151
|
Cao S, Bhattacharya A, Durrani FA, Fakih M. Irinotecan, oxaliplatin and raltitrexed for the treatment of advanced colorectal cancer. Expert Opin Pharmacother 2006; 7:687-703. [PMID: 16556086 DOI: 10.1517/14656566.7.6.687] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Out of every 17-18 individuals in the US, one develops colorectal cancer (CRC) in their lifetime. Of individuals diagnosed with CRC, > 50% present or develop metastatic disease, which, if untreated, is associated with 6-9 months median survival. Although surgical resection is the primary treatment modality for CRC, chemotherapy is the mainstay of treatment for metastatic or unresectable disease. For nearly three decades, 5-fluorouracil (5-FU) has been the chemotherapy of choice for treatment of CRC. However, the response rates to single 5-FU therapy have been suboptimal with an objective tumour response of 10-20%. Attempts have been made to improve the efficacy of 5-FU by either schedule alteration (protracted infusion versus intravenous push) or biochemical modulation with leucovorin (LV). Continuous infusion induced more tumour regression and prolonged the time-to-disease progression with some significant impact on survival (11.3 versus 12.1 months; p < 0.04). 5-FU/LV resulted in a significant increase in overall response rates and in the prolongation of disease-free survival in the adjuvant setting, although severe toxicities represent a major clinical problem. The last 10 years have seen the addition of several new agents such as irinotecan, oxaliplatin, raltitrexed, bevacizumab and cetuximab. The prognosis has significantly improved with the addition of these agents, with median survivals now > 20 months. This review paper focuses on irinotecan, oxaliplatin and raltitrexed when used alone and in combination.
Collapse
Affiliation(s)
- Shousong Cao
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | | | | | |
Collapse
|
152
|
N/A, 孙 丹, 房 静. N/A. Shijie Huaren Xiaohua Zazhi 2006; 14:1502-1506. [DOI: 10.11569/wcjd.v14.i15.1502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
153
|
Yin MB, Li ZR, Tóth K, Cao S, Durrani FA, Hapke G, Bhattacharya A, Azrak RG, Frank C, Rustum YM. Potentiation of irinotecan sensitivity by Se-methylselenocysteine in an in vivo tumor model is associated with downregulation of cyclooxygenase-2, inducible nitric oxide synthase, and hypoxia-inducible factor 1alpha expression, resulting in reduced angiogenesis. Oncogene 2006; 25:2509-19. [PMID: 16518418 DOI: 10.1038/sj.onc.1209073] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Until recently, the use of Se-methylselenocysteine (MSC) as selective modulator of the antitumor activity and selectivity of anticancer drugs including irinotecan, a topoisomerase I poison, had not been evaluated. Therapeutic synergy between MSC and irinotecan was demonstrated by our laboratory in mice bearing human squamous cell carcinoma of the head and neck tumors. In FaDu xenografts, a poorly differentiated tumor-expressing mutant p53, the cure rate was increased from 30% with irinotecan alone to 100% with the combination of irinotecan and MSC. Cellular exposure to cytotoxic concentration of SN-38, the active metabolite of irinotecan (0.1 microM) alone and in combination with noncytotoxic concentration of MSC (10 microM) did not result in additional enhancement of chk2 phosphorylation and downregulation of specific DNA replication-associated proteins, cdc6, MCM2, cdc25A, nor increase in PARP cleavage, caspase activation and the 30-300 kb DNA fragmentation induced by SN-38 treatment. MSC did not alter significantly markers associated with apoptosis, nor potentiate irinotecan-induced apoptosis. These results indicate that apoptosis is unlikely to be one of the main mechanism associated with the observed in vivo therapeutic synergy. In contrast, significant downregulation of cyclooxygenase-2 (COX-2) expression and activity was observed in the cells exposed to SN-38 in combination with MSC compared to SN-38 alone. Moreover, the inhibition of PGE(2) production was also observed in the cells treated with the combination as compared with SN-38 alone. Analysis of tumor tissues at 24 h after treatment with synergistic modality of irinotecan and MSC revealed significant downregulation of COX-2, inducible nitric oxide synthase (iNOS) and hypoxia-induced factor-1alpha expression (HIF 1alpha). Moreover, decreased microvessel density was observed after irinotecan treatment with the addition of MSC. These results suggest that observed therapeutic synergy correlates with the inhibition of neoangiogenesis through the downregulation of COX-2, iNOS and HIF-1alpha expression.
Collapse
Affiliation(s)
- M-B Yin
- Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Last K, Maharaj L, Perry J, Strauss S, Fitzgibbon J, Lister TA, Joel S. The activity of methylated and non-methylated selenium species in lymphoma cell lines and primary tumours. Ann Oncol 2006; 17:773-9. [PMID: 16469755 DOI: 10.1093/annonc/mdl004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma patients with low serum selenium concentration at presentation have a lower response rate and overall survival than patients with higher serum selenium. The co-administration of selenium with conventional chemotherapy may be useful in these patients. PATIENTS AND METHODS We investigated the activity of two selenium species, methylseleninic acid (MSA) and selenodiglutathione (SDG) in a panel of human lymphoma cell lines and in a primary lymphoma culture system. RESULTS Both compounds demonstrated cytostatic and cytotoxic activity with EC(50) values in the range 1.0-10.2 microM. Cell death was associated with an increase in the sub-G1 (apoptotic) fraction by flow cytometry and was not preceded by any obvious cell cycle arrest. SDG, but not MSA, resulted in marked increases in intracellular ROS, particularly in CRL2261 and SUD4 cells in which the cytotoxic activity of SDG was partly, or completely, inhibited by n-acetyl cysteine, suggesting a dependence on ROS for activity in some cells. Both MSA and SDG showed a concentration dependent reduction in percentage viability after a 2-day exposure in primary lymphoma cultures, with EC(50) values in the range 39-300 microM and 9-28 microM, respectively. CONCLUSION The selenium compounds MSA and SDG induce cell death in lymphoma cell lines and primary lymphoma cultures, which with SDG may be partly attributable to the generation of ROS.
Collapse
Affiliation(s)
- K Last
- Cancer Research UK Medical Oncology Unit, St Bartholomew's Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
155
|
Fakih M, Cao S, Durrani FA, Rustum YM. Selenium protects against toxicity induced by anticancer drugs and augments antitumor activity: a highly selective, new, and novel approach for the treatment of solid tumors. Clin Colorectal Cancer 2006; 5:132-5. [PMID: 16098255 DOI: 10.3816/ccc.2005.n.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Limited therapeutic selectivity and tumor resistance are major obstacles to current chemotherapy. The development of new therapeutic modalities for solid tumor remains a challenge. The use of selenium, 5-methylselenocysteine (MSC), or seleno-L-methionine (SLM) as selective modulators of anticancer drugs is novel and has not been previously investigated. Selenium deficiency is associated with an increased risk of cancer and cancer death. Although low-dose selenium supplementation has been investigated in a large randomized prevention trial, its potential in chemotherapy toxicity prevention and enhancement of antitumor activity of anticancer drugs has not been evaluated. An ideal biomodulator of anticancer drugs would allow escalation of drug dose with the hope of enhancing antitumor activity and possibly reversing drug resistance. Results from this laboratory have demonstrated that MSC and SLM are highly effective modulators of irinotecan cure rates in de novo sensitive and resistant human tumor xenografts. Studies in mice have documented that the minimum effective dose of MSC when combined with irinotecan is 0.01 mg daily. The optimal schedule is to administer MSC orally for 7 days before and concurrently with irinotecan. The observed effects were not drug-specific, as similar results were obtained with taxanes, platinum agents, 5-fluorouracil, and anthracyclines; nor were they species-specific, as selective effects were obtained in mice and rats and are currently being confirmed in ongoing clinical trials.
Collapse
Affiliation(s)
- Marwan Fakih
- Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
156
|
Shah YM, Kaul A, Dong Y, Ip C, Rowan BG. Attenuation of estrogen receptor alpha (ERalpha) signaling by selenium in breast cancer cells via downregulation of ERalpha gene expression. Breast Cancer Res Treat 2006; 92:239-50. [PMID: 16155795 DOI: 10.1007/s10549-005-3203-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Numerous studies have shown that selenium provides beneficial effects as a cancer chemoprevention agent. Although long-term intervention trials failed to confirm selenium protection against breast cancer in humans because of insufficient cases, the evidence of effective selenium chemoprevention in animal mammary tumor models or human breast cancer cells is substantial and convincing. The present study demonstrates that the selenium compound methylseleninic acid (MSA) inhibits estrogen receptor alpha (ERalpha) signaling in ER-positive MCF-7 breast cancer cells as evidenced by decreased estradiol-dependent cell growth and gene expression. MSA diminishes estradiol induction of endogenous ER-regulated pS2 and c-myc genes as well as the expression of an ER-regulated reporter gene. A major mode of MSA action on ER signaling is through a downregulation of ERalpha gene expression that precedes a decrease in ERalpha protein level. This study provides a mechanism driven rationale for using selenium as a chemopreventive agent for women at high risk for developing breast cancer or as a therapeutic strategy for ER-positive breast cancer.
Collapse
Affiliation(s)
- Yatrik M Shah
- Department of Biochemistry & Cancer Biology, Medical College of Ohio, Toledo, OH, USA
| | | | | | | | | |
Collapse
|
157
|
Zu K, Bihani T, Lin A, Park YM, Mori K, Ip C. Enhanced selenium effect on growth arrest by BiP/GRP78 knockdown in p53-null human prostate cancer cells. Oncogene 2006; 25:546-54. [PMID: 16205645 PMCID: PMC2424019 DOI: 10.1038/sj.onc.1209071] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 08/01/2005] [Accepted: 08/01/2005] [Indexed: 11/09/2022]
Abstract
Redox modification of thiol/disulfide interchange in proteins by selenium could lead to protein unfolding. When this occurs in the endoplasmic reticulum (ER), a process known as unfolded protein response (UPR) is orchestrated for survival through activation of PERK-eIF2alpha (PERK: double-stranded RNA-activated protein kinase-like ER kinase; eIF2alpha: eucaryotic initiation factor 2alpha), ATFalpha (ATFalpha: activating transcription factor 6) and inositol requiring 1 (IRE1)-x-box-binding protein 1 (XBP1) signalings. All three UPR transducer pathways were upregulated very rapidly when PC-3 cells were exposed to selenium. These changes were accompanied by increased expression of UPR target genes, including immunoglobulin heavy chain-binding protein/glucose-regulated protein, 78 kDa and CCAAT/enhancer binding protein-homologous protein/growth arrest- and DNA damage-inducible gene (CHOP/GADD153). Induction of BiP/GRP78, an ER-resident chaperone, is part of the damage control mechanism, while CHOP/GADD153 is a transcription factor associated with growth arrest and apoptosis in the event of prolonged ER stress. Knocking down BiP/GRP78 induction by small interference RNA produced a differential response of the three transducers to selenium, suggesting that the signaling intensity of each transducer could be fine-tuned depending on BiP/GRP78 availability. In the presence of selenium, CHOP/GADD153 expression was raised even higher by BiP/GRP78 knockdown. Under this condition, the selenium effect on wild-type p53-activated fragment p21 (p21(WAF)), cyclin-dependent kinase (CDK)1 and CDK2 was also magnified in a manner consistent with enhanced cell growth arrest. Additional experiments with CHOP/GADD153 siRNA knockdown strongly suggested that CHOP/GADD153 may play a positive role in upregulating the expression of p21(WAF) in a p53-independent manner (PC-3 cells are p53 null). Collectively, the above findings support the idea that UPR could be an important mechanism in mediating the anticancer activity of selenium.
Collapse
Affiliation(s)
- K Zu
- Department of Cancer Chemoprevention, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - T Bihani
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - A Lin
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Y-M Park
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - K Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - C Ip
- Department of Cancer Chemoprevention, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
158
|
Suganuma M, Kurusu M, Suzuki K, Tasaki E, Fujiki H. Green tea polyphenol stimulates cancer preventive effects of celecoxib in human lung cancer cells by upregulation ofGADD153 gene. Int J Cancer 2006; 119:33-40. [PMID: 16463383 DOI: 10.1002/ijc.21809] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To more clearly understand the molecular mechanisms involved in synergistic enhancement of cancer preventive activity with the green tea polyphenol (-)-epigallocatechin gallate (EGCG), we examined the effects of cotreatment with EGCG plus celecoxib, a cyclooxygenase-2 selective inhibitor. We specifically looked for induction of apoptosis and expression of apoptosis related genes, with emphasis on growth arrest and DNA damage-inducible 153 (GADD153) gene, in human lung cancer cell line PC-9: Cotreatment with EGCG plus celecoxib strongly induced the expression of both GADD153 mRNA level and protein in PC-9 cells, while neither EGCG nor celecoxib alone did. However, cotreatment did not induce expression of other apoptosis related genes, p21(WAF1) and GADD45. Judging by upregulation of GADD153, only cotreatment with EGCG plus celecoxib synergistically induced apoptosis of PC-9 cells. Synergistic effects with the combination were also observed in 2 other lung cancer cell lines, A549 and ChaGo K-1. Furthermore, EGCG did not enhance GADD153 gene expression or apoptosis induction in PC-9 cells in combination with N-(4-hydroxyphenyl)retinamide or with aspirin. Thus, upregulation of GADD153 is closely correlated with synergistic enhancement of apoptosis with EGCG. Cotreatment also activated the mitogen-activated protein kinases (MAPKs), such as ERK1/2 and p38 MAPK: Preteatment with PD98059 (ERK1/2 inhibitor) and UO126 (selective MEK inhibitor) abrogated both upregulation of GADD153 and synergistic induction of apoptosis of PC-9 cells, while SB203580 (p38 MAPK inhibitor) did not do so, indicating that GADD153 expression was mediated through the ERK signaling pathway. These findings indicate that high upregulation of GADD153 is a key requirement for cancer prevention in combination with EGCG.
Collapse
Affiliation(s)
- Masami Suganuma
- Research Institute of Clinical Oncology, Saitama Cancer Center, Saitama, Japan.
| | | | | | | | | |
Collapse
|
159
|
Dong Y, Zhang H, Gao AC, Marshall JR, Ip C. Androgen receptor signaling intensity is a key factor in determining the sensitivity of prostate cancer cells to selenium inhibition of growth and cancer-specific biomarkers. Mol Cancer Ther 2005; 4:1047-55. [PMID: 16020662 DOI: 10.1158/1535-7163.mct-05-0124] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our previous report showed that methylseleninic acid (MSA) significantly decreases the expression of androgen receptor and prostate-specific antigen (PSA) in LNCaP cells. The present study extended the above observations by showing the universality of this phenomenon and that the inhibitory effect of MSA on prostate cancer cell growth and cancer-specific biomarkers is mediated through androgen receptor down-regulation. First, MSA decreases the expression of androgen receptor and PSA in five human prostate cancer cell lines (LNCaP, LAPC-4, CWR22Rv1, LNCaP-C81, and LNCaP-LN3), irrespective of their androgen receptor genotype (wild type versus mutant) or sensitivity to androgen-stimulated growth. Second, by using the ARE-luciferase reporter gene assay, we found that MSA suppression of androgen receptor transactivation is accounted for primarily by the reduction of androgen receptor protein level. Third, MSA inhibition of five androgen receptor-regulated genes implicated in prostate carcinogenesis (PSA, KLK2, ABCC4, DHCR24, and GUCY1A3) is significantly attenuated by androgen receptor overexpression. Fourth, transfection of androgen receptor in LNCaP cells weakened noticeably the inhibitory effect of MSA on cell growth and proliferation. Androgen receptor signaling has been documented extensively to play an important role in the development of both androgen-dependent and -independent prostate cancer. Our finding that MSA reduces androgen receptor availability by blocking androgen receptor transcription provides justification for a mechanism-driven intervention strategy in using selenium to control prostate cancer progression.
Collapse
Affiliation(s)
- Yan Dong
- Department of Cancer Chemoprevention, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | | | | | | | |
Collapse
|
160
|
Wu Y, Zhang H, Dong Y, Park YM, Ip C. Endoplasmic reticulum stress signal mediators are targets of selenium action. Cancer Res 2005; 65:9073-9. [PMID: 16204082 DOI: 10.1158/0008-5472.can-05-2016] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A monomethylated selenium metabolite, called methylseleninic acid (MSA), has recently been shown to cause global thiol redox modification of proteins. These changes represent a form of cellular stress due to protein misfolding or unfolding. An accumulation of aberrantly folded proteins in the endoplasmic reticulum (ER) triggers a defined set of transducers to correct the defects or commit the cells to apoptosis if the rescue effort is exhausted. Treatment of PC-3 human prostate cancer cells with MSA was found to induce a number of signature ER stress markers: (a) the survival/rescue molecules such as phosphorylated protein kinase-like ER-resident kinase (phospho-PERK), phosphorylated eukaryotic initiation factor-2alpha (phospho-eIF2alpha), glucose-regulated protein (GRP)-78, and GRP94; and (b) the apoptotic molecules such as caspase-12, caspase-7, and CAAT/enhancer binding protein homologous protein or growth arrest DNA damage-inducible gene 153 (CHOP/GADD153). Additional evidence suggested that CHOP/GADD153 might be an important transcription factor in apoptosis induction by MSA. In general, a higher concentration of MSA was required to elicit the apoptotic markers compared with the rescue markers. The apoptotic markers increased proportionally with the dose of MSA, whereas the rescue markers failed to keep pace with the increasing challenge from MSA. GRP78 is the rheostat of the ER stress transducers. In GRP78-overexpressing cells, the ability of MSA to up-regulate phospho-PERK, phospho-eIF2alpha, GRP94, caspase-12, caspase-7, and CHOP/GADD153 was significantly muted. A generous supply of GRP78 would allow cells to cope better with ER stress, thereby improving the odds for survival and negating the commitment to apoptotic death. The present study thus provides strong evidence to support an important role of ER stress response in mediating the anticancer effect of selenium.
Collapse
Affiliation(s)
- Yue Wu
- Department of Cancer Chemoprevention, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | |
Collapse
|
161
|
Shah YM, Al-Dhaheri M, Dong Y, Ip C, Jones FE, Rowan BG. Selenium disrupts estrogen receptor α signaling and potentiates tamoxifen antagonism in endometrial cancer cells and tamoxifen-resistant breast cancer cells. Mol Cancer Ther 2005; 4:1239-49. [PMID: 16093440 DOI: 10.1158/1535-7163.mct-05-0046] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tamoxifen, a selective estrogen receptor (ER) modulator, is the most widely prescribed hormonal therapy treatment for breast cancer. Despite the benefits of tamoxifen therapy, almost all tamoxifen-responsive breast cancer patients develop resistance to therapy. In addition, tamoxifen displays estrogen-like effects in the endometrium increasing the incidence of endometrial cancer. New therapeutic strategies are needed to circumvent tamoxifen resistance in breast cancer as well as tamoxifen toxicity in endometrium. Organic selenium compounds are highly effective chemopreventive agents with well-documented benefits in reducing total cancer incidence and mortality rates for a number of cancers. The present study shows that the organic selenium compound methylseleninic acid (MSA, 2.5 micromol/L) can potentiate growth inhibition of 4-hydroxytamoxifen (10(-7) mol/L) in tamoxifen-sensitive MCF-7 and T47D breast cancer cell lines. Remarkably, in tamoxifen-resistant MCF-7-LCC2 and MCF7-H2Delta16 breast cancer cell lines and endometrial-derived HEC1A and Ishikawa cells, coincubation of 4-hydroxytamoxifen with MSA resulted in a marked growth inhibition that was substantially greater than MSA alone. Growth inhibition by MSA and MSA + 4-hydroxytamoxifen in all cell lines was preceded by a specific decrease in ER(alpha) mRNA and protein without an effect on ER(beta) levels. Estradiol and 4-hydroxytamoxifen induction of endogenous ER-dependent gene expression (pS2 and c-myc) as well as ER-dependent reporter gene expression (ERE(2)e1b-luciferase) was also attenuated by MSA in all cell lines before effect on growth inhibition. Taken together, these data strongly suggest that specific decrease in ER(alpha) levels by MSA is required for both MSA potentiation of the growth inhibitory effects of 4-hydroxytamoxifen and resensitization of tamoxifen-resistant cell lines.
Collapse
Affiliation(s)
- Yatrik M Shah
- Department of Structural and Cellular Biology, SL49, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
162
|
Cho SD, Li G, Hu H, Jiang C, Kang KS, Lee YS, Kim SH, Lu J. Involvement of c-Jun N-terminal Kinase in G2/M Arrest and Caspase-Mediated Apoptosis Induced by Sulforaphane in DU145 Prostate Cancer Cells. Nutr Cancer 2005; 52:213-24. [PMID: 16201852 DOI: 10.1207/s15327914nc5202_11] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Sulforaphane (SFN) is a major isothiocyanate compound in cruciferous vegetables such as broccoli, cauliflower, and Brussels sprouts. Preclinical animal models have recently shown that SFN and other isothiocyanates may be useful for prostrate cancer (PCa) chemoprevention. In this study we used a DU145 human PCa cell culture model to investigate the role of protein kinase signaling pathway(s) in SFN-induced cell cycle arrest and apoptosis and whether another chemopreventive agent selenium enhances the apoptosis potency of SFN. The results showed that SFN exposure for 24 h or longer significantly decreased the number of viable DU145 cells in a dose-dependent manner with an IC50 of asymptotically equal to 10 microM. The decreased cell number was associated with G2/M phase arrest and apoptotic cell death, with the latter being evidenced by caspase-mediated cleavage of poly(ADP-ribose) polymerase and increased release of histone-associated DNA fragments. A peptide inhibitor of caspase-8 completely blocked SFN-induced apoptosis and that for caspase-9 exerted a major protection; however, neither inhibitor attenuated SFN-induced G2/M arrest. Regarding potential mediators, SFN treatment induced a transient rise of reactive oxygen species (ROS) peaking within (1/2) h and the activation of JNK within 1 h but did not have any detectable effect on the phosphorylation of p38MAPK or ERK1/2 from 6 h to 24 h. Pretreatment of cells with N-acetylcysteine to enrich intracellular glutathione blocked SFN-induced ROS and apoptotic cell death. Inhibiting the JNK activity with a pharmacologic inhibitor SP600125 abolished the induction of G2/M arrest and apoptosis by SFN, whereas chemical inhibitors for p38MAPK and MEK1/2 did not have any modulating effect on SFN-induced apoptosis. Taken together, the data indicate that SFN decreased viable DU145 cell number in large part through the generation of ROS and JNK-mediated signaling to G2/M arrest and caspase-dependent apoptosis. Selenium in the form of inorganic sodium selenite salt or methylseleninic acid did not enhance SFN-induced apoptosis in this cell culture model.
Collapse
Affiliation(s)
- Sung-Dae Cho
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Hu H, Jiang C, Ip C, Rustum YM, Lü J. Methylseleninic acid potentiates apoptosis induced by chemotherapeutic drugs in androgen-independent prostate cancer cells. Clin Cancer Res 2005; 11:2379-88. [PMID: 15788689 DOI: 10.1158/1078-0432.ccr-04-2084] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To test whether and how selenium enhances the apoptosis potency of selected chemotherapeutic drugs in prostate cancer (PCA) cells. EXPERIMENTAL DESIGN DU145 and PC3 human androgen-independent PCA cells were exposed to minimal apoptotic doses of selenium and/or the topoisomerase I inhibitor 7-ethyl-10-hydroxycamptothecin (SN38), the topoisomerase II inhibitor etoposide or the microtubule inhibitor paclitaxel/taxol. Apoptosis was measured by ELISA for histone-associated DNA fragments, by flow cytometric analysis of sub-G(1) fraction, and by immunoblot analysis of cleaved poly(ADP-ribose)polymerase. Pharmacologic inhibitors were used to manipulate caspases and c-Jun-NH(2)-terminal kinases (JNK). RESULTS The methylselenol precursor methylseleninic acid (MSeA) increased the apoptosis potency of SN38, etoposide, or paclitaxel by several folds higher than the expected sum of the apoptosis induced by MSeA and each drug alone. The combination treatment did not further enhance JNK1/2 phosphorylation that was induced by each drug in DU145 cells. The JNK inhibitor SP600125 substantially decreased the activation of caspases and apoptosis induced by MSeA combination with SN38 or etoposide and completely blocked these events induced by MSeA/paclitaxel. The caspase-8 inhibitor zIETDfmk completely abolished apoptosis and caspase-9 and caspase-3 cleavage, whereas the caspase-9 inhibitor zLEHDfmk significantly decreased caspase-3 cleavage and apoptosis but had no effect on caspase-8 cleavage. None of these caspase inhibitors abolished JNK1/2 phosphorylation. A JNK-independent suppression of survivin by SN38 and etoposide, but not by paclitaxel, was also observed. In contrast to MSeA, selenite did not show any enhancing effect on the apoptosis induced by these drugs. CONCLUSIONS MSeA enhanced apoptosis induced by cancer therapeutic drugs in androgen-independent PCA cells. In DU145 cells, the enhancing effect was primarily through interactions between MSeA and JNK-dependent targets to amplify the caspase-8-initiated activation cascades. The results suggest a novel use of methyl selenium for improving the chemotherapy of PCA.
Collapse
Affiliation(s)
- Hongbo Hu
- Hormel Institute, University of Minnesota, 801 16th Avenue Northeast, Austin, MN 55912, USA
| | | | | | | | | |
Collapse
|
164
|
Cao S, Durrani FA, Rustum YM. Synergistic antitumor activity of capecitabine in combination with irinotecan. Clin Colorectal Cancer 2005; 4:336-43. [PMID: 15663838 DOI: 10.3816/ccc.2005.n.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
5-Fluorouracil (5-FU) and capecitabine alone and in combination with irinotecan/oxaliplatin are clinically active in the treatment of colorectal and other solid tumors. Studies of the antitumor activity and toxicity of capecitabine or irinotecan alone and in combination with each other, were compared with 5-FU and raltitrexed in human tumor xenografts of colorectal and squamous cell carcinoma of the head and neck using clinically relevant schedules. Antitumor activity and toxicity were evaluated in nude mice bearing human colon carcinomas of HCT-8 and HT-29 and in head and neck squamous cell carcinomas of A253 and FaDu xenografts using the maximum tolerable dose of single-agent capecitabine, 5-FU, or raltitrexed, or each of the drugs in combination with irinotecan. Mice were treated with capecitabine and irinotecan alone or in combination using 2 different schedules: (1) capecitabine orally once a day for 7 days and a single dose of irinotecan (50 mg/kg intravenously [I.V.]), with each drug alone or in combination, and (2) capecitabine orally 5 days a week for 3 weeks and irinotecan 50 mg/kg (I.V. injection) once a week for 3 weeks, with each drug alone or in combination. For comparative purposes, the antitumor activity of single-agent capecitabine, 5-FU, or raltitrexed, or each drug in combination with irinotecan was carried out at its maximum tolerated dose (MTD) using a 3-week schedule. Results indicated that HT-29 and A253 xenografts were de novo resistant (no cure) to capecitabine and irinotecan alone at the MTD, whereas HCT-8 and FaDu xenografts were relatively more sensitive, yielding 10%-20% cures. The combination of irinotecan/capecitabine was much more active than either drug alone against all 4 tumor models. The cure rates were increased from 0 to 20% in A253 and HT-29 xenografts and from 10%-20% to 80%-100% in HCT-8 and FaDu tumor xenografts, respectively. Irinotecan/capecitabine had clear advantage over irinotecan/5-FU and irinotecan/raltitrexed in efficacy and selectivity in that they were more active and less toxic. The extent of synergy with irinotecan/capecitabine appears to be tumor-dependent and independent of the status of p53 expression. The potential impact of the preclinical results on clinical practice for the use of these drugs in combination needs clinical validation.
Collapse
Affiliation(s)
- Shousong Cao
- Grace Cancer Drug Center, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | | | |
Collapse
|
165
|
Azrak RG, Yu J, Pendyala L, Smith PF, Cao S, Li X, Shannon WD, Durrani FA, McLeod HL, Rustum YM. Irinotecan pharmacokinetic and pharmacogenomic alterations induced by methylselenocysteine in human head and neck xenograft tumors. Mol Cancer Ther 2005; 4:843-54. [PMID: 15897249 DOI: 10.1158/1535-7163.mct-04-0315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The combination of methylselenocysteine and irinotecan (CPT-11) is synergistic against FaDu and A253 xenografts. Methylselenocysteine/CPT-11 increased tumor cure rate to 100% in FaDu and to 60% in A253. In this study, the effect of methylselenocysteine on pharmacokinetic and pharmacogenetic profiles of genes relevant to CPT-11 metabolic pathway was evaluated to identify possible mechanisms associated with the observed combinational synergy. Nude mice bearing tumors (FaDu and A253) were treated with methylselenocysteine, CPT-11, and a combination of methylselenocysteine/CPT-11. Samples were collected and analyzed for plasma and intratumor concentration of CPT-11 and 7-ethyl-10-hydroxyl-camptothecin (SN-38) by high-performance liquid chromatography. The intratumor relative expression of genes related to the CPT-11 metabolic pathway was measured by real-time PCR. After methylselenocysteine treatment, the intratumor area under the concentration-time curve of SN-38 increased to a significantly higher level in A253 than in FaDu and was associated with increased expression of CES1 in both tumors. Methylselenocysteine/CPT-11 treatment, compared with CPT-11 alone, resulted in a significant decrease in levels of ABCC1 and DRG1 in FaDu tumors and an increase in levels of CYP3A5 and TNFSF6 in A253 tumors. No statistically significant changes induced by methylselenocysteine/CPT-11 were observed in the levels of other investigated variables. In conclusion, the significant increase in the cure rate after methylselenocysteine/CPT-11 could be related to increased drug delivery into both tumors (CES1), reduced resistance to SN-38 (ABCC1 and DRG1) in FaDu, and induced Fas ligand apoptosis (TNFSF6) in A253. No correlation was observed between cure rate and other investigated variables (transporters, degradation enzymes, DNA repair, and cell survival/death genes) in either tumor.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Biomarkers, Tumor/metabolism
- Camptothecin/administration & dosage
- Camptothecin/analogs & derivatives
- Carcinoma, Squamous Cell/blood
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Cysteine/administration & dosage
- Cysteine/analogs & derivatives
- Female
- Head and Neck Neoplasms/blood
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/genetics
- Humans
- Irinotecan
- Mice
- Mice, Nude
- Organoselenium Compounds/administration & dosage
- Pharmacogenetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Selenocysteine/analogs & derivatives
- Transplantation, Heterologous
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Rami G Azrak
- Department of Cancer Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Bhattacharya A, Tóth K, Mazurchuk R, Spernyak JA, Slocum HK, Pendyala L, Azrak R, Cao S, Durrani FA, Rustum YM. Lack of microvessels in well-differentiated regions of human head and neck squamous cell carcinoma A253 associated with functional magnetic resonance imaging detectable hypoxia, limited drug delivery, and resistance to irinotecan therapy. Clin Cancer Res 2005; 10:8005-17. [PMID: 15585636 DOI: 10.1158/1078-0432.ccr-04-1306] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Combination chemotherapy with irinotecan (CPT-11; 50 mg/kg/week x 4 intravenously), followed 24 hour later by 5-fluorouracil (50 mg/kg/week x 4 intravenously), results in 10 and 100% cure rates of animals bearing human head and neck squamous cell carcinoma xenografts A253 and FaDu, respectively. A253 consists of 30% well-differentiated and avascular and 70% poorly differentiated regions with low microvessel density (10/x400), whereas FaDu is uniformly poorly differentiated with higher microvessel density (19/x400). Studies were carried out for determining the role of well-differentiated and avascular regions in drug resistance in A253 and detection of such regions with noninvasive functional magnetic resonance (fMR) imaging. EXPERIMENTAL DESIGN Tumors were harvested for histopathologic evaluation and immunohistochemistry (CD31, CD34; differentiation marker: involucrin; hypoxia markers: carbonic anhydrase IX, pimonidazole; vascular endothelial factor (VEGF) and Ki67) immediately after fMR imaging following the 3rd dose of chemotherapy. High-performance liquid chromatography determination of intratumoral drug concentration of 7-ethyl-10-hydroxyl-camptothecin and autoradiography with (14)C-labeled CPT-11 was done 2 hours after CPT-11 administration. RESULTS Although A253 xenografts showed three times higher concentration of 7-ethyl-10-hydroxyl-camptothecin, FaDu was more responsive to therapy. After therapy, A253 tumor consisted mostly (approximately 80%) of well-differentiated regions (positive for involucrin) lacking microvessels with a hypoxic rim (positive for carbonic anhydrase IX and pimonidazole) containing few proliferating (Ki67 positive) poorly differentiated cells. Autoradiography revealed that well-differentiated A253 tumor regions showed 5-fold lower (14)C-labeled CPT-11 concentrations compared with poorly differentiated areas (P < 0.001). Blood oxygen level dependant fMR imaging was able to noninvasively distinguish the hypoxic and well-vascularized regions within the tumors. CONCLUSION Avascular-differentiated regions in squamous cell carcinoma offer sanctuary to some hypoxic but viable tumor cells (carbonic anhydrase IX and Ki67 positive) that escape therapy because of limited drug delivery. This study provides direct evidence that because of a specific histologic structure, avascular, well-differentiated hypoxic regions in tumors exhibit low drug uptake and represent a unique form of drug resistance.
Collapse
Affiliation(s)
- Arup Bhattacharya
- Department of Cancer Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Harris SM, Mistry P, Freathy C, Brown JL, Charlton PA. Antitumour activity of XR5944 in vitro and in vivo in combination with 5-fluorouracil and irinotecan in colon cancer cell lines. Br J Cancer 2005; 92:722-8. [PMID: 15700035 PMCID: PMC2361868 DOI: 10.1038/sj.bjc.6602403] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
XR5944 (MLN944), a novel bis-phenazine, has demonstrated potent cytotoxic activity against a variety of murine and human tumour models. In the present study, the antitumour activity of XR5944 was investigated in combination with 5-fluorouracil (5-FU) or irinotecan in human colon carcinoma cell lines and xenografts. In vitro cytotoxicity of the combinations following exposure to the drugs sequentially or simultaneously was evaluated by the sulphorhodamine-B assay and interactions were determined using median-effect analysis. Antagonism was observed (CI>1) following exposure of HT29 cells simultaneously to XR5944 and 5-FU or SN38 (active metabolite of irinotecan). In contrast, sequential exposure of either combination in either order demonstrated at least an additive response (CI⩽1). At least an additive response was also observed with these combinations in HCT116 cells regardless of schedule. Antitumour activity in HT29 xenografts in nude mice was enhanced by sequential administration of 5-FU (65 mg kg−1) or irinotecan (CPT-11) (35 mg kg−1) 48 h before XR5944 (5, 10, or 15 mg kg−1) compared to single agent treatment at the same or higher doses. Administration of irinotecan (35 mg kg−1) and XR5944 (15 mg kg−1) just 30 min apart yielded similar efficacy to sequential administration 48 h apart. All combinations were well tolerated. These data suggest that combinations of XR5944 with irinotecan or 5-FU are of significant interest in the treatment of colon cancer.
Collapse
Affiliation(s)
- S M Harris
- Xenova Ltd, 957 Buckingham Avenue, Slough, Berkshire SL1 4NL, UK.
| | | | | | | | | |
Collapse
|
168
|
Prasad KN. Multiple dietary antioxidants enhance the efficacy of standard and experimental cancer therapies and decrease their toxicity. Integr Cancer Ther 2005; 3:310-22. [PMID: 15523102 DOI: 10.1177/1534735404270936] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer patients can be divided into 3 groups: those receiving standard or experimental therapy, those who have become unresponsive to these therapies, and those in remission at risk for recurrence or a second new cancer. While impressive progress in standard cancer therapy has been made, the value of this therapy in the management of solid tumors may have reached a plateau. At present, there is no strategy to reduce the risk of recurrence of the primary tumors or of a second cancer among survivors. Patients unresponsive to standard or experimental therapies have little option except for poor quality of life for the remainder of life. Therefore, additional approaches should be developed to improve the efficacy of current management of cancer. In this review, the author proposes that an active nutritional protocol that includes high doses of multiple dietary antioxidants and their derivatives (vitamin C, alpha-tocopheryl succinate, and natural beta-carotene), but not endogenously made antioxidants (glutathione- and antioxidant enzyme-elevating agents), when administered as an adjunct to radiation therapy, chemotherapy, or experimental therapy, may improve its efficacy by increasing tumor response and decreasing toxicity. This nutritional protocol can also be used when patients become unresponsive to standard therapy or experimental therapy to improve quality of life and possibly increase the survival time. The authors also propose that after completion of standard therapy and/or experimental therapy, a maintenance nutritional protocol that contains lower doses of antioxidants and their derivatives, together with modification in diet and lifestyle, may reduce the risk of recurrence of the original tumor and development of a second cancer among survivors. Experimental data and limited human studies suggest that use of these nutritional approaches may improve oncologic outcomes and decrease toxicity. This review also discusses the reasons for the current debates regarding the use of antioxidants during radiation or chemotherapy.
Collapse
Affiliation(s)
- Kedar N Prasad
- Center for Vitamin and Cancer Research, Department of Radiology, University of Colorado Health Sciences Center, Denver 80262-0278, USA.
| |
Collapse
|
169
|
Abdulah R, Miyazaki K, Nakazawa M, Koyama H. Chemical forms of selenium for cancer prevention. J Trace Elem Med Biol 2005; 19:141-50. [PMID: 16325529 DOI: 10.1016/j.jtemb.2005.09.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 09/05/2005] [Accepted: 09/05/2005] [Indexed: 11/18/2022]
Abstract
Cancer is becoming an increasingly significant disease worldwide. Currently, more than 7 million people die each year from cancer. With the existing knowledge, at least one-third of worldwide cancer cases could be prevented. Searching for naturally occurring agents in routinely consumed foods that may inhibit cancer development, although challenging, constitutes a valuable and plausible approach to the control and prevention of cancer. To date, the use of the micronutrient selenium (Se) in human clinical trials is limited, but the outcome indicates that Se is among the most promising agents. Although it is convenient to describe the effects of Se in terms of the element, it must always be kept in mind that the chemical form of Se and the dose are determinants of its biological activities. Hyphenated techniques based on coupling chromatographic separation with inductively coupled plasma mass spectrometric (ICP-MS) detection are now established as the most realistic and potent analytical tools available for real-life speciation analysis. These speciation investigations provide evidence that the Se compounds, which can generate monomethylated Se (e.g., Se-methylselenocysteine and methylseleninic acid), are more efficacious than other Se compounds because of their chemoprevention activity.
Collapse
Affiliation(s)
- Rizky Abdulah
- Department of Public Health, Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi City, Gunma 371-8511, Japan.
| | | | | | | |
Collapse
|
170
|
Zhang J, Wang H, Yan X, Zhang L. Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci 2005; 76:1099-109. [PMID: 15620574 DOI: 10.1016/j.lfs.2004.08.015] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Accepted: 08/10/2004] [Indexed: 10/26/2022]
Abstract
We previously reported that, as compared with selenite, nano red elemental selenium (Nano-Se) had lower acute toxicity in mice and similar bioavailability in terms of up-regulating seleno-enzymes. The short-term toxicity of both selenite and Nano-Se in mice was further compared in this study. At an oral dose of 6 mg/kg bw per day administered for consecutive 12 days, selenite and Nano-Se completely and partially suppressed mice growth respectively. Abnormal liver function was more pronounced with selenite treatment than Nano-Se as indicated by the increase of both alanine aminotransferase and aspartate aminotransferase in serum. Selenite inhibited liver catalase and superoxide dismutase activities, whereas, Nano-Se did not affect these two antioxidant enzymes. Selenite increased the malondialdehyde content of liver, but Nano-Se decreased it. Both Se forms had similar effects on depletion of reduced glutathione and up-regulated glutathione peroxidase. Nano-Se was more potent than selenite in the induction of glutathione S-transferase. At oral doses of 2 or 4 mg/kg bw per day for consecutive 15 days, selenite was more active than Nano-Se in supressing growth, deleting reduced glutathione, and inhibiting superoxide dismutase activities. Taken together, these results indicate that over a short-term, a high-dose of selenite caused more pronounced oxidative stress, greater liver injury, and prominent retardation of growth as compared to Nano-Se.
Collapse
Affiliation(s)
- Jinsong Zhang
- University of Science and Technology of China, Hefei, 230052 P.R. China.
| | | | | | | |
Collapse
|