151
|
Voelkl J, Lang F, Eckardt KU, Amann K, Kuro-O M, Pasch A, Pieske B, Alesutan I. Signaling pathways involved in vascular smooth muscle cell calcification during hyperphosphatemia. Cell Mol Life Sci 2019; 76:2077-2091. [PMID: 30887097 PMCID: PMC6502780 DOI: 10.1007/s00018-019-03054-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
Medial vascular calcification has emerged as a putative key factor contributing to the excessive cardiovascular mortality of patients with chronic kidney disease (CKD). Hyperphosphatemia is considered a decisive determinant of vascular calcification in CKD. A critical role in initiation and progression of vascular calcification during elevated phosphate conditions is attributed to vascular smooth muscle cells (VSMCs), which are able to change their phenotype into osteo-/chondroblasts-like cells. These transdifferentiated VSMCs actively promote calcification in the medial layer of the arteries by producing a local pro-calcifying environment as well as nidus sites for precipitation of calcium and phosphate and growth of calcium phosphate crystals. Elevated extracellular phosphate induces osteo-/chondrogenic transdifferentiation of VSMCs through complex intracellular signaling pathways, which are still incompletely understood. The present review addresses critical intracellular pathways controlling osteo-/chondrogenic transdifferentiation of VSMCs and, thus, vascular calcification during hyperphosphatemia. Elucidating these pathways holds a significant promise to open novel therapeutic opportunities counteracting the progression of vascular calcification in CKD.
Collapse
MESH Headings
- Animals
- Calcium Phosphates/chemistry
- Calcium Phosphates/metabolism
- Cell Transdifferentiation
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Gene Expression Regulation
- Humans
- Hyperphosphatemia/complications
- Hyperphosphatemia/genetics
- Hyperphosphatemia/metabolism
- Hyperphosphatemia/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Osteoblasts/metabolism
- Osteoblasts/pathology
- RANK Ligand/genetics
- RANK Ligand/metabolism
- Receptor Activator of Nuclear Factor-kappa B/genetics
- Receptor Activator of Nuclear Factor-kappa B/metabolism
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
- Vascular Calcification/complications
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany.
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353, Berlin, Germany.
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University, Wilhelmstr. 56, 72076, Tübingen, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353, Berlin, Germany
| | - Kerstin Amann
- Department of Nephropathology, Universität Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Makoto Kuro-O
- Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Andreas Pasch
- Calciscon AG, Aarbergstrasse 5, 2560, Nidau-Biel, Switzerland
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Str. 2, 10178, Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Str. 2, 10178, Berlin, Germany
| |
Collapse
|
152
|
Pescatore LA, Gamarra LF, Liberman M. Multifaceted Mechanisms of Vascular Calcification in Aging. Arterioscler Thromb Vasc Biol 2019; 39:1307-1316. [PMID: 31144990 DOI: 10.1161/atvbaha.118.311576] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Approximately 20% of the world's population will be around or above 65 years of age by the next decade. Out of these, 40% are suspected to have cardiovascular diseases as a cause of mortality. Arteriosclerosis, characterized by increased vascular calcification, impairing Windkessel effect and tissue perfusion, and determining end-organ damage, is a hallmark of vascular pathology in the elderly population. Risk factors accumulated during aging affect the normal physiological and vascular aging process, which contributes to the progression of arteriosclerosis. Traditional risk factors, age-associated diseases, and respective regulating mechanisms influencing vascular calcification and vascular stiffness have been extensively studied for many years. Despite the well-known fact that aging alone can induce vascular damage, specific mechanisms that implicate physiological aging in vascular calcification, contributing to vascular stiffness, are poorly understood. This review focuses on mechanisms activated during normal aging, for example, cellular senescence, autophagy, extracellular vesicles secretion, and oxidative stress, along with the convergence of premature aging models' pathophysiology, such as Hutchinson-Gilford Progeria (prelamin accumulation) and Klotho deficiency, to understand vascular calcification in aging. Understanding the mechanisms of vascular damage in aging that intersect with age-associated diseases and risk factors is crucial to foster innovative therapeutic targets to mitigate cardiovascular disease. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Luciana A Pescatore
- From the Hospital Israelita Albert Einstein, São Paulo, SP, Brazil (L.A.P., L.F.G., M.L.).,Laboratório de Biologia Vascular, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil (L.A.P.)
| | - Lionel F Gamarra
- From the Hospital Israelita Albert Einstein, São Paulo, SP, Brazil (L.A.P., L.F.G., M.L.)
| | - Marcel Liberman
- From the Hospital Israelita Albert Einstein, São Paulo, SP, Brazil (L.A.P., L.F.G., M.L.)
| |
Collapse
|
153
|
Petsophonsakul P, Furmanik M, Forsythe R, Dweck M, Schurink GW, Natour E, Reutelingsperger C, Jacobs M, Mees B, Schurgers L. Role of Vascular Smooth Muscle Cell Phenotypic Switching and Calcification in Aortic Aneurysm Formation. Arterioscler Thromb Vasc Biol 2019; 39:1351-1368. [PMID: 31144989 DOI: 10.1161/atvbaha.119.312787] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aortic aneurysm is a vascular disease whereby the ECM (extracellular matrix) of a blood vessel degenerates, leading to dilation and eventually vessel wall rupture. Recently, it was shown that calcification of the vessel wall is involved in both the initiation and progression of aneurysms. Changes in aortic wall structure that lead to aneurysm formation and vascular calcification are actively mediated by vascular smooth muscle cells. Vascular smooth muscle cells in a healthy vessel wall are termed contractile as they maintain vascular tone and remain quiescent. However, in pathological conditions they can dedifferentiate into a synthetic phenotype, whereby they secrete extracellular vesicles, proliferate, and migrate to repair injury. This process is called phenotypic switching and is often the first step in vascular pathology. Additionally, healthy vascular smooth muscle cells synthesize VKDPs (vitamin K-dependent proteins), which are involved in inhibition of vascular calcification. The metabolism of these proteins is known to be disrupted in vascular pathologies. In this review, we summarize the current literature on vascular smooth muscle cell phenotypic switching and vascular calcification in relation to aneurysm. Moreover, we address the role of vitamin K and VKDPs that are involved in vascular calcification and aneurysm. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Ploingarm Petsophonsakul
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (P.P., M.F., C.R., L.S.)
| | - Malgorzata Furmanik
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (P.P., M.F., C.R., L.S.)
| | - Rachael Forsythe
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (R.F., M.D.)
| | - Marc Dweck
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (R.F., M.D.)
| | - Geert Willem Schurink
- Department of Vascular Surgery (G.W.S., M.J., B.M.), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Ehsan Natour
- Department of Cardiovascular Surgery (E.N.), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands.,European Vascular Center Aachen-Maastricht, Maastricht, the Netherlands (E.N., M.J., B.M.)
| | - Chris Reutelingsperger
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (P.P., M.F., C.R., L.S.)
| | - Michael Jacobs
- Department of Vascular Surgery (G.W.S., M.J., B.M.), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands.,European Vascular Center Aachen-Maastricht, Maastricht, the Netherlands (E.N., M.J., B.M.)
| | - Barend Mees
- Department of Vascular Surgery (G.W.S., M.J., B.M.), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands.,European Vascular Center Aachen-Maastricht, Maastricht, the Netherlands (E.N., M.J., B.M.)
| | - Leon Schurgers
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (P.P., M.F., C.R., L.S.)
| |
Collapse
|
154
|
Wang Y, Xie Y, Zhang A, Wang M, Fang Z, Zhang J. Exosomes: An emerging factor in atherosclerosis. Biomed Pharmacother 2019; 115:108951. [PMID: 31078042 DOI: 10.1016/j.biopha.2019.108951] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is the main reason for morbidity and death caused by cardiovascular disease which leads to approximately 20% of total death around the world. Exosomes secreted by the cells is a kind of extracellular vesicles with lipid bilayer structure, containing a variety of cell specific lipid, nucleic acid and protein, involved in intercellular communication, plays an important role in different physiological and pathological process. In recent years, with the deepening of research, the role of exosomes in cardiovascular diseases has received extensive attention. This review summarizes the roles of exosomes and exosome-derived from microRNAs, proteins and DNA as biomarkers in the development of atherosclerosis, and explores the mechanism of exosome-mediated intercellular crosstalk in atherosclerosis, providing potential roles for diagnosis and treatment.
Collapse
Affiliation(s)
- Yanan Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, 312 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
| | - Yingyu Xie
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, 312 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
| | - Ao Zhang
- 726 broadway, Epidemiology, College of global public health, New York University, New York, 10003, United States
| | - Mingyang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, 312 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
| | - Zihan Fang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, 312 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China.
| |
Collapse
|
155
|
Vitamin K2-Dependent GGCX and MGP Are Required for Homeostatic Calcium Regulation of Sperm Maturation. iScience 2019; 14:210-225. [PMID: 30981116 PMCID: PMC6461585 DOI: 10.1016/j.isci.2019.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/12/2019] [Accepted: 03/26/2019] [Indexed: 01/05/2023] Open
Abstract
A low-calcium microenvironment is essential for spermatozoa to mature in the epididymis; however, it remains unclear how dysregulation of epididymal luminal calcium is associated with male infertility. Using a warfarin-induced vitamin K2 deficiency rat model, we found that vitamin-K-dependent γ-glutamyl carboxylase (GGCX) and matrix Gla protein (MGP) were essential in extracellular calcium signaling of the intercellular communication required for epididymal sperm maturation. We found that GGCX and MGP co-localized in the vesicular structures of epididymal cells and spermatozoa. Calcium-regulated MGP binds to proteins in a biphasic manner; sub-millimolar calcium enhances, whereas excessive calcium inhibits, the binding. Bioinformatic analysis of the calcium-dependent MGP-bound proteome revealed that vesicle-mediated transport and membrane trafficking underlie the intercellular communication networks. We also identified an SNP mutation, rs699664, in the GGCX gene of infertile men with asthenozoospermia. Overall, we revealed that the GGCX-MGP system is integrated with the intercellular calcium signaling to promote sperm maturation. Epididymal sperm maturation requires VK2-dependent GGCX-mediated MGP carboxylation A GGCX SNP mutation is found in infertile men suffering from asthenozoospermia Carboxylated-MGP regulates intercellular calcium signaling in the epididymal lumen Calcium-regulated MGP binds to proteins in a biphasic-manner and favors low levels
Collapse
|
156
|
Calcium-Binding Nanoparticles for Vascular Disease. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-018-0083-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
157
|
Chin DD, Chowdhuri S, Chung EJ. Calcium-binding nanoparticles for vascular disease. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019; 5:74-85. [PMID: 31106257 PMCID: PMC6516760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cardiovascular disease (CVD) including atherosclerosis is the leading cause of death worldwide. As CVDs and atherosclerosis develop, plaques begin to form in the blood vessels and become calcified. Calcification within the vasculature and atherosclerotic plaques have been correlated with rupture and consequently, acute myocardial infarction. However, current imaging methods to identify vascular calcification have limitations in determining plaque composition and structure. Nanoparticles can overcome these limitations due to their versatility and ability to incorporate a wide range of targeting and contrast agents. In this review, we summarize the current understanding of calcification in atherosclerosis, their role in instigating plaque instability, and clinical methodologies to detect and analyze vascular calcification. In addition, we highlight the potential of calcium-targeting ligands and nanoparticles to create novel calcium-detecting tools.
Collapse
Affiliation(s)
- Deborah D. Chin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sampreeti Chowdhuri
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
158
|
Malloci M, Perdomo L, Veerasamy M, Andriantsitohaina R, Simard G, Martínez MC. Extracellular Vesicles: Mechanisms in Human Health and Disease. Antioxid Redox Signal 2019; 30:813-856. [PMID: 29634347 DOI: 10.1089/ars.2017.7265] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Secreted extracellular vesicles (EVs) are now considered veritable entities for diagnosis, prognosis, and therapeutics. These structures are able to interact with target cells and modify their phenotype and function. Recent Advances: Since composition of EVs depends on the cell type of origin and the stimulation that leads to their release, the analysis of EV content remains an important input to understand the potential effects of EVs on target cells. CRITICAL ISSUES Here, we review recent data related to the mechanisms involved in the formation of EVs and the methods allowing specific EV isolation and identification. Also, we analyze the potential use of EVs as biomarkers in different pathologies such as diabetes, obesity, atherosclerosis, neurodegenerative diseases, and cancer. Besides, their role in these diseases is discussed. Finally, we consider EVs enriched in microRNA or drugs as potential therapeutic cargo able to deliver desirable information to target cells/tissues. FUTURE DIRECTIONS We underline the importance of the homogenization of the parameters of isolation of EVs and their characterization, which allow considering EVs as excellent biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Marine Malloci
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Liliana Perdomo
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Maëva Veerasamy
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Ramaroson Andriantsitohaina
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - Gilles Simard
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - M Carmen Martínez
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| |
Collapse
|
159
|
Recent Advances on Relationship Between Inorganic Phosphate and Pathologic Calcification: Is Calcification After Breast Augmentation with Fat Grafting Correlated with Locally Increased Concentration of Inorganic Phosphate? Aesthetic Plast Surg 2019; 43:243-252. [PMID: 30552471 DOI: 10.1007/s00266-018-1285-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/24/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Pathologic calcification has frequently occurred after breast augmentation with fat grafting as well as other conditions such as breast cancer, trauma, myocardial infarction, arteriosclerosis and even after reduction mammoplasty. Inorganic phosphate, correlated with fat metabolism, is an important factor that induces pathologic calcification such as vascular calcification. METHODS A literature search was conducted using PubMed with the keywords: calcification, inorganic phosphate, fat. Studies related to the process of pathologic calcification, correlation between inorganic phosphate and pathologic calcification, between inorganic phosphate and fat metabolism in pathologic calcification were collected. RESULTS Various mechanisms were referred to in pathologic calcification among which inorganic phosphate played an important role. Inorganic phosphate could be liberated, under the effect of various enzymes, in the process of fat metabolism. The authors hypothesized that a large-scale necrotizing zone, which could occur in fat grafting with large amounts per cannula, might provide a high-phosphate environment which might contribute to differentiation of surrounding cells such as stem cells or regenerated vessel cells into osteoblast-like cells that induce pathologic calcification. CONCLUSION Inorganic phosphate, which was correlated with fat metabolism, played a significant role in pathologic calcification. We firstly hypothesize that calcification after fat grafting may be related to locally increasing concentrations of phosphate in a necrotizing zone. Further research should be conducted to verify this hypothesis. LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
160
|
Zelt JG, Svajger BA, Quinn K, Turner ME, Laverty KJ, Shum B, Holden RM, Adams MA. Acute Tissue Mineral Deposition in Response to a Phosphate Pulse in Experimental CKD. J Bone Miner Res 2019; 34:270-281. [PMID: 30216554 DOI: 10.1002/jbmr.3572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/29/2018] [Accepted: 08/08/2018] [Indexed: 12/28/2022]
Abstract
Pathogenic accumulation of calcium (Ca) and phosphate (PO4 ) in vasculature is a sentinel of advancing cardiovascular disease in chronic kidney disease (CKD). This study sought to characterize acute distribution patterns of radiolabeled 33 PO4 and 45 Ca in cardiovascular tissues of rats with CKD (0.25% dietary adenine). The disposition of 33 PO4 and 45 Ca was assessed in blood and 36 tissues after a 10-minute intravenous infusion of one of the following: (i) PO4 pulse + tracer 33 PO4 ; (ii) PO4 pulse + tracer 45 Ca; or (iii) saline + tracer 45 Ca in CKD and non-CKD animals. After the infusion, 33 PO4 in blood was elevated (2.3× at 10 minutes, 3.5× at 30 minutes, p < 0.05) in CKD compared with non-CKD. In contrast, there was no difference in clearance of 45 Ca from the blood. Compared with controls, CKD rats had a markedly increased 33 PO4 incorporation in several tissues (skeletal muscle, 7.8×; heart, 5.5×), but accrual was most pronounced in the vasculature (24.8×). There was a significant, but smaller, increase in 45 Ca accrual in the vasculature of CKD rats (1.25×), particularly in the calcified rat, in response to the acute phosphate load. Based on the pattern of tissue uptake of 33 PO4 and 45 Ca, this study revealed that an increase in circulating PO4 is an important stimulus for the accumulation of these minerals in vascular tissue in CKD. This response is further enhanced when vascular calcification is also present. The finding of enhanced vascular mineral deposition in response to an acute PO4 pulse provides evidence of significant tissue-specific susceptibility to calcification. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jason Ge Zelt
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Molecular Function and Imaging Program, The National Cardiac PET Centre, and the Advanced Heart Disease Program, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute and University of Ottawa, Ottawa, Canada
| | - Bruno A Svajger
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Kieran Quinn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Mandy E Turner
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Kimberly J Laverty
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Bonnie Shum
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Rachel M Holden
- Department of Medicine, Queen's University, Kingston, Canada
| | - Michael A Adams
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| |
Collapse
|
161
|
O'Grady S, Morgan MP. Deposition of calcium in an in vitro model of human breast tumour calcification reveals functional role for ALP activity, altered expression of osteogenic genes and dysregulation of the TRPM7 ion channel. Sci Rep 2019; 9:542. [PMID: 30679450 PMCID: PMC6345823 DOI: 10.1038/s41598-018-36496-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
Abstract
Microcalcifications are vital mammographic indicators contributing to the early detection of up to 50% of non-palpable tumours and may also be valuable as prognostic markers. However, the precise mechanism by which they form remains incompletely understood. Following development of an in vitro model using human breast cancer cells lines cultured with a combination of mineralisation-promoting reagents, analysis of calcium deposition, alkaline phosphatase (ALP) activity and changes in expression of key genes was used to monitor the calcification process. Two cell lines were identified as successfully mineralising in vitro, MDA-MB-231 and SKBR3. Mineralising cell lines displayed higher levels of ALP activity that was further increased by addition of mineralisation promoting media. qPCR analysis revealed changes in expression of both pro- (RUNX2) and anti- (MGP, ENPP1) mineralisation genes. Mineralisation was suppressed by chelation of intracellular Ca2+ and inhibition of TRPM7, demonstrating a functional role for the channel in formation of microcalcifications. Increased Mg2+ was also found to effectively reduce calcium deposition. These results expand the number of human breast cancer cell lines with a demonstrated in vitro mineralisation capability, provide further evidence for the role of an active, cellular process of microcalcification formation and demonstrate for the first time a role for TRPM7 mediated Ca2+ transport.
Collapse
Affiliation(s)
- Shane O'Grady
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, 2, Ireland
| | - Maria P Morgan
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, 2, Ireland.
| |
Collapse
|
162
|
Blaser MC, Aikawa E. Roles and Regulation of Extracellular Vesicles in Cardiovascular Mineral Metabolism. Front Cardiovasc Med 2018; 5:187. [PMID: 30622949 PMCID: PMC6308298 DOI: 10.3389/fcvm.2018.00187] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular calcification is a multifaceted disease that is a leading independent predictor of cardiovascular morbidity and mortality. Recent studies have identified a calcification-prone population of extracellular vesicles as the putative elementary units of vascular microcalcification in diseased heart valves and vessels. Their action is highly context-dependent; extracellular vesicles released by smooth muscle cells, valvular interstitial cells, endothelial cells, and macrophages may promote or inhibit mineralization, depending on the phenotype of their originating cells and/or the extracellular environment to which they are released. In particular, emerging roles for vesicular microRNAs, bioactive lipids, metabolites, and protein cargoes in driving this pro-calcific switch underpin the necessity of innovative strategies to employ next-generation sequencing and omics technologies in order to better understand the pathobiology of these nano-sized entities. Furthermore, a recent body of work has emerged that centers on the novel re-purposing of extracellular vesicles and exosomes as potential therapeutic avenues for cardiovascular calcification. This review aims to highlight the role of extracellular vesicles as constituents of cardiovascular calcification and summarizes recent advances in our understanding of the biophysical nature of vesicle accumulation, aggregation, and mineralization. We also comprehensively discuss the latest evidence that extracellular vesicles act as key mediators and regulators of cell/cell communication, osteoblastic/osteoclastic differentiation, and cell/matrix interactions in cardiovascular tissues. Lastly, we highlight the importance of robust vesicle isolation and characterization when studying these phenomena, and offer a brief primer on working with cardiovascular applications of extracellular vesicles.
Collapse
Affiliation(s)
- Mark C Blaser
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Center of Excellence in Cardiovascular Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
163
|
Serum alkaline phosphatase relates to cardiovascular risk markers in children with high calcium-phosphorus product. Sci Rep 2018; 8:17864. [PMID: 30552346 PMCID: PMC6294743 DOI: 10.1038/s41598-018-35973-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/14/2018] [Indexed: 11/24/2022] Open
Abstract
Although alkaline phosphatase (ALP) correlates with cardiovascular risk in adults, there are no studies in children. We evaluated the association between serum ALP levels, calcium-phosphorus product (Ca*P) and cardiovascular risk markers in healthy children. Children aged 7.9 ± 1.4 (n = 379) were recruited in this cross-sectional study. The main outcome measures were systolic and diastolic blood pressure (SBP and DBP) and carotid intima-media thickness (cIMT). Additional assessments were body-mass index (BMI), waist circumference, homeostatic model assessment of insulin resistance (HOMA-IR) and fasting lipids, ALP, serum calcium, phosphorus and Ca*P. ALP was directly correlated with BMI (p < 0.0001), waist circumference (p < 0.0001), SBP (p < 0.0001), cIMT (p = 0.005), HOMA-IR (p < 0.0001), and fasting triglycerides (p = 0.0001). Among them, in children with Ca*P values above the median the associations were BMI (r = 0.231; p = 0.001), waist (r = 0.252; p < 0.0001), SBP (r = 0.324; p < 0.0001), cIMT (r = 0.248; p = 0.001) and HOMA-IR (r = 0.291; p < 0.0001)]. ALP independently associated with SBP (β = 0.290, p < 0.001) and cIMT (β = 0.179, p = 0.013) in children with higher Ca*P, after adjusting for confounding variables. Circulating ALP is associated with a more adverse cardiovascular profile in children with higher Ca*P. We suggest that serum ALP and Ca*P levels could contribute to the assessment of risk for cardiovascular disease in children.
Collapse
|
164
|
Sharif S, Bots ML, Schalkwijk C, Stehouwer CDA, Visseren FLJ, Westerink J. Association between bone metabolism regulators and arterial stiffness in type 2 diabetes patients. Nutr Metab Cardiovasc Dis 2018; 28:1245-1252. [PMID: 30017437 DOI: 10.1016/j.numecd.2018.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/22/2018] [Accepted: 06/05/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND AND AIM Osteopontin (OPN), osteonectin (ON) and osteocalcin (OC) play an important role in the development of vascular calcifications, but it is unclear whether these bone metabolism regulators contribute to the development of arterial stiffness in type 2 diabetes patients. We therefore aim to determine the relationship between plasma concentrations of OPN, ON, OC and arterial stiffness in type 2 diabetes patients. METHODS Cross-sectional study of 1003 type 2 diabetes patients included in the Second Manifestations of ARTerial disease (SMART)-cohort. Generalized linear models were used to evaluate the relation between plasma levels of OPN, ON and OC and arterial stiffness as measured by pulse pressure (PP), ankle-brachial index (ABI) (≥0.9), carotid artery distension and an arterial stiffness summary score. Analyses were adjusted for age, sex, kidney function, diabetes duration and diastolic blood pressure. Higher OPN plasma levels were significantly related to a lower ABI (β-0.013; 95%CI -0.024 to -0.002) and a higher arterial stiffness summary score (OR1.24; 95%CI 1.03-1.49). OPN levels were not related to PP (β 0.59; 95%CI -0.63-1.81) or absolute carotid artery distention (β -7.03; 95%CI -20.00-5.93). ON and OC plasma levels were not related to any of the arterial stiffness measures. CONCLUSION Only elevated plasma levels of OPN are associated with increased arterial stiffness in patients with type 2 diabetes as measured by the ankle-brachial index and arterial stiffness summary score. These findings indicate that OPN may be involved in the pathophysiology of arterial stiffness and call for further clinical investigation.
Collapse
Affiliation(s)
- S Sharif
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M L Bots
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - C D A Stehouwer
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - F L J Visseren
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J Westerink
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
165
|
Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair. Cells 2018; 7:cells7100167. [PMID: 30322133 PMCID: PMC6210724 DOI: 10.3390/cells7100167] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosed micro- and nano-sized vesicles that are secreted from almost every species, ranging from prokaryotes to eukaryotes, and from almost every cell type studied so far. EVs contain repertoire of bioactive molecules such as proteins (including enzymes and transcriptional factors), lipids, carbohydrates and nucleic acids including DNA, coding and non-coding RNAs. The secreted EVs are taken up by neighboring cells where they release their content in recipient cells, or can sail through body fluids to reach distant organs. Since EVs transport bioactive cargo between cells, they have emerged as novel mediators of extra- and intercellular activities in local microenvironment and inter-organ communications distantly. Herein, we review the activities of EV-associated matrix-remodeling enzymes such as matrix metalloproteinases, heparanases, hyaluronidases, aggrecanases, and their regulators such as extracellular matrix metalloproteinase inducers and tissue inhibitors of metalloproteinases as novel means of matrix remodeling in physiological and pathological conditions. We discuss how such EVs act as novel mediators of extracellular matrix degradation to prepare a permissive environment for various pathological conditions such as cancer, cardiovascular diseases, arthritis and metabolic diseases. Additionally, the roles of EV-mediated matrix remodeling in tissue repair and their potential applications as organ therapies have been reviewed. Collectively, this knowledge could benefit the development of new approaches for tissue engineering.
Collapse
|
166
|
Long-chain polyphosphate in osteoblast matrix vesicles: Enrichment and inhibition of mineralization. Biochim Biophys Acta Gen Subj 2018; 1863:199-209. [PMID: 30312769 DOI: 10.1016/j.bbagen.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/24/2018] [Accepted: 10/05/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Inorganic polyphosphate (polyP) is a fundamental and ubiquitous molecule in prokaryotes and eukaryotes. PolyP has been found in mammalian tissues with particularly high levels of long-chain polyP in bone and cartilage where critical questions remain as to its localization and function. Here, we investigated polyP presence and function in osteoblast-like SaOS-2 cells and cell-derived matrix vesicles (MVs), the initial sites of bone mineral formation. METHODS PolyP was quantified by 4',6-diamidino-2-phenylindole (DAPI) fluorescence and characterized by enzymatic methods coupled to urea polyacrylamide gel electrophoresis. Transmission electron microscopy and confocal microscopy were used to investigate polyP localization. A chicken embryo cartilage model was used to investigate the effect of polyP on mineralization. RESULTS PolyP increased in concentration as SaOS-2 cells matured and mineralized. Particularly high levels of polyP were observed in MVs. The average length of MV polyP was determined to be longer than 196 Pi residues by gel chromatography. Electron micrographs of MVs, stained by two polyP-specific staining approaches, revealed polyP localization in the vicinity of the MV membrane. Additional extracellular polyP binds to MVs and inhibits MV-induced hydroxyapatite formation. CONCLUSION PolyP is highly enriched in matrix vesicles and can inhibit apatite formation. PolyP may be hydrolysed to phosphate for further mineralization in the extracellular matrix. GENERAL SIGNIFICANCE PolyP is a unique yet underappreciated macromolecule which plays a critical role in extracellular mineralization in matrix vesicles.
Collapse
|
167
|
Roszkowska M, Strzelecka-Kiliszek A, Bessueille L, Buchet R, Magne D, Pikula S. Collagen promotes matrix vesicle-mediated mineralization by vascular smooth muscle cells. J Inorg Biochem 2018; 186:1-9. [DOI: 10.1016/j.jinorgbio.2018.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/20/2018] [Accepted: 05/16/2018] [Indexed: 02/08/2023]
|
168
|
Qiu H, Shi S, Wang S, Peng H, Ding SJ, Wang L. Proteomic Profiling Exosomes from Vascular Smooth Muscle Cell. Proteomics Clin Appl 2018; 12:e1700097. [PMID: 29687628 PMCID: PMC6298740 DOI: 10.1002/prca.201700097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/26/2018] [Indexed: 01/29/2023]
Abstract
PURPOSE Vascular smooth muscle cells (VSMC) and endothelial cells (EC) communicate mutually to coordinate vascular development and homeostasis. Exosomes are emerging as one type of the mediators involved in this communication. Characterizing proteins in the exosomes is the critical first step in understanding how the VSMC-EC crosstalk is mediated by exosomes. EXPERIMENTAL DESIGN The proteins in the human VSMC-derived exosomes are profiled using nanoLC-MS/MS based proteomics. The identified proteins are subjected to gene ontology analysis. The VSMC-derived exosomes are also assessed for proangiogenic activity in vivo. RESULTS Four hundred and fifty-nine proteins are identified in the VSMC-derived exosomes. Gene ontology analysis revealed that the exosome proteins are involved in 179 cellular components, 120 molecular functions, and 337 biological processes, with cell-cell adhesion and platelet activation/coagulation ranked at the top. VSMC-derived exosomes do not display a proangiogenic activity in the in vivo angiogenesis assay, suggesting that the major function of VSMC-derived exosomes is to maintain vessel homeostasis. CONCLUSION AND CLINICAL RELEVANCE The analyses obtained a systematic view of proteins in the VSMC-derived exosomes, revealed the potential regulatory functions of the exosome in VSMC-EC communication, and suggest that dysregulation of VSMC-derived exosome-mediated functions may disturb vessel homeostasis thereby contributing to vascular diseases.
Collapse
Affiliation(s)
- Hong Qiu
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Songshan Shi
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Shunchun Wang
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Hong Peng
- Department of Pathology and Microbiology, Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shi-Jian Ding
- Department of Pathology and Microbiology, Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lianchun Wang
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
169
|
Dickhout A, Koenen RR. Extracellular Vesicles as Biomarkers in Cardiovascular Disease; Chances and Risks. Front Cardiovasc Med 2018; 5:113. [PMID: 30186839 PMCID: PMC6113364 DOI: 10.3389/fcvm.2018.00113] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023] Open
Abstract
The field of extracellular vesicles (EV) is rapidly expanding, also within cardiovascular diseases. Besides their exciting roles in cell-to-cell communication, EV have the potential to serve as excellent biomarkers, since their counts, content, and origin might provide useful information about the pathophysiology of cardiovascular disorders. Various studies have already indicated associations of EV counts and content with cardiovascular diseases. However, EV research is complicated by several factors, most notably the small size of EV. In this review, the advantages and drawbacks of EV-related methods and applications as biomarkers are highlighted.
Collapse
Affiliation(s)
- Annemiek Dickhout
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands.,Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
170
|
Alique M, Ramírez-Carracedo R, Bodega G, Carracedo J, Ramírez R. Senescent Microvesicles: A Novel Advance in Molecular Mechanisms of Atherosclerotic Calcification. Int J Mol Sci 2018; 19:E2003. [PMID: 29987251 PMCID: PMC6073566 DOI: 10.3390/ijms19072003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease that causes the most heart attacks and strokes in humans, is the leading cause of death in the developing world; its principal clinical manifestation is coronary artery disease. The development of atherosclerosis is attributed to the aging process itself (biological aging) and is also associated with the development of chronic diseases (premature aging). Both aging processes produce an increase in risk factors such as oxidative stress, endothelial dysfunction and proinflammatory cytokines (oxi-inflamm-aging) that might generate endothelial senescence associated with damage in the vascular system. Cellular senescence increases microvesicle release as carriers of molecular information, which contributes to the development and calcification of atherosclerotic plaque, as a final step in advanced atherosclerotic plaque formation. Consequently, this review aims to summarize the information gleaned to date from studies investigating how the senescent extracellular vesicles, by delivering biological signalling, contribute to atherosclerotic calcification.
Collapse
Affiliation(s)
- Matilde Alique
- Biology Systems Department, Physiology, Alcala University, Alcala de Henares, 28805 Madrid, Spain.
| | - Rafael Ramírez-Carracedo
- Cardiovascular Joint Research Unit, University Francisco de Vitoria/University Hospital Ramon y Cajal Research Unit (IRYCIS), 28223 Madrid, Spain.
| | - Guillermo Bodega
- Biomedicine and Biotechnology Department, Alcala University, Alcala de Henares, 28805 Madrid, Spain.
| | - Julia Carracedo
- Department of Genetic, Physiology and Microbiology, Faculty of Biology, Complutense University/Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28040 Madrid, Spain.
| | - Rafael Ramírez
- Biology Systems Department, Physiology, Alcala University, Alcala de Henares, 28805 Madrid, Spain.
| |
Collapse
|
171
|
Mourino-Alvarez L, Baldan-Martin M, Sastre-Oliva T, Martin-Lorenzo M, Maroto AS, Corbacho-Alonso N, Rincon R, Martin-Rojas T, Lopez-Almodovar LF, Alvarez-Llamas G, Vivanco F, Padial LR, de la Cuesta F, Barderas MG. A comprehensive study of calcific aortic stenosis: from rabbit to human samples. Dis Model Mech 2018; 11:dmm.033423. [PMID: 29752279 PMCID: PMC6031362 DOI: 10.1242/dmm.033423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/03/2018] [Indexed: 12/22/2022] Open
Abstract
The global incidence of calcific aortic stenosis (CAS) is increasing owing, in part, to a growing elderly population. The condition poses a great challenge to public health, because of the multiple comorbidities of these older patients. Using a rabbit model of CAS, we sought to characterize protein alterations associated with calcified valve tissue that can be ultimately measured in plasma as non-invasive biomarkers of CAS. Aortic valves from healthy and mild stenotic rabbits were analyzed by two-dimensional difference gel electrophoresis, and selected reaction monitoring was used to directly measure the differentially expressed proteins in plasma from the same rabbits to corroborate their potential as diagnostic indicators. Similar analyses were performed in plasma from human subjects, to examine the suitability of these diagnostic indicators for transfer to the clinical setting. Eight proteins were found to be differentially expressed in CAS tissue, but only three were also altered in plasma samples from rabbits and humans: transitional endoplasmic reticulum ATPase, tropomyosin α-1 chain and L-lactate dehydrogenase B chain. Results of receiver operating characteristic curves showed the discriminative power of the scores, which increased when the three proteins were analyzed as a panel. Our study shows that a molecular panel comprising three proteins related to osteoblastic differentiation could have utility as a serum CAS indicator and/or therapeutic target. Summary: Using a rabbit model of calcific aortic stenosis, we have defined a molecular panel of three proteins related to osteoblastic differentiation. Additionally, this panel has been confirmed in human samples.
Collapse
Affiliation(s)
- Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Montserrat Baldan-Martin
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | | | - Aroa Sanz Maroto
- Department of Immunology, IIS-Fundacion Jimenez Diaz, 28040 Madrid, Spain
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Raul Rincon
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Tatiana Martin-Rojas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | | | - Gloria Alvarez-Llamas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Fernando Vivanco
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | | | - Fernando de la Cuesta
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Maria Gonzalez Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| |
Collapse
|
172
|
Zhang C, Zhang K, Huang F, Feng W, Chen J, Zhang H, Wang J, Luo P, Huang H. Exosomes, the message transporters in vascular calcification. J Cell Mol Med 2018; 22:4024-4033. [PMID: 29892998 PMCID: PMC6111818 DOI: 10.1111/jcmm.13692] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
Vascular calcification (VC) is caused by hydroxyapatite deposition in the intimal and medial layers of the vascular wall, leading to severe cardiovascular events in patients with hypertension, chronic kidney disease and diabetes mellitus. VC occurrences involve complicated mechanism networks, such as matrix vesicles or exosomes production, osteogenic differentiation, reduced cell viability, aging and so on. However, with present therapeutic methods targeting at VC ineffectively, novel targets for VC treatment are demanded. Exosomes are proven to participate in VC and function as initializers for mineral deposition. Secreted exosomes loaded with microRNAs are also demonstrated to modulate VC procession in recipient vascular smooth muscle cells. In this review, we targeted at the roles of exosomes during VC, especially at their effects on transporting biological information among cells. Moreover, we will discuss the potential mechanisms of exosomes in VC.
Collapse
Affiliation(s)
- Chao Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| | - Kun Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| | - Feifei Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| | - Weijing Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| | - Jie Chen
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China.,Department of Radiation Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huanji Zhang
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jingfeng Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Hui Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| |
Collapse
|
173
|
Ozkaramanli Gur D, Guzel S, Akyuz A, Alpsoy S, Guler N. The role of novel cytokines in inflammation: Defining peripheral artery disease among patients with coronary artery disease. Vasc Med 2018; 23:428-436. [PMID: 29638194 DOI: 10.1177/1358863x18763096] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Coronary artery disease (CAD) patients with concomitant peripheral artery disease (PAD) experience more extensive and calcified atherosclerosis, greater lesion progression and more common coronary events compared to patients with CAD only. To characterize the distinct features of this aggressive atherosclerotic disease, we studied novel cytokines that code different stages of atherogenesis. One hundred and eighty consecutive subjects (60 patients into each group of CAD+PAD, CAD and controls) were recruited among patients with stable angina pectoris scheduled for coronary angiography. An ankle-brachial index (ABI) ≤0.9 was determined as occlusive PAD. Fasting serum tumor necrosis factor (TNF)-like antigen 1A (TL1A) and its receptor death receptor 3 (DR3), NOGO-B (reticulon 4B) and its receptor NUS1, high-sensitivity C-reactive protein (hsCRP), A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) 1, 4, 5 and interleukin (IL) 6 levels were determined. Serum hsCRP and DR3/TL1A concentrations were similar and higher than controls in the CAD and CAD+PAD groups. Levels of NOGO-B and its receptor NUS1 were increased and ADAMTS-5 was decreased in patients with CAD+PAD. Independent predictors of ABI in multivariate analysis were smoking (B = -0.13, p = 0.04), NUS1 (B = -0.88, p < 0.001), ADAMTS-5 (B = 0.63, p < 0.001) and SYNTAX score (B = -0.26, p < 0.001). Similarly, smoking (OR = 5.5, p = 0.019), SYNTAX score (OR = 1.2, p < 0.001), NUS1 (OR = 14.4, p < 0.001), ADAMTS-5 (OR = 1.1, p < 0.001) and age (OR = 1.1, p = 0.042) independently predicted the involvement of peripheral vasculature in logistic regression. The diagnostic performance of these cytokines to discriminate CAD+PAD were AUC 0.79 ( p < 0.001) for NUS1 and 0.37 ( p = 0.013) for ADAMTS-5. We report herein that circulating cytokines can give clues to the ongoing atherosclerotic process and the extent of vascular involvement in which distinct features of ADAMTS-5 and NUS1 make them promising cytokines for future research.
Collapse
Affiliation(s)
| | - Savas Guzel
- Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Aydin Akyuz
- Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Seref Alpsoy
- Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Niyazi Guler
- Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| |
Collapse
|
174
|
He L, He WY, A LT, Yang WL, Zhang AH. Lower Serum Irisin Levels Are Associated with Increased Vascular Calcification in Hemodialysis Patients. Kidney Blood Press Res 2018; 43:287-295. [DOI: 10.1159/000487689] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/15/2018] [Indexed: 11/19/2022] Open
|
175
|
Prognostic value of cardiovascular calcifications in hemodialysis patients: a longitudinal study. Int Urol Nephrol 2018; 50:939-946. [PMID: 29441480 DOI: 10.1007/s11255-018-1821-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/04/2018] [Indexed: 12/24/2022]
Abstract
PURPOSE Cardiovascular calcifications (CVC) are present in up to 70% of non-diabetic dialysis patients. Sparse data are available on predictors of very long-term outcomes of such patients. The Belgrade Aachen Study on Calcification in Hemodialysis patients (BASCH study) aimed to study this using a comprehensive CVC assessment. METHODS We prospectively analyzed 220 hemodialysis patients followed for a mean of 76 months (median 73 months, range 6-160 months). We compared patients deceased from cardiovascular diseases (CVD) and survivors. Analyses included composite calcification scores (determined by combining ultrasound and X-ray analyses), demographic, clinical and laboratory data and pulse wave velocity (PWV). For survival analysis, patients were divided into group according to quartiles (Q). RESULTS Compared to survivors, deceased patients from CVD were significantly older, more frequently hypertensive, had shorter dialysis times per week and lower Kt/V values, and they exhibited lower serum fetuin A, osteoprotegerin and hemoglobin as well as higher CRP levels. Composite calcification and Adragao scores were significantly higher in deceased patients from CVD as was PWV. Mean survival was 101 ± 47 months (Q1), 87 ± 51 month (Q2), 66 ± 48 (Q3) and 54 ± 45 months (Q4), p = 0.000. Cox multivariate regression analysis showed that independent predictors for cardiovascular mortality were composite calcification score in the range of third and fourth quartiles. CONCLUSION Composite calcification score emerged as significant predictors of long-term survival in our group of largely non-diabetic dialysis patient population, finding that should be confirmed by intervention studies.
Collapse
|
176
|
Chen NX, O'Neill KD, Moe SM. Matrix vesicles induce calcification of recipient vascular smooth muscle cells through multiple signaling pathways. Kidney Int 2018; 93:343-354. [PMID: 29032812 PMCID: PMC8211355 DOI: 10.1016/j.kint.2017.07.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/19/2022]
Abstract
In patients with chronic kidney and end-stage renal diseases, the major risk factor for progression of arterial calcification is the presence of existing (baseline) calcification. Here, we tested whether calcification of arteries is extended from calcified vascular smooth muscle cells (VSMCs) to adjacent normal cells by matrix vesicle-induced alteration of cell signaling. Matrix vesicles isolated from VSMC of rats with chronic kidney disease were co-cultured with VSMCs from normal littermates. Endocytosis of vesicles by recipient cells was confirmed by confocal microscopy. The addition of cellular matrix vesicles with characteristics of exosomes and low fetuin-A content enhanced the calcification of recipient VSMC. Further, only cellular-derived matrix vesicles induced an increase in intracellular calcium ion concentration, NOX1 (NADPH oxidase) and the anti-oxidant superoxide dismutase-2 in recipient normal VSMC. The increase in intracellular calcium ion concentration was due to release from endoplasmic reticulum and partially attributed to the activation of both NOX1 and mitogen-activated protein kinase (MEK1 and Erk1/2) signaling, since inhibiting both pathways blocked the increase in intracellular calcium ion in recipient VSMC. In contrast, matrix vesicles isolated from the media had no effect on the intracellular calcium ion concentration or MEK1 signaling, and did not induce calcification. However, media matrix vesicles did increase Erk1/2, although not to the level of cellular matrix vesicles, and NOX1 expression. Blockade of NOX activity further inhibited the cellular matrix vesicle-induced accelerated calcification of recipient VSMC, suggesting a potential therapeutic role of such inhibition. Thus, addition of cellular-derived matrix vesicles from calcifying VSMC can accelerate calcification by inducing cell signaling changes and phenotypic alteration of recipient VSMC.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Cells, Cultured
- Coculture Techniques
- Disease Models, Animal
- Endocytosis
- Exosomes/metabolism
- Exosomes/ultrastructure
- Extracellular Matrix/metabolism
- Extracellular Matrix/ultrastructure
- Extracellular Signal-Regulated MAP Kinases/metabolism
- MAP Kinase Kinase 1/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/ultrastructure
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/ultrastructure
- NADPH Oxidase 1/metabolism
- Phenotype
- Rats
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
- Superoxide Dismutase/metabolism
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Neal X Chen
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kalisha D O'Neill
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sharon M Moe
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Roduebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA.
| |
Collapse
|
177
|
Aikawa E. Extracellular vesicles in cardiovascular disease: focus on vascular calcification. J Physiol 2018; 594:2877-80. [PMID: 27246548 DOI: 10.1113/jp272112] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/01/2016] [Indexed: 01/30/2023] Open
Affiliation(s)
- Elena Aikawa
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
178
|
Mechanisms of Arterial Calcification: The Role of Matrix Vesicles. Eur J Vasc Endovasc Surg 2018; 55:425-432. [PMID: 29371036 DOI: 10.1016/j.ejvs.2017.12.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022]
Abstract
Vascular calcification is related to vascular diseases, for example, atherosclerosis, and its comorbidities, such as diabetes and chronic kidney disease. In each condition, a distinctive histological pattern can be recognised that may influence technical choices, possible intra-operative complications, and procedure outcomes, no matter if the intervention is performed by open or endovascular means. This review considers the classification and initiating mechanisms of vascular calcification. Dystrophic and metastatic calcifications, Monckeberg's calcification, and genetic forms are firstly outlined, followed by their alleged initiation mechanisms; these include (a) ineffective macrophage efferocytosis; (b) ectopic osteogenesis driven by modified resident or circulating osteoprogenitors. As in physiological bio-mineralisation, active calcification starts with the deposition of cell derived matrix vesicles into the extracellular matrix. To substantiate this belief, an in depth ultra-structural documentation of hydroxyapatite crystal deposition on such vesicles is provided in an ex-vivo human vascular cell model. Revealing the vesicle composition and phenotype in normal and pathological vascular conditions will be essential for the development of new therapeutic strategies, in order to prevent and treat vascular calcification.
Collapse
|
179
|
Viegas CSB, Santos L, Macedo AL, Matos AA, Silva AP, Neves PL, Staes A, Gevaert K, Morais R, Vermeer C, Schurgers L, Simes DC. Chronic Kidney Disease Circulating Calciprotein Particles and Extracellular Vesicles Promote Vascular Calcification: A Role for GRP (Gla-Rich Protein). Arterioscler Thromb Vasc Biol 2018; 38:575-587. [PMID: 29301790 DOI: 10.1161/atvbaha.117.310578] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/15/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Inhibition of mineral crystal formation is a crucial step in ectopic calcification. Serum calciprotein particles (CPPs) have been linked to chronic kidney disease (CKD) calcification propensity, but additional knowledge is required to understand their function, assemblage, and composition. The role of other circulating nanostructures, such as extracellular vesicles (EVs) in vascular calcification is currently unknown. Here, we investigated the association of GRP (Gla-rich protein) with circulating CPP and EVs and the role of CKD CPPs and EVs in vascular calcification. APPROACH AND RESULTS Biological CPPs and EVs were isolated from healthy and CKD patients and comparatively characterized using ultrastructural, analytic, molecular, and immuno-based techniques. Our results show that GRP is a constitutive component of circulating CPPs and EVs. CKD stage 5 serum CPPs and EVs are characterized by lower levels of fetuin-A and GRP, and CPPs CKD stage 5 have increased mineral maturation, resembling secondary CPP particles. Vascular smooth muscle cell calcification assays reveal that CPPs CKD stage 5 and EVs CKD stage 5 are taken up by vascular smooth muscle cells and induce vascular calcification by promoting cell osteochondrogenic differentiation and inflammation. These effects were rescued by incubation of CPPs CKD stage 5 with γ-carboxylated GRP. In vitro, formation and maturation of basic calcium phosphate crystals was highly reduced in the presence of γ-carboxylated GRP, fetuin-A, and MGP (matrix gla protein), and a similar antimineralization system was identified in vivo. CONCLUSIONS Uremic CPPs and EVs are important players in the mechanisms of widespread calcification in CKD. We propose a major role for cGRP as inhibitory factor to prevent calcification at systemic and tissue levels.
Collapse
Affiliation(s)
- Carla S B Viegas
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - Lúcia Santos
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - Anjos L Macedo
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - António A Matos
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - Ana P Silva
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - Pedro L Neves
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - An Staes
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - Kris Gevaert
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - Rute Morais
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - Cees Vermeer
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - Leon Schurgers
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - Dina C Simes
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands.
| |
Collapse
|
180
|
Cardoso L, Weinbaum S. Microcalcifications, Their Genesis, Growth, and Biomechanical Stability in Fibrous Cap Rupture. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:129-155. [PMID: 30315543 DOI: 10.1007/978-3-319-96445-4_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For many decades, cardiovascular calcification has been considered as a passive process, accompanying atheroma progression, correlated with plaque burden, and apparently without a major role on plaque vulnerability. Clinical and pathological analyses have previously focused on the total amount of calcification (calcified area in a whole atheroma cross section) and whether more calcification means higher risk of plaque rupture or not. However, this paradigm has been changing in the last decade or so. Recent research has focused on the presence of microcalcifications (μCalcs) in the atheroma and more importantly on whether clusters of μCalcs are located in the cap of the atheroma. While the vast majority of μCalcs are found in the lipid pool or necrotic core, they are inconsequential to vulnerable plaque. Nevertheless, it has been shown that μCalcs located within the fibrous cap could be numerous and that they behave as an intensifier of the background circumferential stress in the cap. It is now known that such intensifying effect depends on the size and shape of the μCalc as well as the proximity between two or more μCalcs. If μCalcs are located in caps with very low background stress, the increase in stress concentration may not be sufficient to reach the rupture threshold. However, the presence of μCalc(s) in the cap with a background stress of about one fifth to one half the rupture threshold (a stable plaque) will produce a significant increase in local stress, which may exceed the cap rupture threshold and thus transform a non-vulnerable plaque into a vulnerable one. Also, the classic view that treats cardiovascular calcification as a passive process has been challenged, and emerging data suggest that cardiovascular calcification may encompass both passive and active processes. The passive calcification process comprises biochemical factors, specifically circulating nucleating complexes, which would lead to calcification of the atheroma. The active mechanism of atherosclerotic calcification is a cell-mediated process via cell death of macrophages and smooth muscle cells (SMCs) and/or the release of matrix vesicles by SMCs.
Collapse
Affiliation(s)
- Luis Cardoso
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| | - Sheldon Weinbaum
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| |
Collapse
|
181
|
Bakhshian Nik A, Hutcheson JD, Aikawa E. Extracellular Vesicles As Mediators of Cardiovascular Calcification. Front Cardiovasc Med 2017; 4:78. [PMID: 29322046 PMCID: PMC5732140 DOI: 10.3389/fcvm.2017.00078] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023] Open
Abstract
Involvement of cell-derived extracellular particles, coined as matrix vesicles (MVs), in biological bone formation was introduced by Bonucci and Anderson in mid-1960s. In 1983, Anderson et al. observed similar structures in atherosclerotic lesion calcification using electron microscopy. Recent studies employing new technologies and high- resolution microscopy have shown that although they exhibit characteristics similar to MVs, calcifying extracellular vesicles (EVs) in cardiovascular tissues are phenotypically distinct from their bone counterparts. EVs released from cells within cardiovascular tissues may contain either inhibitors of calcification in normal physiological conditions or promoters in pathological environments. Pathological conditions characterized by mineral imbalance (e.g., atherosclerosis, chronic kidney disease, diabetes) can cause smooth muscle cells, valvular interstitial cells, and macrophages to release calcifying EVs, which contain specific mineralization-promoting cargo. These EVs can arise from either direct budding of the cell plasma membrane or through the release of exosomes from multivesicular bodies. In contrast, MVs are germinated from specific sites on osteoblast, chondrocyte, or odontoblast membranes. Much like MVs, calcifying EVs in the fibrillar collagen extracellular matrix of cardiovascular tissues serve as calcification foci, but the mineral that forms appears different between the tissues. This review highlights recent studies on mechanisms of calcifying EV formation, release, and mineralization in cardiovascular calcification. Furthermore, we address the MV–EV relationship, and offer insight into therapeutic implications to consider for potential targets for each type of mineralization.
Collapse
Affiliation(s)
- Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Joshua D Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Boston, MA, United States.,Cardiovascular Division, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
182
|
Cai Z, Liu B, Wei J, Fu Z, Wang Y, Wang Y, Shen J, Jia L, Su S, Wang X, Lin X, Chen H, Li F, Wang J, Xiang M. Deficiency of CCAAT/enhancer-binding protein homologous protein (CHOP) prevents diet-induced aortic valve calcification in vivo. Aging Cell 2017; 16:1334-1341. [PMID: 28891115 PMCID: PMC5676062 DOI: 10.1111/acel.12674] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2017] [Indexed: 12/22/2022] Open
Abstract
Aortic valve (AoV) calcification is common in aged populations. Its subsequent aortic stenosis has been linked with increased morbidity, but still has no effective pharmacological intervention. Our previous data show endoplasmic reticulum (ER) stress is involved in AoV calcification. Here, we investigated whether deficiency of ER stress downstream effector CCAAT/enhancer-binding protein homology protein (CHOP) may prevent development of AoV calcification. AoV calcification was evaluated in Apoe-/- mice (n = 10) or in mice with dual deficiencies of ApoE and CHOP (Apoe-/- CHOP-/- , n = 10) fed with Western diet for 24 weeks. Histological and echocardiographic analysis showed that genetic ablation of CHOP attenuated AoV calcification, pro-calcification signaling activation, and apoptosis in the leaflets of Apoe-/- mice. In cultured human aortic valvular interstitial cells (VIC), we found oxidized low-density lipoprotein (oxLDL) promoted apoptosis and osteoblastic differentiation of VIC via CHOP activation. Using conditioned media (CM) from oxLDL-treated VIC, we further identified that oxLDL triggered osteoblastic differentiation of VIC via paracrine pathway, while depletion of apoptotic bodies (ABs) in CM suppressed the effect. CM from oxLDL-exposed CHOP-silenced cells prevented osteoblastic differentiation of VIC, while depletion of ABs did not further enhance this protective effect. Overall, our study indicates that CHOP deficiency protects against Western diet-induced AoV calcification in Apoe-/- mice. CHOP deficiency prevents oxLDL-induced VIC osteoblastic differentiation via preventing VIC-derived ABs releasing.
Collapse
Affiliation(s)
- Zhejun Cai
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Baoqing Liu
- Department of Cardiovascular SurgeryUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Jia Wei
- Department of UrologyChildren's Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Zurong Fu
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yidong Wang
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yaping Wang
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Jian Shen
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Liangliang Jia
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Shengan Su
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Xiaoya Wang
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Xiaoping Lin
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Han Chen
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Fei Li
- Department of Cardiovascular SurgeryUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Jian'an Wang
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Meixiang Xiang
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
183
|
Cai MMX, Smith ER, Tan SJ, Hewitson TD, Holt SG. The Role of Secondary Calciprotein Particles in the Mineralisation Paradox of Chronic Kidney Disease. Calcif Tissue Int 2017; 101:570-580. [PMID: 28861648 DOI: 10.1007/s00223-017-0313-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022]
Abstract
Mineralisation paradox is prevalent in chronic kidney disease and ageing where increased vascular calcification is accompanied by reduced bone mineralisation and osteopenia. Secondary calciprotein particles (CPP2), colloidal nanoparticles containing hydroxyapatite crystal stabilised by a protein shell, have been implicated in vascular calcification in chronic kidney disease. Here, we describe the effect of CPP2 on osteoblasts and vascular smooth muscle cells (VSMC) mineralisation in an in vitro model system. The mineralisation paradox can be simulated in vitro by the addition of phosphate ions (Pi, 3 mM) and CPP2 (10 µg/ml of Ca equivalent). Pi alone induced osteoblast mineralisation but had no effect on VSMC mineralisation. CPP2 alone had no effect on mineralisation in either cell line, but when combined with elevated Pi, reduced osteoblast-like mineralisation (P < 0.001) whilst induced VSMC mineralisation (P < 0.001). These results suggest that in an in vitro system the synergistic interaction between Pi and CPP2 could mimic the mineralisation paradox, and may provide a potential mechanistic link to explain these clinical observations.
Collapse
Affiliation(s)
- Michael M X Cai
- Department of Nephrology, Royal Melbourne Hospital, Parkville, VIC, Australia.
- Department of Medicine (RMH), University of Melbourne, Parkville, VIC, Australia.
| | - Edward R Smith
- Department of Nephrology, Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Medicine (RMH), University of Melbourne, Parkville, VIC, Australia
| | - Sven-Jean Tan
- Department of Nephrology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Timothy D Hewitson
- Department of Nephrology, Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Medicine (RMH), University of Melbourne, Parkville, VIC, Australia
| | - Stephen G Holt
- Department of Nephrology, Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Medicine (RMH), University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
184
|
Ha SW, Park J, Habib MM, Beck GR. Nano-Hydroxyapatite Stimulation of Gene Expression Requires Fgf Receptor, Phosphate Transporter, and Erk1/2 Signaling. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39185-39196. [PMID: 29045789 DOI: 10.1021/acsami.7b12029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydroxyapatite (HAp) is critical to health both as the main structural material of the skeleton and storage material of calcium and phosphate. Nanosized HAp (nHAp) is naturally produced by mineralizing cells during bone formation and remodeling and is the main constituent of the skeleton. As such, HAp is currently being investigated as a therapeutic biomaterial for orthopedic and dental purposes. Recent studies have suggested that extracellular nHAp can influence osteoblast lineage commitment and cell function through changes in gene expression; however, the mechanisms remain to be elucidated. Here, the cellular and molecular mechanism by which rod-shaped nHAp (10 × 100 nm) stimulates gene expression in preosteoblast bone marrow stromal cells was investigated. Electron microscopy detected a rapid and stable interaction of nHAp with the cell membrane, which correlated with a strong stimulation of the Erk1/2 signaling pathway. Results also identified the requirement of the Fgf receptor signaling and phosphate-transporters for nHAp regulated gene expression whereas a calcium-sensing receptor inhibitor had no effect. Collectively, the study uncovers novel signaling pathways and cellular events specifically stimulated by and required for the cellular response to free extracellular HAp. The results provide insight into the osteoblastic response to HAp relevant to functional mineralization and pathological calcification and could be used in the development of biomaterials for orthopedic purposes.
Collapse
Affiliation(s)
- Shin-Woo Ha
- Department of Medicine, Division of Endocrinology, Emory University , 101 Woodruff Circle, 1026 WMRB, Atlanta, Georgia 30322, United States
| | - Jonathan Park
- Department of Medicine, Division of Endocrinology, Emory University , 101 Woodruff Circle, 1026 WMRB, Atlanta, Georgia 30322, United States
| | - Mark M Habib
- The Atlanta Department of Veterans Affairs Medical Center , Decatur, Georgia 30033, United States
| | - George R Beck
- The Atlanta Department of Veterans Affairs Medical Center , Decatur, Georgia 30033, United States
- Department of Medicine, Division of Endocrinology, Emory University , 101 Woodruff Circle, 1026 WMRB, Atlanta, Georgia 30322, United States
- The Winship Cancer Institute, Emory University School of Medicine , Atlanta, Georgia 30322, United States
| |
Collapse
|
185
|
Alique M, Ruíz-Torres MP, Bodega G, Noci MV, Troyano N, Bohórquez L, Luna C, Luque R, Carmona A, Carracedo J, Ramírez R. Microvesicles from the plasma of elderly subjects and from senescent endothelial cells promote vascular calcification. Aging (Albany NY) 2017; 9:778-789. [PMID: 28278131 PMCID: PMC5391231 DOI: 10.18632/aging.101191] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/26/2017] [Indexed: 11/25/2022]
Abstract
Vascular calcification is commonly seen in elderly people, though it can also appear in middle-aged subjects affected by premature vascular aging. The aim of this work is to test the involvement of microvesicles (MVs) produced by senescent endothelial cells (EC) and from plasma of elderly people in vascular calcification. The present work shows that MVs produced by senescent cultured ECs, plus those found in the plasma of elderly subjects, promote calcification in vascular smooth muscle cells. Only MVs from senescent ECs, and from elderly subjects' plasma, induced calcification. This ability correlated with these types of MVs' carriage of: a) increased quantities of annexins (which might act as nucleation sites for calcification), b) increased quantities of bone-morphogenic protein, and c) larger Ca contents. The MVs of senescent, cultured ECs, and those present in the plasma of elderly subjects, promote vascular calcification. The present results provide mechanistic insights into the observed increase in vascular calcification-related diseases in the elderly, and in younger patients with premature vascular aging, paving the way towards novel therapeutic strategies.
Collapse
Affiliation(s)
- Matilde Alique
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,These authors contributed equally to this paper
| | - María Piedad Ruíz-Torres
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,These authors contributed equally to this paper
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Facultad de Biología, Química y Ciencias Ambientales, Universidad de Alcalá. Alcalá de Henares, Madrid, Spain
| | - María Victoria Noci
- Unidad de Anestesia, Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Andalucía, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Andalucía, Spain
| | - Nuria Troyano
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Lourdes Bohórquez
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Carlos Luna
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Andalucía, Spain
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Carretera Nacional IV-A, Km 396, E14014, Córdoba, Andalucía, Spain
| | - Andrés Carmona
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Andalucía, Spain
| | - Julia Carracedo
- Departamento de Fisiología Animal (II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.,Institute of Investigation, Hospital 12 de Octubre, Madrid, Spain.,These senior authors contributed equally to this paper
| | - Rafael Ramírez
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,These senior authors contributed equally to this paper
| |
Collapse
|
186
|
Rilla K, Mustonen AM, Arasu UT, Härkönen K, Matilainen J, Nieminen P. Extracellular vesicles are integral and functional components of the extracellular matrix. Matrix Biol 2017; 75-76:201-219. [PMID: 29066152 DOI: 10.1016/j.matbio.2017.10.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EV) are small plasma membrane-derived particles released into the extracellular space by virtually all cell types. Recently, EV have received increased interest because of their capability to carry nucleic acids, proteins, lipids and signaling molecules and to transfer their cargo into the target cells. Less attention has been paid to their role in modifying the composition of the extracellular matrix (ECM), either directly or indirectly via regulating the ability of target cells to synthesize or degrade matrix molecules. Based on recent results, EV can be considered one of the structural and functional components of the ECM that participate in matrix organization, regulation of cells within it, and in determining the physical properties of soft connective tissues, bone, cartilage and dentin. This review addresses the relevance of EV as specific modulators of the ECM, such as during the assembly and disassembly of the molecular network, signaling through the ECM and formation of niches suitable for tissue regeneration, inflammation and tumor progression. Finally, we assess the potential of these aspects of EV biology to translational medicine.
Collapse
Affiliation(s)
- Kirsi Rilla
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland.
| | - Anne-Mari Mustonen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Uma Thanigai Arasu
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Kai Härkönen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Johanna Matilainen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Petteri Nieminen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| |
Collapse
|
187
|
Panh L, Lairez O, Ruidavets JB, Galinier M, Carrié D, Ferrières J. Coronary artery calcification: From crystal to plaque rupture. Arch Cardiovasc Dis 2017; 110:550-561. [DOI: 10.1016/j.acvd.2017.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022]
|
188
|
Lu Y, Zabihula B, Yibulayin W, Liu X. Methylation and expression of RECK, P53 and RUNX genes in patients with esophageal cancer. Oncol Lett 2017; 14:5293-5298. [PMID: 29113164 PMCID: PMC5652247 DOI: 10.3892/ol.2017.6863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/17/2017] [Indexed: 01/22/2023] Open
Abstract
The methylation and expression of RECK, P53 and RUNX genes in patients with esophageal cancer was investigated. In order to achieve this aim, a sample of 58 patients with esophageal cancer, treated between February 2013 and February 2014, were considered as the observation group. Additionally, a sample of 42 healthy individuals was selected as the control group. Methylation status of RECK, P53 and RUNX genes from the observation and control groups were detected by MSP. Reverse transcriptase-quantitative PCR (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), western blot and immunohistochemistry were used to detect the mRNA and protein levels of RECK, P53 and RUNX in both the observation and the control groups. Results showed that the methylation rates of RECK, P53 and RUNX genes in patients with esophageal cancer were 72.4% (42/58), 1.7% (1/58) and 3.4% (2/58), respectively, which were significantly different from those in the control group [7.1% (3/42), 90.5 (38/42), and 83.3% (35/42), respectively]. The mRNA expression level of RECK is only equal to the 2.3% of that in the control group, while the mRNA expression levels of P53 and RUNX were 65.1 and 47.2 times higher than those in the control group, respectively (p<0.05). ELISA showed that RECK protein level in the observation group (0.12±0.05) µg/l, was significantly lower than the control group (3.46±0.08) µg/l (p<0.05), while, P53 and RUNX protein levels in observation group were significantly higher than that in healthy people (6.43±0.12 µg/l vs. 0.64±0.06 µg/l and 4.32±0.14 µg/l vs. 0.53±0.09 µg/l, respectively), and the results were similar to western blot. The data of immunohistochemistry showed that the proportion of RECK protein positive cells in the observation group was significantly lower than that in the control group (9.5 vs. 82.3%, P<0.05), while the proportions of P53 and RUNX protein positive cell in the observation group were significantly higher than those in the control group (78.4 vs. 11.1% and 87.3 vs. 9.06%), respectively, (P<0.05). This study concluded that, in patients with esophageal cancer, the methylation of RECK gene is increased and the expression of RECK gene is inhibited, while methylation of RUNX gene decreased and their expression was increased. This change in methylation of these genes may promote the occurrence and development of esophageal cancer.
Collapse
Affiliation(s)
- Yanrong Lu
- Department of Thoracico-Abdominal Radiotherapy, Tumor Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830011, P.R. China
| | - Baerxiaguli Zabihula
- Department of Thoracico-Abdominal Radiotherapy, Tumor Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830011, P.R. China
| | - Waresijiang Yibulayin
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830011, P.R. China
| | - Xiang Liu
- Department of Medical Administration Management, Tumor Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830011, P.R. China
| |
Collapse
|
189
|
Jiang B, Suen R, Wang JJ, Zhang ZJ, Wertheim JA, Ameer GA. Vascular scaffolds with enhanced antioxidant activity inhibit graft calcification. Biomaterials 2017; 144:166-175. [PMID: 28841463 DOI: 10.1016/j.biomaterials.2017.08.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/08/2017] [Accepted: 08/13/2017] [Indexed: 10/19/2022]
Abstract
There is a need for off-the-shelf, small-diameter vascular grafts that are safe and exhibit high long-term patency. Decellularized tissues can potentially be used as vascular grafts; however, thrombogenic and unpredictable remodeling properties such as intimal hyperplasia and calcification are concerns that hinder their clinical use. The objective of this study was to investigate the long-term function and remodeling of extracellular matrix (ECM)-based vascular grafts composited with antioxidant poly(1, 8-octamethylene-citrate-co-cysteine) (POCC) with or without immobilized heparin. Rat aortas were decellularized to create the following vascular grafts: 1) ECM hybridized with POCC (Poly-ECM), 2) Poly-ECM subsequently functionalized with heparin (Poly-ECM-Hep), and 3) non-modified vascular ECM. Grafts were evaluated as interposition grafts in the abdominal aorta of adult rats at three months. All grafts displayed antioxidant activity, were patent, and exhibited minimal intramural cell infiltration with varying degrees of calcification. Areas of calcification co-localized with osteochondrogenic differentiation of vascular smooth muscle cells, lipid peroxidation, oxidized DNA damage, and cell apoptosis, suggesting an important role for oxidative stress in the calcification of grafts. The extent of calcification within grafts was inversely proportional to their antioxidant activity: Poly-ECM-Hep > ECM > Poly-ECM. The incorporation of antioxidants into vascular grafts may be a viable strategy to inhibit degenerative changes.
Collapse
Affiliation(s)
- Bin Jiang
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA; Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Rachel Suen
- Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, 60208, USA
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zheng J Zhang
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jason A Wertheim
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA; Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Surgery, Jesse Brown VA Medical Center, Chicago, IL, 60612, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA; Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Guillermo A Ameer
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA; Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
190
|
Araujo TLS, Fernandes CG, Laurindo FRM. Golgi-independent routes support protein disulfide isomerase externalization in vascular smooth muscle cells. Redox Biol 2017; 12:1004-1010. [PMID: 28501017 PMCID: PMC5430572 DOI: 10.1016/j.redox.2017.04.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/28/2017] [Indexed: 01/10/2023] Open
Abstract
Extracellular pools of intracellular molecular chaperones are increasingly evident. The peri/epicellular(pec) pool of the endoplasmic reticulum redox chaperone protein disulfide isomerase-A1(PDI) is involved in thrombosis and vascular remodeling, while PDI externalization routes remain elusive. In endothelial cells, vesicular-type PDI secretion involves classical and unconventional pathways, while in platelets PDI exocytosis involves actin cytoskeleton. However, little is known about pecPDI in vascular smooth muscle cells(VSMC). Here, we showed that VSMC display a robust cell-surface(cs) PDI pool, which binds to cs independently of electrostatic forces. However, contrarily to other cells, soluble secreted PDI pool was undetectable in VSMC. Calcium ionophore A23187 and TNFα enhanced VSMC csPDI. Furthermore, VSMC PDI externalization occurred via Golgi-bypass unconventional route, which was independent of cytoskeleton or lysosomes. Secreted PDI was absent in ex vivo wild-type mice aortas but markedly enhanced in PDI-overexpressing mice. Such characterization of VSMC pecPDI reinforces cell-type and context specific routes of PDI externalization.
Collapse
MESH Headings
- Animals
- Calcimycin/pharmacology
- Cells, Cultured
- Golgi Apparatus/drug effects
- Golgi Apparatus/enzymology
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Protein Disulfide-Isomerases/metabolism
- Rabbits
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Thaís L S Araujo
- From the Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Postal code: 05403-000, São Paulo, Brazil
| | - Carolina G Fernandes
- From the Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Postal code: 05403-000, São Paulo, Brazil
| | - Francisco R M Laurindo
- From the Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Postal code: 05403-000, São Paulo, Brazil.
| |
Collapse
|
191
|
Dang D, Prasad H, Rao R. Secretory pathway Ca 2+ -ATPases promote in vitro microcalcifications in breast cancer cells. Mol Carcinog 2017; 56:2474-2485. [PMID: 28618103 DOI: 10.1002/mc.22695] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/19/2017] [Accepted: 06/13/2017] [Indexed: 02/01/2023]
Abstract
Calcification of the breast is often an outward manifestation of underlying molecular changes that drive carcinogenesis. Up to 50% of all non-palpable breast tumors and 90% of ductal carcinoma in situ present with radiographically dense mineralization in mammographic scans. However, surprisingly little is known about the molecular pathways that lead to microcalcifications in the breast. Here, we report on a rapid and quantitative in vitro assay to monitor microcalcifications in breast cancer cell lines, including MCF7, MDA-MB-231, and Hs578T. We show that the Secretory Pathway Ca2+ -ATPases SPCA1 and SPCA2 are strongly induced under osteogenic conditions that elicit microcalcifications. SPCA gene expression is significantly elevated in breast cancer subtypes that are associated with microcalcifications. Ectopic expression of SPCA genes drives microcalcifications and is dependent on pumping activity. Conversely, knockdown of SPCA expression significantly attenuates formation of microcalcifications. We propose that high levels of SPCA pumps may initiate mineralization in the secretory pathway by elevating luminal Ca2+ . Our new findings offer mechanistic insight and functional implications on a widely observed, yet poorly understood radiographic signature of breast cancer.
Collapse
Affiliation(s)
- Donna Dang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hari Prasad
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
192
|
Hetterich H, Webber N, Willner M, Herzen J, Birnbacher L, Auweter S, Schüller U, Bamberg F, Notohamiprodjo S, Bartsch H, Wolf J, Marschner M, Pfeiffer F, Reiser M, Saam T. Dark-field imaging in coronary atherosclerosis. Eur J Radiol 2017; 94:38-45. [PMID: 28941758 DOI: 10.1016/j.ejrad.2017.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/21/2017] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Dark-field imaging based on small angle X-ray scattering has been shown to be highly sensitive for microcalcifications, e.g. in breast tissue. We hypothesized (i) that high signal areas in dark-field imaging of atherosclerotic plaque are associated with microcalcifications and (ii) that dark-field imaging is more sensitive for microcalcifications than attenuation-based imaging. METHODS Fifteen coronary artery specimens were examined at an experimental set-up consisting of X-ray tube (40kV), grating-interferometer and detector. Tomographic dark-field-, attenuation-, and phase-contrast data were simultaneously acquired. Histopathology served as standard of reference. To explore the potential of dark field imaging in a full-body CT system, simulations were carried out with spherical calcifications of different sizes to simulate small and intermediate microcalcifications. RESULTS Microcalcifications were present in 10/10 (100%) cross-sections with high dark-field signal and without evidence of calcifications in attenuation- or phase contrast. In positive controls with high signal areas in all three modalities, 10/10 (100%) cross-sections showed macrocalcifications. In negative controls without high signal areas, no calcifications were detected. Simulations showed that the microcalcifications generate substantially higher dark-field than attenuation signal. CONCLUSIONS Dark-field imaging is highly sensitive for microcalcifications in coronary atherosclerotic plaque and might provide complementary information in the assessment of plaque instability.
Collapse
Affiliation(s)
- Holger Hetterich
- Institute of Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany.
| | - Nicole Webber
- Institute of Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Marian Willner
- Physics Department & Institute for Medical Engineering, Technical University Munich, Garching, Germany
| | - Julia Herzen
- Physics Department & Institute for Medical Engineering, Technical University Munich, Garching, Germany
| | - Lorenz Birnbacher
- Physics Department & Institute for Medical Engineering, Technical University Munich, Garching, Germany
| | - Sigrid Auweter
- Institute of Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Ulrich Schüller
- Center for Neuropathology, Ludwig-Maximilians-University Hospital, Munich, Germany; Institute for Neuropathology, University Medical Center Hamburg, Germany; Department for Pediatric Hematology and Oncology, University Medical Center Hamburg, Germany
| | - Fabian Bamberg
- Institute of Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Susan Notohamiprodjo
- Institute of Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Harald Bartsch
- Institute of Pathology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Johannes Wolf
- Physics Department & Institute for Medical Engineering, Technical University Munich, Garching, Germany
| | - Mathias Marschner
- Physics Department & Institute for Medical Engineering, Technical University Munich, Garching, Germany
| | - Franz Pfeiffer
- Physics Department & Institute for Medical Engineering, Technical University Munich, Garching, Germany
| | - Maximilian Reiser
- Institute of Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Tobias Saam
- Institute of Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
193
|
Ter Braake AD, Shanahan CM, de Baaij JHF. Magnesium Counteracts Vascular Calcification: Passive Interference or Active Modulation? Arterioscler Thromb Vasc Biol 2017; 37:1431-1445. [PMID: 28663256 DOI: 10.1161/atvbaha.117.309182] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/15/2017] [Indexed: 12/24/2022]
Abstract
Over the last decade, an increasing number of studies report a close relationship between serum magnesium concentration and cardiovascular disease risk in the general population. In end-stage renal disease, an association was found between serum magnesium and survival. Hypomagnesemia was identified as a strong predictor for cardiovascular disease in these patients. A substantial body of in vitro and in vivo studies has identified a protective role for magnesium in vascular calcification. However, the precise mechanisms and its contribution to cardiovascular protection remain unclear. There are currently 2 leading hypotheses: first, magnesium may bind phosphate and delay calcium phosphate crystal growth in the circulation, thereby passively interfering with calcium phosphate deposition in the vessel wall. Second, magnesium may regulate vascular smooth muscle cell transdifferentiation toward an osteogenic phenotype by active cellular modulation of factors associated with calcification. Here, the data supporting these major hypotheses are reviewed. The literature supports both a passive inorganic phosphate-buffering role reducing hydroxyapatite formation and an active cell-mediated role, directly targeting vascular smooth muscle transdifferentiation. However, current evidence relies on basic experimental designs that are often insufficient to delineate the underlying mechanisms. The field requires more advanced experimental design, including determination of intracellular magnesium concentrations and the identification of the molecular players that regulate magnesium concentrations in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Anique D Ter Braake
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (A.D.t.B., J.H.F.d.B.); Cardiovascular Division, BHF Centre of Research Excellence, James Black Centre, King's College, London, United Kingdom (C.M.S.); and Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (J.H.F.d.B.)
| | - Catherine M Shanahan
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (A.D.t.B., J.H.F.d.B.); Cardiovascular Division, BHF Centre of Research Excellence, James Black Centre, King's College, London, United Kingdom (C.M.S.); and Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (J.H.F.d.B.)
| | - Jeroen H F de Baaij
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (A.D.t.B., J.H.F.d.B.); Cardiovascular Division, BHF Centre of Research Excellence, James Black Centre, King's College, London, United Kingdom (C.M.S.); and Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (J.H.F.d.B.).
| |
Collapse
|
194
|
Rogers MA, Maldonado N, Hutcheson JD, Goettsch C, Goto S, Yamada I, Faits T, Sesaki H, Aikawa M, Aikawa E. Dynamin-Related Protein 1 Inhibition Attenuates Cardiovascular Calcification in the Presence of Oxidative Stress. Circ Res 2017; 121:220-233. [PMID: 28607103 DOI: 10.1161/circresaha.116.310293] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 06/02/2017] [Accepted: 06/09/2017] [Indexed: 12/23/2022]
Abstract
RATIONALE Mitochondrial changes occur during cell differentiation and cardiovascular disease. DRP1 (dynamin-related protein 1) is a key regulator of mitochondrial fission. We hypothesized that DRP1 plays a role in cardiovascular calcification, a process involving cell differentiation and a major clinical problem with high unmet needs. OBJECTIVE To examine the effects of osteogenic promoting conditions on DRP1 and whether DRP1 inhibition alters the development of cardiovascular calcification. METHODS AND RESULTS DRP1 was enriched in calcified regions of human carotid arteries, examined by immunohistochemistry. Osteogenic differentiation of primary human vascular smooth muscle cells increased DRP1 expression. DRP1 inhibition in human smooth muscle cells undergoing osteogenic differentiation attenuated matrix mineralization, cytoskeletal rearrangement, mitochondrial dysfunction, and reduced type 1 collagen secretion and alkaline phosphatase activity. DRP1 protein was observed in calcified human aortic valves, and DRP1 RNA interference reduced primary human valve interstitial cell calcification. Mice heterozygous for Drp1 deletion did not exhibit altered vascular pathology in a proprotein convertase subtilisin/kexin type 9 gain-of-function atherosclerosis model. However, when mineralization was induced via oxidative stress, DRP1 inhibition attenuated mouse and human smooth muscle cell calcification. Femur bone density was unchanged in mice heterozygous for Drp1 deletion, and DRP1 inhibition attenuated oxidative stress-mediated dysfunction in human bone osteoblasts. CONCLUSIONS We demonstrate a new function of DRP1 in regulating collagen secretion and cardiovascular calcification, a novel area of exploration for the potential development of new therapies to modify cellular fibrocalcific response in cardiovascular diseases. Our data also support a role of mitochondrial dynamics in regulating oxidative stress-mediated arterial calcium accrual and bone loss.
Collapse
Affiliation(s)
- Maximillian A Rogers
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., N.M., J.D.H., C.G., S.G., I.Y., T.F., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD (H.S.)
| | - Natalia Maldonado
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., N.M., J.D.H., C.G., S.G., I.Y., T.F., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD (H.S.)
| | - Joshua D Hutcheson
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., N.M., J.D.H., C.G., S.G., I.Y., T.F., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD (H.S.)
| | - Claudia Goettsch
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., N.M., J.D.H., C.G., S.G., I.Y., T.F., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD (H.S.)
| | - Shinji Goto
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., N.M., J.D.H., C.G., S.G., I.Y., T.F., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD (H.S.)
| | - Iwao Yamada
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., N.M., J.D.H., C.G., S.G., I.Y., T.F., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD (H.S.)
| | - Tyler Faits
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., N.M., J.D.H., C.G., S.G., I.Y., T.F., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD (H.S.)
| | - Hiromi Sesaki
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., N.M., J.D.H., C.G., S.G., I.Y., T.F., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD (H.S.)
| | - Masanori Aikawa
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., N.M., J.D.H., C.G., S.G., I.Y., T.F., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD (H.S.)
| | - Elena Aikawa
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., N.M., J.D.H., C.G., S.G., I.Y., T.F., M.A., E.A.) and Center for Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD (H.S.).
| |
Collapse
|
195
|
Cui L, Rashdan NA, Zhu D, Milne EM, Ajuh P, Milne G, Helfrich MH, Lim K, Prasad S, Lerman DA, Vesey AT, Dweck MR, Jenkins WS, Newby DE, Farquharson C, Macrae VE. End stage renal disease-induced hypercalcemia may promote aortic valve calcification via Annexin VI enrichment of valve interstitial cell derived-matrix vesicles. J Cell Physiol 2017; 232:2985-2995. [PMID: 28369848 PMCID: PMC5575563 DOI: 10.1002/jcp.25935] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/24/2017] [Indexed: 12/12/2022]
Abstract
Patients with end‐stage renal disease (ESRD) have elevated circulating calcium (Ca) and phosphate (Pi), and exhibit accelerated progression of calcific aortic valve disease (CAVD). We hypothesized that matrix vesicles (MVs) initiate the calcification process in CAVD. Ca induced rat valve interstitial cells (VICs) calcification at 4.5 mM (16.4‐fold; p < 0.05) whereas Pi treatment alone had no effect. Ca (2.7 mM) and Pi (2.5 mM) synergistically induced calcium deposition (10.8‐fold; p < 0.001) in VICs. Ca treatment increased the mRNA of the osteogenic markers Msx2, Runx2, and Alpl (p < 0.01). MVs were harvested by ultracentrifugation from VICs cultured with control or calcification media (containing 2.7 mM Ca and 2.5 mM Pi) for 16 hr. Proteomics analysis revealed the marked enrichment of exosomal proteins, including CD9, CD63, LAMP‐1, and LAMP‐2 and a concomitant up‐regulation of the Annexin family of calcium‐binding proteins. Of particular note Annexin VI was shown to be enriched in calcifying VIC‐derived MVs (51.9‐fold; p < 0.05). Through bioinformatic analysis using Ingenuity Pathway Analysis (IPA), the up‐regulation of canonical signaling pathways relevant to cardiovascular function were identified in calcifying VIC‐derived MVs, including aldosterone, Rho kinase, and metal binding. Further studies using human calcified valve tissue revealed the co‐localization of Annexin VI with areas of MVs in the extracellular matrix by transmission electron microscopy (TEM). Together these findings highlight a critical role for VIC‐derived MVs in CAVD. Furthermore, we identify calcium as a key driver of aortic valve calcification, which may directly underpin the increased susceptibility of ESRD patients to accelerated development of CAVD.
Collapse
Affiliation(s)
- Lin Cui
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Nabil A Rashdan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Dongxing Zhu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Elspeth M Milne
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Paul Ajuh
- Gemini Biosciences Ltd, Liverpool Science Park, Liverpool, United Kingdom
| | - Gillian Milne
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Miep H Helfrich
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Kelvin Lim
- Department of Cardiothoracic Surgery, Royal Infirmary Hospital of Edinburgh (NHS Lothian), The University of Edinburgh, Edinburgh, United Kingdom
| | - Sai Prasad
- Department of Cardiothoracic Surgery, Royal Infirmary Hospital of Edinburgh (NHS Lothian), The University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel A Lerman
- Department of Cardiothoracic Surgery, Royal Infirmary Hospital of Edinburgh (NHS Lothian), The University of Edinburgh, Edinburgh, United Kingdom
| | - Alex T Vesey
- University/BHF Center for Cardiovascular Sciences, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Marc R Dweck
- University/BHF Center for Cardiovascular Sciences, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - William S Jenkins
- University/BHF Center for Cardiovascular Sciences, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - David E Newby
- University/BHF Center for Cardiovascular Sciences, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Vicky E Macrae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| |
Collapse
|
196
|
Abstract
Calcification of atherosclerotic lesions was long thought to be an age - related, passive process, but increasingly data has revealed that atherosclerotic calcification is a more active process, involving complex signaling pathways and bone-like genetic programs. Initially, imaging of atherosclerotic calcification was limited to gross assessment of calcium burden, which is associated with total atherosclerotic burden and risk of cardiovascular mortality and of all cause mortality. More recently, sophisticated molecular imaging studies of the various processes involved in calcification have begun to elucidate information about plaque calcium composition and consequent vulnerability to rupture, leading to hard cardiovascular events like myocardial infarction. As such, there has been renewed interest in imaging calcification to advance risk assessment accuracy in an evolving era of precision medicine. Here we summarize recent advances in our understanding of the biologic process of atherosclerotic calcification as well as some of the molecular imaging tools used to assess it.
Collapse
Affiliation(s)
- Grant Bailey
- Department of Internal Medicine (Section of Cardiovascular Medicine), Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT, 06516, USA
| | - Judith Meadows
- Department of Internal Medicine (Section of Cardiovascular Medicine), Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT, 06516, USA
| | - Alan R Morrison
- Department of Internal Medicine (Section of Cardiovascular Medicine), Alpert Medical School at Brown University, Providence, RI, 02903, USA.
- Providence VA Medical Center, 830 Chalkstone Avenue, Providence, RI, 02908, USA.
| |
Collapse
|
197
|
Hodroge A, Trécherel E, Cornu M, Darwiche W, Mansour A, Ait-Mohand K, Verissimo T, Gomila C, Schembri C, Da Nascimento S, Elboutachfaiti R, Boullier A, Lorne E, Courtois J, Petit E, Toumieux S, Kovensky J, Sonnet P, Massy ZA, Kamel S, Rossi C, Ausseil J. Oligogalacturonic Acid Inhibits Vascular Calcification by Two Mechanisms: Inhibition of Vascular Smooth Muscle Cell Osteogenic Conversion and Interaction With Collagen. Arterioscler Thromb Vasc Biol 2017; 37:1391-1401. [PMID: 28522698 DOI: 10.1161/atvbaha.117.309513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 05/03/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Cardiovascular diseases constitute the leading cause of mortality worldwide. Calcification of the vessel wall is associated with cardiovascular morbidity and mortality in patients having many diseases, including diabetes mellitus, atherosclerosis, and chronic kidney disease. Vascular calcification is actively regulated by inductive and inhibitory mechanisms (including vascular smooth muscle cell adaptation) and results from an active osteogenic process. During the calcification process, extracellular vesicles (also known as matrix vesicles) released by vascular smooth muscle cells interact with type I collagen and then act as nucleating foci for calcium crystallization. Our primary objective was to identify new, natural molecules that inhibit the vascular calcification process. APPROACH AND RESULTS We have found that oligogalacturonic acids (obtained by the acid hydrolysis of polygalacturonic acid) reduce in vitro inorganic phosphate-induced calcification of vascular smooth muscle cells by 80% and inorganic phosphate-induced calcification of isolated rat aortic rings by 50%. A specific oligogalacturonic acid with a degree of polymerization of 8 (DP8) was found to inhibit the expression of osteogenic markers and, thus, prevent the conversion of vascular smooth muscle cells into osteoblast-like cells. We also evidenced in biochemical and immunofluorescence assays a direct interaction between matrix vesicles and type I collagen via the GFOGER sequence (where single letter amino acid nomenclature is used, O=hydroxyproline) thought to be involved in interactions with several pairs of integrins. CONCLUSIONS DP8 inhibits vascular calcification development mainly by inhibition of osteogenic marker expression but also partly by masking the GFOGER sequence-thereby, preventing matrix vesicles from binding to type I collagen.
Collapse
Affiliation(s)
- Ahmed Hodroge
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.)
| | - Eric Trécherel
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.)
| | - Marjorie Cornu
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.)
| | - Walaa Darwiche
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.)
| | - Ali Mansour
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.)
| | - Katia Ait-Mohand
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.)
| | - Thomas Verissimo
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.)
| | - Cathy Gomila
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.)
| | - Carole Schembri
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.)
| | - Sophie Da Nascimento
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.)
| | - Redouan Elboutachfaiti
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.)
| | - Agnès Boullier
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.)
| | - Emmanuel Lorne
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.)
| | - Josiane Courtois
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.)
| | - Emmanuel Petit
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.)
| | - Sylvestre Toumieux
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.)
| | - José Kovensky
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.)
| | - Pascal Sonnet
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.)
| | - Ziad A Massy
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.)
| | - Saïd Kamel
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.)
| | - Claire Rossi
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.)
| | - Jérôme Ausseil
- From the Unité INSERM U1088, CURS-Université de Picardie Jules Verne, Amiens, France (A.H., E.T., M.C., W.D., A.M., T.V., C.G., A.B., E.L., S.K., J.A.); Laboratoire de Biochimie, CHU Amiens, France (A.H., E.T., C.G., A.B., S.K., J.A.); Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources LG2A UMR 7378, Université de Picardie Jules Verne, Amiens, France (K.A.-M., S.T., J.K.); Laboratoire des polysaccharides microbiens et végétaux EA3900-BIOPI, IUT Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, Amiens, France (R.E., J.C., E.P.); Sorbonne universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie enzymatique et cellulaire, Rue Roger Couttolenc, CS 60319, Compiègne Cedex, France (C.S., C.R.); Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378, Université de Picardie Jules Verne, Amiens Cedex 1, France (S.D.N., P.S.); and Service de Nephrologie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt/Paris, Université Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ) et Inserm U1018, Equipe 5, CESP, Villejuif, France (Z.A.M.).
| |
Collapse
|
198
|
Viegas CSB, Costa RM, Santos L, Videira PA, Silva Z, Araújo N, Macedo AL, Matos AP, Vermeer C, Simes DC. Gla-rich protein function as an anti-inflammatory agent in monocytes/macrophages: Implications for calcification-related chronic inflammatory diseases. PLoS One 2017; 12:e0177829. [PMID: 28542410 PMCID: PMC5436823 DOI: 10.1371/journal.pone.0177829] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/03/2017] [Indexed: 12/19/2022] Open
Abstract
Calcification-related chronic inflammatory diseases are multifactorial pathological processes, involving a complex interplay between inflammation and calcification events in a positive feed-back loop driving disease progression. Gla-rich protein (GRP) is a vitamin K dependent protein (VKDP) shown to function as a calcification inhibitor in cardiovascular and articular tissues, and proposed as an anti-inflammatory agent in chondrocytes and synoviocytes, acting as a new crosstalk factor between these two interconnected events in osteoarthritis. However, a possible function of GRP in the immune system has never been studied. Here we focused our investigation in the involvement of GRP in the cell inflammatory response mechanisms, using a combination of freshly isolated human leucocytes and undifferentiated/differentiated THP-1 cell line. Our results demonstrate that VKDPs such as GRP and matrix gla protein (MGP) are synthesized and γ-carboxylated in the majority of human immune system cells either involved in innate or adaptive immune responses. Stimulation of THP-1 monocytes/macrophages with LPS or hydroxyapatite (HA) up-regulated GRP expression, and treatments with GRP or GRP-coated basic calcium phosphate crystals resulted in the down-regulation of mediators of inflammation and inflammatory cytokines, independently of the protein γ-carboxylation status. Moreover, overexpression of GRP in THP-1 cells rescued the inflammation induced by LPS and HA, by down-regulation of the proinflammatory cytokines TNFα, IL-1β and NFkB. Interestingly, GRP was detected at protein and mRNA levels in extracellular vesicles released by macrophages, which may act as vehicles for extracellular trafficking and release. Our data indicate GRP as an endogenous mediator of inflammatory responses acting as an anti-inflammatory agent in monocytes/macrophages. We propose that in a context of chronic inflammation and calcification-related pathologies, GRP might act as a novel molecular mediator linking inflammation and calcification events, with potential therapeutic application.
Collapse
Affiliation(s)
- Carla S. B. Viegas
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Rúben M. Costa
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Lúcia Santos
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Paula A. Videira
- UCIBIO@REQUIMTE Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Zélia Silva
- UCIBIO@REQUIMTE Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Nuna Araújo
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Anjos L. Macedo
- UCIBIO@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - António P. Matos
- Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal
| | - Cees Vermeer
- VitaK, Maastricht University, Maastricht, The Netherlands
| | - Dina C. Simes
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| |
Collapse
|
199
|
Nakahara T, Dweck MR, Narula N, Pisapia D, Narula J, Strauss HW. Coronary Artery Calcification. JACC Cardiovasc Imaging 2017; 10:582-593. [DOI: 10.1016/j.jcmg.2017.03.005] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/02/2023]
|
200
|
Aortic calcified particles modulate valvular endothelial and interstitial cells. Cardiovasc Pathol 2017; 28:36-45. [DOI: 10.1016/j.carpath.2017.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/15/2017] [Accepted: 02/22/2017] [Indexed: 12/11/2022] Open
|