151
|
Brazil DP, Church RH, Surae S, Godson C, Martin F. BMP signalling: agony and antagony in the family. Trends Cell Biol 2015; 25:249-64. [DOI: 10.1016/j.tcb.2014.12.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 01/14/2023]
|
152
|
Ma J, Wang H, Liu R, Jin L, Tang Q, Wang X, Jiang A, Hu Y, Li Z, Zhu L, Li R, Li M, Li X. The miRNA Transcriptome Directly Reflects the Physiological and Biochemical Differences between Red, White, and Intermediate Muscle Fiber Types. Int J Mol Sci 2015; 16:9635-53. [PMID: 25938964 PMCID: PMC4463610 DOI: 10.3390/ijms16059635] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/24/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can regulate their target genes at the post-transcriptional level. Skeletal muscle comprises different fiber types that can be broadly classified as red, intermediate, and white. Recently, a set of miRNAs was found expressed in a fiber type-specific manner in red and white fiber types. However, an in-depth analysis of the miRNA transcriptome differences between all three fiber types has not been undertaken. Herein, we collected 15 porcine skeletal muscles from different anatomical locations, which were then clearly divided into red, white, and intermediate fiber type based on the ratios of myosin heavy chain isoforms. We further illustrated that three muscles, which typically represented each muscle fiber type (i.e., red: peroneal longus (PL), intermediate: psoas major muscle (PMM), white: longissimus dorsi muscle (LDM)), have distinct metabolic patterns of mitochondrial and glycolytic enzyme levels. Furthermore, we constructed small RNA libraries for PL, PMM, and LDM using a deep sequencing approach. Results showed that the differentially expressed miRNAs were mainly enriched in PL and played a vital role in myogenesis and energy metabolism. Overall, this comprehensive analysis will contribute to a better understanding of the miRNA regulatory mechanism that achieves the phenotypic diversity of skeletal muscles.
Collapse
Affiliation(s)
- Jideng Ma
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Hongmei Wang
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Rui Liu
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Long Jin
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Qianzi Tang
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Xun Wang
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Anan Jiang
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Yaodong Hu
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Zongwen Li
- Novogene Bioinformatics Institute, Beijing 100083, China.
| | - Li Zhu
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, Beijing 100083, China.
| | - Mingzhou Li
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Xuewei Li
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| |
Collapse
|
153
|
Han W, Fu X, Xie J, Meng Z, Gu Y, Wang X, Li L, Pan H, Huang W. MiR-26a enhances autophagy to protect against ethanol-induced acute liver injury. J Mol Med (Berl) 2015; 93:1045-55. [PMID: 25877859 PMCID: PMC4577542 DOI: 10.1007/s00109-015-1282-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/25/2015] [Accepted: 03/31/2015] [Indexed: 02/05/2023]
Abstract
Abstract Autophagy is a process for the turnover of intracellular organelles and molecules during stress responses. microRNAs (miRNAs) are small, non-coding endogenous RNAs that may regulate almost every cellular process. However, the roles of miRNAs in autophagy are still poorly understood. In this study, we show that miR-26a enhances autophagy in both culture cells and the mouse liver. Hepatic overexpression of miR-26a in mice alleviated ethanol-induced hepatic steatosis and liver injury. Overexpression of miR-26a increased the expression of the autophagy mediator Beclin-1, which is regulated by mitogen-activated protein kinases (MAPKs). We identified DUSP4 and DUSP5, two MAPKs inhibitors, as direct targets of miR-26a. We further demonstrated that miR-26a targeted the 3′-UTRs of several other negative regulators of autophagy. Our results thus identify a novel miRNA-mediated mechanism that enhances cytoprotective autophagy in the liver. Key messages • miR-26a enhances autophagy in liver cells. • Hepatic overexpression of miR-26a in mice alleviates ethanol-induced liver injury. • Overexpression of miR-26a increases the expression of autophagy mediator Beclin-1. • DUSP4 and DUSP5, two MAPKs inhibitors, were identified as direct targets of miR-26a. Electronic supplementary material The online version of this article (doi:10.1007/s00109-015-1282-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China.,Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Xianghui Fu
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA. .,Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| | - Jiansheng Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Zhipeng Meng
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Ying Gu
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Xichun Wang
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Ling Li
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China.
| | - Wendong Huang
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
154
|
Sardu C, Marfella R, Santulli G, Paolisso G. Functional role of miRNA in cardiac resynchronization therapy. Pharmacogenomics 2015; 15:1159-68. [PMID: 25084208 DOI: 10.2217/pgs.14.76] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Heart failure (HF) disease progression is related to numerous adaptive processes including cardiac fibrosis, hypertrophy and apoptosis by activation of the 'fetal' gene program and downregulation of mRNA signatures, suggesting the importance of molecular mechanisms that suppress mRNA steady-state levels. miRNAs (miRs) are small, noncoding RNAs that bind mRNAs at their 3'-UTRs, leading to mRNA degradation or inhibition of protein translation. Several miRs are unregulated in response to cellular stress and can modify cellular functions such as proliferation, differentiation and programmed death; these miRs are also regulated in cardiac disease. Cardiac resynchronization therapy improves cardiac performance and myocardial mechanical efficiency. In this updated critical appraisal we report on the main miRs that play a key role in response to cardiac resynchronization therapy (i.e., responder vs nonresponder HF patients), focusing on the miR-mediated modulation of cardiac angiogenesis, apoptosis, fibrosis and membrane ionic currents.
Collapse
Affiliation(s)
- Celestino Sardu
- Department of Medical, Surgical, Neurological, Metabolic & Geriatric Sciences, Second University of Naples, Piazza Miraglia, 2, 80138, Naples, Italy
| | | | | | | |
Collapse
|
155
|
MicroRNA-26a prevents endothelial cell apoptosis by directly targeting TRPC6 in the setting of atherosclerosis. Sci Rep 2015; 5:9401. [PMID: 25801675 PMCID: PMC4371083 DOI: 10.1038/srep09401] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/03/2015] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease, is the major cause of life-threatening complications such as myocardial infarction and stroke. Endothelial apoptosis plays a vital role in the initiation and progression of atherosclerotic lesions. Although a subset of microRNAs (miRs) have been identified as critical regulators of atherosclerosis, studies on their participation in endothelial apoptosis in atherosclerosis have been limited. In our study, we found that miR-26a expression was substantially reduced in the aortic intima of ApoE−/− mice fed with a high-fat diet (HFD). Treatment of human aortic endothelial cells (HAECs) with oxidized low-density lipoprotein (ox-LDL) suppressed miR-26a expression. Forced expression of miR-26a inhibited endothelial apoptosis as evidenced by MTT assay and TUNEL staining results. Further analysis identified TRPC6 as a target of miR-26a, and TRPC6 overexpression abolished the anti-apoptotic effect of miR-26a. Moreover, the cytosolic calcium and the mitochondrial apoptotic pathway were found to mediate the beneficial effects of miR-26a on endothelial apoptosis. Taken together, our study reveals a novel role of miR-26a in endothelial apoptosis and indicates a therapeutic potential of miR-26a for atherosclerosis associated with apoptotic cell death.
Collapse
|
156
|
Low oxygen tension enhances osteogenic potential of bone marrow-derived mesenchymal stem cells with osteonecrosis-related functional impairment. Stem Cells Int 2015; 2015:950312. [PMID: 25691905 PMCID: PMC4322297 DOI: 10.1155/2015/950312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/01/2015] [Accepted: 01/08/2015] [Indexed: 12/21/2022] Open
Abstract
Objective. Glucocorticoids can affect the function of bone marrow-derived mesenchymal stem cells (BMMSCs) adversely and merit the requirement for a strategy to correct this anomaly; we assessed the effect of low oxygen (2%) on BMMSCs from rabbits with osteonecrosis. Methods. Bone marrow-derived mesenchymal stem cells from normal rabbits and rabbits with osteonecrosis were divided into four groups: (1) normal-normoxia group, with normal BMMSCs cultured under 20% oxygen; (2) osteonecrosis-normoxia group, with BMMSCs from rabbits with osteonecrosis cultured under 20% oxygen; (3) osteonecrosis-low oxygen treated group, with BMMSCs from rabbits with osteonecrosis cultured under 2% oxygen; (4) normal-low oxygen treated group, with normal BMMSCs cultured under 2% oxygen. The proliferation, osteogenic, and adipogenic differentiation of MSCs and expression of stemness genes, osteogenic, and adipogenic differentiation markers were investigated. Results. Compared with BMMSCs from normal rabbits, those from osteonecrosis rabbits showed significantly reduced proliferation ability, repressed expression of stemness genes, decreased osteoblasts formation, and increased adipocytes formation, indicating an osteonecrosis-related impairment. Low oxygen (2%) treated BMMSCs from osteonecrosis rabbits showed not only increased proliferation and osteogenic potential but also decreased adipogenic potential. Conclusion. Low oxygen (2%) culture represents a novel strategy to augment BMMSC function affected by glucocorticoids and holds significance for future strategies to treat femoral head osteonecrosis.
Collapse
|
157
|
Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress. Toxicol Appl Pharmacol 2015; 283:198-209. [PMID: 25625412 DOI: 10.1016/j.taap.2015.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 01/14/2015] [Accepted: 01/17/2015] [Indexed: 12/18/2022]
Abstract
Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100mg/L) for 60days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenic exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate-cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress.
Collapse
|
158
|
Wronska A, Kurkowska-Jastrzebska I, Santulli G. Application of microRNAs in diagnosis and treatment of cardiovascular disease. Acta Physiol (Oxf) 2015; 213:60-83. [PMID: 25362848 DOI: 10.1111/apha.12416] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/08/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is a major cause of morbidity and mortality worldwide. Innovative, more stringent diagnostic and prognostic biomarkers and effective treatment options are needed to lessen its burden. In recent years, microRNAs have emerged as master regulators of gene expression - they bind to complementary sequences within the mRNAs of their target genes and inhibit their expression by either mRNA degradation or translational repression. microRNAs have been implicated in all major cellular processes, including cell cycle, differentiation and metabolism. Their unique mode of action, fine-tuning gene expression rather than turning genes on/off, and their ability to simultaneously regulate multiple elements of relevant pathways makes them enticing potential biomarkers and therapeutic targets. Indeed, cardiovascular patients have specific patterns of circulating microRNA levels, often early in the disease process. This article provides a systematic overview of the role of microRNAs in the pathophysiology, diagnosis and treatment of CVD.
Collapse
Affiliation(s)
- A. Wronska
- Helen and Clyde Wu Center for Molecular Cardiology; Department of Physiology and Cellular Biophysics; College of Physicians and Surgeons of Columbia University; New York NY USA
| | - I. Kurkowska-Jastrzebska
- Department of Experimental and Clinical Pharmacology; Medical University of Warsaw; Warsaw Poland
- 2nd Department of Neurology; National Institute of Psychiatry and Neurology; Warsaw Poland
| | - G. Santulli
- Helen and Clyde Wu Center for Molecular Cardiology; Department of Physiology and Cellular Biophysics; College of Physicians and Surgeons of Columbia University; New York NY USA
| |
Collapse
|
159
|
Santulli G. microRNAs Distinctively Regulate Vascular Smooth Muscle and Endothelial Cells: Functional Implications in Angiogenesis, Atherosclerosis, and In-Stent Restenosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 887:53-77. [PMID: 26662986 PMCID: PMC4871245 DOI: 10.1007/978-3-319-22380-3_4] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endothelial cells (EC) and vascular smooth muscle cells (VSMC) are the main cell types within the vasculature. We describe here how microRNAs (miRs)--noncoding RNAs that can regulate gene expression via translational repression and/or post-transcriptional degradation--distinctively modulate EC and VSMC function in physiology and disease. In particular, the specific roles of miR-126 and miR-143/145, master regulators of EC and VSMC function, respectively, are deeply explored. We also describe the mechanistic role of miRs in the regulation of the pathophysiology of key cardiovascular processes including angiogenesis, atherosclerosis, and in-stent restenosis post-angioplasty. Drawbacks of currently available therapeutic options are discussed, pointing at the challenges and potential clinical opportunities provided by miR-based treatments.
Collapse
MESH Headings
- Angioplasty
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Endothelial Cells/cytology
- Endothelial Cells/metabolism
- Gene Expression Regulation
- Graft Occlusion, Vascular/genetics
- Graft Occlusion, Vascular/metabolism
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Physiologic
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Stents/adverse effects
- Vascular Remodeling
Collapse
|
160
|
|
161
|
|
162
|
Li X, Du N, Zhang Q, Li J, Chen X, Liu X, Hu Y, Qin W, Shen N, Xu C, Fang Z, Wei Y, Wang R, Du Z, Zhang Y, Lu Y. MicroRNA-30d regulates cardiomyocyte pyroptosis by directly targeting foxo3a in diabetic cardiomyopathy. Cell Death Dis 2014; 5:e1479. [PMID: 25341033 PMCID: PMC4237254 DOI: 10.1038/cddis.2014.430] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 08/27/2014] [Accepted: 09/04/2014] [Indexed: 12/15/2022]
Abstract
Diabetic cardiomyopathy is a common cardiac condition in patients with diabetes mellitus, which can result in cardiac hypertrophy and subsequent heart failure, associated with pyroptosis, the pro-inflammatory programmed cell death. MicroRNAs (miRNAs), small endogenous non-coding RNAs, have been shown to be involved in diabetic cardiomyopathy. However, whether miRNAs regulate pyroptosis in diabetic cardiomyopathy remains unknown. Our study revealed that mir-30d expression was substantially increased in streptozotocin (STZ)-induced diabetic rats and in high-glucose-treated cardiomyocytes as well. Upregulation of mir-30d promoted cardiomyocyte pyroptosis in diabetic cardiomyopathy; conversely, knockdown of mir-30d attenuated it. In an effort to understand the signaling mechanisms underlying the pro-pyroptotic property of mir-30d, we found that forced expression of mir-30d upregulated caspase-1 and pro-inflammatory cytokines IL-1β and IL-18. Moreover, mir-30d directly repressed foxo3a expression and its downstream protein, apoptosis repressor with caspase recruitment domain (ARC). Furthermore, silencing ARC by siRNA mimicked the action of mir-30d: upregulating caspase-1 and inducing pyroptosis. These findings promoted us to propose a new signaling pathway leading to cardiomyocyte pyroptosis under hyperglycemic conditions: mir-30d↑→foxo3a↓→ ARC↓→caspase-1↑→IL-1β, IL-18↑→pyroptosis↑. Therefore, mir-30d may be a promising therapeutic target for the management of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- X Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - N Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Q Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - J Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - X Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - X Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Y Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - W Qin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - N Shen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - C Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Z Fang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Y Wei
- Department of General Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - R Wang
- Department of Geriatrics, The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Z Du
- 1] Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China [2] Institute of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Y Zhang
- 1] Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China [2] Institute of Cardiovascular Research, Harbin Medical University, Harbin 150081, China
| | - Y Lu
- 1] Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China [2] Institute of Cardiovascular Research, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
163
|
Zhu XY, Ebrahimi B, Eirin A, Woollard JR, Tang H, Jordan KL, Ofori M, Saad A, Herrmann SMS, Dietz AB, Textor SC, Lerman A, Lerman LO. Renal Vein Levels of MicroRNA-26a Are Lower in the Poststenotic Kidney. J Am Soc Nephrol 2014; 26:1378-88. [PMID: 25270070 DOI: 10.1681/asn.2014030248] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/01/2014] [Indexed: 01/06/2023] Open
Abstract
MicroRNA-26a (miR-26a) is a post-transcriptional regulator that inhibits cellular differentiation and apoptosis. Renal vascular disease (RVD) induces ischemic injury characterized by tubular cell apoptosis and interstitial fibrosis. We hypothesized that miR-26a levels are reduced in the poststenotic kidney and that kidney repair achieved by adipose tissue-derived mesenchymal stem cells (ad-MSCs) is associated with restored miR-26a levels. Renal function and renal miR-26a levels were assessed in pigs with RVD not treated (n=7) or 4 weeks after intrarenal infusion of ad-MSC (2.5×10(5) cells/kg; n=6), patients with RVD (n=12) or essential hypertension (n=12), and healthy volunteers (n=12). In addition, the direct effect of miR-26a on apoptosis was evaluated in a renal tubular cell culture. Compared with healthy control kidneys, swine and human poststenotic kidneys had 45.5±4.3% and 90.0±3.5% lower levels of miR-26a, respectively, which in pigs, localized to the proximal tubules. In pigs, ad-MSC delivery restored tubular miR-26a expression, attenuated tubular apoptosis and interstitial fibrosis, and improved renal function and tubular oxygen-dependent function. In vitro, miR-26a inhibition induced proximal tubular cell apoptosis and upregulated proapoptotic protein expression, which were both rescued by ad-MSC. In conclusion, decreased tubular miR-26a expression in the poststenotic kidney may be responsible for tubular cell apoptosis and renal dysfunction but can be restored using ad-MSC. Therefore, miR-26a might be a novel therapeutic target in renovascular disease.
Collapse
Affiliation(s)
| | | | | | | | - Hui Tang
- Divisions of Nephrology and Hypertension and
| | | | | | - Ahmed Saad
- Divisions of Nephrology and Hypertension and
| | | | - Allan B Dietz
- Department of Laboratory Medicine, Mayo Clinic, Rochester, Minnesota
| | | | | | - Lilach O Lerman
- Divisions of Nephrology and Hypertension and Cardiovascular Diseases and
| |
Collapse
|
164
|
Affiliation(s)
- Ali J Marian
- From the Institute of Molecular Medicine, Center for Cardiovascular Genetic Research, University of Texas Health Science Center, Houston.
| |
Collapse
|
165
|
Small engine, big power: microRNAs as regulators of cardiac diseases and regeneration. Int J Mol Sci 2014; 15:15891-911. [PMID: 25207600 PMCID: PMC4200826 DOI: 10.3390/ijms150915891] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 12/20/2022] Open
Abstract
Cardiac diseases are the predominant cause of human mortality in the United States and around the world. MicroRNAs (miRNAs) are small non-coding RNAs that have been shown to modulate a wide range of biological functions under various pathophysiological conditions. miRNAs alter target expression by post-transcriptional regulation of gene expression. Numerous studies have implicated specific miRNAs in cardiovascular development, pathology, regeneration and repair. These observations suggest that miRNAs are potential therapeutic targets to prevent or treat cardiovascular diseases. This review focuses on the emerging role of miRNAs in cardiac development, pathogenesis of cardiovascular diseases, cardiac regeneration and stem cell-mediated cardiac repair. We also discuss the novel diagnostic and therapeutic potential of these miRNAs and their targets in patients with cardiac diseases.
Collapse
|
166
|
MicroRNAs in vascular aging and atherosclerosis. Ageing Res Rev 2014; 17:68-78. [PMID: 24681293 DOI: 10.1016/j.arr.2014.03.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/03/2014] [Accepted: 03/16/2014] [Indexed: 12/25/2022]
Abstract
Lipid dysfunction, inflammation, immune response and advanced aging are major factors involved in the initiation and progression of atherosclerosis. MicroRNAs (miRNAs) have emerged as important regulators of gene expression that post transcriptionally modify cellular responses and function. MiRNA's are crucially involved in several vascular pathologies which show a clear association with increasing age (Dimmeler and Nicotera, 2013). Several studies have demonstrated that miRNA dysregulation has a crucial role in the development of atherosclerotic disease, encompassing every step from plaque formation to destabilization and rupture. This review will present the recent advances in the elucidation of the complex pathophysiological mechanisms in vascular aging by which miRNAs regulate the different phases of atherosclerotic process with a focus on endothelial cells and both, innate and adaptive immune systems. Furthermore, the future areas of research and potential clinical strategies will be discussed.
Collapse
|
167
|
Kim JD, Lee HW, Jin SW. Diversity is in my veins: role of bone morphogenetic protein signaling during venous morphogenesis in zebrafish illustrates the heterogeneity within endothelial cells. Arterioscler Thromb Vasc Biol 2014; 34:1838-45. [PMID: 25060789 DOI: 10.1161/atvbaha.114.303219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelial cells are a highly diverse group of cells which display distinct cellular responses to exogenous stimuli. Although the aptly named vascular endothelial growth factor-A signaling pathway is hailed as the most important signaling input for endothelial cells, additional factors also participate in regulating diverse aspects of endothelial behaviors and functions. Given this heterogeneity, these additional factors seem to play a critical role in creating a custom-tailored environment to regulate behaviors and functions of distinct subgroups of endothelial cells. For instance, molecular cues that modulate morphogenesis of arterial vascular beds can be distinct from those that govern morphogenesis of venous vascular beds. Recently, we have found that bone morphogenetic protein signaling selectively promotes angiogenesis from venous vascular beds without eliciting similar responses from arterial vascular beds in zebrafish, indicating that bone morphogenetic protein signaling functions as a context-dependent regulator during vascular morphogenesis. In this review, we will provide an overview of the molecular mechanisms that underlie proangiogenic effects of bone morphogenetic protein signaling on venous vascular beds in the context of endothelial heterogeneity and suggest a more comprehensive picture of the molecular mechanisms of vascular morphogenesis during development.
Collapse
Affiliation(s)
- Jun-Dae Kim
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (J.-D.K., H.W.L., S.-W.J.) and Department of Internal Medicine (J.-D.K., H.W.L., S.-W.J.), Yale University School of Medicine, New Haven, CT; and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea (S.-W.J.)
| | - Heon-Woo Lee
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (J.-D.K., H.W.L., S.-W.J.) and Department of Internal Medicine (J.-D.K., H.W.L., S.-W.J.), Yale University School of Medicine, New Haven, CT; and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea (S.-W.J.)
| | - Suk-Won Jin
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (J.-D.K., H.W.L., S.-W.J.) and Department of Internal Medicine (J.-D.K., H.W.L., S.-W.J.), Yale University School of Medicine, New Haven, CT; and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea (S.-W.J.).
| |
Collapse
|
168
|
Angiogenesis in zebrafish. Semin Cell Dev Biol 2014; 31:106-14. [DOI: 10.1016/j.semcdb.2014.04.037] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/24/2014] [Accepted: 04/30/2014] [Indexed: 12/21/2022]
|
169
|
Icli B, Dorbala P, Feinberg MW. An emerging role for the miR-26 family in cardiovascular disease. Trends Cardiovasc Med 2014; 24:241-8. [PMID: 25066487 DOI: 10.1016/j.tcm.2014.06.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 12/26/2022]
Abstract
In response to acute myocardial infarction (MI), a complex series of cellular and molecular signaling events orchestrate the myocardial remodeling that ensues weeks to months after injury. Clinical, epidemiological, and pathological studies demonstrate that inadequate or impaired angiogenesis after myocardial injury is often associated with decreased left ventricular (LV) function and clinical outcomes. The microRNA family, miR-26, plays diverse roles in regulating key aspects of cellular growth, development, and activation. Recent evidence supports a central role for the miR-26 family in cardiovascular disease by controlling critical signaling pathways, such as BMP/SMAD1 signaling, and targets relevant to endothelial cell growth, angiogenesis, and LV function post-MI. Emerging studies of the miR-26 family in other cell types including vascular smooth muscle cells, cardiac fibroblasts, and cardiomyocytes suggest that miR-26 may bear important implications for a range of cardiovascular repair mechanisms. This review examines the current knowledge of the miR-26 family's role in key cell types that critically control cardiovascular disease under pathological and physiological stimuli.
Collapse
Affiliation(s)
- Basak Icli
- Department of Medicine, Cardiovascular Division, Brigham and Women׳s Hospital, Harvard Medical School, Boston, MA
| | - Pranav Dorbala
- Department of Medicine, Cardiovascular Division, Brigham and Women׳s Hospital, Harvard Medical School, Boston, MA
| | - Mark W Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women׳s Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
170
|
Integrated analyses identify the involvement of microRNA-26a in epithelial-mesenchymal transition during idiopathic pulmonary fibrosis. Cell Death Dis 2014; 5:e1238. [PMID: 24853416 PMCID: PMC4047861 DOI: 10.1038/cddis.2014.207] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 02/03/2023]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, and highly lethal fibrotic lung disease with poor treatment and unknown etiology. Emerging evidence suggests that epithelial-mesenchymal transition (EMT) has an important role in repair and scar formation following epithelial injury during pulmonary fibrosis. Although some miRNAs have been shown to be dysregulated in the pathophysiological processes of IPF, limited studies have payed attention on the participation of miRNAs in EMT in lung fibrosis. In our study, we identified and constructed a regulation network of differentially expressed IPF miRNAs and EMT genes. Additionally, we found the downregulation of miR-26a in mice with experimental pulmonary fibrosis. Further studies showed that miR-26a regulated HMGA2, which is a key factor in the process of EMT and had the maximum number of regulating miRNAs in the regulation network. More importantly, inhibition of miR-26a resulted in lung epithelial cells transforming into myofibroblasts in vitro and in vivo, whereas forced expression of miR-26a alleviated TGF-β1- and BLM-induced EMT in A549 cells and in mice, respectively. Taken together, our study deciphered the essential role of miR-26a in the pathogenesis of EMT in pulmonary fibrosis, and suggests that miR-26a may be a potential therapeutic target for IPF.
Collapse
|
171
|
Smith AA, Huang YT, Eliot M, Houseman EA, Marsit CJ, Wiencke JK, Kelsey KT. A novel approach to the discovery of survival biomarkers in glioblastoma using a joint analysis of DNA methylation and gene expression. Epigenetics 2014; 9:873-83. [PMID: 24670968 DOI: 10.4161/epi.28571] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive of all brain tumors, with a median survival of less than 1.5 years. Recently, epigenetic alterations were found to play key roles in both glioma genesis and clinical outcome, demonstrating the need to integrate genetic and epigenetic data in predictive models. To enhance current models through discovery of novel predictive biomarkers, we employed a genome-wide, agnostic strategy to specifically capture both methylation-directed changes in gene expression and alternative associations of DNA methylation with disease survival in glioma. Human GBM-associated DNA methylation, gene expression, IDH1 mutation status, and survival data were obtained from The Cancer Genome Atlas. DNA methylation loci and expression probes were paired by gene, and their subsequent association with survival was determined by applying an accelerated failure time model to previously published alternative and expression-based association equations. Significant associations were seen in 27 unique methylation/expression pairs with expression-based, alternative, and combinatorial associations observed (10, 13, and 4 pairs, respectively). The majority of the predictive DNA methylation loci were located within CpG islands, and all but three of the locus pairs were negatively correlated with survival. This finding suggests that for most loci, methylation/expression pairs are inversely related, consistent with methylation-associated gene regulatory action. Our results indicate that changes in DNA methylation are associated with altered survival outcome through both coordinated changes in gene expression and alternative mechanisms. Furthermore, our approach offers an alternative method of biomarker discovery using a priori gene pairing and precise targeting to identify novel sites for locus-specific therapeutic intervention.
Collapse
Affiliation(s)
- Ashley A Smith
- Department of Pathology and Laboratory Medicine; Brown University; Providence, RI USA
| | - Yen-Tsung Huang
- Department of Epidemiology; Brown University; Providence, RI USA
| | - Melissa Eliot
- Department of Epidemiology; Brown University; Providence, RI USA
| | - E Andres Houseman
- Department of Public Health; Oregon State University; Corvallis, OR USA
| | - Carmen J Marsit
- Department of Pharmacology and Toxicology; Geisel School of Medicine at Dartmouth; Hanover, NH USA; Department of Community and Family Medicine and Section of Biostatistics and Epidemiology; Geisel School of Medicine at Dartmouth; Dartmouth, NH USA
| | - John K Wiencke
- Department of Neurological Surgery; University of California at San Francisco; San Francisco, CA USA
| | - Karl T Kelsey
- Department of Pathology and Laboratory Medicine; Brown University; Providence, RI USA; Department of Epidemiology; Brown University; Providence, RI USA
| |
Collapse
|
172
|
WANG YU, YAN SHI, LIU XIAOLIN, ZHANG WENJING, LI YINGWEI, DONG RUIFEN, ZHANG QING, YANG QIFENG, YUAN CUNZHONG, SHEN KENG, KONG BEIHUA. miR-1236-3p represses the cell migration and invasion abilities by targeting ZEB1 in high-grade serous ovarian carcinoma. Oncol Rep 2014; 31:1905-10. [DOI: 10.3892/or.2014.3046] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 02/03/2014] [Indexed: 11/06/2022] Open
|