151
|
Chowdhury T, Cressiot B, Parisi C, Smolyakov G, Thiébot B, Trichet L, Fernandes FM, Pelta J, Manivet P. Circulating Tumor Cells in Cancer Diagnostics and Prognostics by Single-Molecule and Single-Cell Characterization. ACS Sens 2023; 8:406-426. [PMID: 36696289 DOI: 10.1021/acssensors.2c02308] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Circulating tumor cells (CTCs) represent an interesting source of biomarkers for diagnosis, prognosis, and the prediction of cancer recurrence, yet while they are extensively studied in oncobiology research, their diagnostic utility has not yet been demonstrated and validated. Their scarcity in human biological fluids impedes the identification of dangerous CTC subpopulations that may promote metastatic dissemination. In this Perspective, we discuss promising techniques that could be used for the identification of these metastatic cells. We first describe methods for isolating patient-derived CTCs and then the use of 3D biomimetic matrixes in their amplification and analysis, followed by methods for further CTC analyses at the single-cell and single-molecule levels. Finally, we discuss how the elucidation of mechanical and morphological properties using techniques such as atomic force microscopy and molecular biomarker identification using nanopore-based detection could be combined in the future to provide patients and their healthcare providers with a more accurate diagnosis.
Collapse
Affiliation(s)
- Tafsir Chowdhury
- Centre de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75010 Paris, France
| | | | - Cleo Parisi
- Centre de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75010 Paris, France.,Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Georges Smolyakov
- Centre de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75010 Paris, France
| | | | - Léa Trichet
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Francisco M Fernandes
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Juan Pelta
- CY Cergy Paris Université, CNRS, LAMBE, 95000 Cergy, France.,Université Paris-Saclay, Université d'Evry, CNRS, LAMBE, 91190 Evry, France
| | - Philippe Manivet
- Centre de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75010 Paris, France.,Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| |
Collapse
|
152
|
Calero-Castro FJ, Pereira S, Laga I, Villanueva P, Suárez-Artacho G, Cepeda-Franco C, de la Cruz-Ojeda P, Navarro-Villarán E, Dios-Barbeito S, Serrano MJ, Fresno C, Padillo-Ruiz J. Quantification and Characterization of CTCs and Clusters in Pancreatic Cancer by Means of the Hough Transform Algorithm. Int J Mol Sci 2023; 24:ijms24054278. [PMID: 36901704 PMCID: PMC10002258 DOI: 10.3390/ijms24054278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
Circulating Tumor Cells (CTCs) are considered a prognostic marker in pancreatic cancer. In this study we present a new approach for counting CTCs and CTC clusters in patients with pancreatic cancer using the IsofluxTM System with the Hough transform algorithm (Hough-IsofluxTM). The Hough-IsofluxTM approach is based on the counting of an array of pixels with a nucleus and cytokeratin expression excluding the CD45 signal. Total CTCs including free and CTC clusters were evaluated in healthy donor samples mixed with pancreatic cancer cells (PCCs) and in samples from patients with pancreatic ductal adenocarcinoma (PDAC). The IsofluxTM System with manual counting was used in a blinded manner by three technicians who used Manual-IsofluxTM as a reference. The accuracy of the Hough-IsofluxTM approach for detecting PCC based on counted events was 91.00% [84.50, 93.50] with a PCC recovery rate of 80.75 ± 16.41%. A high correlation between the Hough-IsofluxTM and Manual-IsofluxTM was observed for both free CTCs and for clusters in experimental PCC (R2 = 0.993 and R2 = 0.902 respectively). However, the correlation rate was better for free CTCs than for clusters in PDAC patient samples (R2 = 0.974 and R2 = 0.790 respectively). In conclusion, the Hough-IsofluxTM approach showed high accuracy for the detection of circulating pancreatic cancer cells. A better correlation rate was observed between Hough-IsofluxTM approach and with the Manual-IsofluxTM for isolated CTCs than for clusters in PDAC patient samples.
Collapse
Affiliation(s)
- Francisco José Calero-Castro
- Department of General Surgery, Hospital University Virgen del Rocío/CSIC/University of Seville/IBiS, 41013 Seville, Spain
- Oncology Surgery, Cell Therapy, and Organ Transplantation Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, University of Seville, 41013 Seville, Spain
| | - Sheila Pereira
- Department of General Surgery, Hospital University Virgen del Rocío/CSIC/University of Seville/IBiS, 41013 Seville, Spain
- Oncology Surgery, Cell Therapy, and Organ Transplantation Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, University of Seville, 41013 Seville, Spain
| | - Imán Laga
- Department of General Surgery, Hospital University Virgen del Rocío/CSIC/University of Seville/IBiS, 41013 Seville, Spain
- Oncology Surgery, Cell Therapy, and Organ Transplantation Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, University of Seville, 41013 Seville, Spain
| | - Paula Villanueva
- Department of General Surgery, Hospital University Virgen del Rocío/CSIC/University of Seville/IBiS, 41013 Seville, Spain
- Oncology Surgery, Cell Therapy, and Organ Transplantation Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, University of Seville, 41013 Seville, Spain
| | - Gonzalo Suárez-Artacho
- Department of General Surgery, Hospital University Virgen del Rocío/CSIC/University of Seville/IBiS, 41013 Seville, Spain
- Oncology Surgery, Cell Therapy, and Organ Transplantation Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, University of Seville, 41013 Seville, Spain
| | - Carmen Cepeda-Franco
- Department of General Surgery, Hospital University Virgen del Rocío/CSIC/University of Seville/IBiS, 41013 Seville, Spain
- Oncology Surgery, Cell Therapy, and Organ Transplantation Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, University of Seville, 41013 Seville, Spain
| | - Patricia de la Cruz-Ojeda
- Oncology Surgery, Cell Therapy, and Organ Transplantation Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, University of Seville, 41013 Seville, Spain
| | - Elena Navarro-Villarán
- Oncology Surgery, Cell Therapy, and Organ Transplantation Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, University of Seville, 41013 Seville, Spain
| | - Sandra Dios-Barbeito
- Department of General Surgery, Hospital University Virgen del Rocío/CSIC/University of Seville/IBiS, 41013 Seville, Spain
- Oncology Surgery, Cell Therapy, and Organ Transplantation Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, University of Seville, 41013 Seville, Spain
| | | | - Cristóbal Fresno
- Health and Sciences Research Center, Health and Sciences Faculty, Anahuac University, Huixquilucan 52760, Mexico
- Correspondence: (C.F.); (J.P.-R.)
| | - Javier Padillo-Ruiz
- Department of General Surgery, Hospital University Virgen del Rocío/CSIC/University of Seville/IBiS, 41013 Seville, Spain
- Oncology Surgery, Cell Therapy, and Organ Transplantation Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, University of Seville, 41013 Seville, Spain
- Correspondence: (C.F.); (J.P.-R.)
| |
Collapse
|
153
|
Raufi AG, May MS, Hadfield MJ, Seyhan AA, El-Deiry WS. Advances in Liquid Biopsy Technology and Implications for Pancreatic Cancer. Int J Mol Sci 2023; 24:4238. [PMID: 36835649 PMCID: PMC9958987 DOI: 10.3390/ijms24044238] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 02/23/2023] Open
Abstract
Pancreatic cancer is a highly aggressive malignancy with a climbing incidence. The majority of cases are detected late, with incurable locally advanced or metastatic disease. Even in individuals who undergo resection, recurrence is unfortunately very common. There is no universally accepted screening modality for the general population and diagnosis, evaluation of treatment response, and detection of recurrence relies primarily on the use of imaging. Identification of minimally invasive techniques to help diagnose, prognosticate, predict response or resistance to therapy, and detect recurrence are desperately needed. Liquid biopsies represent an emerging group of technologies which allow for non-invasive serial sampling of tumor material. Although not yet approved for routine use in pancreatic cancer, the increasing sensitivity and specificity of contemporary liquid biopsy platforms will likely change clinical practice in the near future. In this review, we discuss the recent technological advances in liquid biopsy, focusing on circulating tumor DNA, exosomes, microRNAs, and circulating tumor cells.
Collapse
Affiliation(s)
- Alexander G. Raufi
- Division of Hematology/Oncology, Department of Medicine, Lifespan Health System, Providence, RI 02903, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Brown University, Providence, RI 02903, USA
| | - Michael S. May
- Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew J. Hadfield
- Division of Hematology/Oncology, Department of Medicine, Lifespan Health System, Providence, RI 02903, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
| | - Attila A. Seyhan
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Brown University, Providence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Wafik S. El-Deiry
- Division of Hematology/Oncology, Department of Medicine, Lifespan Health System, Providence, RI 02903, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Brown University, Providence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| |
Collapse
|
154
|
Wang Y, Pan J, Sun Z. LncRNA NCK1-AS1-mediated regulatory functions in human diseases. Clin Transl Oncol 2023; 25:323-332. [PMID: 36131072 DOI: 10.1007/s12094-022-02948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Disease development requires the activation of complex multi-factor processes involving numerous long noncoding RNAs (lncRNAs), which describe non-protein-coding RNAs longer than 200 nucleotides. Emerging evidence indicates that lncRNAs act as essential regulators that perform pivotal roles in the pathogenesis and progression of human diseases. The mechanisms underlying lncRNA involvement in diverse diseases have been extensively explored, and lncRNAs are considered powerful biomarkers for clinical practice. The lncRNA noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1) antisense 1 (NCK1-AS1), also known as NCK1 divergent transcript (NCK1-DT), is encoded on human chromosome 3q22.3 and produces a 27,274-base-long transcript. NCK1-AS1 has increasingly been characterized as a causative agent for multiple diseases. The abnormal expression and involvement of NCK1-AS1 in various biological processes have been associated with several diseases. Further exploration of the mechanisms through which NCK1-AS1 contributes to disease development and progression will provide a foundation for potential clinical applications of NCK1-AS1 in the diagnosis and treatment of various diseases. This review summarizes the current understanding of the various functions and mechanisms through which NCK1-AS1 contributes to various diseases and the clinical application prospects for NCK1-AS1.
Collapse
Affiliation(s)
- Yingfan Wang
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jie Pan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zongzong Sun
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
155
|
Madueke I, Lee RJ, Miyamoto DT. Circulating Tumor Cells and Circulating Tumor DNA in Urologic Cancers. Urol Clin North Am 2023; 50:109-114. [DOI: 10.1016/j.ucl.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
156
|
Menyailo ME, Zainullina VR, Khozyainova AA, Tashireva LA, Zolotareva SY, Gerashchenko TS, Alifanov VV, Savelieva OE, Grigoryeva ES, Tarabanovskaya NA, Popova NO, Choinzonov EL, Cherdyntseva NV, Perelmuter VM, Denisov EV. Heterogeneity of Circulating Epithelial Cells in Breast Cancer at Single-Cell Resolution: Identifying Tumor and Hybrid Cells. Adv Biol (Weinh) 2023; 7:e2200206. [PMID: 36449636 DOI: 10.1002/adbi.202200206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/13/2022] [Indexed: 12/03/2022]
Abstract
Circulating tumor cells and hybrid cells formed by the fusion of tumor cells with normal cells are leading players in metastasis and have prognostic relevance. This study applies single-cell RNA sequencing to profile CD45-negative and CD45-positive circulating epithelial cells (CECs) in nonmetastatic breast cancer patients. CECs are represented by transcriptionally-distinct populations that include both aneuploid and diploid cells. CD45- CECs are predominantly aneuploid, but one population contained more diploid than aneuploid cells. CD45+ CECs mostly diploid: only two populations have aneuploid cells. Diploid CD45+ CECs annotated as different immune cells, surprisingly harbored many copy number aberrations, and positively correlated to tumor grade. It is noteworthy that cancer-associated signaling pathways areabundant only in one aneuploid CD45- CEC population, which may represent an aggressive subset of circulating tumor cells. Thus, CD45- and CD45+ CECs are highly heterogeneous in breast cancer patients and include aneuploid cells, which are most likely circulating tumor and hybrid cells, respectively, and diploid cells. DNA ploidy analysis can be an effective instrument for identifying tumor and hybrid cells among CECs. Further follow-up study is needed to determine which subsets of circulating tumor and hybrid cells contribute to breast cancer metastasis.
Collapse
Affiliation(s)
- Maxim E Menyailo
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Viktoria R Zainullina
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Anna A Khozyainova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Liubov A Tashireva
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Sofia Yu Zolotareva
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Tatiana S Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Vladimir V Alifanov
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Olga E Savelieva
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Evgeniya S Grigoryeva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nataliya A Tarabanovskaya
- Department of General Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nataliya O Popova
- Department of Chemotherapy, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, Russia
| | - Evgeny L Choinzonov
- Department of Head and Neck Cancer, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda V Cherdyntseva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Vladimir M Perelmuter
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
157
|
Ring A, Nguyen-Sträuli BD, Wicki A, Aceto N. Biology, vulnerabilities and clinical applications of circulating tumour cells. Nat Rev Cancer 2023; 23:95-111. [PMID: 36494603 PMCID: PMC9734934 DOI: 10.1038/s41568-022-00536-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 12/13/2022]
Abstract
In recent years, exceptional technological advances have enabled the identification and interrogation of rare circulating tumour cells (CTCs) from blood samples of patients, leading to new fields of research and fostering the promise for paradigm-changing, liquid biopsy-based clinical applications. Analysis of CTCs has revealed distinct biological phenotypes, including the presence of CTC clusters and the interaction between CTCs and immune or stromal cells, impacting metastasis formation and providing new insights into cancer vulnerabilities. Here we review the progress made in understanding biological features of CTCs and provide insight into exploiting these developments to design future clinical tools for improving the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Alexander Ring
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Bich Doan Nguyen-Sträuli
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Department of Gynecology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Andreas Wicki
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
158
|
Pallares-Rusiñol A, Moura SL, Martí M, Pividori MI. Electrochemical Genosensing of Overexpressed GAPDH Transcripts in Breast Cancer Exosomes. Anal Chem 2023; 95:2487-2495. [PMID: 36683335 PMCID: PMC9893220 DOI: 10.1021/acs.analchem.2c04773] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
Exosomes are receiving highlighted attention as new biomarkers for the detection of cancer since they are profusely released by tumor cells in different biological fluids. In this paper, the exosomes are preconcentrated from the serum by immunomagnetic separation (IMS) based on a CD326 receptor as a specific epithelial cancer-related biomarker and detected by glyceraldehyde-3-phosphate dehydrogenase (GAPDH) transcripts. Following the lysis of the captured exosomes, the released GAPDH transcripts are amplified by reverse transcription polymerase chain reaction (RT-PCR) with a double-tagging set of primers on poly(dT)-modified-MPs to increase the sensitivity. The double-tagged amplicon is then quantified by electrochemical genosensing. The IMS/double-tagging RT-PCR/electrochemical genosensing approach is first demonstrated for the sensitive detection of exosomes derived from MCF7 breast cancer cells and compared with CTCs in terms of the analytical performance, showing an LOD of 4 × 102 exosomes μL-1. The genosensor was applied to human samples by immunocapturing the exosomes directly from serum from breast cancer patients and showed a higher electrochemical signal (3.3-fold, p < 0.05), when compared with healthy controls, suggesting an overexpression of GAPDH on serum-derived exosomes from breast cancer patients. The detection of GAPDH transcripts is performed from only 1.0 mL of human serum using specific magnetic particles, improving the analytical simplification and avoiding ultracentrifugation steps, demonstrating to be a promising strategy for minimal invasive liquid biopsy.
Collapse
Affiliation(s)
- Arnau Pallares-Rusiñol
- Grup
de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- Biosensing
and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Silio Lima Moura
- Grup
de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Mercè Martí
- Biosensing
and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Maria Isabel Pividori
- Grup
de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- Biosensing
and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
159
|
Wang S, Yang M, Li R, Bai J. Current advances in noninvasive methods for the diagnosis of oral squamous cell carcinoma: a review. Eur J Med Res 2023; 28:53. [PMID: 36707844 PMCID: PMC9880940 DOI: 10.1186/s40001-022-00916-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/28/2022] [Indexed: 01/28/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC), one of the most common types of cancers worldwide, is diagnosed mainly through tissue biopsy. However, owing to the tumor heterogeneity and other drawbacks, such as the invasiveness of the biopsy procedure and high cost and limited usefulness of longitudinal surveillance, there has been a focus on adopting more rapid, economical, and noninvasive screening methods. Examples of these include liquid biopsy, optical detection systems, oral brush cytology, microfluidic detection, and artificial intelligence auxiliary diagnosis, which have their own strengths and weaknesses. Extensive research is being performed on various liquid biopsy biomarkers, including novel microbiome components, noncoding RNAs, extracellular vesicles, and circulating tumor DNA. The majority of these elements have demonstrated encouraging clinical outcomes in early OSCC detection. This review summarizes the screening methods for OSCC with a focus on providing new guiding strategies for the diagnosis of the disease.
Collapse
Affiliation(s)
- Shan Wang
- grid.443397.e0000 0004 0368 7493Department of Oral Pathology, School of Stomatology, Hainan Medical College, Haikou, 571199 People’s Republic of China ,grid.443397.e0000 0004 0368 7493Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216 People’s Republic of China
| | - Mao Yang
- grid.13291.380000 0001 0807 1581West China School of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Ruiying Li
- grid.443397.e0000 0004 0368 7493Department of Oral Pathology, School of Stomatology, Hainan Medical College, Haikou, 571199 People’s Republic of China
| | - Jie Bai
- grid.13402.340000 0004 1759 700XDepartment of Ophthalmology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000 People’s Republic of China
| |
Collapse
|
160
|
Zhang X, Jiang X, Wang W, Luo S, Guan S, Li W, Situ B, Li B, Zhang Y, Zheng L. A simple and sensitive electrochemical biosensor for circulating tumor cell determination based on dual-toehold accelerated catalytic hairpin assembly. Mikrochim Acta 2023; 190:65. [PMID: 36692585 DOI: 10.1007/s00604-023-05649-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023]
Abstract
Tumor cells in blood circulation (CTCs) are vital biomarkers for noninvasive cancer diagnosis. We developed a simple and sensitive electrochemical biosensor based on dual-toehold accelerated catalytic hairpin assembly (DCHA) to distinguish CTCs from blood cells. In the presence of CTCs, the aptamer probe initiates the DCHA process, which produces amplified electrochemical signals. Compared with conventional catalytic hairpin assembly (CHA), the proposed DCHA showed high sensitivity, which led to a broader working range of 10-1000 cells mL-1 with a limit of detection of 4 cells mL-1. Furthermore, our method exhibited an excellent capability of distinguishing malignant breast cancers from healthy people, with a sensitivity of 97.4%. In summary, we have established an enzyme-free, easy-to-operate, and nondisruptive method for detecting circulating tumor cells in blood circulation based on the DCHA strategy. Its versatility and simplicity will make it more widely used in clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Xiaohe Zhang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiujuan Jiang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wen Wang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Medical Laboratory of Shenzhen Luohu People's Hospital, Shenzhen, 518003, Guangdong Province, China
| | - Shihua Luo
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shujuan Guan
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenbin Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo Situ
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ye Zhang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lei Zheng
- Department of Clinical Laboratory, Shunde Hospital, Southern Medical University, (The First People's Hospital of Shunde), Foshan, 528300, Guangdong Province, China. .,Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
161
|
Isolation, Detection and Analysis of Circulating Tumour Cells: A Nanotechnological Bioscope. Pharmaceutics 2023; 15:pharmaceutics15010280. [PMID: 36678908 PMCID: PMC9864919 DOI: 10.3390/pharmaceutics15010280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Cancer is one of the dreaded diseases to which a sizeable proportion of the population succumbs every year. Despite the tremendous growth of the health sector, spanning diagnostics to treatment, early diagnosis is still in its infancy. In this regard, circulating tumour cells (CTCs) have of late grabbed the attention of researchers in the detection of metastasis and there has been a huge surge in the surrounding research activities. Acting as a biomarker, CTCs prove beneficial in a variety of aspects. Nanomaterial-based strategies have been devised to have a tremendous impact on the early and rapid examination of tumor cells. This review provides a panoramic overview of the different nanotechnological methodologies employed along with the pharmaceutical purview of cancer. Initiating from fundamentals, the recent nanotechnological developments toward the detection, isolation, and analysis of CTCs are comprehensively delineated. The review also includes state-of-the-art implementations of nanotechnological advances in the enumeration of CTCs, along with future challenges and recommendations thereof.
Collapse
|
162
|
Ma S, Zhou M, Xu Y, Gu X, Zou M, Abudushalamu G, Yao Y, Fan X, Wu G. Clinical application and detection techniques of liquid biopsy in gastric cancer. Mol Cancer 2023; 22:7. [PMID: 36627698 PMCID: PMC9832643 DOI: 10.1186/s12943-023-01715-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023] Open
Abstract
Gastric cancer (GC) is one of the most common tumors worldwide and the leading cause of tumor-related mortality. Endoscopy and serological tumor marker testing are currently the main methods of GC screening, and treatment relies on surgical resection or chemotherapy. However, traditional examination and treatment methods are more harmful to patients and less sensitive and accurate. A minimally invasive method to respond to GC early screening, prognosis monitoring, treatment efficacy, and drug resistance situations is urgently needed. As a result, liquid biopsy techniques have received much attention in the clinical application of GC. The non-invasive liquid biopsy technique requires fewer samples, is reproducible, and can guide individualized patient treatment by monitoring patients' molecular-level changes in real-time. In this review, we introduced the clinical applications of circulating tumor cells, circulating free DNA, circulating tumor DNA, non-coding RNAs, exosomes, and proteins, which are the primary markers in liquid biopsy technology in GC. We also discuss the current limitations and future trends of liquid biopsy technology as applied to early clinical biopsy technology.
Collapse
Affiliation(s)
- Shuo Ma
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Meiling Zhou
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Yanhua Xu
- grid.452743.30000 0004 1788 4869Department of Laboratory Medicine, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, 225000 Jiangsu China
| | - Xinliang Gu
- grid.440642.00000 0004 0644 5481Department of Laboratory Medicine, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001 Jiangsu China
| | - Mingyuan Zou
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Gulinaizhaer Abudushalamu
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Yuming Yao
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Xiaobo Fan
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Guoqiu Wu
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009 Jiangsu China
| |
Collapse
|
163
|
Mastromarino MG, Parini S, Azzolina D, Habib S, De Marni ML, Luise C, Restelli S, Baietto G, Trisolini E, Massera F, Papalia E, Bora G, Carbone R, Casadio C, Boldorini R, Rena O. Liquid Biopsy Detecting Circulating Tumor Cells in Patients with Non-Small Cell Lung Cancer: Preliminary Results of a Pilot Study. Biomedicines 2023; 11:biomedicines11010153. [PMID: 36672660 PMCID: PMC9855397 DOI: 10.3390/biomedicines11010153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Lung cancer is still the leading cause of cancer-related death worldwide. Interest is growing towards early detection and advances in liquid biopsy to isolate circulating tumor cells (CTCs). This pilot study aimed to detect epithelial CTCs in the peripheral blood of early-stage non-small cell lung cancer (NSCLC) patients. We used Smart BioSurface® (SBS) slide, a nanoparticle-coated slide able to immobilize viable nucleated cellular fraction without pre-selection and preserve cell integrity. Forty patients undergoing lung resection for NSCLC were included; they were divided into two groups according to CTC value, with a cut-off of three CTCs/mL. All patients were positive for CTCs. The mean CTC value was 4.7(± 5.8 S.D.) per ml/blood. In one patient, next generation sequencing (NGS) analysis of CTCs revealed v-raf murine sarcoma viral oncogene homolog B(BRAF) V600E mutation, which has also been identified in tissue biopsy. CTCs count affected neither overall survival (OS, p = 0.74) nor progression-free survival (p = 0.829). Multivariable analysis confirmed age (p = 0.020) and pNodal-stage (p = 0.028) as negative predictors of OS. Preliminary results of this pilot study suggest the capability of this method in detecting CTCs in all early-stage NSCLC patients. NGS on single cell, identified as CTC by immunofluorescence staining, is a powerful tool for investigating the molecular landscape of cancer, with the aim of personalized therapies.
Collapse
Affiliation(s)
- Maria Giovanna Mastromarino
- Division of Thoracic Surgery, Ospedale Maggiore della Carità di Novara, 28100 Novara, Italy
- Correspondence: ; Tel.: +39-0321/3732111
| | - Sara Parini
- Division of Thoracic Surgery, Ospedale Maggiore della Carità di Novara, 28100 Novara, Italy
| | - Danila Azzolina
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Sara Habib
- Division of Thoracic Surgery, Ospedale Maggiore della Carità di Novara, 28100 Novara, Italy
| | | | | | | | - Guido Baietto
- Division of Thoracic Surgery, Ospedale Maggiore della Carità di Novara, 28100 Novara, Italy
| | - Elena Trisolini
- Division of Pathology, Ospedale Maggiore della Carità di Novara, 28100 Novara, Italy
| | - Fabio Massera
- Division of Thoracic Surgery, Ospedale Maggiore della Carità di Novara, 28100 Novara, Italy
| | - Esther Papalia
- Division of Thoracic Surgery, Ospedale Maggiore della Carità di Novara, 28100 Novara, Italy
| | - Giulia Bora
- Division of Thoracic Surgery, Ospedale Maggiore della Carità di Novara, 28100 Novara, Italy
| | | | - Caterina Casadio
- Division of Thoracic Surgery, Ospedale Maggiore della Carità di Novara, 28100 Novara, Italy
| | - Renzo Boldorini
- Division of Pathology, Ospedale Maggiore della Carità di Novara, 28100 Novara, Italy
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Ottavio Rena
- Division of Thoracic Surgery, Ospedale Maggiore della Carità di Novara, 28100 Novara, Italy
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
164
|
Bamankar S, Londhe VY. The Rise of Extracellular Vesicles as New Age Biomarkers in Cancer Diagnosis: Promises and Pitfalls. Technol Cancer Res Treat 2023; 22:15330338221149266. [PMID: 36604966 PMCID: PMC9830000 DOI: 10.1177/15330338221149266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cell-to-cell interactions in the intricate microenvironment of tissue have a significant impact on the progression of cancer at every stage. Both cancer cells and stromal cells are responsible for the secretion of soluble chemical compounds as well as membrane-encased components, which both influence and govern the cell-to-cell interactions within the micro-environment of tumor cells. These membrane structures are identified as extracellular vesicles (EVs), which include exosomes and microvesicles. These nanosized vesicles are made up of bilayered proteolipids and have dimensions ranging from 50 to 1000 nm. It has been speculated that extracellular vesicles that originate from cancer cells perform a variety of functions in the development and progression of cancer which may involve the transport of regulatory materials, such as oncogenic proteins between nearby cells and to distant biological locations. In addition, their level in the serum of cancer patients is noticeably higher than those of healthy controls. The release of extracellular vesicles into the extracellular space is a continual process in both healthy and diseased cells. These extracellular vesicles hold molecular signatures that are defining features of health as well as disease. And hence, the EVs present in biological fluids provide unparalleled and noninvasive access to the necessary molecular details about the health status of the cells. Recent discoveries about these complex extracellular organelles have accelerated the discovery of cancer-specific biological markers as well as the development of unique diagnostic tools based on extracellular vesicles. In this mini-review, we aim to highlight the hopes and hypes associated with the applications of extracellular vesicles as biomarkers for cancer diagnosis.
Collapse
Affiliation(s)
- Suraj Bamankar
- Shobhaben
Pratapbhai Patel School of Pharmacy & Technology
Management, SVKM's NMIMS, Mumbai,
Maharashtra, India
| | - Vaishali Yogesh Londhe
- Shobhaben
Pratapbhai Patel School of Pharmacy & Technology
Management, SVKM's NMIMS, Mumbai,
Maharashtra, India,Vaishali Yogesh Londhe, Shobhaben
Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS
University, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
165
|
Wang Z, Zhang XC, Feng WN, Zhang L, Liu XQ, Guo WB, Deng YM, Zou QF, Yang JJ, Zhou Q, Wang BC, Chen HJ, Tu HY, Yan HH, Wu YL. Circulating tumor cells dynamics during chemotherapy predict survival and response in advanced non-small-cell lung cancer patients. Ther Adv Med Oncol 2023; 15:17588359231167818. [PMID: 37113733 PMCID: PMC10126699 DOI: 10.1177/17588359231167818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Background Circulating tumor cells (CTCs) are prognostic biomarker in non-small-cell lung cancer (NSCLC). CTCs could also be used as predictor of efficacy of systemic treatments in advanced NSCLC. Objectives We described the dynamic changes of CTCs during first-line platinum-based chemotherapy in advanced NSCLC and clarified the correlation between CTC counts and efficacy of chemotherapy. Design Chemotherapy is administered and blood specimens are collected at four time points from baseline to disease progression for CTC detection. Methods This multicenter prospective study enrolled patients with previously untreated stage III or IV NSCLC fit for standard platinum-based chemotherapy. Bloods were sampled as per standard operating procedures at baseline, cycle 1 and cycle 4 of chemotherapy, and at disease progression for CTC analysis using the CellSearch system. Results Among 150 patients enrolled, median overall survival (OS) was 13.8, 8.4, and 7.9 months in patients with CTC-, KIT-CTC, and KIT+CTC at baseline (p = 0.002). Patients with persistent negative CTC (46.0%) had longer progression-free survival [5.7 months, 95% confidence interval (CI): 5.0-6.5 versus 3.0 months, 0.6-5.4; hazard ratio (HR): 0.34, 95% CI: 0.18-0.67) and OS (13.1 months, 10.9-15.3 versus 5.6 months, 4.1-7.1; HR: 0.17, 0.08-0.36) compared with patients with persistent positive CTC (10.7%), which was not impacted by chemotherapy. Chemotherapy decreased CTC from 36.0% (54/150) to 13.7% (13/95). Conclusions CTC persistent presence during treatment represents poor prognosis and resistance to chemotherapy in advanced NSCLC. Chemotherapy could effectively eliminate CTCs. Molecular characterization and the functionalization of CTC will be warranted for further intensive investigation. Trial registration NCT01740804.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- Cancer Center, Sun Yat-sen University, Guangzhou, China
| | | | - Wei-Bang Guo
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yan-Ming Deng
- The First People’s Hospital of Foshan, Foshan, China
| | - Qing-Feng Zou
- Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Bin-Chao Wang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hua-Jun Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hai-Yan Tu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | | | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Rd, Guangzhou 510080, China
| |
Collapse
|
166
|
Zhou Z, Xu X, Liu Y, Liu Q, Zhang W, Wang K, Wang J, Yin Y. Liquid Biopsy in Hepatocellular Carcinoma. Methods Mol Biol 2023; 2695:213-225. [PMID: 37450121 DOI: 10.1007/978-1-0716-3346-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly neoplasms with a poor prognosis. Due to the significant tumor heterogeneity of HCC, alpha-fetoprotein (AFP) or liver biopsy has not yet met the clinical needs in terms of early diagnosis or determining prognosis. In recent years, liquid biopsy techniques that analyze tumor by-products released into the circulation have shown great potential. Its ability to monitor tumors in real time and respond to their global characteristics is expected to improve the management of HCC patients clinically. This review discusses some of the findings of a liquid biopsy in terms of diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Zheyu Zhou
- Department of General Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoliang Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qiaoyu Liu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Kun Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jincheng Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yin Yin
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
167
|
Jiang B, Xie D, Wang S, Li X, Wu G. Advances in early detection methods for solid tumors. Front Genet 2023; 14:1091223. [PMID: 36911396 PMCID: PMC9998680 DOI: 10.3389/fgene.2023.1091223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
During the last decade, non-invasive methods such as liquid biopsy have slowly replaced traditional imaging and invasive pathological methods used to diagnose and monitor cancer. Improvements in the available detection methods have enabled the early screening and diagnosis of solid tumors. In addition, advances in early detection methods have made the continuous monitoring of tumor progression using repeat sampling possible. Previously, the focus of liquid biopsy techniques included the following: 1) the isolation of circulating tumor cells, circulating tumor DNA, and extracellular tumor vesicles from solid tumor cells in the patient's blood; in addition to 2) analyzing genomic and proteomic data contained within the isolates. Recently, there has been a rapid devolvement in the techniques used to isolate and analyze molecular markers. This rapid evolvement in detection techniques improves their accuracy, especially when few samples are available. In addition, there is a tremendous expansion in the acquisition of samples and targets for testing; solid tumors can be detected from blood and other body fluids. Test objects have also expanded from samples taken directly from cancer to include indirect objects affected in cancer development. Liquid biopsy technology has limitations. Even so, this detection technique is the key to a new phase of oncogenetics. This review aims to provide an overview of the current advances in liquid biopsy marker selection, isolation, and detection methods for solid tumors. The advantages and disadvantages of liquid biopsy technology will also be explored.
Collapse
Affiliation(s)
- Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiunan Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
168
|
Saha S, Sachdev M, Mitra SK. Recent advances in label-free optical, electrochemical, and electronic biosensors for glioma biomarkers. BIOMICROFLUIDICS 2023; 17:011502. [PMID: 36844882 PMCID: PMC9949901 DOI: 10.1063/5.0135525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Gliomas are the most commonly occurring primary brain tumor with poor prognosis and high mortality rate. Currently, the diagnostic and monitoring options for glioma mainly revolve around imaging techniques, which often provide limited information and require supervisory expertise. Liquid biopsy is a great alternative or complementary monitoring protocol that can be implemented along with other standard diagnosis protocols. However, standard detection schemes for sampling and monitoring biomarkers in different biological fluids lack the necessary sensitivity and ability for real-time analysis. Lately, biosensor-based diagnostic and monitoring technology has attracted significant attention due to several advantageous features, including high sensitivity and specificity, high-throughput analysis, minimally invasive, and multiplexing ability. In this review article, we have focused our attention on glioma and presented a literature survey summarizing the diagnostic, prognostic, and predictive biomarkers associated with glioma. Further, we discussed different biosensory approaches reported to date for the detection of specific glioma biomarkers. Current biosensors demonstrate high sensitivity and specificity, which can be used for point-of-care devices or liquid biopsies. However, for real clinical applications, these biosensors lack high-throughput and multiplexed analysis, which can be achieved via integration with microfluidic systems. We shared our perspective on the current state-of-the-art different biosensor-based diagnostic and monitoring technologies reported and the future research scopes. To the best of our knowledge, this is the first review focusing on biosensors for glioma detection, and it is anticipated that the review will offer a new pathway for the development of such biosensors and related diagnostic platforms.
Collapse
Affiliation(s)
| | - Manoj Sachdev
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Sushanta K. Mitra
- Micro and Nanoscale Transport Laboratory, Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
169
|
Lai Q, Song J, Zha J, Zheng H, Deng M, Liu Y, Lin W, Zhu Z, Zhang H, Xu B, Yang C. Microfluidic chip with reversible interface for noninvasive remission status monitoring and prognosis prediction of acute myeloid leukemia. Biosens Bioelectron 2023; 219:114803. [PMID: 36252315 DOI: 10.1016/j.bios.2022.114803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/01/2022] [Accepted: 10/09/2022] [Indexed: 11/19/2022]
Abstract
Acute myeloid leukemia (AML) requires close monitoring of remission status for timely disease management. Liquid biopsy serves as a noninvasive approach for evaluating treatment response and guiding therapeutic modifications. Herein, we designed a non-invasive Leukemic stem cell Specific Capture Chip (LSC-Chip) with reversible recognition interface for AML remission status monitoring and prognosis prediction. A stem cell marker CD34 antibody coated herringbone chip with disulfide linkers was designed to capture and release leukemic stem cells (LSCs) in peripheral blood for efficient LSC enumeration and downstream single-cell analysis. Samples from 32 AML patients and 10 healthy donors were recruited for LSC enumeration and prognosis-associated subtyping with panels of official LSC markers (CD34+/CD123+/CD38-) and (Tie2+/CD34+/CD123+/CD38-), respectively. A cutoff value of 2.5 LSCs per milliliters of peripheral blood can be used to precisely distinguish non-remission AML patients from complete remission group. Moreover, single-cell RNA-seq of LSCs was performed to check different transcriptional profiles of LSC subtypes. Overall, the LSC-Chip with reversible recognition interface enabled reliable detection of LSCs from AML patient samples for noninvasive remission status monitoring and prognosis prediction in clinical AML management.
Collapse
Affiliation(s)
- Qian Lai
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Juan Song
- Discipline of Intelligent Instrument and Equipment, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Huijian Zheng
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Manman Deng
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Yilong Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei Lin
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huimin Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Chaoyong Yang
- Discipline of Intelligent Instrument and Equipment, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| |
Collapse
|
170
|
Abstract
Circulating tumor cell (CTC) clusters are rare yet potent initiators of metastasis and may be useful as clinical biomarkers. Numerous techniques have been developed to isolate individual circulating tumor cells from the blood, but these techniques are often ineffective at capturing CTC clusters and may cause cluster damage or dissociation during processing or recovery. This chapter describes methods for fabricating and operating a two-stage continuous microfluidic chip that isolates and recovers viable CTC clusters from blood or biological fluids using deterministic lateral displacement.
Collapse
Affiliation(s)
- Sam H Au
- Department of Bioengineering, Imperial College London, London, UK.
- Cancer Research UK Convergence Science Centre, London, UK.
| |
Collapse
|
171
|
Comparative application of microfluidic systems in circulating tumor cells and extracellular vesicles isolation; a review. Biomed Microdevices 2022; 25:4. [PMID: 36574057 DOI: 10.1007/s10544-022-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 12/28/2022]
Abstract
Cancer is a prevalent cause of mortality globally, where early diagnosis leads to a reduced death rate. Many researchers' common strategies are based on personalized diagnostic methods with rapid response and high accuracy. This technology was developed by applying liquid biopsy instead of tissue biopsies in the case of tumor cell analysis that facilitates point-of-care testing for cancer diagnosis and treatment. In recent years, significant progress in microfluidic technology led to the successful isolation, analysis, and monitoring of cancer biomarkers in body liquid biopsy with merits like high sensitivity and flexibility, low sample usage, cost effective, and the ability of automation. The most critical and informative markers in body liquid refer to circulating tumor cells (CTCs) and extracellular vesicles derived from tumors (EVs) that carry various biomarkers in their structure (DNAs, proteins, and RNAs) as compared to ctDNA. The released ctDNA has a low half-life and decreased sensitivity due to large amounts of nucleic acid in serum. This review intends to highlight different cancer screening tests with a particular focus on the details regarding the only FDA-approved and awaiting technologies for FDA clearance to isolate CTCs and EVs based on microfluidics systems.
Collapse
|
172
|
Detection of Circulating Tumor Cells Using the Attune NxT. Int J Mol Sci 2022; 24:ijms24010021. [PMID: 36613466 PMCID: PMC9820284 DOI: 10.3390/ijms24010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Circulating tumor cells (CTCs) have been detected in many patients with different solid malignancies. It has been reported that presence of CTCs correlates with worse survival in patients with multiple types of cancer. Several techniques have been developed to detect CTCs in liquid biopsies. Currently, the only method for CTC detection that is approved by the Food and Drug Administration is CellSearch. Due to low abundance of CTCs in certain cancer types and in early stages of disease, its clinical application is currently limited to metastatic colorectal cancer, breast cancer and prostate cancer. Therefore, we aimed to develop a new method for the detection of CTCs using the Attune NxT-a flow cytometry-based application that was specifically developed to detect rare events in biological samples without the need for enrichment. When healthy donor blood samples were spiked with variable amounts of different EpCAM+EGFR+ tumor cell lines, recovery yield was on average 75%. The detection range was between 1000 and 10 cells per sample. Cell morphology was confirmed with the Attune CytPix. Analysis of blood samples from metastatic colorectal cancer patients, as well as lung cancer patients, demonstrated that increased EpCAM+EGFR+ events were detected in more than half of the patient samples. However, most of these cells showed no (tumor) cell-like morphology. Notably, CellSearch analysis of blood samples from a subset of colorectal cancer patients did not detect CTCs either, suggesting that these blood samples were negative for CTCs. Therefore, we anticipate that the Attune NxT is not superior to CellSearch in detection of low amounts of CTCs, although handling and analysis of samples is easier. Moreover, morphological confirmation is essential to distinguish between CTCs and false positive events.
Collapse
|
173
|
Choi JH, Paik WH. Risk Stratification of Pancreatic Neuroendocrine Neoplasms Based on Clinical, Pathological, and Molecular Characteristics. J Clin Med 2022; 11:7456. [PMID: 36556070 PMCID: PMC9786745 DOI: 10.3390/jcm11247456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic neuroendocrine neoplasms consist of heterogeneous diseases. Depending on the novel features detected by various modern technologies, their classification and related prognosis predictions continue to change and develop. The role of traditional clinicopathological prognostic factors, including classification systems, is also being refined, and several attempts have been made to predict a more accurate prognosis through novel serum biomarkers, genetic factors, and epigenetic factors that have been identified through various state-of-the-art molecular techniques with multiomics sequencing. In this review article, the latest research results including the traditional approach to prognostic factors and recent advanced strategies for risk stratification of pancreatic neuroendocrine neoplasms based on clinical, pathological, and molecular characteristics are summarized. Predicting prognosis through multi-factorial assessments seems to be more efficacious, and prognostic factors through noninvasive methods are expected to develop further advances in liquid biopsy in the future.
Collapse
Affiliation(s)
| | - Woo Hyun Paik
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|
174
|
Xu Y, Zhang Q, Xu Z, Xie Q, Ding W, Liu H, Deng H. Association of circulating tumor cell-white blood cell clusters with survival outcomes in patients with colorectal cancer after curative intent surgery. BMC Gastroenterol 2022; 22:503. [PMID: 36474175 PMCID: PMC9727915 DOI: 10.1186/s12876-022-02603-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The analysis of circulating tumor cell-associated white blood cell (CTC-WBC) clusters represented the progress in the liquid biopsy of malignant tumors, however, related research in patients with colorectal cancer is still absent. METHODS To explore associations between CTC-WBC clusters and the prognosis of these patients, we conducted an independent cohort of 329 colorectal cancer patients after curative intent surgery and pre-operative CTC detection in Nanfang Hospital, Southern Medical University, Guangzhou, China between January 1, 2017, and September 31, 2019. The primary cohort referred to patients with CTC-WBC clusters positive. The control cohort was defined as those with exclusively CTCs positive. CTCs were enriched and distinguished by The CanPatrol™ system (SurExam, China). The Kaplan-Meier curve was used to compare the progressive-free survival (PFS) and overall survival (OS) between two groups. The COX regression model was used to assess the predictive value of CTC-WBC clusters. RESULTS Sixty three patients presented CTC-WBC clusters positive (CTC-WBC group) and 266 patients showed solely CTCs (CTC group). The number of CTCs was significantly different between two groups (P < 0.001) and the rest of clinical characteristics were not markedly associated with the presence of CTC-WBC clusters. Kaplan-Meier curves of PFS and OS exhibited that the CTC-WBC group had significantly shorter PFS (P = 0.011), while not for OS. The multivariate model further suggested that the CTC-WBC clusters (Hazard Ratio = 1.89, 95% Confidence Interval 1.02-3.51, P = 0.042) was an independent predictor for the PFS of in post-operation CRC patients. CONCLUSION The CTC-WBC cluster is significantly associated with recurrence after operation in CRC patients. This finding facilitates the evaluation of this indicator in tumor progression.
Collapse
Affiliation(s)
- Yifan Xu
- grid.284723.80000 0000 8877 7471Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515 China
| | - Qianlong Zhang
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Zhou Xu
- grid.284723.80000 0000 8877 7471Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515 China
| | - Qingfeng Xie
- grid.284723.80000 0000 8877 7471Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515 China
| | - Wenfu Ding
- grid.284723.80000 0000 8877 7471Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515 China
| | - Hao Liu
- grid.284723.80000 0000 8877 7471Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515 China
| | - Haijun Deng
- grid.284723.80000 0000 8877 7471Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515 China
| |
Collapse
|
175
|
Liquid Biopsy in Diagnosis and Prognosis of Non-Metastatic Prostate Cancer. Biomedicines 2022; 10:biomedicines10123115. [PMID: 36551871 PMCID: PMC9776104 DOI: 10.3390/biomedicines10123115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/10/2022] Open
Abstract
Currently, sensitive and specific methods for the detection and prognosis of early stage PCa are lacking. To establish the diagnosis and further identify an appropriate treatment strategy, prostate specific antigen (PSA) blood test followed by tissue biopsy have to be performed. The combination of tests is justified by the lack of a highly sensitive, specific, and safe single test. Tissue biopsy is specific but invasive and may have severe side effects, and therefore is inappropriate for screening of the disease. At the same time, the PSA blood test, which is conventionally used for PCa screening, has low specificity and may be elevated in the case of noncancerous prostate tumors and inflammatory conditions, including benign prostatic hyperplasia and prostatitis. Thus, diverse techniques of liquid biopsy have been investigated to supplement or replace the existing tests of prostate cancer early diagnosis and prognostics. Here, we provide a review on the advances in diagnosis and prognostics of non-metastatic prostate cancer by means of various biomarkers extracted via liquid biopsy, including circulating tumor cells, exosomal miRNAs, and circulating DNAs.
Collapse
|
176
|
Yang L, Rivandi M, Franken A, Hieltjes M, van der Zaag PJ, Nelep C, Eberhardt J, Peter S, Niederacher D, Fehm T, Neubauer H. Implementing microwell slides for detection and isolation of single circulating tumor cells from complex cell suspensions. Cytometry A 2022; 101:1057-1067. [PMID: 35698878 DOI: 10.1002/cyto.a.24660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023]
Abstract
Cell loss during detection and isolation of circulating tumor cells (CTCs) is a challenge especially when label-free pre-enrichment technologies are used without the aid of magnetic particles. Although microfluidic systems can remove the majority of "contaminating" white blood cells (WBCs), their remaining numbers are still impeding single CTC isolation, thus making additional separation steps needed. This study aimed to develop a workflow from blood-to-single CTC for complex cell suspensions by testing two microwell formats. In the first step, different cell lines were used to compare the performances of Sievewell™ 370 K (TOK, Japan) and CellCelector™ Nanowell U25 (ALS Automated Lab Solutions, Germany) slides for cell labelling and single-cell micromanipulation. Confounding levels of auto-fluorescence inherent to different plastic materials used to cast the microwells, staining recovery rates, and cell isolation rates were determined. In the second step, three different blood preservation tubes were tested for RNA analysis. Lastly, the established workflow was applied to isolate CTCs from peripheral blood samples obtained from metastasized breast cancer (mBC) patients for single-cell DNA and RNA analysis. The detection of CTCs in Sievewell slides profit from better signal-to-noise ratios in the fluorescence channels mainly used for CTC detection. In addition, due to its design, Sievewell supports direct in situ CTC labelling, which minimizes cell loss and leads to single-cell recovery rates after staining of approx. 94%. Detection of PIK3CA mutations in single CTCs verified the applicability of the workflow for the analysis of genomic DNA of CTCs. Furthermore, combined with blood preservation up to 48 h at room temperature in LBguard tubes, panel RT-PCR transcript analysis was successful for single cell line cells and CTCs, respectively. The combined use of Sievewell microwell slides and CellCelector™ automated micromanipulation system improves single CTC detection, labelling and isolation from complex cell suspensions. This approach is especially valuable when samples of high cellular content are processed.
Collapse
Affiliation(s)
- Liwen Yang
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mahdi Rivandi
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Maarten Hieltjes
- Philips Research Laboratories, Eindhoven, The Netherlands.,Plasmacure b.v., Eindhoven, The Netherlands
| | - Pieter Jan van der Zaag
- Philips Research Laboratories, Eindhoven, The Netherlands.,Molecular Biophysics, Zernike Institute, University of Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | - Dieter Niederacher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
177
|
Hosseinalizadeh H, Mahmoodpour M, Razaghi Bahabadi Z, Hamblin MR, Mirzaei H. Neutrophil mediated drug delivery for targeted glioblastoma therapy: A comprehensive review. Biomed Pharmacother 2022; 156:113841. [DOI: 10.1016/j.biopha.2022.113841] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022] Open
|
178
|
Liu Y, Wang Y, Sun S, Chen Z, Xiang S, Ding Z, Huang Z, Zhang B. Understanding the versatile roles and applications of EpCAM in cancers: from bench to bedside. Exp Hematol Oncol 2022; 11:97. [PMID: 36369033 PMCID: PMC9650829 DOI: 10.1186/s40164-022-00352-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) functions not only in physiological processes but also participates in the development and progression of cancer. In recent decades, extensive efforts have been made to decipher the role of EpCAM in cancers. Great advances have been achieved in elucidating its structure, molecular functions, pathophysiological mechanisms, and clinical applications. Beyond its well-recognized role as a biomarker of cancer stem cells (CSCs) or circulating tumor cells (CTCs), EpCAM exhibits novel and promising value in targeted therapy. At the same time, the roles of EpCAM in cancer progression are found to be highly context-dependent and even contradictory in some cases. The versatile functional modules of EpCAM and its communication with other signaling pathways complicate the study of this molecule. In this review, we start from the structure of EpCAM and focus on communication with other signaling pathways. The impacts on the biology of cancers and the up-to-date clinical applications of EpCAM are also introduced and summarized, aiming to shed light on the translational prospects of EpCAM.
Collapse
Affiliation(s)
- Yiyang Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Sun
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
179
|
Shirai K, Guan G, Meihui T, Xiaoling P, Oka Y, Takahashi Y, Bhagat AAS, Yanagida M, Iwanaga S, Matsubara N, Mukohara T, Yoshida T. Hybrid double-spiral microfluidic chip for RBC-lysis-free enrichment of rare cells from whole blood. LAB ON A CHIP 2022; 22:4418-4429. [PMID: 36305222 DOI: 10.1039/d2lc00713d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Drug selection and treatment monitoring via minimally invasive liquid biopsy using circulating tumor cells (CTCs) are expected to be realized in the near future. For clinical applications of CTCs, simple, high-throughput, single-step CTC isolation from whole blood without red blood cell (RBC) lysis and centrifugation remains a crucial challenge. In this study, we developed a novel cancer cell separation chip, "hybrid double-spiral chip", that involves the serial combination of two different Dean flow fractionation (DFF) separation modes of half and full Dean cycles, which is the hybrid DFF separation mode for ultra-high-throughput blood processing at high precision and size-resolution separation. The chip allows fast processing of 5 mL whole blood within 30 min without RBC lysis and centrifugation. RBC and white blood cell (WBC) depletion rates of over 99.9% and 99%, respectively, were achieved. The average recovery rate of spiked A549 cancer cells was 87% with as low as 200 cells in 5 mL blood. The device can achieve serial reduction in the number of cells from approximately 1010 cells of whole blood to 108 cells, and subsequently to an order of 106 cells. The developed method can be combined with measurements of all recovered cells using imaging flow cytometry. As proof of concept, CTCs were successfully enriched and enumerated from the blood of metastatic breast cancer patients (N = 10, 1-69 CTCs per 5 mL) and metastatic prostate cancer patients (N = 10, 1-39 CTCs per 5 mL). We believe that the developed method will be beneficial for automated clinical analysis of rare CTCs from whole blood.
Collapse
Affiliation(s)
- Kentaro Shirai
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| | - Guofeng Guan
- Biolidics Limited, 37 Jalan Pemimpin, 577177 Singapore
| | - Tan Meihui
- Biolidics Limited, 37 Jalan Pemimpin, 577177 Singapore
| | - Peng Xiaoling
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| | - Yuma Oka
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| | - Yusuke Takahashi
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| | | | | | - Shigeki Iwanaga
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| | - Nobuaki Matsubara
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwanoha, Kashiwa, Japan
| | - Toru Mukohara
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwanoha, Kashiwa, Japan
| | - Tomokazu Yoshida
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| |
Collapse
|
180
|
Noubissi Nzeteu GA, Geismann C, Arlt A, Hoogwater FJH, Nijkamp MW, Meyer NH, Bockhorn M. Role of Epithelial-to-Mesenchymal Transition for the Generation of Circulating Tumors Cells and Cancer Cell Dissemination. Cancers (Basel) 2022; 14:5483. [PMID: 36428576 PMCID: PMC9688619 DOI: 10.3390/cancers14225483] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Tumor-related death is primarily caused by metastasis; consequently, understanding, preventing, and treating metastasis is essential to improving clinical outcomes. Metastasis is mainly governed by the dissemination of tumor cells in the systemic circulation: so-called circulating tumor cells (CTCs). CTCs typically arise from epithelial tumor cells that undergo epithelial-to-mesenchymal transition (EMT), resulting in the loss of cell-cell adhesions and polarity, and the reorganization of the cytoskeleton. Various oncogenic factors can induce EMT, among them the transforming growth factor (TGF)-β, as well as Wnt and Notch signaling pathways. This entails the activation of numerous transcription factors, including ZEB, TWIST, and Snail proteins, acting as transcriptional repressors of epithelial markers, such as E-cadherin and inducers of mesenchymal markers such as vimentin. These genetic and phenotypic changes ultimately facilitate cancer cell migration. However, to successfully form distant metastases, CTCs must primarily withstand the hostile environment of circulation. This includes adaption to shear stress, avoiding being trapped by coagulation and surviving attacks of the immune system. Several applications of CTCs, from cancer diagnosis and screening to monitoring and even guided therapy, seek their way into clinical practice. This review describes the process leading to tumor metastasis, from the generation of CTCs in primary tumors to their dissemination into distant organs, as well as the importance of subtyping CTCs to improve personalized and targeted cancer therapy.
Collapse
Affiliation(s)
- Gaetan Aime Noubissi Nzeteu
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, 26129 Oldenburg, Germany
| | - Claudia Geismann
- Laboratory of Molecular Gastroenterology & Hepatology, Department of Internal Medicine I, UKSH-Campus Kiel, 24118 Kiel, Germany
| | - Alexander Arlt
- Department for Gastroenterology and Hepatology, University Hospital Oldenburg, Klinikum Oldenburg AöR, European Medical School (EMS), 26133 Oldenburg, Germany
| | - Frederik J. H. Hoogwater
- Section of HPB Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Maarten W. Nijkamp
- Section of HPB Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - N. Helge Meyer
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, 26129 Oldenburg, Germany
| | - Maximilian Bockhorn
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
181
|
AWIAZ G, WU X, ZHANG C, PAN T, XU X, LIN J, WU A. Au@Ag-Au core@double shell SERS bioprobes for high-resolution tumor cells imaging. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
182
|
Zhuo Z, Lin L, Miao L, Li M, He J. Advances in liquid biopsy in neuroblastoma. FUNDAMENTAL RESEARCH 2022; 2:903-917. [PMID: 38933377 PMCID: PMC11197818 DOI: 10.1016/j.fmre.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/18/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022] Open
Abstract
Even with intensive treatment of high-risk neuroblastoma (NB) patients, half of high-risk NB patients still relapse. New therapies targeting the biological characteristics of NB have important clinical value for the personalized treatment of NB. However, the current biological markers for NB are mainly analyzed by tissue biopsy. In recent years, circulating biomarkers of NB based on liquid biopsy have attracted more and more attention. This review summarizes the analytes and methods for liquid biopsy of NB. We focus on the application of liquid biopsy in the diagnosis, prognosis assessment, and monitoring of NB. Finally, we discuss the prospects and challenges of liquid biopsy in NB.
Collapse
Affiliation(s)
- Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
183
|
Cohen EN, Jayachandran G, Moore RG, Cristofanilli M, Lang JE, Khoury JD, Press MF, Kim KK, Khazan N, Zhang Q, Zhang Y, Kaur P, Guzman R, Miller MC, Reuben JM, Ueno NT. A Multi-Center Clinical Study to Harvest and Characterize Circulating Tumor Cells from Patients with Metastatic Breast Cancer Using the Parsortix ® PC1 System. Cancers (Basel) 2022; 14:5238. [PMID: 36358657 PMCID: PMC9656921 DOI: 10.3390/cancers14215238] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 08/22/2023] Open
Abstract
Circulating tumor cells (CTCs) captured from the blood of cancer patients may serve as a surrogate source of tumor material that can be obtained via a venipuncture (also known as a liquid biopsy) and used to better understand tumor characteristics. However, the only FDA-cleared CTC assay has been limited to the enumeration of surface marker-defined cells and not further characterization of the CTCs. In this study, we tested the ability of a semi-automated device capable of capturing and harvesting CTCs from peripheral blood based on cell size and deformability, agnostic of cell-surface markers (the Parsortix® PC1 System), to yield CTCs for evaluation by downstream techniques commonly available in clinical laboratories. The data generated from this study were used to support a De Novo request (DEN200062) for the classification of this device, which the FDA recently granted. As part of a multicenter clinical trial, peripheral blood samples from 216 patients with metastatic breast cancer (MBC) and 205 healthy volunteers were subjected to CTC enrichment. A board-certified pathologist enumerated the CTCs from each participant by cytologic evaluation of Wright-Giemsa-stained slides. As proof of principle, cells harvested from a concurrent parallel sample provided by each participant were evaluated using one of three additional evaluation techniques: molecular profiling by qRT-PCR, RNA sequencing, or cytogenetic analysis of HER2 amplification by FISH. The study demonstrated that the Parsortix® PC1 System can effectively capture and harvest CTCs from the peripheral blood of MBC patients and that the harvested cells can be evaluated using orthogonal methodologies such as gene expression and/or Fluorescence In Situ Hybridization (FISH).
Collapse
Affiliation(s)
- Evan N. Cohen
- Department of Hematopathology Research, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gitanjali Jayachandran
- Department of Hematopathology Research, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard G. Moore
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Massimo Cristofanilli
- Department of Medicine-Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Julie E. Lang
- USC Breast Cancer Program, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Joseph D. Khoury
- Department of Pathology, Breast Cancer Analysis Laboratory, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Michael F. Press
- Department of Pathology, Breast Cancer Analysis Laboratory, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Kyu Kwang Kim
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Negar Khazan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Qiang Zhang
- Department of Medicine-Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Youbin Zhang
- Department of Medicine-Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Pushpinder Kaur
- USC Breast Cancer Program, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Roberta Guzman
- Department of Pathology, Breast Cancer Analysis Laboratory, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Michael C. Miller
- ANGLE Clinical Studies, ANGLE Europe Limited, Guildford, Surrey GU2 7AF, UK
| | - James M. Reuben
- Department of Hematopathology Research, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naoto T. Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
184
|
Yao Y, Zhu X, Liu W, Jiang J, Jiang H. Meta-analysis of the prognostic value of circulating tumor cells in gastrointestinal cancer. Medicine (Baltimore) 2022; 101:e31099. [PMID: 36281182 PMCID: PMC9592416 DOI: 10.1097/md.0000000000031099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Detecting circulating tumor cells (CTCs) has become a new strategy for predicting the prognosis of cancer patients. However, limited systematic research evidence is available for the detection of CTCs in various gastrointestinal tumors such as esophageal cancer (EC), colorectal cancer (CRC) and gastric cancer (GC). This topic was addressed to assess the prognostic significance of CTCs in gastrointestinal tumors. METHODS We conducted a literature search according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist (from November 20, 2021). We performed a meta-analysis using the random effects model and Review Manager 5.3 software (The Cochrane Collaboration, Copenhagen, Denmark) according to the inclusion and exclusion criteria, data extraction and evaluation methods. RESULTS Twenty-four articles met the inclusion criteria for this study, and they included 3803 EC, CRC and GC patients, including 1189 CTC-positive and 2462 CTC-negative cases. The meta-analysis showed that the presence of CTCs was associated with worse OS (HR = 2.05, 95% CI = 1.75-2.40, P = .060) and PFS (HR = 2.27, 95% CI = 1.79-2.89, P < .001). Further meta-regression and subgroup analyses showed that CTC-positive patients also showed worse OS and PFS in different subgroups. CONCLUSION Our meta-analysis suggests that detecting CTCs in peripheral blood may be an important tool for improving the prognosis of patients with gastrointestinal tumors. Moreover, CTCs detection results could be used to develop personalized treatment plans in the future.
Collapse
Affiliation(s)
- Yuming Yao
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Xiang Zhu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Weixin Liu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Jiayi Jiang
- Mathematics Major, New York University, New York, NY, USA
| | - Han Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- * Correspondence: Han Jiang, Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu, Nanchang 330006, Jiangxi, China (e-mail: )
| |
Collapse
|
185
|
Petrella F, Zorzino L, Frassoni S, Bagnardi V, Casiraghi M, Bardoni C, Mohamed S, Musso V, Simonini E, Rossi F, Alamanni F, Venturino M, Spaggiari L. Intraoperative Extra Corporeal Membrane Oxygenator for Lung Cancer Resections Does Not Impact Circulating Tumor Cells. Cancers (Basel) 2022; 14:cancers14205004. [PMID: 36291788 PMCID: PMC9599645 DOI: 10.3390/cancers14205004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The diagnosis of active neoplastic disease was traditionally judged an absolute contraindication for extracorporeal membrane oxygenator (ECMO) because of long-term results uncertainty and co-existing acquired coagulation disorders often diagnosed in this group of patients. There is a growing body of evidence that circulating tumor cells (CTCs) can be detected in the blood of patients before the primary tumor is diagnosed and in the case of carcinoma recurrence; moreover, on some occasions, they persist in the blood of patients after radical resection of the primary tumor. The aim of this prospective, two-arm study is to compare the number of CTCs before and after surgery in patients undergoing lung cancer resection with and without intraoperative ECMO support. Intraoperative ECMO for lung cancer resections did not impact CTC variation after the procedure and did not impact postoperative complications, ICU stay, hospital total length of stay, and post operative C-reactive protein increase. Abstract Background: The diagnosis of active neoplastic disease was traditionally judged an absolute contraindication for extracorporeal membrane oxygenator (ECMO) because of the fear of tumor cells being scattered or seeded. The aim of this study is to compare the number of circulating tumor cells (CTCs) before and after surgery in patients receiving lung cancer resection with and without intraoperative ECMO support. Methods: This is a prospective, non-randomized, two-arms observational study comparing the number of CTCs before and after surgery in patients receiving lung cancer resection with and without intraoperative ECMO support. The ECMO arm includes patients suffering from lung cancer undergoing pulmonary resection with planned intraoperative ECMO support. The non-ECMO arm includes patients suffering from non-early-stage lung cancer undergoing pulmonary resection without planned intraoperative ECMO support. Results: Twenty patients entered the study, eight in the ECMO arm and twelve in the non-ECMO arm. We did not observe any significant difference between the ECMO and non-ECMO groups in terms of postoperative complications (p = 1.00), ICU stay (p = 0.30), hospital stay (p = 0.23), circulating tumor cells’ increase or decrease after surgery (p = 0.24), and postoperative C-reactive protein and C-reactive protein increase (p = 0.80). The procedures in the non-ECMO arm were significantly longer than those in the ECMO arm (p = 0.043). Conclusions: Intraoperative ECMO for lung cancer resections did not impact CTC increase or decrease after the procedure.
Collapse
Affiliation(s)
- Francesco Petrella
- Department of Thoracic Surgery, IRCCS European Institute of Oncology, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Correspondence: or ; Tel.: +39-0257-489-362; Fax: +39-0294-379-218
| | - Laura Zorzino
- Division of Laboratory Medicine, IRCCS European Institute of Oncology, 20141 Milan, Italy
| | - Samuele Frassoni
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca, 20126 Milan, Italy
| | - Vincenzo Bagnardi
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca, 20126 Milan, Italy
| | - Monica Casiraghi
- Department of Thoracic Surgery, IRCCS European Institute of Oncology, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Claudia Bardoni
- Department of Thoracic Surgery, IRCCS European Institute of Oncology, 20141 Milan, Italy
| | - Shehab Mohamed
- Department of Thoracic Surgery, IRCCS European Institute of Oncology, 20141 Milan, Italy
| | - Valeria Musso
- Department of Thoracic Surgery, IRCCS European Institute of Oncology, 20141 Milan, Italy
| | - Emanuele Simonini
- Department of Thoracic Surgery, IRCCS European Institute of Oncology, 20141 Milan, Italy
| | - Fabiana Rossi
- Department of Cardiovascular Surgery, IRCCS Centro Cardiologico Monzino, 20138 Milan, Italy
| | - Francesco Alamanni
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- IRCCS Galeazzi Sant’Ambrogio, Cardiochirurgia Universitaria, 20157 Milan, Italy
| | - Marco Venturino
- Department of Anesthesiology, IRCCS European Institute of Oncology, 20141 Milan, Italy
| | - Lorenzo Spaggiari
- Department of Thoracic Surgery, IRCCS European Institute of Oncology, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
186
|
Cheng H, Yang J, Fu X, Mao L, Chu X, Lu C, Li G, Qiu Y, He W. Folate receptor-positive circulating tumor cells predict survival and recurrence patterns in patients undergoing resection for pancreatic cancer. Front Oncol 2022; 12:1012609. [PMID: 36313690 PMCID: PMC9606765 DOI: 10.3389/fonc.2022.1012609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Objective To evaluate the prognostic impact of folate receptor (FR)-positive circulating tumor cells (FR+ CTCs) for patients with pancreatic cancer (PC). Background Risk stratification before surgery for PC patients remains challenging as there are no reliable prognostic markers currently. FR+ CTCs, detected by ligand-targeted polymerase chain reaction (LT-PCR), have shown excellent diagnostic value for PC in our previous study and prognostic value in a variety of cancer types. Methods Peripheral blood samples from 44 consecutive patients diagnosed with PC were analyzed for FR+ CTCs. 25 patients underwent tumor resection and were assigned to the surgical group. 19 patients failed to undergo radical resection because of local advance or distant metastasis and were assigned to the non-surgical group. The impact of CTCs on relapse and survival were explored. Results For the prognostic stratification, the optimal cut-off value of CTCs analyzed by receiver operating characteristic (ROC) curve was 14.49 folate units (FU)/3 ml. High CTC levels (> 14.49 FU/3 ml) were detected in 52.0% (13/25) of the patients in the surgical group and 63.2% (12/19) in the non-surgical group. In the surgical group, median disease-free survival (DFS) for patients with high CTC levels versus low CTC levels (< 14.49 FU/3 ml) was 8.0 versus 26.0 months (P = 0.008). In multivariable analysis, CTCs were an independent risk factor for DFS (HR: 4.589, P = 0.012). Concerning the recurrence patterns, patients with high CTC levels showed a significantly frequent rate of distant and early recurrence (P = 0.017 and P = 0.011). CTC levels remained an independent predictor for both distant (OR: 8.375, P = 0.014) and early recurrence (OR: 8.412, P = 0.013) confirmed by multivariable logistic regression. However, CTCs did not predict survival in the non-surgical group (P = 0.220). Conclusion FR+ CTCs in resected PC patients could predict impaired survival and recurrence patterns after surgery. Preoperative CTC levels detected by LT-PCR may help guide treatment strategies and further studies in a larger cohort are warranted.
Collapse
Affiliation(s)
- Hao Cheng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jun Yang
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xu Fu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Liang Mao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuehui Chu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chenglin Lu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Gang Li
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yudong Qiu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Yudong Qiu, ; Wei He,
| | - Wei He
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yudong Qiu, ; Wei He,
| |
Collapse
|
187
|
Silva ATF, Rodrigues CM, Ferreira ICC, Santos LLD, Santos DW, Araújo TG, Canto PPL, Paiva CE, Goulart LR, Maia YCP. A Novel Detection Method of Breast Cancer through a Simple Panel of Biomarkers. Int J Mol Sci 2022; 23:ijms231911983. [PMID: 36233281 PMCID: PMC9570447 DOI: 10.3390/ijms231911983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Circulating tumor cells (CTCs) have been identified as responsible for the spread of tumors to other organs of the body. In this sense, the development of sensitive and specific assays for their detection is important to reduce the number of deaths due to metastases. Here, we assessed whether the detection of CTCs in peripheral blood can serve in the construction of a panel of diagnosis and monitoring treatments of breast cancer (BC), focusing on the expression of markers of epithelial-mesenchymal transition. Through analyzing the blood from women without breast alterations (control), women with benign alterations, women with breast cancer without chemotherapy, and women with breast cancer with chemotherapy, we identified the best markers by transcriptional levels and determined three profiles of CTCs (mesenchymal, intermediate, and epithelial) by flow cytometry which, combined, can be used for diagnosis and therapy monitoring with sensitivity and specificity between 80% and 100%. Therefore, we have developed a method for detecting breast cancer based on the analysis of CTC profiles by epithelial-mesenchymal transition markers which, combined, can be used for the diagnosis and monitoring of therapy.
Collapse
Affiliation(s)
- Alinne T. F. Silva
- Molecular Biology and Nutrition Research Group, School of Medicine, Graduate Program in Health Science, Av. Amazonas sn, Block 2E, 2º Floor, Room 210, Campus Umuarama, Uberlandia 38405-320, Minas Gerais, Brazil
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas sn, Block 2E, 2º Floor, Room 248, Campus Umuarama, Uberlandia 38405-302, Minas Gerais, Brazil
| | - Cláudia M. Rodrigues
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas sn, Block 2E, 2º Floor, Room 248, Campus Umuarama, Uberlandia 38405-302, Minas Gerais, Brazil
| | - Izabella C. C. Ferreira
- Molecular Biology and Nutrition Research Group, School of Medicine, Graduate Program in Health Science, Av. Amazonas sn, Block 2E, 2º Floor, Room 210, Campus Umuarama, Uberlandia 38405-320, Minas Gerais, Brazil
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas sn, Block 2E, 2º Floor, Room 248, Campus Umuarama, Uberlandia 38405-302, Minas Gerais, Brazil
| | - Letícia L. D. Santos
- Molecular Biology and Nutrition Research Group, School of Medicine, Graduate Program in Health Science, Av. Amazonas sn, Block 2E, 2º Floor, Room 210, Campus Umuarama, Uberlandia 38405-320, Minas Gerais, Brazil
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas sn, Block 2E, 2º Floor, Room 248, Campus Umuarama, Uberlandia 38405-302, Minas Gerais, Brazil
| | - Donizeti W. Santos
- Obstetric Division, University Hospital, Federal University of Uberlandia, Av. Pará, 1720, Block 2H, Campus Umuarama, Uberlandia 38405-320, Minas Gerais, Brazil
| | - Thaise G. Araújo
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas sn, Block 2E, 2º Floor, Room 248, Campus Umuarama, Uberlandia 38405-302, Minas Gerais, Brazil
| | - Paula P. L. Canto
- Department of Clinical Oncology, Clinics Hospital, Federal University of Uberlandia, Av. Pará, 1720, Oncology Sector, Room 9, Campus Umuarama, Uberlandia 38405-320, Minas Gerais, Brazil
| | - Carlos E. Paiva
- Department of Clinical Oncology, Graduate Program in Oncology, Palliative Care and Quality of Life Research Group (GPQual), Barretos Cancer Hospital, R. Antenor Duarte Vilela, 1331, Doutor Paulo Prata, Barretos 14784-400, Sao Paulo, Brazil
| | - Luiz R. Goulart
- Molecular Biology and Nutrition Research Group, School of Medicine, Graduate Program in Health Science, Av. Amazonas sn, Block 2E, 2º Floor, Room 210, Campus Umuarama, Uberlandia 38405-320, Minas Gerais, Brazil
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas sn, Block 2E, 2º Floor, Room 248, Campus Umuarama, Uberlandia 38405-302, Minas Gerais, Brazil
| | - Yara C. P. Maia
- Molecular Biology and Nutrition Research Group, School of Medicine, Graduate Program in Health Science, Av. Amazonas sn, Block 2E, 2º Floor, Room 210, Campus Umuarama, Uberlandia 38405-320, Minas Gerais, Brazil
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas sn, Block 2E, 2º Floor, Room 248, Campus Umuarama, Uberlandia 38405-302, Minas Gerais, Brazil
- Correspondence: ; Tel.: +34-3225-8628
| |
Collapse
|
188
|
Defining A Liquid Biopsy Profile of Circulating Tumor Cells and Oncosomes in Metastatic Colorectal Cancer for Clinical Utility. Cancers (Basel) 2022; 14:cancers14194891. [PMID: 36230811 PMCID: PMC9563925 DOI: 10.3390/cancers14194891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Metastatic colorectal cancer (mCRC) is typified by its tumor heterogeneity and changing disease states, suggesting that personalized medicine approaches could be vital to improving clinical practice. As a minimally invasive approach, the liquid biopsy has the potential to be a powerful longitudinal prognostic tool. We investigated mCRC patients’ peripheral blood samples using an enrichment-free single-cell approach to capture the broader rare-event population beyond the conventionally detected epithelial-derived circulating tumor cell (CTC). Our analysis reveals a heterogenous profile of CTCs and oncosomes not commonly found in normal donor samples. We identified select rare cell types based on their distinct immunofluorescence expression and morphology across multiple assays. Lastly, we highlight correlations between enumerations of the blood-based analytes and progression-free survival. This study clinically validates an unbiased rare-event approach in the liquid biopsy, motivating future studies to further investigate these analytes for their prognostic potential. Abstract Metastatic colorectal cancer (mCRC) is characterized by its extensive disease heterogeneity, suggesting that individualized analysis could be vital to improving patient outcomes. As a minimally invasive approach, the liquid biopsy has the potential to longitudinally monitor heterogeneous analytes. Current platforms primarily utilize enrichment-based approaches for epithelial-derived circulating tumor cells (CTC), but this subtype is infrequent in the peripheral blood (PB) of mCRC patients, leading to the liquid biopsy’s relative disuse in this cancer type. In this study, we evaluated 18 PB samples from 10 mCRC patients using the unbiased high-definition single-cell assay (HDSCA). We first employed a rare-event (Landscape) immunofluorescence (IF) protocol, which captured a heterogenous CTC and oncosome population, the likes of which was not observed across 50 normal donor (ND) samples. Subsequent analysis was conducted using a colorectal-targeted IF protocol to assess the frequency of CDX2-expressing CTCs and oncosomes. A multi-assay clustering analysis isolated morphologically distinct subtypes across the two IF stains, demonstrating the value of applying an unbiased single-cell approach to multiple assays in tandem. Rare-event enumerations at a single timepoint and the variation of these events over time correlated with progression-free survival. This study supports the clinical utility of an unbiased approach to interrogating the liquid biopsy in mCRC, representing the heterogeneity within the CTC classification and warranting the further molecular characterization of the rare-event analytes with clinical promise.
Collapse
|
189
|
Eibl RH, Schneemann M. Liquid biopsy for monitoring medulloblastoma. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:280-291. [PMID: 39697492 PMCID: PMC11648495 DOI: 10.20517/evcna.2022.36] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 12/20/2024]
Abstract
Despite recent progress in molecular diagnostics defining four distinct medulloblastoma groups, the clinical management of these malignant childhood tumors of the cerebellum remains challenging. After surgical removal of the tumor, both cytotoxic chemotherapy and irradiation can offer additional curative benefits, but they also include a significant risk of long-term damage. Early molecular profiling aims to predict the outcome of such aggressive therapies. This prevents unnecessary damage to patients who may not need it and helps to identify those patients with remaining tumor cells who may benefit from more aggressive treatment with the intent to cure. Monitoring tumor evolution in real time allows personalized precision medicine with an immediate clinical response resulting in a better outcome. Liquid biopsy includes various methodologies already applied in numerous studies and clinical trials for common cancers including brain tumors, but information on medulloblastomas is limited. This review summarizes the recent developments of how liquid biopsy can support or even replace the standard monitoring of medulloblastomas by medical imaging or cytology and discusses what will be needed to make liquid biopsy a new gold standard in diagnosis, therapy, and follow-up of medulloblastomas for the benefit of the patients.
Collapse
Affiliation(s)
- Robert H. Eibl
- c/o M. Schneemann, Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| | - Markus Schneemann
- Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| |
Collapse
|
190
|
Wang M, Liu Y, Shao B, Liu X, Hu Z, Wang C, Li H, Zhu L, Li P, Yang Y. HER2 status of CTCs by peptide-functionalized nanoparticles as the diagnostic biomarker of breast cancer and predicting the efficacy of anti-HER2 treatment. Front Bioeng Biotechnol 2022; 10:1015295. [PMID: 36246381 PMCID: PMC9554095 DOI: 10.3389/fbioe.2022.1015295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
Efficacy of anti-human epidermal growth factor receptor 2 (HER2) treatment is impacted by tissue-based evaluation bias due to tumor heterogeneity and dynamic changes of HER2 in breast cancer. Circulating tumor cell (CTC)-based HER2 phenotyping provides integral and real-time assessment, benefiting accurate HER2 diagnosis. This study developed a semi-quantitative fluorescent evaluation system of HER2 immunostaining on CTCs by peptide-functionalized magnetic nanoparticles (Pep@MNPs) and immunocytochemistry (ICC). 52 newly-diagnosed advanced breast cancer patients were enrolled for blood samples before and/or after first-line treatment, including 24 patients who were diagnosed with HER2+ tumors and treated with anti-HER2 drugs. We enumerated CTCs and assessed levels of HER2 expression on CTCs in 2.0 ml whole blood. Enumerating CTCs at baseline could distinguish cancer patients (sensitivity, 69.2%; specificity, 100%). 80.8% (42/52) of patients had at least one CTCs before therapy. Patients with <3 CTCs at baseline had significantly longer progression-free survival (medians, 19.4 vs. 9.2 months; log-rank p = 0.046) and overall survival (medians, not yet reached; log-rank p = 0.049) than those with ≥3 CTCs. Both HER2+ and HER2-low patients could be detected with HER2 overexpression on CTCs (CTC-HER2+) (52.6%, 44.4%, respectively), whereas all the HER2-negative patients had no CTC-HER2+ phenotype. Among HER2+ patients with ≥3 CTCs at baseline, objective response only appeared in pretherapeutic CTC-HER2+ cohort (60.0%), rather than in CTC-HER2- cohort (0.0%) (p = 0.034). In conclusion, we demonstrate the significance of CTC enumeration in diagnosis and prognosis of first-line advanced breast cancer, and highlight the value of CTC-HER2 status in predicting efficacy of anti-HER2 treatment.
Collapse
Affiliation(s)
- Mengting Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaxin Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Shao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoran Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ping Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
191
|
Isebia KT, Dathathri E, Verschoor N, Nanou A, De Jong AC, Coumans FAW, Terstappen LWMM, Kraan J, Martens JWM, Bansal R, Lolkema MP. Characterizing Circulating Tumor Cells and Tumor-Derived Extracellular Vesicles in Metastatic Castration-Naive and Castration-Resistant Prostate Cancer Patients. Cancers (Basel) 2022; 14:4404. [PMID: 36139564 PMCID: PMC9497200 DOI: 10.3390/cancers14184404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Circulating tumor cell (CTC)- and/or tumor-derived extracellular vesicle (tdEV) loads in the blood of metastatic castration-resistant prostate cancer (CRPC) patients are associated with worse overall survival and can be used as predictive markers of treatment response. In this study, we investigated the quantity/quality of CTCs and tdEVs in metastatic castration-naive prostate cancer (CNPC) and CRPC patients, and whether androgen deprivation therapy (ADT) affects CTCs and tdEVs. We included 104 CNPC patients before ADT initiation and 66 CRPC patients. Blood samples from 31/104 CNPC patients were obtained 6 months after ADT. CTCs and tdEVs were identified using ACCEPT software. Based on the morphology, CTCs of metastatic CNPC and CRPC patients were subdivided by manual reviewing into six subclasses. The numbers of CTCs and tdEVs were correlated in both CNPC and CRPC patients, and both CTCs (p = 0.013) and tdEVs (p = 0.005) were significantly lower in CNPC compared to CRPC patients. Qualitative differences in CTCs were observed: CTC clusters (p = 0.006) and heterogeneously CK expressing CTCs (p = 0.041) were significantly lower in CNPC patients. CTC/tdEV numbers declined 6 months after ADT. Our study showed that next to CTC-load, qualitative CTC analysis and tdEV-load may be useful in CNPC patients.
Collapse
Affiliation(s)
- Khrystany T. Isebia
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Eshwari Dathathri
- Department of Medical Cell Biophysics, Technical Medical Center, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Noortje Verschoor
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Afroditi Nanou
- Department of Medical Cell Biophysics, Technical Medical Center, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Anouk C. De Jong
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Frank A. W. Coumans
- Department of Medical Cell Biophysics, Technical Medical Center, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Leon W. M. M. Terstappen
- Department of Medical Cell Biophysics, Technical Medical Center, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Jaco Kraan
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Ruchi Bansal
- Department of Medical Cell Biophysics, Technical Medical Center, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Martijn P. Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
192
|
Rico LG, de la Calle FR, Salvia R, Ward MD, Bradford JA, Juncà J, Sorigué M, Petriz J. Impact of red blood cell lysing on rare event analysis. Cytometry A 2022; 103:335-346. [PMID: 36069147 DOI: 10.1002/cyto.a.24688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022]
Abstract
The challenges associated with analyzing rare cells are dependent on a series of factors, which usually require large numbers of cells per sample for successful resolution. Among these is determining the minimum number of total events needed to be acquired as defined by the expected frequency of the target cell population. The choice of markers that identify the target population, as well as the event rate and the number of aborted events/second, will also determine the statistically significant detection of rare cell events. Sample preparation is another important but often overlooked factor in rare cell analysis, and in this study we examine Poisson theory and methods to determine the effect of sample manipulation on rare cell detection. After verifying the applicability of this theory, we have evaluated the potential impact of red cell lysis on rare cell analysis, and how cell rarity can be underestimated or overestimated based on erythrolytic sensitivity or resistance of healthy leukocytes and pathological rare cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Laura G Rico
- Functional Cytomics Lab, Germans Trias i Pujol Research Institute (IGTP) , ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Fernando Raimúndez de la Calle
- Functional Cytomics Lab, Germans Trias i Pujol Research Institute (IGTP) , ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Roser Salvia
- Functional Cytomics Lab, Germans Trias i Pujol Research Institute (IGTP) , ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Mike D Ward
- Thermo Fisher Scientific, Eugene, Oregon, USA
| | | | - Jordi Juncà
- Functional Cytomics Lab, Germans Trias i Pujol Research Institute (IGTP) , ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Marc Sorigué
- Functional Cytomics Lab, Germans Trias i Pujol Research Institute (IGTP) , ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Jordi Petriz
- Functional Cytomics Lab, Germans Trias i Pujol Research Institute (IGTP) , ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| |
Collapse
|
193
|
Einoch Amor R, Zinger A, Broza YY, Schroeder A, Haick H. Artificially Intelligent Nanoarray Detects Various Cancers by Liquid Biopsy of Volatile Markers. Adv Healthc Mater 2022; 11:e2200356. [PMID: 35765713 PMCID: PMC11468493 DOI: 10.1002/adhm.202200356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/24/2022] [Indexed: 01/27/2023]
Abstract
Cancer is usually not symptomatic in its early stages. However, early detection can vastly improve prognosis. Liquid biopsy holds great promise for early detection, although it still suffers from many disadvantages, mainly searching for specific cancer biomarkers. Here, a new approach for liquid biopsies is proposed, based on volatile organic compound (VOC) patterns in the blood headspace. An artificial intelligence nanoarray based on a varied set of chemi-sensitive nano-based structured films is developed and used to detect and stage cancer. As a proof-of-concept, three cancer models are tested showing high incidence and mortality rates in the population: breast cancer, ovarian cancer, and pancreatic cancer. The nanoarray has >84% accuracy, >81% sensitivity, and >80% specificity for early detection and >97% accuracy, 100% sensitivity, and >88% specificity for metastasis detection. Complementary mass spectrometry analysis validates these results. The ability to analyze such a complex biological fluid as blood, while considering data of many VOCs at a time using the artificially intelligent nanoarray, increases the sensitivity of predictive models and leads to a potential efficient early diagnosis and disease-monitoring tool for cancer.
Collapse
Affiliation(s)
- Reef Einoch Amor
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Assaf Zinger
- Laboratory for Targeted Drug Delivery and Personalized Medicine TechnologiesDepartment of Chemical EngineeringTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Yoav Y. Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine TechnologiesDepartment of Chemical EngineeringTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| |
Collapse
|
194
|
An ultra-thin silicon nitride membrane for label-free CTCs isolation from whole blood with low WBC residue. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
195
|
Perge P, Nyirő G, Vékony B, Igaz P. Liquid biopsy for the assessment of adrenal cancer heterogeneity: where do we stand? Endocrine 2022; 77:425-431. [PMID: 35552979 PMCID: PMC9385753 DOI: 10.1007/s12020-022-03066-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023]
Abstract
Almost 10 years have passed since the first attempts of liquid biopsy aimed at the characterisation of tumor cells present in the bloodstream from a regular sample of peripheral blood were performed. Liquid biopsy has been used to characterise tumor heterogeneity in various types of solid tumors including adrenocortical carcinoma. The development of molecular biology, genetics, and methodological advances such as digital PCR and next-generation sequencing allowed us to use besides circulating tumor cells a variety of circulating cell-free nucleic acids, DNAs, RNAs and microRNAs secreted by tumors into blood and other body fluids as specific molecular markers. These markers are used for diagnosis, to check tumor development, selecting efficient therapies, therapy monitoring and even possess prognostic power. In adrenocortical carcinoma, there are some studies reporting analysis of circulating tumor cells, circulating cell free DNA and microRNAs for assessing tumor heterogeneity. Among microRNAs, hsa-miR-483-5p seems to be the most important player. Combined with other microRNAs like hsa-miR-195, their expression correlates with recurrence-free survival. Most studies support the applicability of liquid biopsy for assessing temporal tumor heterogeneity (i.e. tumor progression) in adrenocortical cancer. In this mini-review, the available findings of liquid biopsy for assessing tumor heterogeneity in adrenocortical cancer are presented.
Collapse
Affiliation(s)
- Pál Perge
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, H-1083, Budapest, Hungary
| | - Gábor Nyirő
- Department of Endocrinology, ENS@T Research Center of Excellence, Faculty of Medicine, Semmelweis University, H-1083, Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Eötvös Loránd Research Network, H-1083, Budapest, Hungary
- Institute of Laboratory Medicine, Faculty of Medicine, Semmelweis University, H-1089, Budapest, Hungary
| | - Bálint Vékony
- Department of Endocrinology, ENS@T Research Center of Excellence, Faculty of Medicine, Semmelweis University, H-1083, Budapest, Hungary
| | - Peter Igaz
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, H-1083, Budapest, Hungary.
- Department of Endocrinology, ENS@T Research Center of Excellence, Faculty of Medicine, Semmelweis University, H-1083, Budapest, Hungary.
- MTA-SE Molecular Medicine Research Group, Eötvös Loránd Research Network, H-1083, Budapest, Hungary.
| |
Collapse
|
196
|
Tian R, Li X, Zhang H, Ma L, Zhang H, Wang Z. Ulex Europaeus Agglutinin-I-Based Magnetic Isolation for the Efficient and Specific Capture of SW480 Circulating Colorectal Tumor Cells. ACS OMEGA 2022; 7:30405-30411. [PMID: 36061664 PMCID: PMC9435041 DOI: 10.1021/acsomega.2c03702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The efficient and specific capture of circulating tumor cells (CTCs) from patients' peripheral blood is of significant value in precise cancer diagnosis and cancer therapy. As fine targeting molecules, lectins can recognize cancer cells specifically due to the abnormal glycosylation of molecules on the cancer cell membrane and the specific binding of lectin with glycoconjugates. Herein, a Ulex europaeus agglutinin-I (UEA-I)-based magnetic isolation strategy was developed to efficiently and specifically capture α-1,2-fucose overexpression CTCs from colorectal cancer (CRC) patients' peripheral blood. Using UEA-I-modified Fe3O4 magnetic beads (termed MB-UEA-I), up to 94 and 89% of target cells (i.e., SW480 CRC cells) were captured from the cell spiking complete cell culture medium and whole blood, respectively. More than 90% of captured cells show good viability and proliferation ability without detaching from MB-UEA-I. In combination with three-color immunocytochemistry (ICC) identification, MB-UEA-I has been successfully used to capture CTCs from CRC patients' peripheral blood. The experimental results indicate a correlation between CTC characterization and tumor metastasis. Specifically, MB-UEA-I can be applied to screen early CRC by capturing CTCs when served as a liquid biopsy. The presented work offers a new insight into developing cost-effective lectin-functionalized methods for biomedical applications.
Collapse
Affiliation(s)
- Rongrong Tian
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University
of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Xiaodong Li
- Department
of Radiology, The First Hospital of Jilin
University, Changchun, Jilin 130021, P. R. China
| | - Hua Zhang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lina Ma
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Huimao Zhang
- Department
of Radiology, The First Hospital of Jilin
University, Changchun, Jilin 130021, P. R. China
| | - Zhenxin Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University
of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
197
|
Han T, Zhang J, Xiao D, Yang B, Chen L, Zhai C, Ding F, Xu Y, Zhao X, Zhao J. Circulating Tumor-Derived Endothelial Cells: An Effective Biomarker for Breast Cancer Screening and Prognosis Prediction. JOURNAL OF ONCOLOGY 2022; 2022:5247423. [PMID: 36072971 PMCID: PMC9441390 DOI: 10.1155/2022/5247423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022]
Abstract
Background Circulating tumor-derived endothelial cell (CTEC) is a new potential tumor biomarker to be associated with cancer development and treatment efficacy. However, few evidences are available for breast cancer. Methods Eighty-nine breast cancer patients were recruited, and preoperative and postoperative blood samples were collected. Besides, 20 noncancer persons were enrolled as controls. An improved subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH) method was adopted to codetect CD31+ aneuploid CTEC and CD31- aneuploid circulating tumor cell (CTC). Then, the clinical significance of CTCs and CTECs on breast cancer screening and prognosis prediction was evaluated and compared. Results The positive rate of CTCs and CTECs in newly diagnosed breast cancer patients was 68.75% and 71.88%. Among detected aneuploid circulating rare cells, CTEC accounts for a greater proportion than CTC in breast cancer patients. CTEC-positive rate and level were significantly higher in breast cancer patients with lymph node metastasis (LNM) than those without LNM (P=0.043), while there was no significant difference in CTC. CTEC (area under the curve, AUC = 0.859) had better performance than CTC (AUC = 0.795) to distinguish breast cancer patients from controls by receiver operator characteristic curve analysis. Preoperative CTEC count ≥ 2 was a significant risk factor for reducing PFS of breast cancer patients. Conclusions CTECs may function as a reliable supplementary biomarker in breast cancer screening and prognosis prediction.
Collapse
Affiliation(s)
- Tuo Han
- Department of Oncological Surgery, 3201 Hospital Affiliated to Xi'an Jiaotong University School of Medicine, Hanzhong 723000, Shaanxi, China
| | - Juanjuan Zhang
- Department of Surgical Oncology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Dong Xiao
- Department of Oncological Surgery, 3201 Hospital Affiliated to Xi'an Jiaotong University School of Medicine, Hanzhong 723000, Shaanxi, China
| | - Binhui Yang
- Department of Oncological Surgery, 3201 Hospital Affiliated to Xi'an Jiaotong University School of Medicine, Hanzhong 723000, Shaanxi, China
| | - Liang Chen
- Department of Oncological Surgery, 3201 Hospital Affiliated to Xi'an Jiaotong University School of Medicine, Hanzhong 723000, Shaanxi, China
| | - Chao Zhai
- Department of Oncological Surgery, 3201 Hospital Affiliated to Xi'an Jiaotong University School of Medicine, Hanzhong 723000, Shaanxi, China
| | - Feifei Ding
- Shanghai Biotecan Pharmaceuticals Co. Ltd, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 201204, China
| | - Yue Xu
- Shanghai Biotecan Pharmaceuticals Co. Ltd, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 201204, China
| | - Xiaoyu Zhao
- Shanghai Biotecan Pharmaceuticals Co. Ltd, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 201204, China
| | - Jiangman Zhao
- Shanghai Biotecan Pharmaceuticals Co. Ltd, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 201204, China
| |
Collapse
|
198
|
Słomka A, Wang B, Mocan T, Horhat A, Willms AG, Schmidt-Wolf IGH, Strassburg CP, Gonzalez-Carmona MA, Lukacs-Kornek V, Kornek MT. Extracellular Vesicles and Circulating Tumour Cells - complementary liquid biopsies or standalone concepts? Theranostics 2022; 12:5836-5855. [PMID: 35966579 PMCID: PMC9373826 DOI: 10.7150/thno.73400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsies do promise a lot, but are they keeping it? In the past decade, additional novel biomarkers qualified to be called like that, of which, some took necessary hurdles resulting in FDA approval and clinical use. Some others are since a while around, well known and were once regarded to be a game changer in cancer diagnosis or cancer screening. But, during their clinical use limitations were observed from statistical significance and questions raised regarding their robustness, that eventually led to be dropped from associated clinical guidelines for certain applications including cancer diagnosis. The purpose of this review isn't to give a broad overview of all current liquid biopsy as biomarkers, weight them and promise a brighter future in cancer prevention, but rather to take a deeper look on two of those who do qualify to be called liquid biopsies now or then. These two are probably of greatest interest conceptually and methodically, and likely have the highest chances to be in clinical use soon, with a portfolio extension over their original conceptual usage. We aim to dig deeper beyond cancer diagnosis or cancer screening. Actually, we aim to review in depth extracellular vesicles (EVs) and compare with circulating tumour cells (CTCs). The latter methodology is partially FDA approved and in clinical use. We will lay out similarities as taking advantage of surface antigens on EVs and CTCs in case of characterization and quantification. But drawing readers' attention to downstream application based on capture/isolation methodology and simply on their overall nature, here apparently being living material eventually recoverable as CTCs are vs. dead material with transient effects on recipient cell as in case of EVs. All this we try to bring in perspective, compare and conclude towards which future direction we are aiming for, or should aim for. Do we announce a winner between CTCs vs EVs? No, but we provide good reasons to intensify research on them.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-067 Bydgoszcz, Poland
| | - Bingduo Wang
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany.,Institute of Molecular Medicine & Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Tudor Mocan
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Adelina Horhat
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Arnulf G Willms
- Institute of Molecular Medicine & Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany.,Department of General, Visceral and Vascular Surgery, German Armed Forces Hospital Hamburg, 22049 Hamburg, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Christian P Strassburg
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Maria A Gonzalez-Carmona
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Veronika Lukacs-Kornek
- Institute of Molecular Medicine & Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Miroslaw T Kornek
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| |
Collapse
|
199
|
Ju S, Chen C, Zhang J, Xu L, Zhang X, Li Z, Chen Y, Zhou J, Ji F, Wang L. Detection of circulating tumor cells: opportunities and challenges. Biomark Res 2022; 10:58. [PMID: 35962400 PMCID: PMC9375360 DOI: 10.1186/s40364-022-00403-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Circulating tumor cells (CTCs) are cells that shed from a primary tumor and travel through the bloodstream. Studying the functional and molecular characteristics of CTCs may provide in-depth knowledge regarding highly lethal tumor diseases. Researchers are working to design devices and develop analytical methods that can capture and detect CTCs in whole blood from cancer patients with improved sensitivity and specificity. Techniques using whole blood samples utilize physical prosperity, immunoaffinity or a combination of the above methods and positive and negative enrichment during separation. Further analysis of CTCs is helpful in cancer monitoring, efficacy evaluation and designing of targeted cancer treatment methods. Although many advances have been achieved in the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this burgeoning diagnostic approach. In this review, a brief summary of the biological characterization of CTCs is presented. We focus on the current existing CTC detection methods and the potential clinical implications and challenges of CTCs. We also put forward our own views regarding the future development direction of CTCs.
Collapse
Affiliation(s)
- Siwei Ju
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jiahang Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Lin Xu
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Feiyang Ji
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| | - Linbo Wang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| |
Collapse
|
200
|
Shin D, Choi J, Lee JH, Bang D. Onepot-Seq: capturing single-cell transcriptomes simultaneously in a continuous medium via transient localization of mRNA. Nucleic Acids Res 2022; 50:12621-12635. [PMID: 35953080 PMCID: PMC9825186 DOI: 10.1093/nar/gkac665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 05/27/2022] [Accepted: 07/25/2022] [Indexed: 01/29/2023] Open
Abstract
The development of single-cell RNA-seq has broadened the spectrum for biological research by providing a high-resolution analysis of cellular heterogeneity. However, the requirement for sophisticated devices for the compartmentalization of cells has limited its widespread applicability. Here, we develop Onepot-Seq, a device-free method, that harnesses the transient localization of mRNA after lysis to capture single-cell transcriptomes simultaneously in a continuous fluid medium. In mixed-species experiments, we obtained high-quality single-cell profiles. Further, cell type-specific poly(A)-conjugated antibodies allow Onepot-Seq to effectively capture target cells in complex populations. Chemical perturbations to cells can be profiled by Onepot-Seq at single-cell resolution. Onepot-Seq should allow routine transcriptional profiling at single-cell resolution, accelerating clinical and scientific discoveries in many fields of science.
Collapse
Affiliation(s)
| | | | - Ji Hyun Lee
- Correspondence may also be addressed to Ji Hyun Lee.
| | - Duhee Bang
- To whom correspondence should be addressed.
| |
Collapse
|