151
|
Chen YX, Tan LM, Gong JP, Huang MS, Yin JY, Zhang W, Zhou HH, Liu ZQ. Response prediction biomarkers and drug combinations of PARP inhibitors in prostate cancer. Acta Pharmacol Sin 2021; 42:1970-1980. [PMID: 33589795 PMCID: PMC8632930 DOI: 10.1038/s41401-020-00604-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/20/2020] [Indexed: 01/31/2023] Open
Abstract
PARP inhibitors are a group of inhibitors targeting poly(ADP-ribose) polymerases (PARP1 or PARP2) involved in DNA repair and transcriptional regulation, which may induce synthetic lethality in BRCAness tumors. Systematic analyzes of genomic sequencing in prostate cancer show that ~10%-19% of patients with primary prostate cancer have inactivated DNA repair genes, with a notably higher proportion of 23%-27% in patients with metastatic castration-resistant prostate cancer (mCRPC). These characteristic genomic alterations confer possible vulnerability to PARP inhibitors in patients with mCRPC who benefit only modestly from other therapies. However, only a small proportion of patients with mCRPC shows sensitivity to PARP inhibitors, and these sensitive patients cannot be fully identified by existing response prediction biomarkers. In this review, we provide an overview of the potential response prediction biomarkers and synergistic combinations studied in the preclinical and clinical stages, which may expand the population of patients with prostate cancer who may benefit from PARP inhibitors.
Collapse
Affiliation(s)
- Yi-Xin Chen
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Li-Ming Tan
- Department of Pharmacy, The Second People's Hospital of Huaihua City, Huaihua, 418000, China
| | - Jian-Ping Gong
- Department of Pharmacy, The Second People's Hospital of Huaihua City, Huaihua, 418000, China
| | - Ma-Sha Huang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China.
| |
Collapse
|
152
|
Bitting RL, Healy P, George DJ, Anand M, Kim S, Mayer T, Winters C, Riggan C, Rasmussen J, Wilder R, Stein M, Frizzell B, Harrison MR, Zhang T, Lee WR, Wu Y, Koontz BF, Armstrong AJ. Phase II Trial of Enzalutamide and Androgen Deprivation Therapy with Salvage Radiation in Men with High-risk Prostate-specific Antigen Recurrent Prostate Cancer: The STREAM Trial. Eur Urol Oncol 2021; 4:948-954. [PMID: 32063492 DOI: 10.1016/j.euo.2020.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/10/2020] [Accepted: 01/30/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Salvage external beam radiotherapy (RT) with androgen deprivation therapy (ADT) improves survival over RT in men with prostate cancer (PC) and rising prostate-specific antigen (PSA) levels after radical prostatectomy (RP). OBJECTIVE To investigate the safety and efficacy of enzalutamide concurrent with salvage RT and ADT. DESIGN, SETTING, AND PARTICIPANTS This was a three-center prospective phase 2 single-arm trial (NCT02057939) of men with Gleason 7-10 PC and PSA recurrence within 4 yr of RP ranging from 0.2 to 4.0 ng/dl, no prior hormonal therapy, and no radiographic evidence of metastases. We enrolled 38 men; 37 completed therapy and were evaluable with testosterone recovery at 2 yr. INTERVENTION Six months of ADT with 160 mg/d enzalutamide and 66 Gy RT to the prostate bed. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary endpoint was improved 2-yr progression-free survival (PFS) over historical controls. Secondary objectives included 3-yr PFS, safety, and patient-reported quality of life (QOL). RESULTS AND LIMITATIONS The primary endpoint of 2-yr PFS was 65% (95% confidence interval [CI]: 47, 78) versus 51% (95% CI: 33, 67) in a trial of men with similar eligibility treated with salvage RT and adjuvant docetaxel. The 3-yr PFS was 53%. Eleven (29%) men experienced G3 toxicities, and there were no G4-5 or unexpected toxicities. QOL data suggest modest worsening of bowel, bladder, and hormonal symptoms at 3 mo, with recovery by 24 mo in most men. CONCLUSIONS Salvage RT with enzalutamide and ADT following RP for men with PSA recurrent high-risk PC is safe and demonstrates encouraging efficacy, warranting prospective controlled phase 3 trials of ADT with or without potent androgen receptor inhibition in this curative-intent setting. PATIENT SUMMARY Addition of 6 mo of oral daily enzalutamide to standard salvage radiation and hormone therapy is safe and may improve prostate cancer remission rates at 2 and 3 yr.
Collapse
Affiliation(s)
- Rhonda L Bitting
- Comprehensive Cancer Center of Wake Forest University, Departments of Internal Medicine and Radiation Oncology, Winston-Salem NC USA
| | - Patrick Healy
- Department of Biostatistics, Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA
| | - Daniel J George
- Department of Medicine, Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA; Department of Surgery, Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA; Department of Pharmacology, Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA; Department of Cancer Biology, Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA
| | - Monika Anand
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham NC, USA
| | - Sung Kim
- Cancer Institute of New Jersey, Rutgers, NJ, USA
| | - Tina Mayer
- Cancer Institute of New Jersey, Rutgers, NJ, USA
| | - Carol Winters
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham NC, USA
| | - Colleen Riggan
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham NC, USA
| | - Julia Rasmussen
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham NC, USA
| | - Rhonda Wilder
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham NC, USA
| | - Mark Stein
- Cancer Institute of New Jersey, Rutgers, NJ, USA
| | - Bart Frizzell
- Comprehensive Cancer Center of Wake Forest University, Departments of Internal Medicine and Radiation Oncology, Winston-Salem NC USA
| | - Michael R Harrison
- Department of Medicine, Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA; Department of Surgery, Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA; Department of Pharmacology, Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA; Department of Cancer Biology, Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA
| | - Tian Zhang
- Department of Medicine, Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA; Department of Surgery, Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA; Department of Pharmacology, Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA; Department of Cancer Biology, Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA
| | - William R Lee
- Department of Radiation Oncology, Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA
| | - Yuan Wu
- Department of Biostatistics, Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA
| | - Bridget F Koontz
- Department of Radiation Oncology, Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA
| | - Andrew J Armstrong
- Department of Medicine, Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA; Department of Surgery, Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA; Department of Pharmacology, Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA; Department of Cancer Biology, Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA.
| |
Collapse
|
153
|
Neoadjuvant hormonal therapy before radical prostatectomy in high-risk prostate cancer. Nat Rev Urol 2021; 18:739-762. [PMID: 34526701 DOI: 10.1038/s41585-021-00514-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
Patients with high-risk prostate cancer treated with curative intent are at an increased risk of biochemical recurrence, metastatic progression and cancer-related death compared with patients treated for low-risk or intermediate-risk disease. Thus, these patients often need multimodal therapy to achieve complete disease control. Over the past two decades, multiple studies on the use of neoadjuvant treatment have been performed using conventional androgen deprivation therapy, which comprises luteinizing hormone-releasing hormone agonists or antagonists and/or first-line anti-androgens. However, despite results from these studies demonstrating a reduction in positive surgical margins and tumour volume, no benefit has been observed in hard oncological end points, such as cancer-related death. The introduction of potent androgen receptor signalling inhibitors (ARSIs), such as abiraterone, apalutamide, enzalutamide and darolutamide, has led to a renewed interest in using neoadjuvant hormonal treatment in high-risk prostate cancer. The addition of ARSIs to androgen deprivation therapy has demonstrated substantial survival benefits in the metastatic castration-resistant, non-metastatic castration-resistant and metastatic hormone-sensitive settings. Intuitively, a similar survival effect can be expected when applying ARSIs as a neoadjuvant strategy in high-risk prostate cancer. Most studies on neoadjuvant ARSIs use a pathological end point as a surrogate for long-term oncological outcome. However, no consensus yet exists regarding the ideal definition of pathological response following neoadjuvant hormonal therapy and pathologists might encounter difficulties in determining pathological response in hormonally treated prostate specimens. The neoadjuvant setting also provides opportunities to gain insight into resistance mechanisms against neoadjuvant hormonal therapy and, consequently, to guide personalized therapy.
Collapse
|
154
|
Shah S, Rachmat R, Enyioma S, Ghose A, Revythis A, Boussios S. BRCA Mutations in Prostate Cancer: Assessment, Implications and Treatment Considerations. Int J Mol Sci 2021; 22:12628. [PMID: 34884434 PMCID: PMC8657599 DOI: 10.3390/ijms222312628] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer ranks fifth in cancer-related mortality in men worldwide. DNA damage is implicated in cancer and DNA damage response (DDR) pathways are in place against this to maintain genomic stability. Impaired DDR pathways play a role in prostate carcinogenesis and germline or somatic mutations in DDR genes have been found in both primary and metastatic prostate cancer. Among these, BRCA mutations have been found to be especially clinically relevant with a role for germline or somatic testing. Prostate cancer with DDR defects may be sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors which target proteins in a process called PARylation. Initially they were used to target BRCA-mutated tumor cells in a process of synthetic lethality. However, recent studies have found potential for PARP inhibitors in a variety of other genetic settings. In this review, we explore the mechanisms of DNA repair, potential for genomic analysis of prostate cancer and therapeutics of PARP inhibitors along with their safety profile.
Collapse
Affiliation(s)
- Sidrah Shah
- Department of Palliative Care, Guy’s and St Thomas’ Hospital, Great Maze Pond, London SE1 9RT, UK;
| | - Rachelle Rachmat
- Department of Radiology, Guy’s and St Thomas’ Hospital, Great Maze Pond, London SE1 9RT, UK;
| | - Synthia Enyioma
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.E.); (A.R.)
| | - Aruni Ghose
- Department of Medical Oncology, Barts Cancer Centre, St. Bartholomew’s Hospital, Barts Health NHS Trust, W Smithfield, London EC1A 7BE, UK;
- Faculty of Life Sciences & Medicine, King’s College London, London WC2R 2LS, UK
| | - Antonios Revythis
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.E.); (A.R.)
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.E.); (A.R.)
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
155
|
Tien AH, Sadar MD. Cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with ralaniten analogues for the treatment of androgen receptor-positive prostate and breast cancers. Mol Cancer Ther 2021; 21:294-309. [PMID: 34815359 DOI: 10.1158/1535-7163.mct-21-0411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/15/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022]
Abstract
Androgen receptor (AR) has essential roles in the growth of prostate cancer and some breast cancers. Inhibition of AR transcriptional activity by targeting its N-terminal domain with ralaniten or an analogue such as EPI-7170 causes accumulation of cells in the G1 phase of the cell cycle. Inhibition of cyclin-dependent kinases 4/6 with palbociclib also leads to accumulation of cells in the G1 phase. Here a combination of EPI-7170 with palbociclib attenuated the in vivo growth of human castration-resistant prostate cancer xenografts that are resistant to antiandrogens. Cell-cycle tracing experiments in cultured cells revealed that EPI-7170 targeted cells in S phase, possibly through inducing DNA damage or impairing the DNA damage response, whereas palbociclib targeted the G1-S transition to delay the cell cycle. Combination treatment prevented cells in G1 and G2/M from progressing in the cell cycle and caused a portion of cells in S phase to arrest which contributed to a two-fold increase in doubling time to >63 hours compared to 25 hours in control cells. Importantly, sequential combination treatments with palbociclib administered first then followed by EPI-7170, resulted in more cells accumulating in G1 and less cells in S phase than concomitant combination which was presumably because each inhibitor has a unique mechanism in modulating the cell cycle in cancer cells. Together these data support that the combination therapy was more effective than individual monotherapies to reduce tumor growth by targeting different phases of the cell cycle.
Collapse
|
156
|
Carr TH, Adelman C, Barnicle A, Kozarewa I, Luke S, Lai Z, Hollis S, Dougherty B, Harrington EA, Kang J, Saad F, Sala N, Thiery-Vuillemin A, Clarke NW, Hodgson D, Barrett JC. Homologous Recombination Repair Gene Mutation Characterization by Liquid Biopsy: A Phase II Trial of Olaparib and Abiraterone in Metastatic Castrate-Resistant Prostate Cancer. Cancers (Basel) 2021; 13:cancers13225830. [PMID: 34830984 PMCID: PMC8616430 DOI: 10.3390/cancers13225830] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Mutations in homologous recombination repair (HRR) genes are frequent in advanced prostate cancer and tumours harbouring these mutations have known sensitivity to PARP inhibitors, such as olaparib. In the randomized double-blind Phase II study (NCT01972218), olaparib and abiraterone prolonged radiographic progression-free survival (rPFS) versus placebo and abiraterone in patients with metastatic castration-resistant prostate cancer (mCRPC) unselected by HRR status. The study was designed to prioritize tumour samples for a pre-specified analysis of HRR status but was challenged by a low tissue submission rate. Circulating tumour DNA (ctDNA) and germline testing were initiated to supplement the assessment. Here, we present data from further germline and ctDNA analyses which increase the number of patients with confirmed HRR status. Our results support prior findings that patients with mCRPC benefit from olaparib and abiraterone treatment regardless of HRR status and highlight the value of ctDNA testing as a complement to tumour tissue sequencing. Abstract Background: Phase III randomized trial data have confirmed the activity for olaparib in homologous recombination repair (HRR) mutated metastatic castration-resistant prostate cancer (mCRPC) post next-generation hormonal agent (NHA) progression. Preclinical data have suggested the potential for a combined effect between olaparib and NHAs irrespective of whether an HRR gene alteration was present. NCT01972217 was a randomised double-blind Phase II study which evaluated olaparib and abiraterone versus placebo and abiraterone in mCRPC patients who had received prior chemotherapy containing docetaxel. The study showed that radiologic progression was significantly delayed by the combination of olaparib and abiraterone regardless of homologous recombination repair mutation (HRRm) status. The study utilized tumour, blood (germline), and circulating tumour DNA (ctDNA) analysis to profile patient HRRm status, but tumour tissue provision was not mandated, leading to relatively low tissue acquisition and DNA sequencing success rates not representative of real-world testing. Patients and methods: Further analysis of germline and ctDNA samples has been performed for the trial to characterize HRRm status more fully and robustly analyse patient response to treatment. Results: Germline and plasma testing increased the HRRm characterized population from 27% to 68% of 142 randomized patients. Tumour-derived variants were detectable with high confidence in 78% of patients with a baseline plasma sample (71% of randomized patients). There was high concordance across methodologies (plasma vs. tumour; plasma vs. germline). The HR for the exploratory analysis of radiographic progression-free survival was 0.54 (95% CI: 0.32–0.93) in favour of olaparib and abiraterone in the updated HRR wild type (HRRwt) group (n = 73) and 0.62 (95% CI: 0.23–1.65) in the HRRm group (n = 23). Conclusion: Our results confirm the value of plasma testing for HRRm status when there is insufficient high-quality tissue for multi-gene molecular testing. We show that patients with mCRPC benefit from the combination of olaparib and abiraterone treatment regardless of HRRm status. The combination is currently being further investigated in the Phase III PROpel trial.
Collapse
Affiliation(s)
- T. Hedley Carr
- AstraZeneca, Cambridge CB4 0WG, UK; (A.B.); (I.K.); (S.L.); (S.H.); (E.A.H.)
- Correspondence: (T.H.C.); (J.C.B.); Tel.: +44-(0)1223-223568 (T.H.C.)
| | - Carrie Adelman
- AstraZeneca, Boston, MA 43183, USA; (C.A.); (Z.L.); (B.D.); (D.H.)
| | - Alan Barnicle
- AstraZeneca, Cambridge CB4 0WG, UK; (A.B.); (I.K.); (S.L.); (S.H.); (E.A.H.)
| | - Iwanka Kozarewa
- AstraZeneca, Cambridge CB4 0WG, UK; (A.B.); (I.K.); (S.L.); (S.H.); (E.A.H.)
| | - Sally Luke
- AstraZeneca, Cambridge CB4 0WG, UK; (A.B.); (I.K.); (S.L.); (S.H.); (E.A.H.)
| | - Zhongwu Lai
- AstraZeneca, Boston, MA 43183, USA; (C.A.); (Z.L.); (B.D.); (D.H.)
| | - Sally Hollis
- AstraZeneca, Cambridge CB4 0WG, UK; (A.B.); (I.K.); (S.L.); (S.H.); (E.A.H.)
| | - Brian Dougherty
- AstraZeneca, Boston, MA 43183, USA; (C.A.); (Z.L.); (B.D.); (D.H.)
| | | | - Jinyu Kang
- AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Fred Saad
- University of Montreal Hospital Research Centre, Montreal, QC H4A 3J1, Canada;
| | - Nuria Sala
- Catalan Institute of Oncology, Hospital Josep Trueta, 17007 Girona, Spain;
| | | | - Noel W. Clarke
- The Christie NHS Foundation Trust, Manchester M20 4BX, UK;
| | - Darren Hodgson
- AstraZeneca, Boston, MA 43183, USA; (C.A.); (Z.L.); (B.D.); (D.H.)
| | - J. Carl Barrett
- AstraZeneca, Boston, MA 43183, USA; (C.A.); (Z.L.); (B.D.); (D.H.)
- Correspondence: (T.H.C.); (J.C.B.); Tel.: +44-(0)1223-223568 (T.H.C.)
| |
Collapse
|
157
|
Kakouratos C, Kalamida D, Lamprou I, Xanthopoulou E, Nanos C, Giatromanolaki A, Koukourakis MI. Apalutamide radio-sensitisation of prostate cancer. Br J Cancer 2021; 125:1377-1387. [PMID: 34471256 PMCID: PMC8575888 DOI: 10.1038/s41416-021-01528-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The combination of radiotherapy with bicalutamide is the standard treatment of prostate cancer patients with high-risk or locally advanced disease. Whether new-generation anti-androgens, like apalutamide, can improve the radio-curability of these patients is an emerging challenge. MATERIALS AND METHODS We comparatively examined the radio-sensitising activity of apalutamide and bicalutamide in hormone-sensitive (22Rv1) and hormone-resistant (PC3, DU145) prostate cancer cell lines. Experiments with xenografts were performed for the 22Rv1 cell line. RESULTS Radiation dose-response viability and clonogenic assays showed that apalutamide had a stronger radio-sensitising activity for all three cell lines. Confocal imaging for γΗ2Αx showed similar DNA double-strand break repair kinetics for apalutamide and bicalutamide. No difference was noted in the apoptotic pathway. A striking cell death pattern involving nuclear karyorrhexis and cell pyknosis in the G1/S phase was exclusively noted when radiation was combined with apalutamide. In vivo experiments in SCID and R2G2 mice showed significantly higher efficacy of radiotherapy (2 and 4 Gy) when combined with apalutamide, resulting in extensive xenograft necrosis. CONCLUSIONS In vitro and in vivo experiments support the superiority of apalutamide over bicalutamide in combination with radiotherapy in prostate cancer. Clinical studies are encouraged to show whether replacement of bicalutamide with apalutamide may improve the curability rates.
Collapse
Affiliation(s)
- Christos Kakouratos
- grid.12284.3d0000 0001 2170 8022Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitra Kalamida
- grid.12284.3d0000 0001 2170 8022Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Lamprou
- grid.12284.3d0000 0001 2170 8022Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Erasmia Xanthopoulou
- grid.12284.3d0000 0001 2170 8022Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christos Nanos
- grid.12284.3d0000 0001 2170 8022Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alexandra Giatromanolaki
- grid.12284.3d0000 0001 2170 8022Department of Pathology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael I. Koukourakis
- grid.12284.3d0000 0001 2170 8022Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
158
|
Elbanna M, Chowdhury NN, Rhome R, Fishel ML. Clinical and Preclinical Outcomes of Combining Targeted Therapy With Radiotherapy. Front Oncol 2021; 11:749496. [PMID: 34733787 PMCID: PMC8558533 DOI: 10.3389/fonc.2021.749496] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
In the era of precision medicine, radiation medicine is currently focused on the precise delivery of highly conformal radiation treatments. However, the tremendous developments in targeted therapy are yet to fulfill their full promise and arguably have the potential to dramatically enhance the radiation therapeutic ratio. The increased ability to molecularly profile tumors both at diagnosis and at relapse and the co-incident progress in the field of radiogenomics could potentially pave the way for a more personalized approach to radiation treatment in contrast to the current ‘‘one size fits all’’ paradigm. Few clinical trials to date have shown an improved clinical outcome when combining targeted agents with radiation therapy, however, most have failed to show benefit, which is arguably due to limited preclinical data. Several key molecular pathways could theoretically enhance therapeutic effect of radiation when rationally targeted either by directly enhancing tumor cell kill or indirectly through the abscopal effect of radiation when combined with novel immunotherapies. The timing of combining molecular targeted therapy with radiation is also important to determine and could greatly affect the outcome depending on which pathway is being inhibited.
Collapse
Affiliation(s)
- May Elbanna
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nayela N Chowdhury
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ryan Rhome
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Melissa L Fishel
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
159
|
Abstract
Significant sex differences exist across cellular, tissue organization, and body system scales to serve the distinct sex-specific functions required for reproduction. They are present in all animals that reproduce sexually and have widespread impacts on normal development, aging, and disease. Observed from the moment of fertilization, sex differences are patterned by sexual differentiation, a lifelong process that involves mechanisms related to sex chromosome complement and the epigenetic and acute activational effects of sex hormones. In this mini-review, we examine evidence for sex differences in cellular responses to DNA damage, their underlying mechanisms, and how they might relate to sex differences in cancer incidence and response to DNA-damaging treatments.
Collapse
Affiliation(s)
- Lauren Broestl
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
160
|
Abstract
More than 40% of men with intermediate-risk or high-risk prostate cancer will experience a biochemical recurrence after radical prostatectomy. Clinical guidelines for the management of these patients largely focus on the use of salvage radiotherapy with or without systemic therapy. However, not all patients with biochemical recurrence will go on to develop metastases or die from their disease. The optimal pre-salvage therapy investigational workup for patients who experience biochemical recurrence should, therefore, include novel techniques such as PET imaging and genomic analysis of radical prostatectomy specimen tissue, as well as consideration of more traditional clinical variables such as PSA value, PSA kinetics, Gleason score and pathological stage of disease. In patients without metastatic disease, the only known curative intervention is salvage radiotherapy but, given the therapeutic burden of this treatment, importance must be placed on accurate timing of treatment, radiation dose, fractionation and field size. Systemic therapy also has a role in the salvage setting, both concurrently with radiotherapy and as salvage monotherapy.
Collapse
|
161
|
125I Interstitial brachytherapy with or without androgen deprivation therapy among unfavorable-intermediate and high-risk prostate cancer. Brachytherapy 2021; 21:85-93. [PMID: 34656435 DOI: 10.1016/j.brachy.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE/OBJECTIVE(S) To determine if patients with unfavorable intermediate-risk (UIR), high-risk (HR), or very high-risk (VHR) prostate cancer (PCa) treated with 125I interstitial brachytherapy benefit from androgen deprivation therapy (ADT). MATERIALS/METHODS We reviewed our institutional database of patients with UIR, HR, or VHR PCa, per 2018 NCCN risk classification, treated with definitive 125I interstitial brachytherapy with or without ADT from 1998-2017. Outcomes including biochemical failure (bF), distant metastases (DM), and overall survival (OS) were analyzed with the Kaplan-Meier method and Cox proportional hazards regression. PCa-specific mortality (PCSM) was analyzed with Fine-Gray competing-risk regression. RESULTS Of 1033 patients, 262 (25%) received ADT and 771 (75%) did not. Median ADT duration was 6 months. By risk group, 764 (74%) patients were UIR, 219 (21%) HR, and 50 (5%) VHR. ADT was more frequently given to HR (50%) and VHR (56%) patients compared to UIR (16%; p<0.001), to older patients (p<0.001), corresponding with increasing PSA (p<0.001) and Grade Group (p<0.001). Median follow-up was 4.9 years (0.3-17.6 years). On multivariable analysis accounting for risk group, age, and year of treatment, ADT was not associated with bF, DM, PCSM, or OS (p≥0.05 each). CONCLUSION Among patients with UIR, HR, and VHR PCa, the addition of ADT to 125I interstitial brachytherapy was not associated with improved outcomes, and no subgroup demonstrated benefit. Our findings do not support the use of ADT in combination with 125I interstitial brachytherapy. Prospective studies are required to elucidate the role of ADT for patients with UIR, HR, and VHR PCa treated with prostate brachytherapy.
Collapse
|
162
|
Myint ZW, Allison DB, Ellis CS. A Case Report of Metastatic Castration-Resistant Prostate Cancer Harboring a PTEN Loss. Front Oncol 2021; 11:731002. [PMID: 34631559 PMCID: PMC8495426 DOI: 10.3389/fonc.2021.731002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022] Open
Abstract
The treatment landscape of metastatic castration-resistant prostate cancer (mCRPC) has dramatically improved over the last decade; however, patients with visceral metastases are still faced with poor outcomes. Phosphatase and tensin homolog (PTEN) loss is observed in 40%–60% of mCRPC patients and is also associated with a poor prognosis. Several PI3K/AKT/mTOR pathway inhibitors have been studied, with disappointing anti-tumor activity. Here, we present a case of a patient with heavily treated mCRPC who had a modest tumor response to concurrent carboplatin, abiraterone acetate/prednisone, and liver-directed radiation therapy. We discuss the potential rationale supporting the use of this combination therapy and its safety in mCRPC. While the underlying basic mechanism of our patient’s anti-tumor response remains uncertain, we suggest that further prospective studies are warranted to evaluate whether this combination therapy is effective in this population of patients with pre-treated mCRPC and PTEN loss.
Collapse
Affiliation(s)
- Zin W Myint
- Department of Internal Medicine, Division of Medical Oncology, University of Kentucky, Lexington, KY, United States.,Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Derek B Allison
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States.,Department of Urology, University of Kentucky, Lexington, KY, United States.,Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, United States
| | - Carleton S Ellis
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States.,Department of Pharmacy, University of Kentucky, Lexington KY, United States
| |
Collapse
|
163
|
Ollivier L, Labbé M, Fradin D, Potiron V, Supiot S. Interaction Between Modern Radiotherapy and Immunotherapy for Metastatic Prostate Cancer. Front Oncol 2021; 11:744679. [PMID: 34595122 PMCID: PMC8477651 DOI: 10.3389/fonc.2021.744679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/24/2021] [Indexed: 12/23/2022] Open
Abstract
Prostate cancer is the most frequently diagnosed cancer in men and a leading cause of cancer-related death. In recent decades, the development of immunotherapies has resulted in great promise to cure metastatic disease. However, prostate cancer has failed to show any significant response, presumably due to its immunosuppressive microenvironment. There is therefore growing interest in combining immunotherapy with other therapies able to relieve the immunosuppressive microenvironment. Radiation therapy remains the mainstay treatment for prostate cancer patients, is known to exhibit immunomodulatory effects, depending on the dose, and is a potent inducer of immunogenic tumor cell death. Optimal doses of radiotherapy are thus expected to unleash the full potential of immunotherapy, improving primary target destruction with further hope of inducing immune-cell-mediated elimination of metastases at distance from the irradiated site. In this review, we summarize the current knowledge on both the tumor immune microenvironment in prostate cancer and the effects of radiotherapy on it, as well as on the use of immunotherapy. In addition, we discuss the utility to combine immunotherapy and radiotherapy to treat oligometastatic metastatic prostate cancer.
Collapse
Affiliation(s)
- Luc Ollivier
- Institut de Cancérologie de l'Ouest, Nantes, France.,Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France
| | - Maureen Labbé
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France
| | | | - Vincent Potiron
- Institut de Cancérologie de l'Ouest, Nantes, France.,Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France
| | - Stéphane Supiot
- Institut de Cancérologie de l'Ouest, Nantes, France.,Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France
| |
Collapse
|
164
|
Dovey ZS, Nair SS, Chakravarty D, Tewari AK. Racial disparity in prostate cancer in the African American population with actionable ideas and novel immunotherapies. Cancer Rep (Hoboken) 2021; 4:e1340. [PMID: 33599076 PMCID: PMC8551995 DOI: 10.1002/cnr2.1340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND African Americans (AAs) in the United States are known to have a higher incidence and mortality for Prostate Cancer (PCa). The drivers of this epidemiological disparity are multifactorial, including socioeconomic factors leading to lifestyle and dietary issues, healthcare access problems, and potentially tumor biology. RECENT FINDINGS Although recent evidence suggests once access is equal, AA men have equal outcomes to Caucasian American (CA) men, differences in PCa incidence remain, and there is much to do to reverse disparities in mortality across the USA. A deeper understanding of these issues, both at the clinical and molecular level, can facilitate improved outcomes in the AA population. This review first discusses PCa oncogenesis in the context of its diverse hallmarks before benchmarking key molecular and genomic differences for PCa in AA men that have emerged in the recent literature. Studies have emphasized the importance of tumor microenvironment that contributes to both the unequal cancer burden and differences in clinical outcome between the races. Management of comorbidities like obesity, hypertension, and diabetes will provide an essential means of reducing prostate cancer incidence in AA men. Although requiring further AA specific research, several new treatment strategies such as immune checkpoint inhibitors used in combination PARP inhibitors and other emerging vaccines, including Sipuleucel-T, have demonstrated some proven efficacy. CONCLUSION Genomic profiling to integrate clinical and genomic data for diagnosis, prognosis, and treatment will allow physicians to plan a "Precision Medicine" approach to AA men. There is a pressing need for further research for risk stratification, which may allow early identification of AA men with higher risk disease based on their unique clinical, genomic, and immunological profiles, which can then be mapped to appropriate clinical trials. Treatment options are outlined, with a concise description of recent work in AA specific populations, detailing several targeted therapies, including immunotherapy. Also, a summary of current clinical trials involving AA men is presented, and it is important that policies are adopted to ensure that AA men are actively recruited. Although it is encouraging that many of these explore the lifestyle and educational initiatives and therapeutic interventions, there is much still work to be done to reduce incidence and mortality in AA men and equalize current racial disparities.
Collapse
Affiliation(s)
- Zachary S. Dovey
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Sujit S. Nair
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Dimple Chakravarty
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ashutosh K. Tewari
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
165
|
Singh R, Mills IG. The Interplay Between Prostate Cancer Genomics, Metabolism, and the Epigenome: Perspectives and Future Prospects. Front Oncol 2021; 11:704353. [PMID: 34660272 PMCID: PMC8511631 DOI: 10.3389/fonc.2021.704353] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is a high-incidence cancer, often detected late in life. The prostate gland is an accessory gland that secretes citrate; an impaired citrate secretion reflects imbalances in the activity of enzymes in the TCA Cycle in mitochondria. Profiling studies on prostate tumours have identified significant metabolite, proteomic, and transcriptional modulations with an increased mitochondrial metabolic activity associated with localised prostate cancer. Here, we focus on the androgen receptor, c-Myc, phosphatase and tensin Homolog deleted on chromosome 10 (PTEN), and p53 as amongst the best-characterised genomic drivers of prostate cancer implicated in metabolic dysregulation and prostate cancer progression. We outline their impact on metabolic function before discussing how this may affect metabolite pools and in turn chromatin structure and the epigenome. We reflect on some recent literature indicating that mitochondrial mutations and OGlcNAcylation may also contribute to this crosstalk. Finally, we discuss the technological challenges of assessing crosstalk given the significant differences in the spatial sensitivity and throughput of genomic and metabolomic profiling approaches.
Collapse
Affiliation(s)
- Reema Singh
- Nuffield Department of Surgical Sciences John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Ian G. Mills
- Nuffield Department of Surgical Sciences John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Patrick G Johnston Centre for Cancer Research, Queen’s University of Belfast, Belfast, United Kingdom
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
166
|
Rall-Scharpf M, Friedl TWP, Biechonski S, Denkinger M, Milyavsky M, Wiesmüller L. Sex-specific differences in DNA double-strand break repair of cycling human lymphocytes during aging. Aging (Albany NY) 2021; 13:21066-21089. [PMID: 34506302 PMCID: PMC8457596 DOI: 10.18632/aging.203519] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
The gender gap in life expectancy and cancer incidence suggests differences in the aging process between the sexes. Genomic instability has been recognized as a key factor in aging, but little is known about sex-specific differences. Therefore, we analyzed DNA double-strand break (DSB) repair in cycling human peripheral blood lymphocytes (PBL) from male and female donors of different age. Reporter-based DSB repair analyses revealed differential regulation of pathway usage in PBL from male and female donors with age: Non-homologous end joining (NHEJ) was inversely regulated in men and women; the activity of pathways requiring end processing and strand annealing steps such as microhomology-mediated end joining (MMEJ) declined with age in women but not in men. Screening candidate proteins identified the NHEJ protein KU70 as well as the end resection regulatory factors ATM and BLM showing reduced expression during aging in women. Consistently, the regulatory factor BLM contributed to the MMEJ proficiency in young but not in old women as demonstrated by knockdown analysis. In conclusion, we show that DSB repair is subject to changes upon aging and age-related changes in DSB repair are distinct in men and women.
Collapse
Affiliation(s)
| | - Thomas W P Friedl
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Shahar Biechonski
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Michael Denkinger
- Institute for Geriatric Research Unit, Agaplesion Bethesda Hospital, Ulm University, Ulm, Germany
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| |
Collapse
|
167
|
Zhang H, Koumna S, Pouliot F, Beauregard JM, Kolinsky M. PSMA Theranostics: Current Landscape and Future Outlook. Cancers (Basel) 2021; 13:4023. [PMID: 34439177 PMCID: PMC8391520 DOI: 10.3390/cancers13164023] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Prostate-specific membrane antigen (PSMA) is a promising novel molecular target for imaging diagnostics and therapeutics (theranostics). There has been a growing body of evidence supporting PSMA theranostics approaches in optimizing the management of prostate cancer and potentially altering its natural history. METHODS We utilized PubMed and Google Scholar for published studies, and clinicaltrials.gov for planned, ongoing, and completed clinical trials in PSMA theranostics as of June 2021. We presented evolving evidence for various PSMA-targeted radiopharmaceutical agents in the treatment paradigm for prostate cancer, as well as combination treatment strategies with other targeted therapy and immunotherapy. We highlighted the emerging evidence of PSMA and fluorodeoxyglucose (FDG) PET/CT as a predictive biomarker for PSMA radioligand therapy. We identified seven ongoing clinical trials in oligometastatic-directed therapy using PSMA PET imaging. We also presented a schematic overview of 17 key PSMA theranostic clinical trials throughout the various stages of prostate cancer. CONCLUSIONS In this review, we presented the contemporary and future landscape of theranostic applications in prostate cancer with a focus on PSMA ligands. As PSMA theranostics will soon become the standard of care for the management of prostate cancer, we underscore the importance of integrating nuclear medicine physicians into the multidisciplinary team.
Collapse
Affiliation(s)
- Hanbo Zhang
- Department of Medical Oncology and Hematology, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Stella Koumna
- Department of Diagnostic Imaging, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada;
| | - Frédéric Pouliot
- Department of Surgery, Université Laval, Québec City, QC G1R 3S1, Canada;
| | - Jean-Mathieu Beauregard
- Department of Radiology and Nuclear Medicine, Université Laval, Québec City, QC G1R 3S1, Canada;
| | - Michael Kolinsky
- Department of Medical Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
168
|
Somatic Alterations Impact AR Transcriptional Activity and Efficacy of AR-Targeting Therapies in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13163947. [PMID: 34439101 PMCID: PMC8393938 DOI: 10.3390/cancers13163947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary For patients whose prostate cancer spreads beyond the confines of the prostate, treatment options continue to increase. However, we are missing the information that is needed to choose for each patient the best treatment at each step of his cancer progression so we can ensure that maximal remissions and prolonged survival are achieved. In this review, we examine whether a better understanding of how the activity of the target for the default first treatment, the androgen receptor, is regulated in prostate cancer tissues can improve prostate cancer treatment plans. We consider the evidence for variability of androgen receptor activity among patients and examine the molecular basis for this variable action. We summarize clinical evidence supporting that information on a prostate cancer’s genomic composition may inform on its level of androgen receptor action, which may facilitate choice for the most effective first-line therapy and ultimately improve prostate cancer treatment plans overall. Abstract Inhibiting the activity of the ligand-activated transcription factor androgen receptor (AR) is the default first-line treatment for metastatic prostate cancer (CaP). Androgen deprivation therapy (ADT) induces remissions, however, their duration varies widely among patients. The reason for this heterogeneity is not known. A better understanding of its molecular basis may improve treatment plans and patient survival. AR’s transcriptional activity is regulated in a context-dependent manner and relies on an interplay between its associated transcriptional regulators, DNA recognition motifs, and ligands. Alterations in one or more of these factors induce shifts in the AR cistrome and transcriptional output. Significant variability in AR activity is seen in both castration-sensitive (CS) and castration-resistant CaP (CRPC). Several AR transcriptional regulators undergo somatic alterations that impact their function in clinical CaPs. Some alterations occur in a significant fraction of cases, resulting in CaP subtypes, while others affect only a few percent of CaPs. Evidence is emerging that these alterations may impact the response to CaP treatments such as ADT, radiation therapy, and chemotherapy. Here, we review the contribution of recurring somatic alterations on AR cistrome and transcriptional output and the efficacy of CaP treatments and explore strategies to use these insights to improve treatment plans and outcomes for CaP patients.
Collapse
|
169
|
Hammer S, Schlicker A, Zitzmann-Kolbe S, Baumgart S, Hagemann UB, Scholz A, Haendler B, Lejeune P, Karlsson J, Ellingsen C, Hennekes H, Nielsen CH, Juul MU, Mumberg D, Schatz CA. Darolutamide Potentiates the Antitumor Efficacy of a PSMA-targeted Thorium-227 Conjugate by a Dual Mode of Action in Prostate Cancer Models. Clin Cancer Res 2021; 27:4367-4378. [PMID: 34035067 PMCID: PMC9401501 DOI: 10.1158/1078-0432.ccr-21-0342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/23/2021] [Accepted: 05/21/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Androgen receptor (AR) inhibitors are well established in the treatment of castration-resistant prostate cancer and have recently shown efficacy also in castration-sensitive prostate cancer. Although most patients respond well to initial therapy, resistance eventually develops, and thus, more effective therapeutic approaches are needed. Prostate-specific membrane antigen (PSMA) is highly expressed in prostate cancer and presents an attractive target for radionuclide therapy. Here, we evaluated the efficacy and explored the mode of action of the PSMA-targeted thorium-227 conjugate (PSMA-TTC) BAY 2315497, an antibody-based targeted alpha-therapy, in combination with the AR inhibitor darolutamide. EXPERIMENTAL DESIGN The in vitro and in vivo antitumor efficacy and mode of action of the combination treatment were investigated in preclinical cell line-derived and patient-derived prostate cancer xenograft models with different levels of PSMA expression. RESULTS Darolutamide induced the expression of PSMA in androgen-sensitive VCaP and LNCaP cells in vitro, and the efficacy of darolutamide in combination with PSMA-TTC was synergistic in these cells. In vivo, the combination treatment showed synergistic antitumor efficacy in the low PSMA-expressing VCaP and in the high PSMA-expressing ST1273 prostate cancer models, and enhanced efficacy in the enzalutamide-resistant KUCaP-1 model. The treatments were well tolerated. Mode-of-action studies revealed that darolutamide induced PSMA expression, resulting in higher tumor uptake of PSMA-TTC, and consequently, higher antitumor efficacy, and impaired PSMA-TTC-mediated induction of DNA damage repair genes, potentially contributing to increased DNA damage. CONCLUSIONS These results provide a strong rationale to investigate PSMA-TTC in combination with AR inhibitors in patients with prostate cancer.
Collapse
Affiliation(s)
| | | | | | - Simon Baumgart
- Bayer U.S. LLC, Pharmaceuticals, Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Circulating androgen receptor gene amplification and resistance to 177Lu-PSMA-617 in metastatic castration-resistant prostate cancer: results of a Phase 2 trial. Br J Cancer 2021; 125:1226-1232. [PMID: 34333554 DOI: 10.1038/s41416-021-01508-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND In a Phase 2 clinical trial, we aimed to determine the lutetium-177 [177Lu]-PSMA-617 activity and the clinical utility of levels of plasma androgen receptor (AR) gene in patients with heavily pretreated metastatic castration-resistant prostate cancer (mCRPC). METHODS We determined AR copy number in pretreatment plasma samples. We used logistic regression to estimate the odds ratio (OR) and 95% confidence intervals (95% CIs) in order to evaluate the independent relevance of AR status and to evaluate patients with early progressive disease (PD) defined as treatment interruption occurring within 4 months after the start of 177Lu-PSMA-617. RESULTS Twelve of the 15 (80%) with AR gene gain and 5 of the 25 (20%) patients with no gain of AR had early PD (p = 0.0002). The OR for patients without PSA response having AR gain was 3.69 (95% CI 0.83-16.36, p = 0.085). The OR for patients with early PD having AR gain was 16.00, (95% CI 3.23-79.27, p = 0.0007). Overall, median PFS and OS were 7.5 and 12.4 months, respectively. AR-gained had a significant shorter OS compared to AR-normal patients (7.4 vs 19.1 months, p = 0.020). No treatment interruptions due to adverse effects were reported. DISCUSSION Plasma AR status helped to indicate mCRPC with early resistance to 177Lu-PSMA-617. TRIAL REGISTRATION NCT03454750.
Collapse
|
171
|
Wright TC, Dunne VL, Alshehri AHD, Redmond KM, Cole AJ, Prise KM. Abiraterone In Vitro Is Superior to Enzalutamide in Response to Ionizing Radiation. Front Oncol 2021; 11:700543. [PMID: 34367984 PMCID: PMC8335570 DOI: 10.3389/fonc.2021.700543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/02/2021] [Indexed: 12/24/2022] Open
Abstract
Abiraterone acetate and Enzalutamide are novel anti-androgens that are key treatments to improve both progression-free survival and overall survival in patients with metastatic castration-resistant prostate cancer. In this study, we aimed to determine whether combinations of AR inhibitors with radiation are additive or synergistic, and investigated the underlying mechanisms governing this. This study also aimed to compare and investigate a biological rationale for the selection of Abiraterone versus Enzalutamide in combination with radiotherapy as currently selection is based on consideration of side effect profiles and clinical experience. We report that AR suppression with Enzalutamide produces a synergistic effect only in AR-sensitive prostate models. In contrast, Abiraterone displays synergistic effects in combination with radiation regardless of AR status, alluding to potential alternative mechanisms of action. The underlying mechanisms governing this AR-based synergy are based on the reduction of key AR linked DNA repair pathways such as NHEJ and HR, with changes in HR potentially the result of changes in cell cycle distribution, with these reductions ultimately resulting in increased cell death. These changes were also shown to be conserved in combination with radiation, with AR suppression 24 hours before radiation leading to the most significant differences. Comparison between Abiraterone and Enzalutamide highlighted Abiraterone from a mechanistic standpoint as being superior to Abiraterone for all endpoints measured. Therefore, this provides a potential rationale for the selection of Abiraterone over Enzalutamide.
Collapse
Affiliation(s)
- Timothy C Wright
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Victoria L Dunne
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Ali H D Alshehri
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom.,Department of Radiological Science, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Kelly M Redmond
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Aidan J Cole
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom.,Department of Radiological Science, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia.,Northern Ireland Cancer Centre, Belfast Health & Social Care Trust, Belfast, United Kingdom
| | - Kevin M Prise
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
172
|
McFarland TR, Kessel A, Swami U, Agarwal N. Development of PARP inhibitor combinations for castration resistant prostate cancer unselected for homologous recombination repair mutations. Am J Transl Res 2021; 13:7427-7439. [PMID: 34377227 PMCID: PMC8340210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Genetic instability is a hallmark of cancer and, with the introduction of poly (ADP-ribose) polymerase (PARP) inhibitors, is a targetable feature of many tumors. Currently, two PARP inhibitors, olaparib and rucaparib, have received approval as monotherapy by the Food and Drug Administration for the treatment of men with castration resistant prostate cancer with selected mutations involving the homologous recombination (HR) pathway. However, it is currently debated whether an HR mutation is a prerequisite for response or if patients with HR-proficient mCRPC may also benefit from their use when combined with other targeted or immunotherapeutic agents. Several large phase III trials of PARP inhibitors with novel androgen axis inhibitors in groups of unselected patients are underway. Additionally, there are several early phase trials combining PARP inhibitors with radioligands or immunecheckpoint inhibitors. Here we discuss the currently ongoing or recently concluded trials of PARP inhibitor based combinatorial therapies in unselected patients with mCRPC, the rationale behind these trials, and how these may impact the treatment paradigm in men with mCRPC.
Collapse
Affiliation(s)
- Taylor Ryan McFarland
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah Salt Lake, UT, USA
| | - Adam Kessel
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah Salt Lake, UT, USA
| | - Umang Swami
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah Salt Lake, UT, USA
| | - Neeraj Agarwal
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah Salt Lake, UT, USA
| |
Collapse
|
173
|
Stuparu AD, Capri JR, Meyer CAL, Le TM, Evans-Axelsson SL, Current K, Lennox M, Mona CE, Fendler WP, Calais J, Eiber M, Dahlbom M, Czernin J, Radu CG, Lückerath K, Slavik R. Mechanisms of Resistance to Prostate-Specific Membrane Antigen-Targeted Radioligand Therapy in a Mouse Model of Prostate Cancer. J Nucl Med 2021; 62:989-995. [PMID: 33277393 PMCID: PMC8882874 DOI: 10.2967/jnumed.120.256263] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/11/2020] [Indexed: 01/19/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) is effective against prostate cancer (PCa), but all patients relapse eventually. Poor understanding of the underlying resistance mechanisms represents a key barrier to development of more effective RLT. We investigate the proteome and phosphoproteome in a mouse model of PCa to identify signaling adaptations triggered by PSMA RLT. Methods: Therapeutic efficacy of PSMA RLT was assessed by tumor volume measurements, time to progression, and survival in C4-2 or C4-2 TP53-/- tumor-bearing nonobese diabetic scid γ-mice. Two days after RLT, the proteome and phosphoproteome were analyzed by mass spectrometry. Results: PSMA RLT significantly improved disease control in a dose-dependent manner. Proteome and phosphoproteome datasets revealed activation of genotoxic stress response pathways, including deregulation of DNA damage/replication stress response, TP53, androgen receptor, phosphatidylinositol-3-kinase/AKT, and MYC signaling. C4-2 TP53-/- tumors were less sensitive to PSMA RLT than were parental counterparts, supporting a role for TP53 in mediating RLT responsiveness. Conclusion: We identified signaling alterations that may mediate resistance to PSMA RLT in a PCa mouse model. Our data enable the development of rational synergistic RLT-combination therapies to improve outcomes for PCa patients.
Collapse
Affiliation(s)
| | - Joseph R Capri
- AstraZeneca, Chemical Biology Group, Waltham, Massachusetts
| | - Catherine A L Meyer
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Thuc M Le
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Susan L Evans-Axelsson
- Department of Translational Medicine, Division of Urological Cancers, Skåne University Hospital Malmö, Lund University, Lund, Sweden
| | - Kyle Current
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Mark Lennox
- School of Electronics, Electrical Engineering, and Computer Science, Queen's University Belfast, Belfast, United Kingdom
| | - Christine E Mona
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Urology, Institute of Urologic Oncology, UCLA, Los Angeles, California; and
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Jeremie Calais
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Urology, Institute of Urologic Oncology, UCLA, Los Angeles, California; and
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Matthias Eiber
- Clinic for Nuclear Medicine, Technical University Munich, Munich, Germany
| | - Magnus Dahlbom
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Urology, Institute of Urologic Oncology, UCLA, Los Angeles, California; and
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Katharina Lückerath
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California;
- Department of Urology, Institute of Urologic Oncology, UCLA, Los Angeles, California; and
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Roger Slavik
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
174
|
Jillson LK, Yette GA, Laajala TD, Tilley WD, Costello JC, Cramer SD. Androgen Receptor Signaling in Prostate Cancer Genomic Subtypes. Cancers (Basel) 2021; 13:3272. [PMID: 34208794 PMCID: PMC8269091 DOI: 10.3390/cancers13133272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
While many prostate cancer (PCa) cases remain indolent and treatable, others are aggressive and progress to the metastatic stage where there are limited curative therapies. Androgen receptor (AR) signaling remains an important pathway for proliferative and survival programs in PCa, making disruption of AR signaling a viable therapy option. However, most patients develop resistance to AR-targeted therapies or inherently never respond. The field has turned to PCa genomics to aid in stratifying high risk patients, and to better understand the mechanisms driving aggressive PCa and therapy resistance. While alterations to the AR gene itself occur at later stages, genomic changes at the primary stage can affect the AR axis and impact response to AR-directed therapies. Here, we review common genomic alterations in primary PCa and their influence on AR function and activity. Through a meta-analysis of multiple independent primary PCa databases, we also identified subtypes of significantly co-occurring alterations and examined their combinatorial effects on the AR axis. Further, we discussed the subsequent implications for response to AR-targeted therapies and other treatments. We identified multiple primary PCa genomic subtypes, and given their differing effects on AR activity, patient tumor genetics may be an important stratifying factor for AR therapy resistance.
Collapse
Affiliation(s)
- Lauren K. Jillson
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| | - Gabriel A. Yette
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| | - Teemu D. Laajala
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
- Department of Mathematics and Statistics, University of Turku, 20500 Turku, Finland
| | - Wayne D. Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
- Freemason’s Foundation Centre for Men’s Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - James C. Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| | - Scott D. Cramer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| |
Collapse
|
175
|
Nuclear Export Inhibitor KPT-8602 Synergizes with PARP Inhibitors in Escalating Apoptosis in Castration Resistant Cancer Cells. Int J Mol Sci 2021; 22:ijms22136676. [PMID: 34206543 PMCID: PMC8268282 DOI: 10.3390/ijms22136676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 12/25/2022] Open
Abstract
Aberrant nuclear protein transport, often observed in cancer, causes mislocalization-dependent inactivation of critical cellular proteins. Earlier we showed that overexpression of exportin 1 is linked to higher grade and Gleason score in metastatic castration resistant prostate cancer (mCRPC). We also showed that a selective inhibitor of nuclear export (SINE) selinexor and second generation eltanexor (KPT-8602) could suppress mCRPC growth, reduce androgen receptor (AR), and re-sensitize to androgen deprivation therapy. Here we evaluated the combination of KPT-8602 with PARP inhibitors (PARPi) olaparib, veliparib and rucaparib in 22rv1 mCRPC cells. KPT-8602 synergized with PARPi (CI < 1) at pharmacologically relevant concentrations. KPT-8602-PARPi showed superior induction of apoptosis compared to single agent treatment and caused up-regulation of pro-apoptotic genes BAX, TP53 and CASPASE 9. Mechanistically, KPT-8602-PARPi suppressed AR, ARv7, PSA and AR targets FOXA1 and UBE2C. Western blot analysis revealed significant down-regulation of AR, ARv7, UBE2C, SAM68, FOXA1 and upregulation of cleaved PARP and cleaved CASPASE 3. KPT-8602 with or without olaparib was shown to reduce homologous recombination-regulated DNA damage response targets including BRCA1, BRCA2, CHEK1, EXO1, BLM, RAD51, LIG1, XRCC3 and RMI2. Taken together, this study revealed the therapeutic potential of a novel combination of KPT-8602 and PARP inhibitors for the treatment of mCRPC.
Collapse
|
176
|
Schiewer MJ, Knudsen KE. Basic Science and Molecular Genetics of Prostate Cancer Aggressiveness. Urol Clin North Am 2021; 48:339-347. [PMID: 34210489 DOI: 10.1016/j.ucl.2021.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Androgen receptor function, tumor cell plasticity, loss of tumor suppressors, and defects in DNA repair genes affect aggressive features of prostate cancer. Prostate cancer development, progression, and aggressive behavior are often attributable to function of the androgen receptor. Tumor cell plasticity, neuroendocrine features, and loss of tumor suppressors lend aggressive behavior to prostate cancer cells. DNA repair defects have ramifications for prostate cancer cell behavior.
Collapse
Affiliation(s)
- Matthew J Schiewer
- Department of Urology, Urology Research Laboratory, Thomas Jefferson University, Sidney Kimmel Cancer Center, 233 South 10th Street BLSB 804, Philadelphia, PA 19107, USA; Department of Cancer Biology, Urology Research Laboratory, Thomas Jefferson University, Sidney Kimmel Cancer Center, 233 South 10th Street BLSB 804, Philadelphia, PA 19107, USA.
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10th Street BLSB 1050, Philadelphia, PA 19107, USA; Department of Urology, Thomas Jefferson University, 233 South 10th Street BLSB 1050, Philadelphia, PA 19107, USA; Department of Medical Oncology, Thomas Jefferson University, 233 South 10th Street BLSB 1050, Philadelphia, PA 19107, USA; Department of Radiation Oncology, Thomas Jefferson University, 233 South 10th Street BLSB 1050, Philadelphia, PA 19107, USA. https://twitter.com/SKCCDirector
| |
Collapse
|
177
|
Damiana TST, Dalm SU. Combination Therapy, a Promising Approach to Enhance the Efficacy of Radionuclide and Targeted Radionuclide Therapy of Prostate and Breast Cancer. Pharmaceutics 2021; 13:pharmaceutics13050674. [PMID: 34067215 PMCID: PMC8151894 DOI: 10.3390/pharmaceutics13050674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022] Open
Abstract
In recent years, radionuclide therapy (RT) and targeted radionuclide therapy (TRT) have gained great interest in cancer treatment. This is due to promising results obtained in both preclinical and clinical studies. However, a complete response is achieved in only a small percentage of patients that receive RT or TRT. As a consequence, there have been several strategies to improve RT and TRT outcomes including the combination of these treatments with other well-established anti-cancer therapies, for example, chemotherapy. Combinations of RT and TRT with other therapies with distinct mechanisms of action represent a promising strategy. As for prostate cancer and breast cancer, the two most prevalent cancer types worldwide, several combination-based therapies have been evaluated. In this review, we will provide an overview of the RT and TRT agents currently used or being investigated in combination with hormone therapy, chemotherapy, immunotherapy, and external beam radiation therapy for the treatment of prostate cancer and breast cancer.
Collapse
|
178
|
Genomic Strategies to Personalize Use of Androgen Deprivation Therapy With Radiotherapy. ACTA ACUST UNITED AC 2021; 26:13-20. [PMID: 31977380 DOI: 10.1097/ppo.0000000000000419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of combination RT and androgen deprivation therapy in many prostate cancer curative-intent treatment scenarios is supported by level 1 evidence. However, in our current clinical paradigm, we have no ability to determine a priori which patients truly benefit from combination therapy and therefore apply the combination RT and androgen deprivation therapy intensification strategy to all patients, which results in overtreatment or undertreatment of the majority of our patients. Genomics has the ability to more deeply and objectively characterize the disease, in turn refining our prognostication capabilities and enabling the individualization of treatments. We review the commercially available prostate cancer genomic tests, focusing on those able to predict patient outcomes following radiotherapy or guide radiotherapy treatment decisions.
Collapse
|
179
|
Next Generation of Androgen Deprivation Therapy Combined With Radiotherapy for N0 M0 Prostate Cancer. ACTA ACUST UNITED AC 2021; 26:21-28. [PMID: 31977381 DOI: 10.1097/ppo.0000000000000428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Androgen deprivation therapy in combination with definitive radiation therapy is a standard of care for both intermediate-/high-risk localized prostate, locally advanced prostate cancer. Newer hormonal therapies have shown promising results in patients with castration-resistant disease and are now being investigated in early stages, in combination with radiation therapy. In this section, we review the body of evidence elucidating the mechanism of synergy and immune modulation effect of androgen deprivation therapy and radiation therapy, summarize the pivotal studies supporting its use in the nonmetastatic setting, and present the ongoing studies who will likely shape the management of locally advanced disease, in the upcoming years.
Collapse
|
180
|
Onderdonk BE, Dorn PL, Martinez C, Arif F, Cloutier D, Antic T, Golden DW, Karrison T, Pitroda SP, Szmulewitz RZ, Liauw SL. A prospective clinical and transcriptomic feasibility study of oral-only hormonal therapy with radiation for unfavorable prostate cancer in men 70 years of age and older or with comorbidity. Cancer 2021; 127:2631-2640. [PMID: 33882144 DOI: 10.1002/cncr.33556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/05/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) improves outcomes in unfavorable-risk prostate cancer (PCa) treated with radiation therapy (RT). It was hypothesized that replacing luteinizing hormone-releasing hormone (LHRH) agonists with a 5-α-reductase inhibitor (5-ARI) would improve hormonal health-related quality of life (HRQOL) without differentially suppressing androgen-responsive (AR) gene expression. METHODS Patients with localized unfavorable-risk PCa, aged ≥70 years or Charlson Comorbidity Index score ≥2 were treated with oral ADT (oADT), consisting of 4 months of bicalutamide, a 5-ARI, and RT at 78 Gy. The primary end point was Expanded Prostate Cancer Index Composite HRQOL at 6 months ≤30%, and improvement compared with a synchronous standard of care (SOC) cohort receiving 4 months of bicalutamide and long-term LHRH agonist with RT. RNA sequencing was performed from matched pre-/post-ADT prostate tumor biopsies in a subset of men. Differential gene and pathway expressional changes were examined using gene set enrichment. RESULTS Between 2011 and 2018, 40 and 30 men were enrolled in the oADT and SOC cohorts, respectively. Median follow-up was 40 months. Those with ≤30% decline in hormonal HRQOL at 6 months was 97% (oADT) and 93% (SOC). The average 6-month hormonal decline was 1% (oADT) versus 12% (SOC; P = .04). The 4-year freedom from biochemical failure was 88% (oADT) versus 81% (SOC; P = .48). RNA sequencing (n = 9) showed similar numbers of downregulated and upregulated genes between the treatment groups (fold-change = 2; false-discovery rate-adjusted P ≤ .05). Both treatments comparably decreased the expression of 20 genes in canonical androgen receptor signaling. CONCLUSIONS For men with PCa undergoing RT, oral versus standard ADT may improve 6-month QOL and appears to have a similar impact on androgen-responsive gene expression.
Collapse
Affiliation(s)
- Benjamin E Onderdonk
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, Illinois
| | - Paige L Dorn
- Rose Medical Center Radiation Oncology, Denver, Colorado
| | - Carlos Martinez
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, Illinois
| | - Fauzia Arif
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, Illinois
| | - Denise Cloutier
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, Illinois
| | - Tatjana Antic
- Department of Pathology, University of Chicago Medicine, Chicago, Illinois
| | - Daniel W Golden
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, Illinois
| | - Theodore Karrison
- Department of Biostatistics, University of Chicago Medicine, Chicago, Illinois
| | - Sean P Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, Illinois
| | | | - Stanley L Liauw
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, Illinois
| |
Collapse
|
181
|
Long Q, Liu Z, Gullerova M. Sweet Melody or Jazz? Transcription Around DNA Double-Strand Breaks. Front Mol Biosci 2021; 8:655786. [PMID: 33959637 PMCID: PMC8096065 DOI: 10.3389/fmolb.2021.655786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Genomic integrity is continuously threatened by thousands of endogenous and exogenous damaging factors. To preserve genome stability, cells developed comprehensive DNA damage response (DDR) pathways that mediate the recognition of damaged DNA lesions, the activation of signaling cascades, and the execution of DNA repair. Transcription has been understood to pose a threat to genome stability in the presence of DNA breaks. Interestingly, accumulating evidence in recent years shows that the transient transcriptional activation at DNA double-strand break (DSB) sites is required for efficient repair, while the rest of the genome exhibits temporary transcription silencing. This genomic shut down is a result of multiple signaling cascades involved in the maintenance of DNA/RNA homeostasis, chromatin stability, and genome fidelity. The regulation of transcription of protein-coding genes and non-coding RNAs has been extensively studied; however, the exact regulatory mechanisms of transcription at DSBs remain enigmatic. These complex processes involve many players such as transcription-associated protein complexes, including kinases, transcription factors, chromatin remodeling complexes, and helicases. The damage-derived transcripts themselves also play an essential role in DDR regulation. In this review, we summarize the current findings on the regulation of transcription at DSBs and discussed the roles of various accessory proteins in these processes and consequently in DDR.
Collapse
Affiliation(s)
| | | | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
182
|
Age-related activity of Poly (ADP-Ribose) Polymerase (PARP) in men with localized prostate cancer. Mech Ageing Dev 2021; 196:111494. [PMID: 33887280 DOI: 10.1016/j.mad.2021.111494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Mutations in DNA repair genes have been connected with familial prostate cancer and sensitivity to targeted drugs like PARP-inhibitors. Clinical use of this information is limited by the small fraction of prostate cancer risk gene carriers, variants of unknown pathogenicity and the focus on monogenic disease mechanisms. Functional assays capturing mono- and polygenic defects were shown to detect breast and ovarian cancer risk in blood-derived cells. Here, we comparatively analyzed lymphocytes from prostate cancer patients and controls applying a sensitive DNA double-strand break (DSB) repair assay and a flow cytometrybased assay measuring the activity of Poly(ADP-Ribose)-Polymerase, a target in treatment of metastatic prostate cancer. Contrary to breast and ovarian cancer patients, error-prone DNA double-strand break repair was not activated in prostate cancer patients. Yet, the activity of PARP discriminated between prostate cancer cases and controls. PARylation also correlated with the age of male probands, suggesting male-specific links between mutation-based and aging-associated DNA damage accumulation and PARP. Our work identifies prostate cancer-specific DNA repair phenotypes characterized by increased PARP activities and carboplatin-sensitivities, detected by functional testing of lymphocytes. This provides new insights for further investigation of PARP and carboplatin sensitivity as biomarkers in peripheral cells of men and prostate cancer patients.
Collapse
|
183
|
PRMT5: a putative oncogene and therapeutic target in prostate cancer. Cancer Gene Ther 2021; 29:264-276. [PMID: 33854218 DOI: 10.1038/s41417-021-00327-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 11/08/2022]
Abstract
Protein arginine methyltransferase 5 (PRMT5) was discovered two decades ago. The first decade focused on the biochemical characterization of PRMT5 as a regulator of many cellular processes in a healthy organism. However, over the past decade, evidence has accumulated to suggest that PRMT5 may function as an oncogene in multiple cancers via both epigenetic and non-epigenetic mechanisms. In this review, we focus on recent progress made in prostate cancer, including the role of PRMT5 in the androgen receptor (AR) expression and signaling and DNA damage response, particularly DNA double-strand break repair. We also discuss how PRMT5-interacting proteins that are considered PRMT5 cofactors may cooperate with PRMT5 to regulate PRMT5 activity and target gene expression, and how PRMT5 can interact with other epigenetic regulators implicated in prostate cancer development and progression. Finally, we suggest that targeting PRMT5 may be employed to develop multiple therapeutic approaches to enhance the treatment of prostate cancer.
Collapse
|
184
|
Hernando Polo S, Moreno Muñoz D, Rosero Rodríguez AC, Silva Ruiz J, Rosero Rodríguez DI, Couñago F. Changing the History of Prostate Cancer with New Targeted Therapies. Biomedicines 2021; 9:biomedicines9040392. [PMID: 33917592 PMCID: PMC8067446 DOI: 10.3390/biomedicines9040392] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023] Open
Abstract
The therapeutic landscape of metastatic castration-resistant prostate cancer (mCRPC) is changing due to the emergence of new targeted therapies for the treatment of different molecular subtypes. Some biomarkers are described as potential molecular targets different from classic androgen receptors (AR). Approximately 20–25% of mCRPCs have somatic or germline alterations in DNA repair genes involved in homologous recombination. These subtypes are usually associated with more aggressive disease. Inhibitors of the enzyme poly ADP ribose polymerase (PARPi) have demonstrated an important benefit in the treatment of these subtypes of tumors. However, tumors that resistant to PARPi and wildtype BRCA tumors do not benefit from these therapies. Recent studies are exploring drug combinations with phosphatidylinositol-3-kinase (PI3K) or protein kinase B (AKT) inhibitors, as mechanisms to overcome resistance or to induce BRCAness and synthetic lethality. This article reviews various different novel strategies to improve outcomes in patients with prostate cancer.
Collapse
Affiliation(s)
- Susana Hernando Polo
- Department of Medical Oncology, Hospital Universitario Fundación Alcorcón, 28922 Madrid, Spain
- Correspondence: (S.H.P.); (D.M.M.); Tel.: +34-916-219-490 (S.H.P. & D.M.M.)
| | - Diana Moreno Muñoz
- Department of Medical Oncology, Hospital Universitario Fundación Alcorcón, 28922 Madrid, Spain
- Correspondence: (S.H.P.); (D.M.M.); Tel.: +34-916-219-490 (S.H.P. & D.M.M.)
| | | | - Jorge Silva Ruiz
- Centro Nacional de Investigaciones Oncológicas (CNIO), Unidad de Cáncer de Mama, 28029 Madrid, Spain;
| | | | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud, 28223 Madrid, Spain;
- Department of Radiation Oncology, Hospital La Luz, 28003 Madrid, Spain
- Clinical Department, Faculty of Biomedicine, Universidad Europea, 28670 Madrid, Spain
| |
Collapse
|
185
|
Teyssonneau D, Margot H, Cabart M, Anonnay M, Sargos P, Vuong NS, Soubeyran I, Sevenet N, Roubaud G. Prostate cancer and PARP inhibitors: progress and challenges. J Hematol Oncol 2021; 14:51. [PMID: 33781305 PMCID: PMC8008655 DOI: 10.1186/s13045-021-01061-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/10/2021] [Indexed: 12/22/2022] Open
Abstract
Despite survival improvements achieved over the last two decades, prostate cancer remains lethal at the metastatic castration-resistant stage (mCRPC) and new therapeutic approaches are needed. Germinal and/or somatic alterations of DNA-damage response pathway genes are found in a substantial number of patients with advanced prostate cancers, mainly of poor prognosis. Such alterations induce a dependency for single strand break reparation through the poly(adenosine diphosphate-ribose) polymerase (PARP) system, providing the rationale to develop PARP inhibitors. In solid tumors, the first demonstration of an improvement in overall survival was provided by olaparib in patients with mCRPC harboring homologous recombination repair deficiencies. Although this represents a major milestone, a number of issues relating to PARP inhibitors remain. This timely review synthesizes and discusses the rationale and development of PARP inhibitors, biomarker-based approaches associated and the future challenges related to their prescription as well as patient pathways.
Collapse
Affiliation(s)
- Diego Teyssonneau
- Department of Medical Oncology, Institut Bergonie, Bordeaux, France.
| | - Henri Margot
- Department of Genetic, Institut Bergonie, Bordeaux, France
| | - Mathilde Cabart
- Department of Medical Oncology, Institut Bergonie, Bordeaux, France
| | - Mylène Anonnay
- Department of Medical Oncology, Institut Bergonie, Bordeaux, France
| | - Paul Sargos
- Department of Radiotherapy, Institut Bergonie, Bordeaux, France
| | - Nam-Son Vuong
- Department of Urology, Clinique Saint-Augustin, Bordeaux, France
| | | | | | - Guilhem Roubaud
- Department of Medical Oncology, Institut Bergonie, Bordeaux, France
| |
Collapse
|
186
|
Saad F, Chi KN, Shore ND, Graff JN, Posadas EM, Lattouf JB, Espina BM, Zhu E, Yu A, Hazra A, De Meulder M, Mamidi RNVS, Bradic B, Francis P, Hayreh V, Rezazadeh Kalebasty A. Niraparib with androgen receptor-axis-targeted therapy in patients with metastatic castration-resistant prostate cancer: safety and pharmacokinetic results from a phase 1b study (BEDIVERE). Cancer Chemother Pharmacol 2021; 88:25-37. [PMID: 33754187 PMCID: PMC8149334 DOI: 10.1007/s00280-021-04249-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/12/2021] [Indexed: 12/19/2022]
Abstract
Purpose To assess the safety and pharmacokinetics and determine the recommended phase 2 dose (RP2D) of niraparib with apalutamide or abiraterone acetate plus prednisone (AAP) in patients with metastatic castration-resistant prostate cancer (mCRPC). Methods BEDIVERE was a multicenter, open-label, phase 1b study of niraparib 200 or 300 mg/day with apalutamide 240 mg or AAP (abiraterone acetate 1000 mg; prednisone 10 mg). Patients with mCRPC were previously treated with ≥ 2 lines of systemic therapy, including ≥ 1 androgen receptor-axis-targeted therapy for prostate cancer. Results Thirty-three patients were enrolled (niraparib-apalutamide, 6; niraparib-AAP, 27). No dose-limiting toxicities (DLTs) were reported when combinations included niraparib 200 mg; five patients receiving niraparib 300 mg experienced DLTs [niraparib-apalutamide, 2/3 patients (66.7%); niraparib-AAP, 3/8 patients (37.5%)]. Although data are limited, niraparib exposures were lower when given with apalutamide compared with historical niraparib monotherapy exposures in patients with solid tumors. Because of the higher incidence of DLTs, the niraparib–apalutamide combination and niraparib 300 mg combination with AAP were not further evaluated. Niraparib 200 mg was selected as the RP2D with AAP. Of 19 patients receiving niraparib 200 mg with AAP, 12 (63.2%) had grade 3/4 treatment-emergent adverse events, the most common being thrombocytopenia (26.3%) and hypertension (21.1%). Five patients (26.3%) had adverse events leading to treatment discontinuation. Conclusions These results support the choice of niraparib 200 mg as the RP2D with AAP. The niraparib–AAP combination was tolerable in patients with mCRPC, with no new safety signals. An ongoing phase 3 study is further assessing this combination in patients with mCRPC. Trial registration no. NCT02924766 (ClinicalTrials.gov). Supplementary Information The online version contains supplementary material available at 10.1007/s00280-021-04249-7.
Collapse
Affiliation(s)
- Fred Saad
- Centre Hospitalier de l'Université de Montréal, Montréal, Canada.
| | | | - Neal D Shore
- Carolina Urologic Research Center, Myrtle Beach, SC, USA
| | - Julie N Graff
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | - Eugene Zhu
- Janssen Research & Development, Raritan, NJ, USA
| | - Alex Yu
- Janssen Research & Development, Spring House, PA, USA
| | - Anasuya Hazra
- Janssen Research & Development, Spring House, PA, USA
| | | | | | | | | | - Vinny Hayreh
- Janssen Research & Development, Los Angeles, CA, USA
| | | |
Collapse
|
187
|
Haffner MC, Zwart W, Roudier MP, True LD, Nelson WG, Epstein JI, De Marzo AM, Nelson PS, Yegnasubramanian S. Genomic and phenotypic heterogeneity in prostate cancer. Nat Rev Urol 2021; 18:79-92. [PMID: 33328650 PMCID: PMC7969494 DOI: 10.1038/s41585-020-00400-w] [Citation(s) in RCA: 244] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
From a clinical, morphological and molecular perspective, prostate cancer is a heterogeneous disease. Primary prostate cancers are often multifocal, having topographically and morphologically distinct tumour foci. Sequencing studies have revealed that individual tumour foci can arise as clonally distinct lesions with no shared driver gene alterations. This finding demonstrates that multiple genomically and phenotypically distinct primary prostate cancers can be present in an individual patient. Lethal metastatic prostate cancer seems to arise from a single clone in the primary tumour but can exhibit subclonal heterogeneity at the genomic, epigenetic and phenotypic levels. Collectively, this complex heterogeneous constellation of molecular alterations poses obstacles for the diagnosis and treatment of prostate cancer. However, advances in our understanding of intra-tumoural heterogeneity and the development of novel technologies will allow us to navigate these challenges, refine approaches for translational research and ultimately improve patient care.
Collapse
Affiliation(s)
- Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Department of Pathology, University of Washington, Seattle, WA, USA,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Lawrence D. True
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - William G. Nelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan I. Epstein
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
188
|
Lozano R, Castro E, Aragón IM, Cendón Y, Cattrini C, López-Casas PP, Olmos D. Genetic aberrations in DNA repair pathways: a cornerstone of precision oncology in prostate cancer. Br J Cancer 2021; 124:552-563. [PMID: 33106584 PMCID: PMC7851123 DOI: 10.1038/s41416-020-01114-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/03/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
Over the past years, several studies have demonstrated that defects in DNA damage response and repair (DDR) genes are present in a significant proportion of patients with prostate cancer. These alterations, particularly mutations in BRCA2, are known to be associated with an increased risk of developing prostate cancer and more aggressive forms of the disease. There is growing evidence that certain DDR gene aberrations confer sensitivity to poly-(ADP ribose) polymerase inhibitors and/or platinum chemotherapy, while other defects might identify cases that are more likely to benefit from immune checkpoint inhibition. The potential prognostic impact and relevance for treatment selection together with the decreasing costs and broader accessibility to next-generation sequencing have already resulted in the increased frequency of genetic profiling of prostate tumours. Remarkably, almost half of all DDR genetic defects can occur in the germline, and prostate cancer patients identified as mutation carriers, as well as their families, will require appropriate genetic counselling. In this review, we summarise the current knowledge regarding the biology and clinical implications of DDR defects in prostate cancer, and outline how this evidence is prompting a change in the treatment landscape of the disease.
Collapse
Affiliation(s)
- Rebeca Lozano
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Genitourinary Cancer Translational Research Group, The Institute of Biomedical Research in Málaga (IBIMA), Málaga, Spain
| | - Elena Castro
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Genitourinary Cancer Translational Research Group, The Institute of Biomedical Research in Málaga (IBIMA), Málaga, Spain
- UGCI Oncología Médica, Hospitales Universitarios Virgen de la Victoria y Regional de Málaga, Málaga, Spain
| | - Isabel M Aragón
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Genitourinary Cancer Translational Research Group, The Institute of Biomedical Research in Málaga (IBIMA), Málaga, Spain
| | - Ylenia Cendón
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Carlo Cattrini
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Academic Unit of Medical Oncology, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Pedro P López-Casas
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Genitourinary Cancer Translational Research Group, The Institute of Biomedical Research in Málaga (IBIMA), Málaga, Spain
| | - David Olmos
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Genitourinary Cancer Translational Research Group, The Institute of Biomedical Research in Málaga (IBIMA), Málaga, Spain.
| |
Collapse
|
189
|
Pesch AM, Pierce LJ, Speers CW. Modulating the Radiation Response for Improved Outcomes in Breast Cancer. JCO Precis Oncol 2021; 5:PO.20.00297. [PMID: 34250414 DOI: 10.1200/po.20.00297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Andrea M Pesch
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.,Department of Pharmacology, University of Michigan, Ann Arbor, MI.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Lori J Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Corey W Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
190
|
The circadian cryptochrome, CRY1, is a pro-tumorigenic factor that rhythmically modulates DNA repair. Nat Commun 2021; 12:401. [PMID: 33452241 PMCID: PMC7810852 DOI: 10.1038/s41467-020-20513-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/03/2020] [Indexed: 01/01/2023] Open
Abstract
Mechanisms regulating DNA repair processes remain incompletely defined. Here, the circadian factor CRY1, an evolutionally conserved transcriptional coregulator, is identified as a tumor specific regulator of DNA repair. Key findings demonstrate that CRY1 expression is androgen-responsive and associates with poor outcome in prostate cancer. Functional studies and first-in-field mapping of the CRY1 cistrome and transcriptome reveal that CRY1 regulates DNA repair and the G2/M transition. DNA damage stabilizes CRY1 in cancer (in vitro, in vivo, and human tumors ex vivo), which proves critical for efficient DNA repair. Further mechanistic investigation shows that stabilized CRY1 temporally regulates expression of genes required for homologous recombination. Collectively, these findings reveal that CRY1 is hormone-induced in tumors, is further stabilized by genomic insult, and promotes DNA repair and cell survival through temporal transcriptional regulation. These studies identify the circadian factor CRY1 as pro-tumorigenic and nominate CRY1 as a new therapeutic target. Cryptochrome 1 (CRY1) is a transcriptional coregulator associated with the circadian clock. Here the authors reveal that CRY1 is hormone-regulated, stabilized by genomic insult, and promotes DNA repair and cell survival through temporal transcriptional regulation.
Collapse
|
191
|
Liu Y, Long W, Zhang Z, Mai L, Huang S, Liu B, Cao W, Wu J, Zhou F, Li Y, He L. Cytoreductive radiotherapy combined with abiraterone in metastatic castration-resistance prostate cancer: a single center experience. Radiat Oncol 2021; 16:5. [PMID: 33407637 PMCID: PMC7789459 DOI: 10.1186/s13014-020-01732-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background To investigate the potential benefit of cytoreductive radiotherapy (cRT) in metastatic castration-resistant prostate cancer (mCRPC) patients receiving abiraterone. Methods From February 2014 to February 2019, 149 mCRPC patients treated with abiraterone were identified. Patients receiving cRT before abiraterone failure (AbiRT group) were matched by one-to-two propensity score to patients without cRT before abiraterone failure (non-AbiRT group). Results The median follow-up was 23.5 months. Thirty patients (20.1%) were in the AbiRT group, whereas 119 patients (79.9%) were in the non-AbiRT group. The 2-year OS of patients managed by AbiRT and non-AbiRT were 89.5% and 73.5%, respectively (P = 0.0003). On multivariate analysis, only AbiRT (HR 0.17; 95% CI 0.05–0.58; P = 0.004) and prognostic index (HR 2.71; 95% CI 1.37–5.35; P = 0.004) were significant factors. After matching, AbiRT continued to be associated with improved OS (median OS not reached vs. 44.0 months, P = 0.009). Subgroup analysis revealed that patients aged ≤ 65 years (HR 0.09; 95% CI 0.01–0.65; P = 0.018), PSA ≤ 20 ng/mL (HR 0.29; 95% CI 0.09–0.99; P = 0.048), chemotherapy-naïve upon abiraterone treatment (HR 0.20; 95% CI 0.06–0.66; P = 0.008) and in intermediate prognosis groups by COU-AA-301 prognostic index (HR 0.13; 95% CI 0.03–0.57; P = 0.007) had improved OS with AbiRT. Conclusions cRT before resistance to abiraterone may improve survival in selected mCRPC patients: age ≤ 65 years old, chemotherapy-naïve, with a relatively low PSA level at the diagnosis of mCRPC and intermediate prognosis.
Collapse
Affiliation(s)
- Yang Liu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Wen Long
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guanghzou, People's Republic of China
| | - Zitong Zhang
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Lixin Mai
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Sijuan Huang
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Boji Liu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Wufei Cao
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Jianhua Wu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Fangjian Zhou
- Department of Urology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Yonghong Li
- Department of Urology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| | - Liru He
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
192
|
Hatcher-Lamarre JL, Sanders VA, Rahman M, Cutler CS, Francesconi LC. Alpha emitting nuclides for targeted therapy. Nucl Med Biol 2021; 92:228-240. [PMID: 33558017 PMCID: PMC8363053 DOI: 10.1016/j.nucmedbio.2020.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Targeted alpha therapy (TAT) is an area of research with rapidly increasing importance as the emitted alpha particle has a significant effect on inducing cytotoxic effects on tumor cells while mitigating dose to normal tissues. Two significant isotopes of interest within the area of TAT are thorium-227 and actinium-225 due to their nuclear characteristics. Both isotopes have physical half-lives suitable for coordination with larger biomolecules, and additionally actinium-225 has potential to serve as an in vivo generator. In this review, the authors will discuss the production, purification, labeling reactions, and biological studies of actinium-225 and thorium-227 complexes and clinical studies.
Collapse
Affiliation(s)
| | - Vanessa A Sanders
- Collider Accelerator Department, Brookhaven National Laboratory, USA
| | - Mohammed Rahman
- Chemistry Department, Hunter College of the City University of New York, USA
| | - Cathy S Cutler
- Collider Accelerator Department, Brookhaven National Laboratory, USA
| | - Lynn C Francesconi
- Chemistry Department, Hunter College of the City University of New York, USA; Chemistry Department, Graduate Center of the City University of New York, USA.
| |
Collapse
|
193
|
Risdon EN, Chau CH, Price DK, Sartor O, Figg WD. PARP Inhibitors and Prostate Cancer: To Infinity and Beyond BRCA. Oncologist 2021; 26:e115-e129. [PMID: 32790034 PMCID: PMC7794174 DOI: 10.1634/theoncologist.2020-0697] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
The U.S. Food and Drug Administration recently approved two poly-adenosine diphosphate-ribose polymerase (PARP) inhibitors, olaparib and rucaparib, for treatment of biomarker-positive metastatic castrate resistant prostate cancer. The benefits of PARP inhibition have been well characterized in patients who have BRCA1 and BRCA2 mutations in several forms of cancer. BRCA1 and BRCA2 occupy key roles in DNA damage repair, which is comprised of several different pathways with numerous participants. Patients with mutations in other key genes within the DNA damage repair pathway may also respond to treatment with PARP inhibitors, and identification of these alterations could significantly increase the percentage of patients that may benefit from PARP inhibition. This review focuses on the potential for synthetically lethal interactions between PARP inhibitors and non-BRCA DNA damage repair genes. IMPLICATIONS FOR PRACTICE: The treatment potential of PARP inhibition has been well characterized in patients with BRCA1 and BRCA2 mutations, but there is compelling evidence for expanding the use of PARP inhibitors to mutations of other non-BRCA DNA damage repair (DDR) genes. This could increase the percentage of patients that may benefit from treatment with PARP inhibitors alone or in combination with other therapies. Understanding the significance of PARP inhibitor-sensitizing alterations in other common non-BRCA DDR genes will help guide clinical decisions to provide targeted treatment options to a wider population of patients.
Collapse
Affiliation(s)
- Emily N. Risdon
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Cindy H. Chau
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Douglas K. Price
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | | | - William D. Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
194
|
Ganguly S, Naik D, Muskara A, Mian OY. The Nexus of Endocrine Signaling and Cancer: How Steroid Hormones Influence Genomic Stability. Endocrinology 2021; 162:bqaa177. [PMID: 33260197 PMCID: PMC7707372 DOI: 10.1210/endocr/bqaa177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Endocrine-driven malignancies, including breast and prostate cancer, are among the most common human cancers. The relationship between sex steroid hormones (eg, androgen, estrogen, and progesterone), their cognate receptors, and genomic stability lie at the center of endocrine-driven cancer development, progression, and therapeutic resistance. A variety of direct and indirect mechanisms have been described that link steroid hormone signaling to the loss of genomic integrity that drives early carcinogenesis. These effects are often enriched within endocrine receptor cistromes, accounting for the high proportion of mutations and rearrangements in the region of hormone response elements. In other cases, the effects are generalized and rely on a complex array of genetic, epigenetic, and metabolic interactions. Both androgen and estrogen receptors directly modulate the DNA damage response by trans-activating DNA damage response genes and redirecting the cellular repair machinery in the wake of genotoxic stress. Here we review the key mechanistic underpinnings of the relationship between sex steroid hormone receptors and genomic stability. In addition, we summarize emerging research in this area and discuss important implications for cancer prevention and treatment.
Collapse
Affiliation(s)
| | - Divya Naik
- Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Andrew Muskara
- Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Omar Y Mian
- Cleveland Clinic Lerner Research Institute, Cleveland, OH
- Cleveland Clinic Taussig Cancer Center, Cleveland, OH
| |
Collapse
|
195
|
Deregulated estrogen receptor signaling and DNA damage response in breast tumorigenesis. Biochim Biophys Acta Rev Cancer 2020; 1875:188482. [PMID: 33260050 DOI: 10.1016/j.bbcan.2020.188482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
Carriers of BRCA1 mutations have a higher chance of developing cancers in hormone-responsive tissues like the breast, ovary and prostate, compared to other tissues. These tumors generally exhibit basal-like characters and do not express estrogen receptor (ER) or progesterone receptor (PR). Intriguingly, BRCA1 mutated breast cancers have a less favorable clinical outcome, as they will not respond to hormone therapy. BRCA1 has been reported to exhibit ligand dependent and independent transcriptional inhibition of ER-α; however, there exists a controversy on whether BRCA1 induces or inhibits ER-α expression. The mechanisms associated with resistance of BRCA1 mutated cancers to hormone therapy, as well as the tissue restriction exhibited by BRCA1 mutated tumors are still largely unknown. BRCA1 mutated tumors possess increased DNA damages and decreased genomic integrity, as BRCA1 plays a cardinal role in high fidelity DNA damage repair pathways, like homologous recombination (HR). The existence of cross regulatory signaling networks between ER-α and BRCA1 speculates a role of ER on BRCA1 dependent DDR pathways. Thus, the loss or haploinsufficiency of BRCA1 and the consequential deregulation of ER-α signaling may result in persistence of unrepaired DNA damages, eventually leading to tumorigenesis. Therefore, understanding of this cross-talk between ER-α and BRCA1, with regard to DDR, will provide critical insights to steer drug development and therapy for breast/ovarian cancers. This review discusses the mechanisms by which estrogen and ER signaling influence BRCA1 mediated DNA damage response and repair pathways in the mammalian system.
Collapse
|
196
|
Koontz BF, Hoffman KE, Halabi S, Healy P, Anand M, George DJ, Harrison MR, Zhang T, Berry WR, Corn PG, Lee WR, Armstrong AJ. Combination of Radiation Therapy and Short-Term Androgen Blockade With Abiraterone Acetate Plus Prednisone for Men With High- and Intermediate-Risk Localized Prostate Cancer. Int J Radiat Oncol Biol Phys 2020; 109:1271-1278. [PMID: 33259932 DOI: 10.1016/j.ijrobp.2020.11.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/21/2020] [Accepted: 11/22/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE Long-term androgen-deprivation therapy (ADT) is the standard of care in combination with radiation therapy (RT) in high-risk prostate cancer (PC), despite substantial toxicity from the resulting hypogonadism. We hypothesized that a combination of more potent but shorter-term androgen inhibition in men with intermediate- or high-risk localized PC would synergize with definitive RT to provide short-term testosterone recovery and improve disease control. METHODS AND MATERIALS This prospective phase 2 single-arm trial enrolled men with low-volume unfavorable intermediate or high-risk localized PC. Treatment included 6 months of ADT concurrent with abiraterone acetate plus prednisone (AAP) once daily and RT to prostate and seminal vesicles. The primary endpoint was the proportion of men with an undetectable prostate-specific antigen (PSA) at 12-months; secondary objectives included biochemical progression-free survival (PFS), testosterone recovery, toxicity, and sexual and hormonal quality of life. RESULTS We enrolled 37 men between January 2014 and August 2016, 45% of whom were high risk. All patients had T1-2 disease and PSA < 20 ng/mL. Median follow-up is 37 months (95% confidence interval [CI], 35.7-39.1). Treatment noted 32% grade 3 toxicities related to AAP, predominantly hypertension, with no toxicities ≥G4. The rate of undetectable PSA at 12 months was 55% (95% CI, 36%-72%). With 46 months of median follow-up, 2 of 37 patients developed PSA progression (36-month PFS = 96%; 95% CI, 76%-99%), and 81% of patients recovered testosterone with a median time to recovery of 9.2 months. Hormonal or sexual function declined at 6 months with subsequent improvement by 24 months. CONCLUSIONS The combination of RT and 6 months of ADT and AAP demonstrated acceptable toxicity and a high rate of testosterone recovery with restoration of quality of life and excellent disease control in men with low-volume, intermediate- or high-risk localized prostate cancer. Prospective comparative studies are justified.
Collapse
Affiliation(s)
- Bridget F Koontz
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina; Department of Radiation Oncology, Duke University, Durham, North Carolina.
| | - Karen E Hoffman
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Susan Halabi
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina; Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Patrick Healy
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina; Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Monika Anand
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina
| | - Daniel J George
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina; Department of Medicine, Division of Medical Oncology, Duke University, Durham, North Carolina; Department of Surgery, Division of Urology, Duke University, Durham, North Carolina
| | - Michael R Harrison
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina; Department of Medicine, Division of Medical Oncology, Duke University, Durham, North Carolina
| | - Tian Zhang
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina; Department of Medicine, Division of Medical Oncology, Duke University, Durham, North Carolina
| | - William R Berry
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina; Department of Medicine, Division of Medical Oncology, Duke University, Durham, North Carolina
| | - Paul G Corn
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - W Robert Lee
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina; Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Andrew J Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina; Department of Medicine, Division of Medical Oncology, Duke University, Durham, North Carolina; Department of Surgery, Division of Urology, Duke University, Durham, North Carolina; Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| |
Collapse
|
197
|
Liang F, Zhang H, Cheng D, Gao H, Wang J, Yue J, Zhang N, Wang J, Wang Z, Zhao B. Ablation of LGR4 signaling enhances radiation sensitivity of prostate cancer cells. Life Sci 2020; 265:118737. [PMID: 33171177 DOI: 10.1016/j.lfs.2020.118737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022]
Abstract
AIM Our previous study has shown that leucine-rich repeat containing GPCR-4 (LGR4, or GPR48) LGR4 plays a role in cell migration, invasion, proliferation and apoptosis of prostate cancer (PCa). In this study, we aimed to explore whether LGR4 would affect radiation response in PCa. MATERIALS AND METHODS LGR4 expression was silenced by shRNA transfection. qRT-PCR was employed to determine mRNA expression of LGR4 and DNA damage repair genes. Western blot was used to evaluate protein expression of LGR4, RSPO1-4, androgen receptor (AR), cyclic AMP response-element binding protein (CREB1), γH2A.X, and H2A.X. Cell proliferation was detected by CCK-8 assay and apoptosis was assayed by flow cytometry. Additionally, a xenograft model was also established to validate the role of LGR4 in PCa cells after radiation. KEY FINDINGS LGR4 expression was enhanced in PCa cells by radiation treatment in dose- and time-dependent means. RSPO1-4 were also upregulated post-radiation. Furthermore, LGR4 knockdown exacerbated apoptosis, reduced cell viabilities and strengthened nuclear γH2A.X staining in AR positive PCa cells but not in AR negative cells in the presence of radiation. Likewise, LGR4 ablation diminished AR and CREB1 expression induced by radiation. In contrast, RSPO1 stimulation augmented cell viabilities, promoted AR and CREB1 expression, and upregulated DNA repair gene expression, which could be reversed by enzalutamide, except for AR expression. Additionally, LGR4 knockdown further suppressed tumor growth and AR/CREB1 expression but enhanced γH2A.X expression in xenografts. SIGNIFICANCE In all, our study suggested that LGR4 might serve as an important regulator of radiation sensitivity in PCa.
Collapse
Affiliation(s)
- Fang Liang
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China.
| | - Hao Zhang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Duo Cheng
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Hui Gao
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Junyong Wang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Junmin Yue
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Nan Zhang
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Jingjing Wang
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Zhaoyang Wang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Beibei Zhao
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| |
Collapse
|
198
|
Ben-Salem S, Hu Q, Liu Y, Alshalalfa M, Zhao X, Wang I, Venkadakrishnan VB, Senapati D, Kumari S, Liu D, Sboner A, Barbieri CE, Feng F, Billaud JN, Davicioni E, Liu S, Heemers HV. Diversity in Androgen Receptor Action Among Treatment-naïve Prostate Cancers Is Reflected in Treatment Response Predictions and Molecular Subtypes. EUR UROL SUPPL 2020; 22:34-44. [PMID: 33299986 PMCID: PMC7723342 DOI: 10.1016/j.euros.2020.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Metastatic prostate cancer (CaP) treatments are evolving rapidly but without evidence-based biomarkers to predict responses, and to maximize remissions and survival. Objective To determine the activity of androgen receptor (AR), the target for default first-line systemic treatment, in localized treatment-naïve CaP and its association with clinical risk factors, molecular markers, CaP subtypes, and predictors of treatment response. Design setting and participants We examined 452 bona fide AR target genes in clinical-grade expression profiles from 6532 such CaPs collected between 2013 and 2017 by US physicians ordering the Decipher RP test. Results were validated in three independent smaller cohorts (n = 73, 90, and 127) and clinical CaP AR ChIP-Seq data. Association with CaP differentiation and progression was analyzed in independent datasets. Outcome measurements and statistical analysis Unsupervised clustering of CaPs based on AR target gene expression was aligned with clinical variables, differentiation scores, molecular subtypes, and predictors of response to hormonal therapy, radiotherapy, and chemotherapy. AR target gene sets were analyzed via Gene Set Enrichment Analysis for differentiation and treatment resistance, Ingenuity Pathway Analysis for associated biology, and Cistrome for genomic AR binding site (ARBS) composition. Results and limitations Expression of eight AR target gene subsignatures gave rise to five CaP clusters, which were preferentially associated with CaP molecular subtypes, differentiation, and predictors of treatment response rather than with clinical variables. Subsignatures differed in contribution to CaP progression, luminal/basal differentiation, CaP biology, and ARBS composition. Validation in prospective trials and optimized quantitation are needed for clinical implementation. Conclusions Measurement of AR activity patterns in treatment-naïve CaP may serve as a first branch of an evidence-based decision tree to optimize personalized treatment plans. Patient summary Treatment options for metastatic prostate cancer are increasing without information needed to choose the right treatment for the right patient. We found variation in the behavior of the target for the default first-line therapy before treatment, which may help optimize treatment plans.
Collapse
Affiliation(s)
- Salma Ben-Salem
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Yang Liu
- Decipher Biosciences, San Diego, CA, USA
| | - Mohammed Alshalalfa
- Decipher Biosciences, San Diego, CA, USA.,Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Xin Zhao
- Decipher Biosciences, San Diego, CA, USA
| | - Irene Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Varadha Balaji Venkadakrishnan
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA.,Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | | | - Sangeeta Kumari
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | - Deli Liu
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Felix Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | |
Collapse
|
199
|
Wengner AM, Scholz A, Haendler B. Targeting DNA Damage Response in Prostate and Breast Cancer. Int J Mol Sci 2020; 21:E8273. [PMID: 33158305 PMCID: PMC7663807 DOI: 10.3390/ijms21218273] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Steroid hormone signaling induces vast gene expression programs which necessitate the local formation of transcription factories at regulatory regions and large-scale alterations of the genome architecture to allow communication among distantly related cis-acting regions. This involves major stress at the genomic DNA level. Transcriptionally active regions are generally instable and prone to breakage due to the torsional stress and local depletion of nucleosomes that make DNA more accessible to damaging agents. A dedicated DNA damage response (DDR) is therefore essential to maintain genome integrity at these exposed regions. The DDR is a complex network involving DNA damage sensor proteins, such as the poly(ADP-ribose) polymerase 1 (PARP-1), the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), the ataxia-telangiectasia-mutated (ATM) kinase and the ATM and Rad3-related (ATR) kinase, as central regulators. The tight interplay between the DDR and steroid hormone receptors has been unraveled recently. Several DNA repair factors interact with the androgen and estrogen receptors and support their transcriptional functions. Conversely, both receptors directly control the expression of agents involved in the DDR. Impaired DDR is also exploited by tumors to acquire advantageous mutations. Cancer cells often harbor germline or somatic alterations in DDR genes, and their association with disease outcome and treatment response led to intensive efforts towards identifying selective inhibitors targeting the major players in this process. The PARP-1 inhibitors are now approved for ovarian, breast, and prostate cancer with specific genomic alterations. Additional DDR-targeting agents are being evaluated in clinical studies either as single agents or in combination with treatments eliciting DNA damage (e.g., radiation therapy, including targeted radiotherapy, and chemotherapy) or addressing targets involved in maintenance of genome integrity. Recent preclinical and clinical findings made in addressing DNA repair dysfunction in hormone-dependent and -independent prostate and breast tumors are presented. Importantly, the combination of anti-hormonal therapy with DDR inhibition or with radiation has the potential to enhance efficacy but still needs further investigation.
Collapse
Affiliation(s)
| | | | - Bernard Haendler
- Preclinical Research, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany; (A.M.W.); (A.S.)
| |
Collapse
|
200
|
Miyahira AK, Pienta KJ, Babich JW, Bander NH, Calais J, Choyke P, Hofman MS, Larson SM, Lin FI, Morris MJ, Pomper MG, Sandhu S, Scher HI, Tagawa ST, Williams S, Soule HR. Meeting report from the Prostate Cancer Foundation PSMA theranostics state of the science meeting. Prostate 2020; 80:1273-1296. [PMID: 32865839 PMCID: PMC8442561 DOI: 10.1002/pros.24056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The Prostate Cancer Foundation (PCF) convened a PCF prostate-specific membrane antigen (PSMA) Theranostics State of the Science Meeting on 18 November 2019, at Weill Cornell Medicine, New York, NY. METHODS The meeting was attended by 22 basic, translational, and clinical researchers from around the globe, with expertise in PSMA biology, development and use of PSMA theranostics agents, and clinical trials. The goal of this meeting was to discuss the current state of knowledge, the most important biological and clinical questions, and critical next steps for the clinical development of PSMA positron emission tomography (PET) imaging agents and PSMA-targeted radionuclide agents for patients with prostate cancer. RESULTS Several major topic areas were discussed including the biology of PSMA, the role of PSMA-targeted PET imaging in prostate cancer, the physics and performance of different PSMA-targeted PET imaging agents, the current state of clinical development of PSMA-targeted radionuclide therapy (RNT) agents, the role of dosimetry in PSMA RNT treatment planning, barriers and challenges in PSMA RNT clinical development, optimization of patient selection for PSMA RNT trials, and promising combination treatment approaches with PSMA RNT. DISCUSSION This article summarizes the presentations from the meeting for the purpose of globally disseminating this knowledge to advance the use of PSMA-targeted theranostic agents for imaging and treatment of patients with prostate cancer.
Collapse
Affiliation(s)
- Andrea K. Miyahira
- Science Department, Prostate Cancer Foundation, Santa Monica, California
| | - Kenneth J. Pienta
- Department of Urology, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John W. Babich
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Neil H. Bander
- Laboratory of Urologic Oncology, Department of Urology and Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Peter Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Michael S. Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
- Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
| | - Steven M. Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Frank I. Lin
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Michael J. Morris
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martin G. Pomper
- Department of Urology, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shahneen Sandhu
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
| | - Howard I. Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Scott T. Tagawa
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Scott Williams
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
| | - Howard R. Soule
- Science Department, Prostate Cancer Foundation, Santa Monica, California
| |
Collapse
|