151
|
Brinks H, Boucher M, Gao E, Chuprun JK, Pesant S, Raake PW, Huang ZM, Wang X, Qiu G, Gumpert A, Harris DM, Eckhart AD, Most P, Koch WJ. Level of G protein-coupled receptor kinase-2 determines myocardial ischemia/reperfusion injury via pro- and anti-apoptotic mechanisms. Circ Res 2010; 107:1140-9. [PMID: 20814022 DOI: 10.1161/circresaha.110.221010] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Activation of prosurvival kinases and subsequent nitric oxide (NO) production by certain G protein-coupled receptors (GPCRs) protects myocardium in ischemia/reperfusion injury (I/R) models. GPCR signaling pathways are regulated by GPCR kinases (GRKs), and GRK2 has been shown to be a critical molecule in normal and pathological cardiac function. OBJECTIVE A loss of cardiac GRK2 activity is known to arrest progression of heart failure (HF), at least in part by normalization of cardiac β-adrenergic receptor (βAR) signaling. Chronic HF studies have been performed with GRK2 knockout mice, as well as expression of the βARKct, a peptide inhibitor of GRK2 activity. This study was conducted to examine the role of GRK2 and its activity during acute myocardial ischemic injury using an I/R model. METHODS AND RESULTS We demonstrate, using cardiac-specific GRK2 and βARKct-expressing transgenic mice, a deleterious effect of GRK2 on in vivo myocardial I/R injury with βARKct imparting cardioprotection. Post-I/R infarct size was greater in GRK2-overexpressing mice (45.0±2.8% versus 31.3±2.3% in controls) and significantly smaller in βARKct mice (16.8±1.3%, P<0.05). Importantly, in vivo apoptosis was found to be consistent with these reciprocal effects on post-I/R myocardial injury when levels of GRK2 activity were altered. Moreover, these results were reflected by higher Akt activation and induction of NO production via βARKct, and these antiapoptotic/survival effects could be recapitulated in vitro. Interestingly, selective antagonism of β(2)ARs abolished βARKct-mediated cardioprotection, suggesting that enhanced GRK2 activity on this GPCR is deleterious to cardiac myocyte survival. CONCLUSION The novel effect of reducing acute ischemic myocardial injury via increased Akt activity and NO production adds significantly to the therapeutic potential of GRK2 inhibition with the βARKct not only in chronic HF but also potentially in acute ischemic injury conditions.
Collapse
Affiliation(s)
- Henriette Brinks
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Jefferson Medical College, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Brinks H, Koch WJ. betaARKct: a therapeutic approach for improved adrenergic signaling and function in heart disease. J Cardiovasc Transl Res 2010; 3:499-506. [PMID: 20623214 DOI: 10.1007/s12265-010-9206-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 06/21/2010] [Indexed: 01/08/2023]
Abstract
One of the most powerful regulators of cardiovascular function is catecholamine-stimulated adrenergic receptor (AR) signaling. The failing heart is characterized by desensitization and impaired beta-AR responsiveness as a result of upregulated G protein-coupled receptor kinase-2 (GRK2) present in injured myocardium. Deterioration of cardiac function is progressively enhanced by chronic adrenergic over-stimulation due to increased levels of circulating catecholamines. Increased GRK2 activity contributes to this pathological cycle of over-stimulation but lowered responsiveness. Over the past two decades the GRK2 inhibitory peptide betaARKct has been identified as a potential therapy that is able to break this vicious cycle of self-perpetuating deregulation of the beta-AR system and subsequent myocardial malfunction, thus halting development of cardiac failure. The betaARKct has been shown to interfere with GRK2 binding to the betagamma subunits of the heterotrimeric G protein, therefore inhibiting its recruitment to the plasma membrane that normally leads to phosphorylation and internalization of the receptor. In this article we summarize the current data on the therapeutic effects of betaARKct in cardiovascular disease and report on recent and ongoing studies that may pave the way for this peptide towards therapeutic application in heart failure and other states of cardiovascular disease.
Collapse
Affiliation(s)
- Henriette Brinks
- Department of Cardiovascular Surgery, Inselspital--University Hospital Berne, Bern, Switzerland
| | | |
Collapse
|
153
|
Rengo G, Leosco D, Zincarelli C, Marchese M, Corbi G, Liccardo D, Filippelli A, Ferrara N, Lisanti MP, Koch WJ, Lymperopoulos A. Adrenal GRK2 lowering is an underlying mechanism for the beneficial sympathetic effects of exercise training in heart failure. Am J Physiol Heart Circ Physiol 2010; 298:H2032-H2038. [PMID: 20304818 DOI: 10.1152/ajpheart.00702.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Exercise training has been reported to exert beneficial effects on cardiac function and to reduce morbidity and mortality of chronic heart failure (HF). Augmented sympathetic nervous system (SNS) activity, leading to elevated circulating catecholamine (CA) levels, is a hallmark of chronic HF that significantly aggravates this disease. Exercise training has been shown to also reduce SNS overactivity in HF, but the underlying molecular mechanism(s) remain unidentified. We recently reported that adrenal G protein-coupled receptor kinase-2 (GRK2), an enzyme that regulates the sympathoinhibitory alpha(2)-adrenoceptors (alpha(2)-ARs) present in the CA-producing adrenal medulla, is upregulated in HF, contributing to the chronically elevated CA levels and SNS activity of the disease. In the present study, we tested whether exercise training can affect the adrenal GRK2-alpha(2)-AR-CA production system in the context of HF. For this purpose, a 10-wk-long exercise training regimen of adult male Sprague-Dawley rats starting at 4 wk postmyocardial infarction (post-MI) was employed, and examination at the end of this treatment period revealed significant amelioration of beta-AR-stimulated contractility in response to exercise training, accompanied by cardiac GRK2 reduction and restoration of circulating plasma CA levels. Importantly, adrenal GRK2 expression (72 + or - 5% reduction vs. post-MI untrained) and alpha(2)-AR number were also restored after exercise training in post-MI animals. These results suggest that exercise training restores the adrenal GRK2-alpha(2)-AR-CA production axis, and this might be part of the mechanism whereby this therapeutic modality normalizes sympathetic overdrive and impedes worsening of the failing heart.
Collapse
Affiliation(s)
- Giuseppe Rengo
- Cardiology Division, "Salvatore Maugeri" Foundation, IRCCS, Via Bagni Vecchi, 1-82037 Telese Terme, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Akhter SA, D'Souza KM, Malhotra R, Staron ML, Valeroso TB, Fedson SE, Anderson AS, Raman J, Jeevanandam V. Reversal of impaired myocardial beta-adrenergic receptor signaling by continuous-flow left ventricular assist device support. J Heart Lung Transplant 2010; 29:603-9. [PMID: 20202864 PMCID: PMC2876229 DOI: 10.1016/j.healun.2010.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/07/2010] [Accepted: 01/17/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Myocardial beta-adrenergic receptor (beta-AR) signaling is severely impaired in chronic heart failure (HF). This study was conducted to determine if left ventricular (LV) beta-AR signaling could be restored after continuous-flow LV assist device (LVAD) support. METHODS Twelve patients received LVADs as a bridge to transplant. Paired LV biopsy specimens were obtained at the time of LVAD implant (HF group) and transplant (LVAD group). The mean duration of LVAD support was 152 +/- 34 days. Myocardial beta-AR signaling was assessed by measuring adenylyl cyclase (AC) activity, total beta-AR density (B(max)), and G protein-coupled receptor kinase-2 (GRK2) expression and activity. LV specimens from 8 non-failing hearts (NF) were used as controls. RESULTS Basal and isoproterenol-stimulated AC activity was significantly lower in HF vs NF, indicative of beta-AR uncoupling. Continuous-flow LVAD support restored basal and isoproterenol-stimulated AC activity to levels similar to NF. B(max) was decreased in HF vs NF and increased to nearly normal in the LVAD group. GRK2 expression was increased 2.6-fold in HF vs NF and was similar to NF after LVAD support. GRK2 activity was 3.2-fold greater in HF vs NF and decreased to NF levels in the LVAD group. CONCLUSIONS Myocardial beta-AR signaling can be restored to nearly normal after continuous-flow LVAD support. This is similar to previous data for volume-displacement pulsatile LVADs. Decreased GRK2 activity is an important mechanism and indicates that normalization of the neurohormonal milieu associated with HF is similar between continuous-flow and pulsatile LVADs. This may have important implications for myocardial recovery.
Collapse
Affiliation(s)
- Shahab A Akhter
- Department of Surgery, Section of Cardiac and Thoracic Surgery, University of Chicago Medical Center, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Poller W, Hajjar R, Schultheiss HP, Fechner H. Cardiac-targeted delivery of regulatory RNA molecules and genes for the treatment of heart failure. Cardiovasc Res 2010; 86:353-64. [PMID: 20176815 PMCID: PMC2868179 DOI: 10.1093/cvr/cvq056] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/11/2010] [Accepted: 02/14/2010] [Indexed: 01/13/2023] Open
Abstract
Ribonucleic acid (RNA) in its many facets of structure and function is becoming more fully understood, and, therefore, it is possible to design and use RNAs as valuable tools in molecular biology and medicine. Understanding of the role of RNAs within the cell has changed dramatically during the past few years. Therapeutic strategies based on non-coding regulatory RNAs include RNA interference (RNAi) for the silencing of specific genes, and microRNA (miRNA) modulations to alter complex gene expression patterns. Recent progress has allowed the targeting of therapeutic RNAi to the heart for the treatment of heart failure, and we discuss current strategies in this field. Owing to the peculiar biochemical properties of small RNA molecules, the actual therapeutic translation of findings in vitro or in cell cultures is more demanding than with small molecule drugs or proteins. The critical requirement for animal studies after pre-testing of RNAi tools in vitro likewise applies for miRNA modulations, which also have complex consequences for the recipient that are dependent on stability and distribution of the RNA tools. Problems in the field that are not yet fully solved are the prediction of targets and specificity of the RNA tools as well as their tissue-specific and regulatable expression. We discuss analogies and differences between regulatory RNA therapy and classical gene therapy, since recent breakthroughs in vector technology are of importance for both. Recent years have witnessed parallel progress in the fields of gene-based and regulatory RNA-based therapies that are likely to significantly expand the cardiovascular therapeutic repertoire within the next decade.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology and Pneumology, Charité Centrum 11, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany.
| | | | | | | |
Collapse
|
156
|
Lymperopoulos A, Rengo G, Gao E, Ebert SN, Dorn GW, Koch WJ. Reduction of sympathetic activity via adrenal-targeted GRK2 gene deletion attenuates heart failure progression and improves cardiac function after myocardial infarction. J Biol Chem 2010; 285:16378-16386. [PMID: 20351116 PMCID: PMC2871505 DOI: 10.1074/jbc.m109.077859] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 03/08/2010] [Indexed: 12/13/2022] Open
Abstract
Chronic heart failure (HF) is characterized by sympathetic overactivity and enhanced circulating catecholamines (CAs), which significantly increase HF morbidity and mortality. We recently reported that adrenal G protein-coupled receptor kinase 2 (GRK2) is up-regulated in chronic HF, leading to enhanced CA release via desensitization/down-regulation of the chromaffin cell alpha(2)-adrenergic receptors that normally inhibit CA secretion. We also showed that adrenal GRK2 inhibition decreases circulating CAs and improves cardiac inotropic reserve and function. Herein, we hypothesized that adrenal-targeted GRK2 gene deletion before the onset of HF might be beneficial by reducing sympathetic activation. To specifically delete GRK2 in the chromaffin cells of the adrenal gland, we crossed PNMTCre mice, expressing Cre recombinase under the chromaffin cell-specific phenylethanolamine N-methyltransferase (PNMT) gene promoter, with floxedGRK2 mice. After confirming a significant ( approximately 50%) reduction of adrenal GRK2 mRNA and protein levels, the PNMT-driven GRK2 knock-out (KO) offspring underwent myocardial infarction (MI) to induce HF. At 4 weeks post-MI, plasma levels of both norepinephrine and epinephrine were reduced in PNMT-driven GRK2 KO, compared with control mice, suggesting markedly reduced post-MI sympathetic activation. This translated in PNMT-driven GRK2 KO mice into improved cardiac function and dimensions as well as amelioration of abnormal cardiac beta-adrenergic receptor signaling at 4 weeks post-MI. Thus, adrenal-targeted GRK2 gene KO decreases circulating CAs, leading to improved cardiac function and beta-adrenergic reserve in post-MI HF. GRK2 inhibition in the adrenal gland might represent a novel sympatholytic strategy that can aid in blocking HF progression.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft Lauderdale, Florida 33328, USA.
| | | | | | | | | | | |
Collapse
|
157
|
Mancini D, Farr MJ. Gene therapy for heart failure: an investigational treatment that is coming of age. Rev Esp Cardiol 2010; 63:137-140. [PMID: 20109411 DOI: 10.1016/s1885-5857(10)70030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
158
|
Bonita RE, Raake PW, Otis NJ, Chuprun JK, Spivack T, Dasgupta A, Whellan DJ, Mather PJ, Koch WJ. Dynamic changes in lymphocyte GRK2 levels in cardiac transplant patients: a biomarker for left ventricular function. Clin Transl Sci 2010; 3:14-8. [PMID: 20443948 PMCID: PMC3018749 DOI: 10.1111/j.1752-8062.2010.00176.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2), which is upregulated in the failing human myocardium, appears to have a role in heart failure (HF) pathogenesis. In peripheral lymphocytes, GRK2 expression has been shown to reflect myocardial levels. This study represents an attempt to define the role for GRK2 as a potential biomarker of left ventricular function in HF patients. We obtained blood from 24 HF patients before and after heart transplantation and followed them for up to 1 year, also recording hemodynamic data and histological results from endomyocardial biopsies. We determined blood GRK2 protein by Western blotting and enzyme-linked immunosorbent assay. GRK2 levels were obtained before transplant and at first posttransplant biopsy. GRK2 levels significantly declined after transplant and remained low over the course of the study period. After transplantation, we found that blood GRK2 significantly dropped and remained low consistent with improved cardiac function in the transplanted heart. Blood GRK2 has potential as a biomarker for myocardial function in end-stage HF.
Collapse
Affiliation(s)
- Raphael E Bonita
- Department of Medicine, Division of Cardiology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Mancini D, Farr MJ. Terapia génica para la insuficiencia cardiaca: un tratamiento en fase de investigación que está llegando a su madurez. Rev Esp Cardiol (Engl Ed) 2010. [DOI: 10.1016/s0300-8932(10)70030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
160
|
Brinks HL, Eckhart AD. Regulation of GPCR signaling in hypertension. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1268-75. [PMID: 20060896 DOI: 10.1016/j.bbadis.2010.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/18/2009] [Accepted: 01/04/2010] [Indexed: 01/08/2023]
Abstract
Hypertension represents a complex, multifactorial disease and contributes to the major causes of morbidity and mortality in industrialized countries: ischemic and hypertensive heart disease, stroke, peripheral atherosclerosis and renal failure. Current pharmacological therapy of essential hypertension focuses on the regulation of vascular resistance by inhibition of hormones such as catecholamines and angiotensin II, blocking them from receptor activation. Interaction of G-protein coupled receptor kinases (GRKs) and regulator of G-protein signaling (RGS) proteins with activated G-protein coupled receptors (GPCRs) effect the phosphorylation state of the receptor leading to desensitization and can profoundly impair signaling. Defects in GPCR regulation via these modulators have severe consequences affecting GPCR-stimulated biological responses in pathological situations such as hypertension, since they fine-tune and balance the major transmitters of vessel constriction versus dilatation, thus representing valuable new targets for anti-hypertensive therapeutic strategies. Elevated levels of GRKs are associated with human hypertensive disease and are relevant modulators of blood pressure in animal models of hypertension. This implies therapeutic perspective in a disease that has a prevalence of 65million in the United States while being directly correlated with occurrence of major adverse cardiac and vascular events. Therefore, therapeutic approaches using the inhibition of GRKs to regulate GPCRs are intriguing novel targets for treatment of hypertension and heart failure.
Collapse
Affiliation(s)
- Henriette L Brinks
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
161
|
Brinks H, Koch WJ. Targeting G protein-coupled receptor kinases (GRKs) in Heart Failure. DRUG DISCOVERY TODAY. DISEASE MECHANISMS 2010; 7:e129-e134. [PMID: 21218155 PMCID: PMC3014615 DOI: 10.1016/j.ddmec.2010.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the human body, over 1000 different G protein-coupled receptors (GPCRs) mediate a broad spectrum of extracellular signals at the plasma membrane, transmitting vital physiological features such as pain, sight, smell, inflammation, heart rate and contractility of muscle cells. Signaling through these receptors is primarily controlled and regulated by a group of kinases, the GPCR kinases (GRKs), of which only seven are known and thus, interference with these common downstream GPCR regulators suggests a powerful therapeutic strategy. Molecular modulation of the kinases that are ubiquitously expressed in the heart has proven GRK2, and also GRK5, to be promising targets for prevention and reversal of one of the most severe pathologies in man, chronic heart failure (HF). In this article we will focus on the structural aspects of these GRKs important for their physiological and pathological regulation as well as well known and novel therapeutic approaches that target these GRKs in order to overcome the development of cardiac injury and progression of HF.
Collapse
Affiliation(s)
- Henriette Brinks
- Department of Cardiovascular Surgery, Inselspital - University Hospital Berne, Berne, Switzerland
| | | |
Collapse
|
162
|
Park JS, Na K, Woo DG, Yang HN, Kim JM, Kim JH, Chung HM, Park KH. Non-viral gene delivery of DNA polyplexed with nanoparticles transfected into human mesenchymal stem cells. Biomaterials 2009; 31:124-32. [PMID: 19818490 DOI: 10.1016/j.biomaterials.2009.09.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
Abstract
Human mesenchymal stem cells (hMSCs) represent a potent target for gene delivery for both stem cell differentiation applications and clinical therapies. However, it has, thus far, proven difficult to develop delivery vehicles that increase the efficiency of gene delivery to hMSCs, due to several problematic issues. We have evaluated different vehicles with regard to the efficiency with which they deliver hMSCs and enhance the ability to deliver a reporter gene. In this study, a non-viral gene delivery system using nanoparticles was designed, with emphasis placed on the ability of the system to mediate high levels of gene expression into stem cells. Via polyplexing with polyethylenimine (PEI), the cell-uptake ability of the nanoparticles was enhanced for both in vitro and in vivo culture systems. In experiments with PEI/pNDA polyplexed with nanoparticles, the expression of green fluorescent protein (GFP) with this vehicle was noted in up to 75% of hMSCs 2 days after transfection, and GFP gene expression was detected via Western blotting, flow cytometric analysis, and immunofluorescence using a confocal laser microscope after transfection.
Collapse
Affiliation(s)
- Ji S Park
- Department of Biomedical Science, College of Life Science, CHA University 606-16, Yeoksam 1-dong, Kangnam-gu, Seoul 135-081, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Rengo G, Lymperopoulos A, Koch WJ. Future g protein-coupled receptor targets for treatment of heart failure. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2009; 11:328-338. [PMID: 19627665 DOI: 10.1007/s11936-009-0033-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Heart failure (HF) still poses an enormous clinical challenge, as its incidence, morbidity, and mortality rates are continuously rising. G protein-coupled receptors (GPCRs) constitute the most ubiquitous superfamily of plasma membrane receptors and represent the single most important type of therapeutic drug target. Because there is overstimulation of the failing heart by various endogenous ligands, such as catecholamines and angiotensin II--which by activating their cognate GPCRs in cardiac muscle induce detrimental effects--therapeutic targeting of these receptors has been pursued. This research has led to the development of successful and useful drug classes, such as angiotensin-converting enzyme inhibitors and beta-adrenergic receptor blockers. However, there still is a need to develop innovative treatments that might be more effective at reversing compromised myocyte function. Over the past several years, much evidence has accumulated indicating that a single GPCR, activated by the same endogenous ligand, can elicit several different signaling pathways with quite different, and often opposite, cellular effects. Because the aforementioned ligands, currently used for HF, target these receptors on their extracellular interface, thus merely preventing the endogenous agonists from binding the receptor, they inhibit all the signaling pathways elicited by the receptor indiscriminately. Importantly, several of these pathways emanating from the same GPCR can actually be beneficial for therapy, so their enhancement rather than their blockade is desirable for HF therapy. This highlights the need for selective targeting of GPCR-induced signaling pathways on the intracellular interface of the receptor, which might produce new and innovative therapies for cardiovascular disease.
Collapse
Affiliation(s)
- Giuseppe Rengo
- Division of Cardiology, Fondazione Salvatore Maugeri-IRCCS-Istituto di Telese (BN), Italy
| | | | | |
Collapse
|
164
|
|
165
|
|
166
|
GRK mythology: G-protein receptor kinases in cardiovascular disease. J Mol Med (Berl) 2009; 87:455-63. [DOI: 10.1007/s00109-009-0450-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 01/21/2009] [Accepted: 01/26/2009] [Indexed: 01/14/2023]
|