151
|
The prognostic impact of a concentric left ventricular structure evaluated by transthoracic echocardiography in patients with acute decompensated heart failure: A retrospective study. Int J Cardiol 2019; 287:73-80. [DOI: 10.1016/j.ijcard.2018.07.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/08/2018] [Accepted: 07/19/2018] [Indexed: 01/19/2023]
|
152
|
Kim I, Park CS, Lee HY. Angiotensin II Type 1 Receptor Blocker, Fimasartan, Reduces Vascular Smooth Muscle Cell Senescence by Inhibiting the CYR61 Signaling Pathway. Korean Circ J 2019; 49:615-626. [PMID: 31074217 PMCID: PMC6597448 DOI: 10.4070/kcj.2018.0379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/26/2018] [Accepted: 01/23/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Angiotensin II (Ang II) has been suggested to accelerate vascular senescence, however the molecular mechanism(s) remain unknown. METHODS We cultured human coronary artery smooth muscle cells (hCSMCs) and treated Ang II and/or fimasartan. Or we transfected adenoviral vectors expressing CYR61 (Ad-CYR61) or antisense CYR61 (Ad-As-CYR61). Cellular senescence was evaluated senescence-associated β-galactosidase (SA-β-gal) assay. The molecular mechanisms were investigated real-time PCR and western blots. RESULTS SA-β-gal-positive cells significantly increased in Ang II-treated hCSMCs (5.77±1.43-fold compared with the control). The effect of Ang II was significantly attenuated by pretreatment with the Ang II type 1 receptor blocker, fimasartan (2.00±0.92-fold). The expression of both p53 and p16 senescence regulators was significantly increased by Ang II (p53: 1.39±0.17, p16: 1.19±0.10-fold vs. the control), and inhibited by fimasartan. Cysteine-rich angiogenic protein 61 (CYR61) was rapidly induced by Ang II. Compared with the control, Ad-CYR61-transfected hCSMCs showed significantly increased SA-β-gal-positive cells (3.47±0.65-fold). Upon transfecting Ad-AS-CYR61, Ang II-induced senescence (3.74±0.23-fold) was significantly decreased (1.77±0.60-fold). p53 expression by Ang II was significantly attenuated by Ad-AS-CYR61, whereas p16 expression was not regulated. Ang II activated ERK1/2 and p38 MAPK, which was significantly blocked by fimasartan. ERK and p38 inhibition both regulated Ang II-induced CYR61 expression. However, p53 expression was only regulated by ERK1/2, whereas p16 expression was only attenuated by p38 MAPK. CONCLUSIONS Ang II induced vascular senescence by the ERK/p38 MAPK-CYR61 pathway and ARB, fimasartan, protected against Ang II-induced vascular senescence.
Collapse
Affiliation(s)
- Inho Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Chan Soon Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hae Young Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
153
|
Cardiac fibrosis: potential therapeutic targets. Transl Res 2019; 209:121-137. [PMID: 30930180 PMCID: PMC6545256 DOI: 10.1016/j.trsl.2019.03.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 01/14/2023]
Abstract
Cardiovascular disease is a leading cause of mortality in the world and is exacerbated by the presence of cardiac fibrosis, defined by the accumulation of noncontractile extracellular matrix proteins. Cardiac fibrosis is directly linked to cardiac dysfunction and increased risk of arrhythmia. Despite its prevalence, there is a lack of efficacious therapies for inhibiting or reversing cardiac fibrosis, largely due to the complexity of the cell types and signaling pathways involved. Ongoing research has aimed to understand the mechanisms of cardiac fibrosis and develop new therapies for treating scar formation. Major approaches include preventing the formation of scar tissue and replacing fibrous tissue with functional cardiomyocytes. While targeting the renin-angiotensin-aldosterone system is currently used as the standard line of therapy for heart failure, there has been increased interest in inhibiting the transforming growth factor-β signaling pathway due its established role in cardiac fibrosis. Significant advances in cell transplantation therapy and biomaterials engineering have also demonstrated potential in regenerating the myocardium. Novel techniques, such as cellular direct reprogramming, and molecular targets, such as noncoding RNAs and epigenetic modifiers, are uncovering novel therapeutic options targeting fibrosis. This review provides an overview of current approaches and discuss future directions for treating cardiac fibrosis.
Collapse
|
154
|
Izzo JL, Hong M, Hussain T, Osmond PJ. Long-term BP control and vascular health in patients with hyperaldosteronism treated with low-dose, amiloride-based therapy. J Clin Hypertens (Greenwich) 2019; 21:922-928. [PMID: 31169971 DOI: 10.1111/jch.13567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/23/2019] [Accepted: 02/03/2019] [Indexed: 11/28/2022]
Abstract
Whether aldosterone itself contributes directly to macro- or microcirculatory disease in man or to adverse cardiovascular outcomes is not fully known. We report our long-term single-practice experience in 5 patients with chronic hyperaldosteronism (HA, including 3 with glucocorticoid remediable aldosteronism, GRA) treated with low-dose amiloride (a specific epithelial sodium channel [ENaC] blocker) 5-10 (mean 7) mg daily for 14-28 (mean 20) years. Except for 1 GRA diagnosed in infancy, all had severe resistant hypertension. In each case, BP was normal or near-normal within 1-4 weeks after starting amiloride and office BP's were well controlled for 20 years thereafter. Vascular studies and 24-hour ambulatory BP monitoring with pulse wave analysis (cardiac output, vascular resistance, augmentation index, and reflection magnitude) were assessed after a mean of 18 years as were regional pulse wave velocities, pulse stiffening ratio, ankle-brachial index, serum creatinine, estimated glomerular filtration rate, and spot urinary albumin:creatinine ratio. All indicators were completely normal in all patients after 18 years of amiloride, and none had a cardiovascular event during the 20-year mean follow-up. We conclude that long-term ENaC blockade can normalize BP and protect macro- and microvascular function in patients with HA. This suggests that (a) any vasculopathic effects of aldosterone are mediated via ENaC, not MR activation itself, and are fully preventable or reversible with ENaC blockade or (b) aldosterone may not play a major BP-independent role in human macro- and microcirculatory diseases. These and other widely divergent results in the literature underscore the need for additional studies regarding aldosterone, ENaC, and vascular disease.
Collapse
Affiliation(s)
- Joseph L Izzo
- Department of Medicine, Jacobs School of Medicine, University at Buffalo, Buffalo, New York.,Erie County Medical Center, Buffalo, New York
| | - Michael Hong
- Department of Medicine, Jacobs School of Medicine, University at Buffalo, Buffalo, New York.,Erie County Medical Center, Buffalo, New York
| | - Tanveer Hussain
- Department of Medicine, Jacobs School of Medicine, University at Buffalo, Buffalo, New York.,Erie County Medical Center, Buffalo, New York
| | - Peter J Osmond
- Department of Medicine, Jacobs School of Medicine, University at Buffalo, Buffalo, New York.,Erie County Medical Center, Buffalo, New York
| |
Collapse
|
155
|
Schelbert EB, Fridman Y, Wong TC, Abu Daya H, Piehler KM, Kadakkal A, Miller CA, Ugander M, Maanja M, Kellman P, Shah DJ, Abebe KZ, Simon MA, Quarta G, Senni M, Butler J, Diez J, Redfield MM, Gheorghiade M. Temporal Relation Between Myocardial Fibrosis and Heart Failure With Preserved Ejection Fraction: Association With Baseline Disease Severity and Subsequent Outcome. JAMA Cardiol 2019; 2:995-1006. [PMID: 28768311 DOI: 10.1001/jamacardio.2017.2511] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Importance Among myriad changes occurring during the evolution of heart failure with preserved ejection fraction (HFpEF), cardiomyocyte-extracellular matrix interactions from excess collagen may affect microvascular, mechanical, and electrical function. Objective To investigate whether myocardial fibrosis (MF) is similarly prevalent both in those with HFpEF and those at risk for HFpEF, similarly associating with disease severity and outcomes. Design, Setting, and Participants Observational cohort study from June 1, 2010, to September 17, 2015, with follow-up until December 14, 2015, at a cardiovascular magnetic resonance (CMR) center serving an integrated health system. Consecutive patients with preserved systolic function referred for CMR were eligible. Cardiovascular magnetic resonance was used to exclude patients with cardiac amyloidosis (n = 19). Exposures Myocardial fibrosis quantified by extracellular volume (ECV) CMR measures. Main Outcome and Measures Baseline BNP; subsequent hospitalization for heart failure or death. Results Of 1174 patients identified (537 [46%] female; median [interquartile range {IQR}] age, 56 [44-66] years), 250 were "at risk" for HFpEF given elevated brain-type natriuretic peptide (BNP) level; 160 had HFpEF by documented clinical diagnosis, and 745 did not have HFpEF. Patients either at risk for HFpEF or with HFpEF demonstrated similarly higher prevalence/extent of MF and worse prognosis compared with patients with no HFpEF. Among those at risk for HFpEF or with HFpEF, the actual diagnosis of HFpEF was not associated with significant differences in MF (median ECV, 28.2%; IQR, 26.2%-30.7% vs 28.3%; IQR, 25.5%-31.4%; P = .60) or prognosis (log-rank 0.8; P = .38). Over a median of 1.9 years, 61 patients at risk for HFpEF or with HFpEF experienced adverse events (19 hospitalization for heart failure, 48 deaths, 6 with both). In those with HFpEF, ECV was associated with baseline log BNP (disease severity surrogate) in multivariable linear regression models, and was associated with outcomes in multivariable Cox regression models (eg, hazard ratio 1.75 per 5% increase in ECV, 95% CI, 1.25-2.45; P = .001 in stepwise model) whether grouped with patients at risk for HFpEF or not. Conclusions and Relevance Among myriad changes occurring during the apparent evolution of HFpEF where elevated BNP is prevalent, MF was similarly prevalent in those with or at risk for HFpEF. Conceivably, MF might precede clinical HFpEF diagnosis. Regardless, MF was associated with disease severity (ie, BNP) and outcomes. Whether cells and secretomes mediating MF represent therapeutic targets in HFpEF warrants further evaluation.
Collapse
Affiliation(s)
- Erik B Schelbert
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yaron Fridman
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania
| | - Timothy C Wong
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hussein Abu Daya
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania
| | - Kayla M Piehler
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ajay Kadakkal
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania
| | - Christopher A Miller
- Centre for Imaging Sciences and Biomedical Imaging Institute, University of Manchester, Manchester, England
| | - Martin Ugander
- Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Maren Maanja
- Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Dipan J Shah
- Houston Methodist DeBakey Heart and Vascular Center, Houston, Texas
| | - Kaleab Z Abebe
- Center for Clinical Trials and Data Coordination, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marc A Simon
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Giovanni Quarta
- Department of Cardiology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Michele Senni
- Department of Cardiology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Javed Butler
- Cardiology Division, Stony Brook University, Stony Brook, New York
| | - Javier Diez
- Program of Cardiovascular Diseases, Center for Applied Medical Research, Department of Cardiology and Cardiac Surgery, University Clinic, University of Navarra, Pamplona, Spain.,CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | | | - Mihai Gheorghiade
- Center for Cardiovascular Innovation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
156
|
Methodical, Diagnostic and Prognostic Aspects Using Transmitral Blood Flow Indicators as Markers of Diastolic Dysfunction During the Progression of Chronic Heart Failure. Fam Med 2019. [DOI: 10.30841/2307-5112.2.2019.175384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
157
|
Zheng QN, Wei XH, Pan CS, Li Q, Liu YY, Fan JY, Han JY. QiShenYiQi Pills ® ameliorates ischemia/reperfusion-induced myocardial fibrosis involving RP S19-mediated TGFβ1/Smads signaling pathway. Pharmacol Res 2019; 146:104272. [PMID: 31085230 DOI: 10.1016/j.phrs.2019.104272] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/03/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022]
Abstract
QiShenYiQi Pills (QSYQ) is a compound Chinese medicine widely used in China for treatment of cardiovascular disease. However, limited data are available regarding the anti-fibrotic role of QSYQ after ischemia/reperfusion (I/R) injury. This study aimed to investigate the effect of post-treatment with QSYQ on myocardial fibrosis after I/R-induced myocardium injury, and the role of different compounds of QSYQ, focusing especially on the involvement of chemokine ribosomal protein S19 (RP S19) dimer and monocyte migration. Male Sprague-Dawley rats were subjected to left anterior descending coronary artery occlusion for 30 min followed by reperfusion with or without administration of QSYQ (0.6, 1.2, or 1.8 g/kg) once daily by gavage for 6 days. Post-treatment with QSYQ diminished I/R-induced infarct size, alleviated myocardium injury, attenuated myocardial fibrosis after 6 days of reperfusion, and restored heart function and myocardial blood flow after I/R. In addition, the drug significantly inhibited monocyte infiltration and macrophage polarization towards M2, which was attributable to chemokine RP S19 dimer. Moreover, Western blots revealed that QSYQ blocked I/R-induced increase in TGFβ1 and TGFβRⅡ and reversed its relevant gene expression, such as Smad3,4,6,7, and inhibited the increase of MMP 2,9 expression. As the major components of QSYQ, astragaloside IV (AsIV), 3,4-dihydroxy-phenyl lactic acid (DLA), and notoginsenoside R1 (R1) were assessed as to the contribution of each of them to the expression of the proteins concerned. The results showed that the effect of AsIV was similar to QSYQ, while DLA and R1 only partly simulated the effect of QSYQ. The results provide evidence for the potential role of QSYQ in treating myocardial fibrosis following I/R injury. This effect may be associated with QSYQ's inhibition effect on monocyte chemotaxis and TGFβ1/Smads signaling pathway with different component targeting distinct link (s) of the signaling.
Collapse
Affiliation(s)
- Qian-Ning Zheng
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, 100191, China; Beijing Laboratory of Integrative Microangiopathy, Beijing, 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, 100191, China
| | - Xiao-Hong Wei
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, 100191, China; Beijing Laboratory of Integrative Microangiopathy, Beijing, 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, 100191, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, 100191, China; Beijing Laboratory of Integrative Microangiopathy, Beijing, 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, 100191, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, 100191, China; Beijing Laboratory of Integrative Microangiopathy, Beijing, 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, 100191, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, 100191, China; Beijing Laboratory of Integrative Microangiopathy, Beijing, 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, 100191, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, 100191, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, 100191, China; Beijing Laboratory of Integrative Microangiopathy, Beijing, 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, 100191, China.
| |
Collapse
|
158
|
Wang L, Liu C, Chen X, Li P. Alamandine attenuates long‑term hypertension‑induced cardiac fibrosis independent of blood pressure. Mol Med Rep 2019; 19:4553-4560. [PMID: 31059021 PMCID: PMC6522836 DOI: 10.3892/mmr.2019.10167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 12/20/2018] [Indexed: 11/06/2022] Open
Abstract
Cardiac fibrosis secondary to long‑term hypertension is known to promote cardiac dysfunction; however, few therapeutic agents are available for the treatment of this condition in clinical practice. The heptapeptide alamandine (Ala) has recently been identified as a component of the renin‑angiotensin system (RAS), which exerts a protective effect against cardiac hypertrophy; however, it is unknown whether Ala may also be useful for the treatment of cardiac fibrosis. In the present study, the potential therapeutic effects of Ala on long‑term hypertension‑induced cardiac fibrosis were investigated in an aged, spontaneous hypertensive rat model. Weekly blood pressure (BP) measurements revealed that daily Ala treatment significantly decreased the systolic, diastolic and mean arterial BP compared with the control. Of note, the observed reduction in BP in Ala‑treated animals markedly differed to that observed in rats treated with hydralazine (Hyd). Echocardiography further demonstrated that Ala treatment decreased the ratio of left ventricle mass to body weight, and alleviated structural and functional parameters associated with cardiac fibrosis, including left ventricular volume, ejection fraction and fractional shortening compared with the control and Hyd‑treated groups. Furthermore, Ala deceased the density of cardiac fibrosis, as assessed by Masson and Sirius red staining; reduced expression of fibrotic proteins, including connective tissue growth factor, collagen I (COL1A1) and matrix metalloproteinase 9, was also observed. In addition, Ala treatment further decreased the expression of angiotensin II‑induced fibrotic markers at the mRNA and protein levels in cultured cardiac fibroblasts; Ala‑mediated inhibition of COL1A1 expression and Akt phosphorylation was inhibited via the Mas‑related G protein receptor antagonist, PD123319. Collectively, the findings of the present study suggest that Ala is an effective anti‑hypertensive peptide that can attenuate cardiac dysfunction and fibrosis induced by chronic hypertension, independent of BP.
Collapse
Affiliation(s)
- Lan Wang
- Department of Cardiology, Jiangsu Province Geriatric Hospital, Nanjing Medical University, Nanjing, Jiangsu 210024, P.R. China
| | - Chi Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiru Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
159
|
|
160
|
Ames MK, Atkins CE, Pitt B. The renin-angiotensin-aldosterone system and its suppression. J Vet Intern Med 2019; 33:363-382. [PMID: 30806496 PMCID: PMC6430926 DOI: 10.1111/jvim.15454] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic activation of the renin-angiotensin-aldosterone system (RAAS) promotes and perpetuates the syndromes of congestive heart failure, systemic hypertension, and chronic kidney disease. Excessive circulating and tissue angiotensin II (AngII) and aldosterone levels lead to a pro-fibrotic, -inflammatory, and -hypertrophic milieu that causes remodeling and dysfunction in cardiovascular and renal tissues. Understanding of the role of the RAAS in this abnormal pathologic remodeling has grown over the past few decades and numerous medical therapies aimed at suppressing the RAAS have been developed. Despite this, morbidity from these diseases remains high. Continued investigation into the complexities of the RAAS should help clinicians modulate (suppress or enhance) components of this system and improve quality of life and survival. This review focuses on updates in our understanding of the RAAS and the pathophysiology of AngII and aldosterone excess, reviewing what is known about its suppression in cardiovascular and renal diseases, especially in the cat and dog.
Collapse
Affiliation(s)
- Marisa K Ames
- Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado
| | - Clarke E Atkins
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Bertram Pitt
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| |
Collapse
|
161
|
Xiao Y, Liu Y, Liu J, Kang YJ. The Association Between Myocardial Fibrosis and Depressed Capillary Density in Rat Model of Left Ventricular Hypertrophy. Cardiovasc Toxicol 2019; 18:304-311. [PMID: 29204738 DOI: 10.1007/s12012-017-9438-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Myocardial fibrogenesis is initiated once the coordination between oxygen supply and demand is disrupted in pressure overload-induced cardiac hypertrophy. Clinical observations showed that myocardial fibrosis did not evenly occur in the hypertrophic myocardium. The present study was undertaken to specifically address differential vulnerabilities to fibrogenesis of different regions in the myocardium subjected to pressure overload-induced hypertrophy. SD rats were divided into two groups, sham-operated control and ascending artery constriction-induced cardiac hypotrophy. Thirty-four weeks after surgery, rats were sacrificed and hearts were harvested. Myocardial tissues were processed and sequentially sectioned for detection of collagen deposition, myocyte hypertrophy and vascular density analysis. Redundant collagen stained with Sirius red and anti-collagen I antibody was found in the extracellular matrix, but high volume of collagen fraction was largely localized more in posterior and lateral walls than in anterior wall and interventricular septum, which is in accordance with the accumulation of fibroblasts. In association with the differential regional collagen accumulation, the cardiomyocytes were more hypertrophic in the posterior and lateral wall than the other left ventricle. However, the capillary density in the lateral and posterior walls was significantly decreased. The results indicated that the posterior and lateral walls were more vulnerable to fibrogenesis post-pressure overload-induced cardiac hypertrophy, which was associated with the depressed angiogenesis in these two regions.
Collapse
Affiliation(s)
- Ying Xiao
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinjie Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaming Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
162
|
Bing R, Cavalcante JL, Everett RJ, Clavel MA, Newby DE, Dweck MR. Imaging and Impact of Myocardial Fibrosis in Aortic Stenosis. JACC Cardiovasc Imaging 2019; 12:283-296. [PMID: 30732723 PMCID: PMC6361867 DOI: 10.1016/j.jcmg.2018.11.026] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/16/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
Abstract
Aortic stenosis is characterized both by progressive valve narrowing and the left ventricular remodeling response that ensues. The only effective treatment is aortic valve replacement, which is usually recommended in patients with severe stenosis and evidence of left ventricular decompensation. At present, left ventricular decompensation is most frequently identified by the development of typical symptoms or a marked reduction in left ventricular ejection fraction <50%. However, there is growing interest in using the assessment of myocardial fibrosis as an earlier and more objective marker of left ventricular decompensation, particularly in asymptomatic patients, where guidelines currently rely on nonrandomized data and expert consensus. Myocardial fibrosis has major functional consequences, is the key pathological process driving left ventricular decompensation, and can be divided into 2 categories. Replacement fibrosis is irreversible and identified using late gadolinium enhancement on cardiac magnetic resonance, while diffuse fibrosis occurs earlier, is potentially reversible, and can be quantified with cardiac magnetic resonance T1 mapping techniques. There is a substantial body of observational data in this field, but there is now a need for randomized clinical trials of myocardial imaging in aortic stenosis to optimize patient management. This review will discuss the role that myocardial fibrosis plays in aortic stenosis, how it can be imaged, and how these approaches might be used to track myocardial health and improve the timing of aortic valve replacement.
Collapse
Affiliation(s)
- Rong Bing
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - João L Cavalcante
- Division of Cardiovascular Diseases, Department of Medicine, UPMC Heart & Vascular Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Russell J Everett
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie-Annick Clavel
- Quebec Heart & Lung Institute, Laval University, Quebec City, Quebec, Canada
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
163
|
Savitha MN, Siddesha JM, Suvilesh KN, Yariswamy M, Vivek HK, D'Souza CJM, Umashankar M, Vishwanath BS. Active-site directed peptide l-Phe-d-His-l-Leu inhibits angiotensin converting enzyme activity and dexamethasone-induced hypertension in rats. Peptides 2019; 112:34-42. [PMID: 30481537 DOI: 10.1016/j.peptides.2018.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 11/29/2022]
Abstract
Hypertension is the fundamental cause of cardiovascular and cerebrovascular disorders. Several natural and synthetic peptides are being used as antihypertensive agents, which target angiotensin converting enzyme (ACE), the master regulator of angiotensin (Ang) II production. In this study, we have evaluated ACE-inhibitory potential of the tripeptide l-Phenylalanyl-d-Histidyl-l-Leucine (l-Phe-d-His-l-Leu) in vitro and its antihypertensive effect in rat model of dexamethasone-induced hypertension. l-Phe-d-His-l-Leu was custom-designed by changing the configuration of penultimate amino acid residue (histidine) from C-terminal of Ang I, the site at which ACE acts upon and generates Ang II. l-Phe-d-His-l-Leu effectively inhibited ACE activity in a dose-dependent and competitive manner with an IC50 of 53.32 ± 0.13 nmol/L. Both fluorescence spectra and circular dichroism data revealed the direct interaction between l-Phe-d-His-l-Leu and ACE. In addition, molecular docking studies revealed the strong interaction of l-Phe-d-His-l-Leu with the critical active site amino acid residues of ACE. Further, the administration of l-Phe-d-His-l-Leu resulted in decrease in blood pressure (142 ± 3 mmHg) compared to dexamethasone alone group (167 ± 2 mmHg). Besides, l-Phe-d-His-l-Leu decreased the levels of circulating Ang II, and reduced fibrosis in heart and kidney, as evidenced by decreases in collagen deposition. Thus, the strategy of incorporation of d-amino acids in ACE-inhibitory peptides could be valuable in the development of antihypertensive drugs.
Collapse
Affiliation(s)
- Mysuru Natarajan Savitha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, 570 006, India
| | | | - Kanve Nagaraj Suvilesh
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, 570 006, India
| | - Manjunath Yariswamy
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, 570 006, India; Department of Surgery, University of Missouri, Columbia, USA
| | - Hamse Kameshwar Vivek
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Technical Institute, Mysuru, 570 006, India
| | - Cletus J M D'Souza
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, 570 006, India
| | - Muddegowda Umashankar
- Department of Chemistry, Karnataka State Open University, Mukthagangotri, Mysuru, 570 006, India
| | | |
Collapse
|
164
|
Zhang L, Joseph L, Joseph J. In Vivo and In Vitro Effects of Vasopressin V2 Receptor Antagonism on Myocardial Fibrosis in Rats. Am J Med Sci 2019; 357:151-159. [PMID: 30665496 DOI: 10.1016/j.amjms.2018.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/16/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Myocardial fibrosis is a major pathophysiologic substrate of heart failure with preserved ejection fraction. Vasopressin is an important therapeutic target in heart failure with preserved ejection fraction since it can modulate fluid balance, and based on a few studies, myocardial matrix deposition. Hence we examined the role of vasopressin antagonism in modulating myocardial matrix metabolism in vivo and in vitro. MATERIALS AND METHODS In vivo studies utilized an established model of hyperhomocysteinemia-induced myocardial fibrosis in Sprague-Dawley rats combined with high salt diet; in vivo studies also utilized the same profibrotic stimuli of homocysteine and NaCl in cultured rat cardiac fibroblasts. RESULTS Hyperhomocysteinemia combined with high-salt diet promoted myocardial fibrosis, profibrotic and matrix gene expression and tolvaptan attenuated all these in vivo effects. In cultured cardiac fibroblasts, combined treatment with homocysteine and NaCl increased profibrotic and matrix gene expression and activation of PI3/Akt pathway; all these effects were attenuated by tolvaptan Vasopressin levels, gene expression and V2 receptor expression were increased in vivo and in vitro on exposure to profibrotic stimuli, and tolvaptan attenuated these in vivo and in vitro effects. CONCLUSIONS Antagonism of vasopressin V2 receptor, via direct actions on cardiac fibroblast, attenuates myocardial matrix deposition.
Collapse
Affiliation(s)
- LiangLiang Zhang
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lija Joseph
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts; Department of Pathology, Lowell General Hospital, Lowell, Massachusetts
| | - Jacob Joseph
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts.
| |
Collapse
|
165
|
Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z, Rokni H, Mohtaram NK, Poorebrahim M, Masoom A, Toback M, Sareen N, Saravanan S, Jassal DS, Hashemi M, Marzban H, Schaafsma D, Singal P, Wigle JT, Czubryt MP, Akbari M, Dixon IM, Ghavami S, Gordon JW, Dhingra S. Myocardial Cell Signaling During the Transition to Heart Failure. Compr Physiol 2018; 9:75-125. [DOI: 10.1002/cphy.c170053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
166
|
Kobara Y, Hasegawa H, Hirose M, Takano H, Kobayashi Y. Analysis of the Correlation between the Myocardial Expression of DPP-4 and the Clinical Parameters of Patients with Heart Failure. Int Heart J 2018; 59:1303-1311. [PMID: 30369565 DOI: 10.1536/ihj.17-547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are widely used as antidiabetic drugs. We recently reported that DPP-4 inhibition has beneficial effects on heart failure (HF) mice model. Furthermore, we confirmed that myocardial DPP-4 activity was significantly increased in HF mice compared with non-HF mice. The aim of this study was to investigate the level of myocardial CD26 (DPP-4) expression and its association to clinical parameters in HF patients.Endomyocardial biopsy (EMB) specimens (n = 33) were obtained from HF patients who were admitted to Chiba University Hospital from June 2006 to July 2012. EMB specimens were fixed in formaldehyde and stained with Masson's trichrome staining or with anti-CD26 antibody. Patients were divided into the high CD26 density (CD26-H) or low CD26 density groups (CD26-L). DPP-4 density was compared with blood brain natriuretic peptide (BNP) level and echocardiographic parameters at one year after EMB. Although there were no significant differences in echocardiographic parameters between the CD26-H group and CD26-L group, blood BNP levels were higher in the CD26-H group than in the CD26-L group at one year after EMB. Multivariate regression analysis showed that CD26 density was also an independent determinant of blood BNP levels at one year after EMB.The level of myocardial CD26 expression might be a predictive marker of prognosis in patients with HF.
Collapse
Affiliation(s)
- Yuka Kobara
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine
| | - Hiroshi Hasegawa
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine
| | - Masanori Hirose
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine
| | - Hiroyuki Takano
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine
| |
Collapse
|
167
|
Manole CG, Marinescu BG, Marta D, Nicolescu MI. Areas of Cartilaginous and Osseous Metaplasia After Experimental Myocardial Infarction in Rats. Anat Rec (Hoboken) 2018; 302:947-953. [DOI: 10.1002/ar.24010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 09/03/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Catalin Gabriel Manole
- Animal Facility Department, “Victor Babeş” National Institute of Pathology 99‐101 Splaiul Independeţei, 050096 Bucharest Romania
- Histology Department, “Carol Davila” University of Medicine and Pharmacy 8 Eroilor Sanitari Blvd., 050474 Bucharest Romania
| | - Bogdan Gabriel Marinescu
- Animal Facility Department, “Victor Babeş” National Institute of Pathology 99‐101 Splaiul Independeţei, 050096 Bucharest Romania
- Faculty of Veterinary MedicineUniversity of Agronomic Sciences 59 Mărăşti Blvd., 011464 Bucharest Romania
| | - Daciana Marta
- Ultrastructural Pathology Department“Victor Babeş” National Institute of Pathology 99‐101 Splaiul Independenţei, 050096 Bucharest Romania
| | - Mihnea Ioan Nicolescu
- Histology Department, “Carol Davila” University of Medicine and Pharmacy 8 Eroilor Sanitari Blvd., 050474 Bucharest Romania
- Radiobiology Department“Victor Babeş” National Institute of Pathology 99‐101 Splaiul Independenţei, 050096 Bucharest Romania
| |
Collapse
|
168
|
Abraham DM, Lee TE, Watson LJ, Mao L, Chandok G, Wang HG, Frangakis S, Pitt GS, Shah SH, Wolf MJ, Rockman HA. The two-pore domain potassium channel TREK-1 mediates cardiac fibrosis and diastolic dysfunction. J Clin Invest 2018; 128:4843-4855. [PMID: 30153110 PMCID: PMC6205385 DOI: 10.1172/jci95945] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/23/2018] [Indexed: 01/08/2023] Open
Abstract
Cardiac two-pore domain potassium channels (K2P) exist in organisms from Drosophila to humans; however, their role in cardiac function is not known. We identified a K2P gene, CG8713 (sandman), in a Drosophila genetic screen and show that sandman is critical to cardiac function. Mice lacking an ortholog of sandman, TWIK-related potassium channel (TREK-1, also known Kcnk2), exhibit exaggerated pressure overload-induced concentric hypertrophy and alterations in fetal gene expression, yet retain preserved systolic and diastolic cardiac function. While cardiomyocyte-specific deletion of TREK-1 in response to in vivo pressure overload resulted in cardiac dysfunction, TREK-1 deletion in fibroblasts prevented deterioration in cardiac function. The absence of pressure overload-induced dysfunction in TREK-1-KO mice was associated with diminished cardiac fibrosis and reduced activation of JNK in cardiomyocytes and fibroblasts. These findings indicate a central role for cardiac fibroblast TREK-1 in the pathogenesis of pressure overload-induced cardiac dysfunction and serve as a conceptual basis for its inhibition as a potential therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Howard A Rockman
- Department of Medicine
- Department of Cell Biology, and
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
169
|
Saad NS, Elnakish MT, Ahmed AAE, Janssen PML. Protein Kinase A as a Promising Target for Heart Failure Drug Development. Arch Med Res 2018; 49:530-537. [PMID: 30642654 PMCID: PMC6451668 DOI: 10.1016/j.arcmed.2018.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/13/2018] [Indexed: 12/24/2022]
Abstract
Heart failure (HF) is a clinical syndrome characterized by impaired ability of the heart to fill or eject blood. HF is rather prevalent and it represents the foremost reason of hospitalization in the United States. The costs linked to HF overrun those of all other causes of disabilities, and death in the United States and all over the developed as well as the developing countries which amplify the supreme significance of its prevention. Protein kinase (PK) A plays multiple roles in heart functions including, contraction, metabolism, ion fluxes, and gene transcription. Altered PKA activity is likely to cause the progression to cardiomyopathy and HF. Thus, this review is intended to focus on the roles of PKA and PKA-mediated signal transduction in the healthy heart as well as during the development of HF. Furthermore, the impact of cardiac PKA inhibition/activation will be highlighted to identify PKA as a potential target for the HF drug development.
Collapse
Affiliation(s)
- Nancy S Saad
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mohammad T Elnakish
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Amany A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
170
|
Stowasser M, Ahmed AH, Cowley D, Wolley M, Guo Z, McWhinney BC, Ungerer JP, Gordon RD. Comparison of Seated With Recumbent Saline Suppression Testing for the Diagnosis of Primary Aldosteronism. J Clin Endocrinol Metab 2018; 103:4113-4124. [PMID: 30239841 DOI: 10.1210/jc.2018-01394] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/13/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT Failure of plasma aldosterone suppression during fludrocortisone suppression testing (FST) or saline suppression testing (SST) confirms primary aldosteronism (PA). Aldosterone is often higher upright than recumbent in PA; upright levels are used during FST. In a pilot study (24 patients with PA), seated saline suppression testing (SSST) was more sensitive than recumbent saline suppression testing (RSST). OBJECTIVE, DESIGN, AND PATIENTS The current validation study involved 100 patients who underwent FST, RSST, and SSST, eight before and after unilateral adrenalectomy. Of the 108 FSTs, 73 confirmed and 18 excluded PA. Four patients with inconclusive FST lateralized on adrenal venous sampling, making a total of 77 with PA. RESULTS The area under the receiver operating characteristic (ROC) curve was greater for SSST than RSST (0.96 vs. 0.80; P < 0.01). ROC analysis predicted optimal cutoff aldosterone levels of 162 pmol/L for SSST and 106 pmol/L for RSST. At these cutoffs, SSST showed high sensitivity for PA (87%) that markedly exceeded that for RSST (38%; P < 0.001) but similar specificity (94 vs. 94%; not significant). SSST was more sensitive than RSST in detecting both unilateral (n = 28, 93% vs. 68%, P < 0.05) and bilateral (n = 40, 85% vs. 20%, P < 0.001) forms of PA. Only three SSST (vs. 9 RSST and 17 FST) results were inconclusive. CONCLUSIONS SSST is highly sensitive and superior to RSST in identifying both unilateral and bilateral forms of PA and has a low rate of false positives and inconclusive results. It therefore offers a reliable and much less complicated and expensive alternative to FST for confirming PA.
Collapse
Affiliation(s)
- Michael Stowasser
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| | - Ashraf H Ahmed
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| | - Diane Cowley
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| | - Martin Wolley
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| | - Zeng Guo
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| | - Brett C McWhinney
- Department of Chemical Pathology, Pathology Queensland, Queensland Health, Brisbane, Australia
| | - Jacobus P Ungerer
- Department of Chemical Pathology, Pathology Queensland, Queensland Health, Brisbane, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Richard D Gordon
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| |
Collapse
|
171
|
Firoozmand LT, Sanches A, Damaceno-Rodrigues NR, Perez JD, Aragão DS, Rosa RM, Marcondes FK, Casarini DE, Caldini EG, Cunha TS. Blockade of AT1 type receptors for angiotensin II prevents cardiac microvascular fibrosis induced by chronic stress in Sprague-Dawley rats. Stress 2018; 21:484-493. [PMID: 29676198 DOI: 10.1080/10253890.2018.1462328] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To test the effects of chronic-stress on the cardiovascular system, the model of chronic mild unpredictable stress (CMS) has been widely used. The CMS protocol consists of the random, intermittent, and unpredictable exposure of laboratory animals to a variety of stressors, during 3 consecutive weeks. In this study, we tested the hypothesis that exposure to the CMS protocol leads to left ventricle microcirculatory remodeling that can be attenuated by angiotensin II receptor blockade. Male Sprague-Dawley rats were randomly assigned into four groups: Control, Stress, Control + losartan, and Stress + losartan (N = 6, each group, losartan: 20 mg/kg/day). The rats were euthanized 15 days after CMS exposure, and blood samples and left ventricle were collected. Rats submitted to CMS presented increased glycemia, corticosterone, noradrenaline and adrenaline concentration, and losartan reduced the concentration of the circulating amines. Cardiac angiotensin II, measured by high-performance liquid chromatography (HPLC), was significantly increased in the CMS group, and losartan treatment reduced it, while angiotensin 1-7 was significantly higher in the CMS losartan-treated group as compared with CMS. Histological analysis, verified by transmission electron microscopy, showed that rats exposed to CMS presented increased perivascular collagen and losartan effectively prevented the development of this process. Hence, CMS induced a state of microvascular disease, with increased perivascular collagen deposition, that may be the trigger for further development of cardiovascular disease. In this case, CMS fibrosis is associated with increased production of catecholamines and with a disruption of renin-angiotensin system balance, which can be prevented by angiotensin II receptor blockade.
Collapse
Affiliation(s)
| | - Andrea Sanches
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (FOP-UNICAMP), Piracicaba, Brazil
| | - Nilsa Regina Damaceno-Rodrigues
- Laboratory of Cell Biology (LIM59), Department of Pathology, School of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Juliana Dinéia Perez
- Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Rodolfo Mattar Rosa
- Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Fernanda Klein Marcondes
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (FOP-UNICAMP), Piracicaba, Brazil
| | - Dulce Elena Casarini
- Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Elia Garcia Caldini
- Laboratory of Cell Biology (LIM59), Department of Pathology, School of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Tatiana Sousa Cunha
- Institute of Science and Technology, Department of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, Brazil
| |
Collapse
|
172
|
Panahi M, Vadgama N, Kuganesan M, Ng FS, Sattler S. Immunopharmacology of Post-Myocardial Infarction and Heart Failure Medications. J Clin Med 2018; 7:E403. [PMID: 30384415 PMCID: PMC6262592 DOI: 10.3390/jcm7110403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022] Open
Abstract
The immune system responds to acute tissue damage after myocardial infarction (MI) and orchestrates healing and recovery of the heart. However, excessive inflammation may lead to additional tissue damage and fibrosis and exacerbate subsequent functional impairment, leading to heart failure. The appreciation of the immune system as a crucial factor after MI has led to a surge of clinical trials investigating the potential benefits of immunomodulatory agents previously used in hyper-inflammatory conditions, such as autoimmune disease. While the major goal of routine post-MI pharmacotherapy is to support heart function by ensuring appropriate blood pressure and cardiac output to meet the demands of the body, several drug classes also affect a range of immunological pathways and modulate the post-MI immune response, which is crucial to take into account when designing future immunomodulatory trials. This review outlines how routine post-MI pharmacotherapy affects the immune response and may thus influence post-MI outcomes and development towards heart failure. Current key drug classes are discussed, including platelet inhibitors, statins, β-blockers, and renin⁻angiotensin⁻aldosterone inhibitors.
Collapse
Affiliation(s)
- Mona Panahi
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Nimai Vadgama
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Mathun Kuganesan
- University College London Medical School, University College London, London WC1E 6BT, UK.
| | - Fu Siong Ng
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
173
|
Effects of mineralocorticoid receptor antagonists on left ventricular diastolic function, exercise capacity, and quality of life in heart failure with preserved ejection fraction: a meta-analysis of randomized controlled trials. Heart Vessels 2018; 34:597-606. [DOI: 10.1007/s00380-018-1279-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/05/2018] [Indexed: 10/28/2022]
|
174
|
Ma ZG, Yuan YP, Wu HM, Zhang X, Tang QZ. Cardiac fibrosis: new insights into the pathogenesis. Int J Biol Sci 2018; 14:1645-1657. [PMID: 30416379 PMCID: PMC6216032 DOI: 10.7150/ijbs.28103] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022] Open
Abstract
Cardiac fibrosis is defined as the imbalance of extracellular matrix (ECM) production and degradation, thus contributing to cardiac dysfunction in many cardiac pathophysiologic conditions. This review discusses specific markers and origin of cardiac fibroblasts (CFs), and the underlying mechanism involved in the development of cardiac fibrosis. Currently, there are no CFs-specific molecular markers. Most studies use co-labelling with panels of antibodies that can recognize CFs. Origin of fibroblasts is heterogeneous. After fibrotic stimuli, the levels of myocardial pro-fibrotic growth factors and cytokines are increased. These pro-fibrotic growth factors and cytokines bind to its receptors and then trigger the activation of signaling pathway and transcriptional factors via Smad-dependent or Smad independent-manners. These fibrosis-related transcriptional factors regulate gene expression that are involved in the fibrosis to amplify the fibrotic response. Understanding the mechanisms responsible for initiation, progression, and amplification of cardiac fibrosis are of great clinical significance to find drugs that can prevent the progression of cardiac fibrosis.
Collapse
Affiliation(s)
- Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| |
Collapse
|
175
|
Bayés-Genís A, Lupón J, Núñez J. No need for urgent revisiting of kalaemia levels in guidelines despite use of mineralocorticoid receptor antagonists: bring in more evidence. Eur J Heart Fail 2018; 20:1252-1254. [DOI: 10.1002/ejhf.1230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Antoni Bayés-Genís
- Heart Institute, Hospital Universitari Germans Trias i Pujol; Badalona Spain
- Department of Medicine, CIBERCV; Autonomous University of Barcelona; Barcelona Spain
| | - Josep Lupón
- Heart Institute, Hospital Universitari Germans Trias i Pujol; Badalona Spain
- Department of Medicine, CIBERCV; Autonomous University of Barcelona; Barcelona Spain
| | - Julio Núñez
- Heart Institute, Hospital Universitari Germans Trias i Pujol; Badalona Spain
- Department of Medicine, CIBERCV; Autonomous University of Barcelona; Barcelona Spain
| |
Collapse
|
176
|
Konta M, Nagakawa M, Sakatani A, Akabane R, Miyagawa Y, Takemura N. Evaluation of the inhibitory effects of telmisartan on drug-induced renin-angiotensin-aldosterone system activation in normal dogs. J Vet Cardiol 2018; 20:376-383. [PMID: 30126722 DOI: 10.1016/j.jvc.2018.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 01/06/2023]
Abstract
INTRODUCTION This study examined whether the angiotensin II receptor blocker telmisartan had inhibitory effects on drug-induced renin-angiotensin-aldosterone system (RAAS) activation in normal dogs. ANIMALS Five healthy laboratory beagles were used in this study. METHODS Each dog received amlodipine (0.5 mg/kg, q12h, PO) alone for 14 days. Starting on the next day, animals received both amlodipine and telmisartan (1.0 mg/kg, q24h, PO) for 84 days. Systolic blood pressure, heart rate, plasma biochemical variables (blood urea nitrogen, creatinine, and electrolytes), plasma renin activity, and 24-h urinary aldosterone elimination (U-Aldo) were measured before amlodipine administration; at day 0; and at days 1, 7, 14, 28, 56, and 84 of telmisartan treatment. RESULTS Telmisartan was associated with significant decreases in systolic blood pressure on day 56 (p=0.046), whereas heart rate did not significantly change during this treatment (p=0.061). Plasma renin activity was significantly increased on days 1, 7, 28, 56, and 84 during telmisartan administration (all p=0.04). No change in median U-Aldo was detected following telmisartan administration (p=0.241). When U-Aldo was evaluated in individual animals, two dogs displayed evidence of aldosterone breakthrough. CONCLUSIONS Telmisartan administration did not suppress RAAS activation. The appearance of aldosterone breakthrough supports the incomplete blockade of RAAS activation.
Collapse
Affiliation(s)
- M Konta
- Laboratory of Veterinary Internal Medicine II, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - M Nagakawa
- Laboratory of Veterinary Internal Medicine II, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - A Sakatani
- Laboratory of Veterinary Internal Medicine II, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan.
| | - R Akabane
- Laboratory of Veterinary Internal Medicine II, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Y Miyagawa
- Laboratory of Veterinary Internal Medicine II, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - N Takemura
- Laboratory of Veterinary Internal Medicine II, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| |
Collapse
|
177
|
Jonsson A, Norberg H, Bergdahl E, Lindmark K. Obstacles to mineralocorticoid receptor antagonists in a community-based heart failure population. Cardiovasc Ther 2018; 36:e12459. [PMID: 30019390 PMCID: PMC6175311 DOI: 10.1111/1755-5922.12459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/20/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
AIM Previous studies and national assessments indicate an undertreatment of mineralocorticoid receptor antagonists (MRA) in heart failure with reduced ejection fraction (HFrEF). This study aimed to investigate why MRA is not used to full extent. METHODS A complete community-based heart failure population was studied. Several variables were collected, and medical records were scrutinized to identify reasons for not prescribing MRA. RESULTS Of 2029 patients, 812 had EF ≤40%. Five hundred and fifty-three patients (68%) tried MRA at some point but 184 of these (33%) discontinued therapy. There were 259 patients that never tried MRA with 177 with a listed explanation or contraindication. Eighty-two patients, 10% of the total HFrEF population, had no clear contraindications. They were older and had less HF hospitalizations compared to patients on MRA (P < 0.05) and 32% did not have any follow-up at the cardiology clinic. Contraindications to MRA were renal dysfunction (93 patients), hypotension (28 patients), and hyperkalemia (25 patients). Only six patients had hyperkalemia without renal dysfunction. Of the patients with renal dysfunction, 66 (72%) had eGFR >30 mL/min. CONCLUSIONS The reasons why MRA are underutilized were mainly because of contraindications. However, the data suggest that physicians are overly cautious about moderately reduced kidney function. There seems to be a 10%-18% avoidable undertreatment with MRA, especially for elderly patients that are admitted to the hospital for other reasons than heart failure. This suggests that patients with heart failure would benefit from routine follow-up at a cardiology clinic.
Collapse
Affiliation(s)
- Anna Jonsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Helena Norberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.,Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Ellinor Bergdahl
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Krister Lindmark
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
178
|
El-Rewaidy H, Nezafat M, Jang J, Nakamori S, Fahmy AS, Nezafat R. Nonrigid active shape model-based registration framework for motion correction of cardiac T 1 mapping. Magn Reson Med 2018; 80:780-791. [PMID: 29314198 PMCID: PMC5941305 DOI: 10.1002/mrm.27068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 01/23/2023]
Abstract
PURPOSE Accurate reconstruction of myocardial T1 maps from a series of T1 -weighted images consists of cardiac motions induced from breathing and diaphragmatic drifts. We propose and evaluate a new framework based on active shape models to correct for motion in myocardial T1 maps. METHODS Multiple appearance models were built at different inversion time intervals to model the blood-myocardium contrast and brightness changes during the longitudinal relaxation. Myocardial inner and outer borders were automatically segmented using the built models, and the extracted contours were used to register the T1 -weighted images. Data acquired from 210 patients using a free-breathing acquisition protocol were used to train and evaluate the proposed framework. Two independent readers evaluated the quality of the T1 maps before and after correction using a four-point score. The mean absolute distance and Dice index were used to validate the registration process. RESULTS The testing data set from 180 patients at 5 short axial slices showed a significant decrease of mean absolute distance (from 3.3 ± 1.6 to 2.3 ± 0.8 mm, P < 0.001) and increase of Dice (from 0.89 ± 0.08 to 0.94 ± 0.4%, P < 0.001) before and after correction, respectively. The T1 map quality improved in 70 ± 0.3% of the motion-affected maps after correction. Motion-corrupted segments of the myocardium reduced from 21.8 to 8.5% (P < 0.001) after correction. CONCLUSION The proposed method for nonrigid registration of T1 -weighted images allows T1 measurements in more myocardial segments by reducing motion-induced T1 estimation errors in myocardial segments. Magn Reson Med 80:780-791, 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Hossam El-Rewaidy
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Maryam Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
- Division of Imaging Sciences & Biomedical Engineering, King’s College London, London, UK
| | - Jihye Jang
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
- Department of Computer Science, Technical University of Munich, Munich, Germany
| | - Shiro Nakamori
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Ahmed S. Fahmy
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
- Systems and Biomedical Engineering, Cairo University, Giza, Egypt
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
179
|
Rodrigues JA, Prímola-Gomes TN, Soares LL, Leal TF, Nóbrega C, Pedrosa DL, Rezende LMT, de Oliveira EM, Natali AJ. Physical Exercise and Regulation of Intracellular Calcium in Cardiomyocytes of Hypertensive Rats. Arq Bras Cardiol 2018; 111:172-179. [PMID: 29972415 PMCID: PMC6122899 DOI: 10.5935/abc.20180113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/15/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Regulation of intracellular calcium (Ca2+) in cardiomyocytes is altered by hypertension; and aerobic exercise brings benefits to hypertensive individuals. OBJECTIVE To verify the effects of aerobic exercise training on contractility and intracellular calcium (Ca2+) transients of cardiomyocytes and on the expression of microRNA 214 (miR-214) in the left ventricle of spontaneously hypertensive rats (SHR). METHODS SHR and normotensive Wistar rats of 16 weeks were divided into 4 groups -sedentary hypertensive (SH); trained hypertensive (TH); sedentary normotensive (SN); and trained normotensive (TN). Animals of the TH and TN groups were subjected to treadmill running program, 5 days/week, 1 hour/day at 60-70% of maximum running velocity for 8 weeks. We adopted a p ≤ 0.05 as significance level for all comparisons. RESULTS Exercise training reduced systolic arterial pressure in hypertensive rats. In normotensive rats, exercise training reduced the time to 50% cell relaxation and the time to peak contraction and increased the time to 50% decay of the intracellular Ca2+ transients. In SHR, exercise increased the amplitude and reduced the time to 50% decay of Ca2+ transients. Exercise training increased the expression of miR-214 in hypertensive rats only. CONCLUSION The aerobic training applied in this study increased the availability of intracellular Ca2+ and accelerated the sequestration of these ions in left ventricular myocytes of hypertensive rats, despite increased expression of miR-214 and maintenance of cell contractility.
Collapse
Affiliation(s)
| | | | | | | | - Clara Nóbrega
- Universidade de São Paulo (USP), São Paulo, SP -
Brazil
| | | | | | | | | |
Collapse
|
180
|
Jenke A, Schur R, Röger C, Karadeniz Z, Grüger M, Holzhauser L, Savvatis K, Poller W, Schultheiss HP, Landmesser U, Skurk C. Adiponectin attenuates profibrotic extracellular matrix remodeling following cardiac injury by up-regulating matrix metalloproteinase 9 expression in mice. Physiol Rep 2018; 5:5/24/e13523. [PMID: 29263115 PMCID: PMC5742698 DOI: 10.14814/phy2.13523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/05/2017] [Indexed: 01/25/2023] Open
Abstract
Adiponectin (APN) is a multifunctional adipocytokine that inhibits myocardial fibrosis, dilatation, and left ventricular (LV) dysfunction after myocardial infarction (MI). Coxsackievirus B3 (CVB3) myocarditis is associated with intense extracellular matrix (ECM) remodeling which might progress to dilated cardiomyopathy. Here, we investigated in experimental CVB3 myocarditis whether APN inhibits adverse ECM remodeling following cardiac injury by affecting matrix metalloproteinase (MMP) expression. Cardiac injury was induced by CVB3 infection in APN knockout (APN-KO) and wild-type (WT) mice. Expression and activity of MMPs was quantified by qRT-PCR and zymography, respectively. Activation of protein kinases was assessed by immunoblot. In cardiac myocytes and fibroblasts APN up-regulates MMP-9 expression via activation of 5' adenosine monophosphate-activated protein kinase (AMPK) and extracellular signal-regulated kinase (ERK)1/2 which function as master regulators of inflammation-induced MMP-9 expression. Correspondingly, APN further increased up-regulation of MMP-9 expression triggered by tumor necrosis factor (TNF)α, lipopolysaccharide (LPS) and R-848 in cardiac fibroblasts. In vivo, compared to WT mice cardiac MMP-9 activity and serum levels of carboxy-terminal telopeptide of type I collagen (ICTP) were attenuated in APN-KO mice in subacute (day 7 p.i.) CVB3 myocarditis. Moreover, on day 3 and day 7 post CVB3 infection splenic MMP-9 expression was diminished in APN-KO mice correlating with attenuated myocardial immune cell infiltration in subacute CVB3 myocarditis. These results indicate that APN attenuates adverse cardiac remodeling following cardiac injury by up-regulating MMP-9 expression in cardiac and immune cells. Thus, APN mediates intensified collagen cleavage that might explain inhibition of LV fibrosis and dysfunction.
Collapse
Affiliation(s)
- Alexander Jenke
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Robert Schur
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Carsten Röger
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Zehra Karadeniz
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Mathias Grüger
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Luise Holzhauser
- Department of Internal Medicine, Albert-Einstein College of Medicine, Bronx, New York
| | - Kostas Savvatis
- Department of Cardiology, Barts Heart Centre Barts Health NHS Trust, London, United Kingdom
| | - Wolfgang Poller
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Heinz-Peter Schultheiss
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Carsten Skurk
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
181
|
Prognostic value of T1 mapping and extracellular volume fraction in cardiovascular disease: a systematic review and meta-analysis. Heart Fail Rev 2018; 23:723-731. [DOI: 10.1007/s10741-018-9718-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
182
|
Uchinaka A, Yoshida M, Tanaka K, Hamada Y, Mori S, Maeno Y, Miyagawa S, Sawa Y, Nagata K, Yamamoto H, Kawaguchi N. Overexpression of collagen type III in injured myocardium prevents cardiac systolic dysfunction by changing the balance of collagen distribution. J Thorac Cardiovasc Surg 2018; 156:217-226.e3. [DOI: 10.1016/j.jtcvs.2018.01.097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 11/29/2022]
|
183
|
Kim PK, Hong YJ, Sakuma H, Chawla A, Park JK, Park CH, Hong D, Han K, Lee JY, Hur J, Lee HJ, Kim YJ, Suh YJ, Choi BW. Myocardial Extracellular Volume Fraction and Change in Hematocrit Level: MR Evaluation by Using T1 Mapping in an Experimental Model of Anemia. Radiology 2018; 288:93-98. [DOI: 10.1148/radiol.2018171342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
184
|
Lee H, Park JB, Yoon YE, Park EA, Kim HK, Lee W, Kim YJ, Cho GY, Sohn DW, Greiser A, Lee SP. Noncontrast Myocardial T1 Mapping by Cardiac Magnetic Resonance Predicts Outcome in Patients With Aortic Stenosis. JACC Cardiovasc Imaging 2018; 11:974-983. [DOI: 10.1016/j.jcmg.2017.09.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/06/2017] [Accepted: 09/14/2017] [Indexed: 12/30/2022]
|
185
|
Kang JG, Chang Y, Sung KC, Kim JY, Shin H, Ryu S. Association of isolated minor nonspecific ST-T abnormalities with left ventricular hypertrophy and diastolic dysfunction. Sci Rep 2018; 8:8791. [PMID: 29884788 PMCID: PMC5993779 DOI: 10.1038/s41598-018-27028-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/17/2018] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to examine the associations of isolated minor nonspecific ST-T abnormalities (NSSTTA) on 12-lead electrocardiogram (ECG) with left ventricular (LV) diastolic function and LV geometry on echocardiography. A cross-sectional study comprised of 74,976 Koreans who underwent ECG and echocardiography as part of a comprehensive health examination between March 2011 and December 2014. ECG was coded using Minnesota Code criteria. The frequencies of NSSTTA, impaired LV relaxation, and echocardiographic LVH were 1,139 (1.5%), 21,118 (28.2%), and 1,687 (2.3%) patients, respectively. The presence of NSSTTA was positively associated with the prevalence of impaired LV relaxation and LVH on echocardiography. In a multivariable-adjusted model, the odds ratio (95% CIs) comparing patients with NSSTTA to control patients was 1.55 (1.33-1.80) for impaired LV relaxation and 3.15 (2.51-3.96) for echocardiographic LVH. The association between NSSTTA and impaired LV relaxation was stronger in the intermediate to high cardiovascular disease-risk group than in the low-risk group according to Framingham Risk Score stratification (P for interaction = 0.02). NSSTTA were associated with increased prevalence of impaired LV relaxation and LVH, suggesting NSSTTA as an early indicator of subclinical cardiac dysfunction and geometric abnormalities.
Collapse
Affiliation(s)
- Jeong Gyu Kang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, South Korea
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, South Korea.
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, South Korea.
- Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| | - Ki-Chul Sung
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jang-Young Kim
- Departments of Cardiology, Wonju College of Medicine, Yonsei University, Wonju, South Korea
- Institute of Genomic Cohort, Wonju College of Medicine, Yonsei University, Wonju, South Korea
| | - Hocheol Shin
- Department of Family Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, South Korea.
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, South Korea.
- Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
186
|
Frangogiannis NG. Fibroblasts and the extracellular matrix in right ventricular disease. Cardiovasc Res 2018; 113:1453-1464. [PMID: 28957531 DOI: 10.1093/cvr/cvx146] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022] Open
Abstract
Right ventricular failure predicts adverse outcome in patients with pulmonary hypertension (PH), and in subjects with left ventricular heart failure and is associated with interstitial fibrosis. This review manuscript discusses the cellular effectors and molecular mechanisms implicated in right ventricular fibrosis. The right ventricular interstitium contains vascular cells, fibroblasts, and immune cells, enmeshed in a collagen-based matrix. Right ventricular pressure overload in PH is associated with the expansion of the fibroblast population, myofibroblast activation, and secretion of extracellular matrix proteins. Mechanosensitive transduction of adrenergic signalling and stimulation of the renin-angiotensin-aldosterone cascade trigger the activation of right ventricular fibroblasts. Inflammatory cytokines and chemokines may contribute to expansion and activation of macrophages that may serve as a source of fibrogenic growth factors, such as transforming growth factor (TGF)-β. Endothelin-1, TGF-βs, and matricellular proteins co-operate to activate cardiac myofibroblasts, and promote synthesis of matrix proteins. In comparison with the left ventricle, the RV tolerates well volume overload and ischemia; whether the right ventricular interstitial cells and matrix are implicated in these favourable responses remains unknown. Expansion of fibroblasts and extracellular matrix protein deposition are prominent features of arrhythmogenic right ventricular cardiomyopathies and may be implicated in the pathogenesis of arrhythmic events. Prevailing conceptual paradigms on right ventricular remodelling are based on extrapolation of findings in models of left ventricular injury. Considering the unique embryologic, morphological, and physiologic properties of the RV and the clinical significance of right ventricular failure, there is a need further to dissect RV-specific mechanisms of fibrosis and interstitial remodelling.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer G46B Bronx, 10461 NY, USA
| |
Collapse
|
187
|
Effects of the cardiac myosin activator Omecamtiv-mecarbil on severe chronic aortic regurgitation in Wistar rats. BMC Cardiovasc Disord 2018; 18:99. [PMID: 29783950 PMCID: PMC5963065 DOI: 10.1186/s12872-018-0831-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/07/2018] [Indexed: 01/10/2023] Open
Abstract
Background Aortic regurgitation (AR) is a valvular disease that can lead to systolic heart failure. Treatment options besides cardiac surgery are limited and consequently severe AR is associated with higher mortality and morbidity when not operated. In this investigation, we examined the effects of a novel cardiac myosin activator, Omecamtiv-mecarbil (OM), in rats with chronic severe AR. Methods AR was created by retrograde puncture of the aortic valve leaflets in 20 adults Wistar rats. 12 animals survived the acute AR phase and were randomized 2 months thereafter into OM (n = 7) or placebo groups (n = 5). Two rats underwent a sham operation and served as controls. Equal volumes of OM or placebo (NaCl 0.9%) were perfused in the femoral vein by continuous infusion (1.2 mg/kg/hour) during 30 min. Doppler-echocardiography was performed before and at the end of the infusion periods. Results OM increased indices of global cardiac function (cardiac output, stroke volume), and increased systolic performance (fractional shortening, ejection fraction, left ventricular end systolic diameter) (all p < 0.05). These effects concurred with decreases in indices of LV preload (left atrial size, left ventricular end diastolic diameter) as well in the aortic pre-ejection period / left ventricular ejection time ratio (all p < 0.05). The severity score of the regurgitant AR jet did not change. Placebo infusion did not affect these parameters. Conclusion The cardiac myosin activator OM exerts favorable hemodynamic effects in rats with experimental chronic AR.
Collapse
|
188
|
Cardiac fibrosis can be attenuated by blocking the activity of transglutaminase 2 using a selective small-molecule inhibitor. Cell Death Dis 2018; 9:613. [PMID: 29795262 PMCID: PMC5966415 DOI: 10.1038/s41419-018-0573-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 12/31/2022]
Abstract
Cardiac fibrosis is implicit in all forms of heart disease but there are no effective treatments. In this report, we investigate the role of the multi-functional enzyme Transglutaminase 2 (TG2) in cardiac fibrosis and assess its potential as a therapeutic target. Here we describe the use a highly selective TG2 small-molecule inhibitor to test the efficacy of TG2 inhibition as an anti-fibrotic therapy for heart failure employing two different in vivo models of cardiac fibrosis: Progressively induced interstitial cardiac fibrosis by pressure overload using angiotensin II infusion: Acutely induced focal cardiac fibrosis through myocardial infarction by ligation of the left anterior descending coronary artery (AMI model). In the AMI model, in vivo MRI showed that the TG2 inhibitor 1–155 significantly reduced infarct size by over 50% and reduced post-infarct remodelling at 20 days post insult. In both models, Sirius red staining for collagen deposition and levels of the TG2-mediated protein crosslink ε(γ-glutamyl)lysine were significantly reduced. No cardiac rupture or obvious signs of toxicity were observed. To provide a molecular mechanism for TG2 involvement in cardiac fibrosis, we show that both TGFβ1-induced transition of cardiofibroblasts into myofibroblast-like cells and TGFβ1-induced EndMT, together with matrix deposition, can be attenuated by the TG2 selective inhibitor 1–155, suggesting a new role for TG2 in regulating TGFβ1 signalling in addition to its role in latent TGFβ1 activation. In conclusion, TG2 has a role in cardiac fibrosis through activation of myofibroblasts and matrix deposition. TG2 inhibition using a selective small-molecule inhibitor can attenuate cardiac fibrosis.
Collapse
|
189
|
Segers VFM, Brutsaert DL, De Keulenaer GW. Cardiac Remodeling: Endothelial Cells Have More to Say Than Just NO. Front Physiol 2018; 9:382. [PMID: 29695980 PMCID: PMC5904256 DOI: 10.3389/fphys.2018.00382] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/28/2018] [Indexed: 12/12/2022] Open
Abstract
The heart is a highly structured organ consisting of different cell types, including myocytes, endothelial cells, fibroblasts, stem cells, and inflammatory cells. This pluricellularity provides the opportunity of intercellular communication within the organ, with subsequent optimization of its function. Intercellular cross-talk is indispensable during cardiac development, but also plays a substantial modulatory role in the normal and failing heart of adults. More specifically, factors secreted by cardiac microvascular endothelial cells modulate cardiac performance and either positively or negatively affect cardiac remodeling. The role of endothelium-derived small molecules and peptides—for instance NO or endothelin-1—has been extensively studied and is relatively well defined. However, endothelial cells also secrete numerous larger proteins. Information on the role of these proteins in the heart is scattered throughout the literature. In this review, we will link specific proteins that modulate cardiac contractility or cardiac remodeling to their expression by cardiac microvascular endothelial cells. The following proteins will be discussed: IL-6, periostin, tenascin-C, thrombospondin, follistatin-like 1, frizzled-related protein 3, IGF-1, CTGF, dickkopf-3, BMP-2 and−4, apelin, IL-1β, placental growth factor, LIF, WISP-1, midkine, and adrenomedullin. In the future, it is likely that some of these proteins can serve as markers of cardiac remodeling and that the concept of endothelial function and dysfunction might have to be redefined as we learn more about other factors secreted by ECs besides NO.
Collapse
Affiliation(s)
- Vincent F M Segers
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| | - Dirk L Brutsaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, Middelheim Hospital, Antwerp, Belgium
| |
Collapse
|
190
|
Abstract
Heart failure is a growing cardiovascular disease with significant epidemiological, clinical, and societal implications and represents a high unmet need. Strong efforts are currently underway by academic and industrial researchers to develop novel treatments for heart failure. Biomarkers play an important role in patient selection and monitoring in drug trials and in clinical management. The present review gives an overview of the role of available molecular, imaging, and device-derived digital biomarkers in heart failure drug development and highlights capabilities and limitations of biomarker use in this context.
Collapse
|
191
|
Krittanawong C, Kukin ML. Current Management and Future Directions of Heart Failure With Preserved Ejection Fraction: a Contemporary Review. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2018; 20:28. [PMID: 29557071 DOI: 10.1007/s11936-018-0623-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF), a complex and debilitating syndrome, is commonly seen in elderly populations. Exacerbation of HFpEF is among the most common reasons for hospital admission in the USA. The high rate of morbidity and mortality from this condition underscores the fact that HFpEF is heterogeneous, complex, and poorly characterized. Randomized, controlled trials have been very successful at identifying treatments for HF with reduced ejection fraction (HFrEF), but effective treatment options for HFpEF are lacking. Here, we discuss (1) the pathophysiology of HFpEF, (2) a standardized diagnostic and therapeutic approach, (3) a comparison of the management of recent guidelines, and (4) challenges and future directions for HFpEF management. The authors believe that it is important to identify new subtypes of HFpEF to better classify genotypes and phenotypes of HFpEF and to develop novel targeted therapies. It is our hypothesis that big data analytics will shine new light on unique HFpEF phenotypes that better respond to treatment modalities.
Collapse
Affiliation(s)
- Chayakrit Krittanawong
- Division of Cardiovascular Diseases, Icahn School of Medicine at Mount Sinai, Mount Sinai St. Luke's Hospital, Mount Sinai Heart, 1000 10th Ave, New York, NY, 10019, USA.
| | - Marrick L Kukin
- Division of Cardiovascular Diseases, Icahn School of Medicine at Mount Sinai, Mount Sinai St. Luke's Hospital, Mount Sinai Heart, 1000 10th Ave, New York, NY, 10019, USA
| |
Collapse
|
192
|
Extracellular volume fraction assessed using cardiovascular magnetic resonance can predict improvement in left ventricular ejection fraction in patients with dilated cardiomyopathy. Heart Vessels 2018; 33:1195-1203. [PMID: 29560528 DOI: 10.1007/s00380-018-1154-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/16/2018] [Indexed: 12/28/2022]
Abstract
T1 mapping using cardiac magnetic resonance (CMR) is useful for myocardial assessment. However, its prognostic value is not well defined. The aim of this study was to determine whether T1 mapping with CMR can predict reverse cardiac remodeling in patients with non-ischemic dilated cardiomyopathy (NIDCM). We also investigated the predictive prognostic value of T1 mapping with CMR in these patients. We included 33 patients with NIDCM admitted to Nippon Medical School Hospital between February 2012 and October 2015. All patients underwent CMR and echocardiography for clinical assessment within 1 month of admission (13 ± 16 days). Follow-up echocardiography was performed no sooner than 6 months after the initial echocardiogram (536 ± 304 days). We evaluated the correlations between native and post-contrast T1 values/extracellular volume fraction (ECV) and the difference in left ventricular ejection fraction (ΔLVEF) determined at baseline and follow-up echocardiography. No correlation was noted between ΔLVEF and native (p = 0.150, r = - 0.256) or post-contrast T1 values (p = 0.956, r = - 0.010). However, a significant and substantial correlation was found between ΔLVEF and ECV (p = 0.043, r = - 0.355). Four patients were hospitalized for heart failure (HF), but no cardiovascular-related deaths occurred over a median follow-up period of 34 months (interquartile range 25-49 months). Kaplan-Meier curves stratified by the median value of ECV were created. The higher ECV groups experienced a significantly higher incidence of HF-related hospitalization (p = 0.0159). ECV measured by CMR can predict improvements in LVEF in patients with NIDCM. In addition, ECV may be a predictive factor for HF-related hospitalization.
Collapse
|
193
|
Sharman JE, Boutouyrie P, Laurent S. Arterial (Aortic) Stiffness in Patients with Resistant Hypertension: from Assessment to Treatment. Curr Hypertens Rep 2018; 19:2. [PMID: 28091867 DOI: 10.1007/s11906-017-0704-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The purpose of the review is to examine whether measurement of aortic stiffness could be especially value-adding for risk stratification and treatment among patients with resistant hypertension (RH). RECENT FINDINGS Adverse arterial remodeling and increased aortic stiffness is associated with RH, and it may be of additional clinical benefit to measure aortic stiffness in these patients. However, there is insufficient evidence to determine whether aortic stiffness is excessively high relative to the level of blood pressure (BP) among people with RH. This issue needs resolution as it could help refine management decisions guided by aortic stiffness. If conventional antihypertensive therapy fails to lower BP in patients with RH, there is good rationale for effectiveness of spironolactone as add on therapy, and this should also improve aortic stiffness. Lifestyle intervention with exercise and diet should be additionally efficacious towards improving BP and aortic stiffness in patients with RH, but there is limited data in this patient population. For better characterization on the effects of BP treatment on aortic stiffness, measures of central aortic BP may help refine management decisions above and beyond conventional arm cuff BP. There is strong evidence to support the use of aortic stiffness as a tool to aid risk stratification in hypertension management. Although there is a theoretical basis for special additional benefit of measuring aortic stiffness in patients with RH (as distinct from uncomplicated hypertension), at this time, there is inadequate data available to make definitive conclusions and is an area for future investigation.
Collapse
Affiliation(s)
- James E Sharman
- Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, 7000, Australia.
| | - Pierre Boutouyrie
- Departments of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, Inserm UMR 970, University Paris Descartes, Paris, France
| | - Stéphane Laurent
- Departments of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, Inserm UMR 970, University Paris Descartes, Paris, France
| |
Collapse
|
194
|
Chen TH, Chen MR, Chen TY, Wu TC, Liu SW, Hsu CH, Liou GG, Kao YY, Dong GC, Chu PH, Liao JW, Lin KMC. Cardiac fibrosis in mouse expressing DsRed tetramers involves chronic autophagy and proteasome degradation insufficiency. Oncotarget 2018; 7:54274-54289. [PMID: 27494843 PMCID: PMC5342341 DOI: 10.18632/oncotarget.11026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/22/2016] [Indexed: 11/25/2022] Open
Abstract
Proteinopathy in the heart which often manifests excessive misfolded/aggregated proteins in cardiac myocytes can result in severe fibrosis and heart failure. Here we developed a mouse model, which transgenically express tetrameric DsRed, a red fluorescent protein (RFP), in an attempt to mimic the pathological mechanisms ofcardiac fibrosis. Whilst DsRed is expressed and forms aggregation in most mouse organs, certain pathological defects are specifically recapitulated in cardiac muscle cells including mitochondria damages, aggresome-like residual bodies, excessive ubiquitinated proteins, and the induction of autophagy. The proteinopathy and cellular injuries caused by DsRed aggregates may be due to impaired or overburdened ubiquitin-proteasome system and autophagy-lysosome systems. We further identified that DsRed can be ubiquitinated and associated with MuRF1, a muscle-specific E3 ligase. Concomitantly, an activation of NF-κB signaling and a strong TIMP1 induction were noted, suggesting that RFP-induced fibrosis was augmented by a skewed balance between TIMP1 and MMPs. Taken together, our study highlights the molecular consequences of uncontrolled protein aggregation leading to congestive heart failure, and provides novel insights into fibrosis formation that can be exploited for improved therapy.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Mei-Ru Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Tzu-Yin Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Tzu-Chin Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Shan-Wen Liu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan.,Institute of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Han Hsu
- Institute of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Gan-Guang Liou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Yu-Ying Kao
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Guo-Chung Dong
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Pao-Hsien Chu
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan
| | - Kurt Ming-Chao Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| |
Collapse
|
195
|
Millen AME, Woodiwiss AJ, Gomes M, Michel F, Norton GR. Systemic Angiotensinogen Concentrations Are Independently Associated With Left Ventricular Diastolic Function in a Community Sample. Am J Hypertens 2018; 31:212-219. [PMID: 28985347 DOI: 10.1093/ajh/hpx156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/16/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Left ventricular (LV) diastolic dysfunction characterizes heart failure with a preserved ejection fraction. Although it is recognized that the renin-angiotensin-aldosterone system (RAAS) decreases LV diastolic function, whether systemic angiotensinogen (AGT) contributes to these effects is uncertain. Hence, the aim was to determine the relationship between systemic AGT concentrations and LV diastolic function. METHODS LV diastolic function was determined from the mean of the lateral and septal wall myocardial tissue lengthening at the mitral annulus (average e') and from the ratio of early transmitral blood flow velocity (E) to average e' (E/e') in 445 Black African participants from a community sample. RESULTS In multivariate regression models with adjustments for age, sex, waist circumference diabetes mellitus, alcohol and tobacco use, hypertension treatment, systolic blood pressure (BP), and relative wall thickness, the square root of serum AGT concentrations was independently associated with E/e' (partial r (95% confidence interval [CI]) = 0.11 (0.02-0.21), P = 0.04), but not with average e' (partial r (95% CI) = -0.06 (-0.15 to 0.04), P = 0.25). There was no association between plasma renin concentrations and markers of diastolic function (all P > 0.05). CONCLUSION Circulating AGT concentrations are associated with LV diastolic function beyond BP and other confounders in an African population. Hence, through circulating AGT, the systemic RAAS may play an important role in contributing to LV diastolic function in Black Africans.
Collapse
Affiliation(s)
- Aletta M E Millen
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Angela J Woodiwiss
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Monica Gomes
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frederic Michel
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gavin R Norton
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
196
|
Sodhi SS, Zhang TJ, McDonald R, Al Rashida V, Kondapalli N, Barger P, Ludbrook P, Cedars AM. Effects of eplerenone on markers of myocardial fibrosis, 6-minute walk distance, and quality of life in adults with tetralogy of Fallot and complete transposition of the great arteries. Proc (Bayl Univ Med Cent) 2018; 31:12-19. [PMID: 29686545 DOI: 10.1080/08998280.2017.1396176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Ventricular dysfunction is common among patients with repaired cyanotic congenital heart disease. To date, no pharmacologic intervention has been demonstrated to be beneficial in this setting. To begin addressing this knowledge gap, we conducted a single-center prospective, randomized, open-label pilot study to investigate the effects of eplerenone on serologic markers of collagen turnover and inflammation, 6-minute walk distance, and quality of life in patients with tetralogy of Fallot (TOF) or transposition of the great arteries with a systemic right ventricle (transposition of the great arteries [TGA]). Patients were randomized to a 3-month drug-free period at the beginning of the treatment period or at the end. All patients received 12 months of eplerenone therapy during the treatment period. Twenty-six patients were enrolled in the trial; 17 completed the study protocol: 8 with TOF and 9 with TGV. Eplerenone had no effect on serum levels of procollagen 1 N-terminal peptide (PINP), procollagen 3 N-terminal peptide (PIIINP), or galectin-3 (G3). Similarly, eplerenone had no effect on 6-minute walk distance or quality of life. In conclusion, PINP and PIIINP levels are as high as or higher in patients with TOF and TGA than in patients with normal cardiac anatomy and heart failure, whereas G3 levels are lower. Eplerenone is well tolerated by adults born with congenital heart disease.
Collapse
Affiliation(s)
- Sandeep S Sodhi
- Department of Cardiology, Washington University School of Medicine, St. Louis, Missouri
| | - Tony J Zhang
- Department of Cardiology, Washington University School of Medicine, St. Louis, Missouri
| | - Rachel McDonald
- Department of Cardiology, Washington University School of Medicine, St. Louis, Missouri
| | - Vanessa Al Rashida
- Department of Cardiology, Washington University School of Medicine, St. Louis, Missouri
| | - Nitin Kondapalli
- Division of Cardiology, Baylor University Medical Center, Dallas, Texas
| | - Philip Barger
- Department of Cardiology, Washington University School of Medicine, St. Louis, Missouri
| | - Philip Ludbrook
- Department of Cardiology, Washington University School of Medicine, St. Louis, Missouri
| | - Ari M Cedars
- Division of Cardiology, Baylor University Medical Center, Dallas, Texas.,Division of Cardiology, Texas A&M College of Medicine, Bryan, Texas
| |
Collapse
|
197
|
Treatment of Heart Failure with Preserved Ejection Fraction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1067:67-87. [PMID: 29498023 DOI: 10.1007/5584_2018_149] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a growing epidemiologic problem affecting more than half of the patients with heart failure (HF). HFpEF has a significant morbidity and mortality and so far no treatment has been clearly demonstrated to improve the outcomes in HFpEF, in contrast to the efficacy of treatment in heart failure with reduced ejection fraction (HFrEF).The failure of proven beneficial drugs in HFrEF to influence the outcome of patients with HFpEF could be related to the heterogeneity of the disease, its various phenotypes and multifactorial pathophysiology, incompletely elucidated yet. The diagnosis of HFpEF could be demanding or even inaccurate. Moreover, the therapeutic strategies were influenced by different cut-offs used to define preserved ejection fraction (EF). From this perspective, the current guidelines have classified HFpEF by an EF ≥ 50%, together with a distinct entity, heart failure with mid-range ejection fraction (HFmrEF), defined by an EF ranging from 41-49%.New therapies have been developed to interfere with the mediator pathways of HFpEF at the cellular and molecular level, including mineralocorticoid receptor antagonists, soluble guanylate cyclase stimulators, or angiotensin receptor-neprilysin inhibitors. A number of antidiabetic drugs, such as sodium/glucose cotransporter 2 inhibitors and dipeptidyl peptidase-4 inhibitors are promising options, being under research in large clinical trials. Until the results of ongoing trials shed light on these therapies, guidelines recommend empirical treatment for established HFpEF, and emphasize the crucial role of addressing cardiovascular comorbidities leading to HFpEF, in particular arterial hypertension.
Collapse
|
198
|
Prado FP, dos Santos DO, Blefari V, Silva CA, Machado J, Kettelhut IDC, Ramos SG, Baruffi MD, Salgado HC, Prado CM. Early dystrophin loss is coincident with the transition of compensated cardiac hypertrophy to heart failure. PLoS One 2017; 12:e0189469. [PMID: 29267303 PMCID: PMC5739420 DOI: 10.1371/journal.pone.0189469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
Hypertension causes cardiac hypertrophy, one of the most important risk factors for heart failure (HF). Despite the importance of cardiac hypertrophy as a risk factor for the development of HF, not all hypertrophied hearts will ultimately fail. Alterations of cytoskeletal and sarcolemma-associated proteins are considered markers cardiac remodeling during HF. Dystrophin provides mechanical stability to the plasma membrane through its interactions with the actin cytoskeleton and, indirectly, to extracellular matrix proteins. This study was undertaken to evaluate dystrophin and calpain-1 in the transition from compensated cardiac hypertrophy to HF. Wistar rats were subjected to abdominal aorta constriction and killed at 30, 60 and 90 days post surgery (dps). Cardiac function and blood pressure were evaluated. The hearts were collected and Western blotting and immunofluorescence performed for dystrophin, calpain-1, alpha-fodrin and calpastatin. Statistical analyses were performed and considered significant when p<0.05. After 90 dps, 70% of the animals showed hypertrophic hearts (HH) and 30% hypertrophic+dilated hearts (HD). Systolic and diastolic functions were preserved at 30 and 60 dps, however, decreased in the HD group. Blood pressure, cardiomyocyte diameter and collagen content were increased at all time points. Dystrophin expression was lightly increased at 30 and 60 dps and HH group. HD group showed decreased expression of dystrophin and calpastatin and increased expression of calpain-1 and alpha-fodrin fragments. The first signals of dystrophin reduction were observed as early as 60 dps. In conclusion, some hearts present a distinct molecular pattern at an early stage of the disease; this pattern could provide an opportunity to identify these failure-prone hearts during the development of the cardiac disease. We showed that decreased expression of dystrophin and increased expression of calpains are coincident and could work as possible therapeutic targets to prevent heart failure as a consequence of cardiac hypertrophy.
Collapse
Affiliation(s)
- Fernanda P. Prado
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daniele O. dos Santos
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Valdecir Blefari
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos A. Silva
- Department of Phisiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juliano Machado
- Department of Biochemistry/Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isis do Carmo Kettelhut
- Department of Biochemistry/Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Simone G. Ramos
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcelo Dias Baruffi
- Department of Clinical Analysis, Toxicology and Food Science, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Helio C. Salgado
- Department of Phisiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cibele M. Prado
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- * E-mail:
| |
Collapse
|
199
|
Inoue M, Matsumura K, Haga Y, Kansui Y, Goto K, Ohtsubo T, Kitazono T. Role of renin–angiotensin aldosterone system on short-term blood pressure variability in hypertensive patients. Clin Exp Hypertens 2017; 40:624-630. [DOI: 10.1080/10641963.2017.1416119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Minako Inoue
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Matsumura
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshie Haga
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuo Kansui
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichi Goto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshio Ohtsubo
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
200
|
Haggerty CM, Suever JD, Pulenthiran A, Mejia-Spiegeler A, Wehner GJ, Jing L, Charnigo RJ, Fornwalt BK, Fogel MA. Association between left ventricular mechanics and diffuse myocardial fibrosis in patients with repaired Tetralogy of Fallot: a cross-sectional study. J Cardiovasc Magn Reson 2017; 19:100. [PMID: 29228952 PMCID: PMC5724335 DOI: 10.1186/s12968-017-0410-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 11/20/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Patients with repaired tetralogy of Fallot (TOF) have progressive, adverse biventricular remodeling, leading to abnormal contractile mechanics. Defining the mechanisms underlying this dysfunction, such as diffuse myocardial fibrosis, may provide insights into poor long-term outcomes. We hypothesized that left ventricular (LV) diffuse fibrosis is related to impaired LV mechanics. METHODS Patients with TOF were evaluated with cardiac magnetic resonance in which modified Look-Locker (MOLLI) T1-mapping and spiral cine Displacement encoding (DENSE) sequences were acquired at three LV short-axis positions. Linear mixed modeling was used to define the association between regional LV mechanics from DENSE based on regional T1-derived diffuse fibrosis measures, such as extracellular volume fraction (ECV). RESULTS Forty patients (26 ± 11 years) were included. LV ECV was generally within normal range (0.24 ± 0.05). For LV mechanics, peak circumferential strains (-15 ± 3%) and dyssynchrony indices (16 ± 8 ms) were moderately impaired, while peak radial strains (29 ± 8%) were generally normal. After adjusting for patient age, sex, and regional LV differences, ECV was associated with log-adjusted LV dyssynchrony index (β = 0.67) and peak LV radial strain (β = -0.36), but not LV circumferential strain. Moreover, post-contrast T1 was associated with log-adjusted LV diastolic circumferential strain rate (β = 0.37). CONCLUSIONS We observed several moderate associations between measures of fibrosis and impaired mechanics, particularly the LV dyssynchrony index and peak radial strain. Diffuse fibrosis may therefore be a causal factor in some ventricular dysfunction in TOF.
Collapse
Affiliation(s)
- Christopher M. Haggerty
- Department of Imaging Science and Innovation, Geisinger, 100 North Academy Avenue, Danville, PA 17822-4400 USA
- Biomedical and Translational Informatics Institute, Geisinger, Danville, PA USA
| | - Jonathan D. Suever
- Department of Imaging Science and Innovation, Geisinger, 100 North Academy Avenue, Danville, PA 17822-4400 USA
- Biomedical and Translational Informatics Institute, Geisinger, Danville, PA USA
| | - Arichanah Pulenthiran
- Department of Imaging Science and Innovation, Geisinger, 100 North Academy Avenue, Danville, PA 17822-4400 USA
- Biomedical and Translational Informatics Institute, Geisinger, Danville, PA USA
| | - Abba Mejia-Spiegeler
- Department of Imaging Science and Innovation, Geisinger, 100 North Academy Avenue, Danville, PA 17822-4400 USA
- Biomedical and Translational Informatics Institute, Geisinger, Danville, PA USA
| | - Gregory J. Wehner
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY USA
| | - Linyuan Jing
- Department of Imaging Science and Innovation, Geisinger, 100 North Academy Avenue, Danville, PA 17822-4400 USA
- Biomedical and Translational Informatics Institute, Geisinger, Danville, PA USA
| | | | - Brandon K. Fornwalt
- Department of Imaging Science and Innovation, Geisinger, 100 North Academy Avenue, Danville, PA 17822-4400 USA
- Biomedical and Translational Informatics Institute, Geisinger, Danville, PA USA
- Department of Radiology, Geisinger, Danville, PA USA
| | - Mark A. Fogel
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| |
Collapse
|