 23343881 PMCID: PMC3381591 DOI: 10.1038/mtna.2012.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Andrea L Kasinski
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
172
|
Howe EN, Cochrane DR, Richer JK. The miR-200 and miR-221/222 microRNA families: opposing effects on epithelial identity. J Mammary Gland Biol Neoplasia 2012; 17:65-77. [PMID: 22350980 PMCID: PMC4561555 DOI: 10.1007/s10911-012-9244-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 01/29/2012] [Indexed: 12/16/2022] Open
Abstract
Carcinogenesis is a complex process during which cells undergo genetic and epigenetic alterations. These changes can lead tumor cells to acquire characteristics that enable movement from the primary site of origin when conditions become unfavorable. Such characteristics include gain of front-rear polarity, increased migration/invasion, and resistance to anoikis, which facilitate tumor survival during metastasis. An epithelial to mesenchymal transition (EMT) constitutes one way that cancer cells can gain traits that promote tumor progression and metastasis. Two microRNA (miRNA) families, the miR-200 and miR-221 families, play crucial opposing roles that affect the differentiation state of breast cancers. These two families are differentially expressed between the luminal A subtype of breast cancer as compared to the less well-differentiated triple negative breast cancers (TNBCs) that exhibit markers indicative of an EMT. The miR-200 family promotes a well-differentiated epithelial phenotype, while high miR-221/222 results in a poorly differentiated, mesenchymal-like phenotype. This review focuses on the mechanisms (specific proven targets) by which these two miRNA families exert opposing effects on cellular plasticity during breast tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Erin N. Howe
- Program in Cancer Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dawn R. Cochrane
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jennifer K. Richer
- Program in Cancer Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
173
|
Abstract
Dysregulation of microRNAs (miRNAs) has been widely shown to be associated with the development and progression of cancer. Recent studies discovered a handful of miRNAs with great potential to act as therapeutic targets in various human cancers. Inhibition or overexpression of these oncomirs may regulate the expressions of their associated genes, which in turn represses the proliferation or metastasis of different cancers. Some miRNAs can reverse the phenotype of epithelial-mesenchymal transition, while others can be utilized to sensitize cells to DNA-damaging drugs. Most of their anticancer abilities have been validated in preclinical animal models. A merit of miRNA-based therapy is that it can target plenty of genes in different signaling pathways, but this also comes with the drawback of many unknown off-target effects. In addition, successful delivery is also a major obstacle to effective miRNA-based therapeutics. Nevertheless, new findings from recent studies and the rapid advances in systemic drug delivery systems provide an optimistic perspective on the evolution of the field.
Collapse
|