151
|
Derwall M, Francis RCE, Kida K, Bougaki M, Crimi E, Adrie C, Zapol WM, Ichinose F. Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects. Crit Care 2011; 15:R51. [PMID: 21299857 PMCID: PMC3221981 DOI: 10.1186/cc10016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/15/2010] [Accepted: 02/07/2011] [Indexed: 11/28/2022] Open
Abstract
Introduction Although inhalation of 80 parts per million (ppm) of hydrogen sulfide (H2S) reduces metabolism in mice, doses higher than 200 ppm of H2S were required to depress metabolism in rats. We therefore hypothesized that higher concentrations of H2S are required to reduce metabolism in larger mammals and humans. To avoid the potential pulmonary toxicity of H2S inhalation at high concentrations, we investigated whether administering H2S via ventilation of an extracorporeal membrane lung (ECML) would provide means to manipulate the metabolic rate in sheep. Methods A partial venoarterial cardiopulmonary bypass was established in anesthetized, ventilated (fraction of inspired oxygen = 0.5) sheep. The ECML was alternately ventilated with air or air containing 100, 200, or 300 ppm H2S for intervals of 1 hour. Metabolic rate was estimated on the basis of total CO2 production (V˙CO2) and O2 consumption (V˙O2). Continuous hemodynamic monitoring was performed via indwelling femoral and pulmonary artery catheters. Results V˙CO2, V˙O2, and cardiac output ranged within normal physiological limits when the ECML was ventilated with air and did not change after administration of up to 300 ppm H2S. Administration of 100, 200 and 300 ppm H2S increased pulmonary vascular resistance by 46, 52 and 141 dyn·s/cm5, respectively (all P ≤ 0.05 for air vs. 100, 200 and 300 ppm H2S, respectively), and mean pulmonary artery pressure by 4 mmHg (P ≤ 0.05), 3 mmHg (n.s.) and 11 mmHg (P ≤ 0.05), respectively, without changing pulmonary capillary wedge pressure or cardiac output. Exposure to 300 ppm H2S decreased systemic vascular resistance from 1,561 ± 553 to 870 ± 138 dyn·s/cm5 (P ≤ 0.05) and mean arterial pressure from 121 ± 15 mmHg to 66 ± 11 mmHg (P ≤ 0.05). In addition, exposure to 300 ppm H2S impaired arterial oxygenation (PaO2 114 ± 36 mmHg with air vs. 83 ± 23 mmHg with H2S; P ≤ 0.05). Conclusions Administration of up to 300 ppm H2S via ventilation of an extracorporeal membrane lung does not reduce V˙CO2 and V˙O2, but causes dose-dependent pulmonary vasoconstriction and systemic vasodilation. These results suggest that administration of high concentrations of H2S in venoarterial cardiopulmonary bypass circulation does not reduce metabolism in anesthetized sheep but confers systemic and pulmonary vasomotor effects.
Collapse
Affiliation(s)
- Matthias Derwall
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Beard RS, Bearden SE. Vascular complications of cystathionine β-synthase deficiency: future directions for homocysteine-to-hydrogen sulfide research. Am J Physiol Heart Circ Physiol 2011; 300:H13-26. [PMID: 20971760 PMCID: PMC3023265 DOI: 10.1152/ajpheart.00598.2010] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 10/20/2010] [Indexed: 12/19/2022]
Abstract
Homocysteine (Hcy), a cardiovascular and neurovascular disease risk factor, is converted to hydrogen sulfide (H(2)S) through the transsulfuration pathway. H(2)S has attracted considerable attention in recent years for many positive effects on vascular health and homeostasis. Cystathionine β-synthase (CBS) is the first, and rate-limiting, enzyme in the transsulfuration pathway. Mutations in the CBS gene decrease enzymatic activity, which increases the plasma Hcy concentration, a condition called hyperhomocysteinemia (HHcy). Animal models of CBS deficiency have provided invaluable insights into the pathological effects of transsulfuration impairment and of both mild and severe HHcy. However, studies have also highlighted the complexity of HHcy and the need to explore the specific details of Hcy metabolism in addition to Hcy levels per se. There has been a relative paucity of work addressing the dysfunctional H(2)S production in CBS deficiency that may contribute to, or even create, HHcy-associated pathologies. Experiments using CBS knockout mice, both homozygous (-/-) and heterozygous (+/-), have provided 15 years of new knowledge and are the focus of this review. These murine models present the opportunity to study a specific mechanism for HHcy that matches one of the etiologies in many human patients. Therefore, the goal of this review was to integrate and highlight the critical information gained thus far from models of CBS deficiency and draw attention to critical gaps in knowledge, with particular emphasis on the modulation of H(2)S metabolism. We include findings from human and animal studies to identify important opportunities for future investigation that should be aimed at generating new basic and clinical understanding of the role of CBS and transsulfuration in cardiovascular and neurovascular disease.
Collapse
Affiliation(s)
- Richard S Beard
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho ID 83209-8007, USA
| | | |
Collapse
|
153
|
Intravenous Hydrogen Sulfide Does Not Induce Hypothermia or Improve Survival from Hemorrhagic Shock in Pigs. Shock 2011; 35:67-73. [PMID: 20523266 DOI: 10.1097/shk.0b013e3181e86f49] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
154
|
Martelli A, Testai L, Breschi MC, Blandizzi C, Virdis A, Taddei S, Calderone V. Hydrogen sulphide: novel opportunity for drug discovery. Med Res Rev 2010; 32:1093-130. [PMID: 23059761 DOI: 10.1002/med.20234] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hydrogen sulphide (H(2)S) is emerging as an important endogenous modulator, which exhibits the beneficial effects of nitric oxide (NO) on the cardiovascular (CV) system, without producing toxic metabolites. H(2)S is biosynthesized in mammalian tissues by cystathionine-β-synthase and cystathionine-γ-lyase. H(2)S exhibits the antioxidant properties of inorganic and organic sulphites, behaving as a scavenger of reactive oxygen species. There is also clear evidence that H(2)S triggers other important effects, mainly mediated by the activation of ATP-sensitive potassium channels (K(ATP)). This mechanism accounts for the vasorelaxing and cardioprotective effects of H(2)S. Furthermore, H(2)S inhibits smooth muscle proliferation and platelet aggregation. In non-CV systems, H(2)S regulates the functions of the central nervous system, as well as respiratory, gastroenteric, and endocrine systems. Conversely, H(2)S deficiency contributes to the pathogenesis of hypertension. Likewise, impairment of H(2)S biosynthesis is involved in CV complications associated with diabetes mellitus. There is also evidence of a cross-talk between the H(2)S and the endothelial NO pathways. In particular, recent observations indicate a possible pathogenic link between deficiencies of H(2 S activity and the progress of endothelial dysfunction. These biological aspects of endogenous H(2)S have led several authors to look at this mediator as "the new NO" that has given attractive opportunities to develop innovative classes of drugs. In this review, the main biological actions of H(2)S are discussed. Moreover, some examples of H(2)S-donors are shown, as well as some hybrids, in which H(2)S-releasing moieties are added to well-known drugs, for improving their pharmacodynamic profile or reducing the potential for adverse effects, are reported.
Collapse
Affiliation(s)
- Alma Martelli
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università di Pisa, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
155
|
Toombs CF, Insko MA, Wintner EA, Deckwerth TL, Usansky H, Jamil K, Goldstein B, Cooreman M, Szabo C. Detection of exhaled hydrogen sulphide gas in healthy human volunteers during intravenous administration of sodium sulphide. Br J Clin Pharmacol 2010; 69:626-36. [PMID: 20565454 DOI: 10.1111/j.1365-2125.2010.03636.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Hydrogen sulphide (H(2)S) is an endogenous gaseous signaling molecule and potential therapeutic agent. Emerging studies indicate its therapeutic potential in a variety of cardiovascular diseases and in critical illness. Augmentation of endogenous sulphide concentrations by intravenous administration of sodium sulphide can be used for the delivery of H(2)S to the tissues. In the current study, we have measured H(2)S concentrations in the exhaled breath of healthy human volunteers subjected to increasing doses sodium sulphide in a human phase I safety and tolerability study. METHODS We have measured reactive sulphide in the blood via ex vivo derivatization of sulphide with monobromobimane to form sulphide-dibimane and blood concentrations of thiosulfate (major oxidative metabolite of sulphide) via ion chromatography. We have measured exhaled H(2)S concentrations using a custom-made device based on a sulphide gas detector (Interscan). RESULTS Administration of IK-1001, a parenteral formulation of Na(2)S (0.005-0.20 mg kg(-1), i.v., infused over 1 min) induced an elevation of blood sulphide and thiosulfate concentrations over baseline, which was observed within the first 1-5 min following administration of IK-1001 at 0.10 mg kg(-1) dose and higher. In all subjects, basal exhaled H(2)S was observed to be higher than the ambient concentration of H(2)S gas in room air, indicative of on-going endogenous H(2)S production in human subjects. Upon intravenous administration of Na(2)S, a rapid elevation of exhaled H(2)S concentrations was observed. The amount of exhaled H(2)S rapidly decreased after discontinuation of the infusion of Na(2)S. CONCLUSION Exhaled H(2)S represents a detectable route of elimination after parenteral administration of Na(2)S.
Collapse
|
156
|
Hydrogen sulfide-mediated cardioprotection: mechanisms and therapeutic potential. Clin Sci (Lond) 2010; 120:219-29. [DOI: 10.1042/cs20100462] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
H2S (hydrogen sulfide), viewed with dread for more than 300 years, is rapidly becoming a ubiquitously present and physiologically relevant signalling molecule. Knowledge of the production and metabolism of H2S has spurred interest in delineating its functions both in physiology and pathophysiology of disease. Although its role in blood pressure regulation and interaction with NO is controversial, H2S, through its anti-apoptotic, anti-inflammatory and antioxidant effects, has demonstrated significant cardioprotection. As a result, a number of sulfide-donor drugs, including garlic-derived polysulfides, are currently being designed and investigated for the treatment of cardiovascular conditions, specifically myocardial ischaemic disease. However, huge gaps remain in our knowledge about this gasotransmitter. Only by additional studies will we understand more about the role of this intriguing molecule in the treatment of cardiovascular disease.
Collapse
|
157
|
Szabó G, Veres G, Radovits T, Gero D, Módis K, Miesel-Gröschel C, Horkay F, Karck M, Szabó C. Cardioprotective effects of hydrogen sulfide. Nitric Oxide 2010; 25:201-10. [PMID: 21094267 DOI: 10.1016/j.niox.2010.11.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 11/04/2010] [Accepted: 11/08/2010] [Indexed: 01/19/2023]
Abstract
The gaseous mediator hydrogen sulfide (H(2)S) is synthesized mainly by cystathionine γ-lyase in the heart and plays a role in the regulation of cardiovascular homeostasis. Here we first overview the state of the art in the literature on the cardioprotective effects of H(2)S in various models of cardiac injury. Subsequently, we present original data showing the beneficial effects of parenteral administration of a donor of H(2)S on myocardial and endothelial function during reperfusion in a canine experimental model of cardiopulmonary bypass. Overview of the literature demonstrates that various formulations of H(2)S exert cardioprotective effects in cultured cells, isolated hearts and various rodent and large animal models of regional or global myocardial ischemia and heart failure. In addition, the production of H(2)S plays a role in myocardial pre- and post-conditioning responses. The pathways implicated in the cardioprotective action of H(2)S are multiple and involve K(ATP) channels, regulation of mitochondrial respiration, and regulation of cytoprotective genes such as Nrf-2. In the experimental part of the current article, we demonstrate the cardioprotective effects of H(2)S in a canine model of cardiopulmonary bypass surgery. Anesthetized dogs were subjected hypothermic cardiopulmonary bypass with 60 min of hypothermic cardiac arrest in the presence of either saline (control, n=8), or H(2)S infusion (1 mg/kg/h for 2 h). Left ventricular hemodynamic variables (via combined pressure-volume-conductance catheter) as well as coronary blood flow, endothelium-dependent vasodilatation to acetylcholine and endothelium-independent vasodilatation to sodium nitroprusside were measured at baseline and after 60 min of reperfusion. Ex vivo vascular function and high-energy phosphate contents were also measured. H(2)S led to a significantly better recovery of preload recruitable stroke work (p<0.05) after 60 min of reperfusion. Coronary blood flow was also significantly higher in the H(2)S group (p<0.05). While the vasodilatory response to sodium nitroprusside was similar in both groups, acetylcholine resulted in a significantly higher increase in coronary blood flow in the H(2)S-treated group (p<0.05) both in vivo and ex vivo. Furthermore, high-energy phosphate contents were better preserved in the H(2)S group. Additionally, the cytoprotective effects of H(2)S were confirmed also using in vitro cell culture experiments in H9c2 cardiac myocytes exposed to hypoxia and reoxygenation or to the cytotoxic oxidant hydrogen peroxide. Thus, therapeutic administration of H(2)S exerts cardioprotective effects in a variety of experimental models, including a significant improvement of the recovery of myocardial and endothelial function in a canine model of cardiopulmonary bypass with hypothermic cardiac arrest.
Collapse
Affiliation(s)
- Gábor Szabó
- Department of Cardiac Surgery, University of Heidelberg, Im Neuenheiemer Feld 110, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Bearden SE, Beard RS, Pfau JC. Extracellular transsulfuration generates hydrogen sulfide from homocysteine and protects endothelium from redox stress. Am J Physiol Heart Circ Physiol 2010; 299:H1568-76. [PMID: 20817827 PMCID: PMC2993215 DOI: 10.1152/ajpheart.00555.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 08/30/2010] [Indexed: 11/22/2022]
Abstract
Homocysteine, a cardiovascular and neurocognitive disease risk factor, is converted to hydrogen sulfide, a cardiovascular and neuronal protectant, through the transsulfuration pathway. Given the damaging effects of free homocysteine in the blood and the importance of blood homocysteine concentration as a prognosticator of disease, we tested the hypotheses that the blood itself regulates homocysteine-hydrogen sulfide metabolism through transsulfuration and that transsulfuration capacity and hydrogen sulfide availability protect the endothelium from redox stress. Here we show that the transsulfuration enzymes, cystathionine β-synthase and cystathionine γ-lyase, are secreted by microvascular endothelial cells and hepatocytes, circulate as members of the plasma proteome, and actively produce hydrogen sulfide from homocysteine in human blood. We further demonstrate that extracellular transsulfuration regulates cell function when the endothelium is challenged with homocysteine and that hydrogen sulfide protects the endothelium from serum starvation and from hypoxia-reoxygenation injury. These novel findings uncover a unique set of opportunities to explore innovative clinical diagnostics and therapeutic strategies in the approach to homocysteine-related conditions such as atherosclerosis, thrombosis, and dementia.
Collapse
Affiliation(s)
- Shawn E Bearden
- Idaho State Univ., Dept. of Biological Sciences, 921 S 8th Ave. Stop 8007, Pocatello, ID 83209-8007, USA.
| | | | | |
Collapse
|
159
|
Henderson PW, Weinstein AL, Sohn AM, Jimenez N, Krijgh DD, Spector JA. Hydrogen sulfide attenuates intestinal ischemia-reperfusion injury when delivered in the post-ischemic period. J Gastroenterol Hepatol 2010; 25:1642-7. [PMID: 20880173 DOI: 10.1111/j.1440-1746.2010.06380.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIM To investigate whether pharmacologic post-conditioning of intestinal tissue with hydrogen sulfide (HS) protects against ischemia reperfusion injury (IRI). METHODS In vitro, enterocytes were made hypoxic for 1, 2, or 3 h, treated with media containing between 0 and 100 µM HS 20 min prior to the end of the hypoxic period, then returned to normoxia for 3 h. An apoptotic index (AI) was determined for each time point and (HS). In vivo, jejunal ischemia was induced in male Sprague-Dawley rats for 1, 2, or 3 h; 20 min prior to the end of the ischemic period animals were given an intravenous injection of NaHS sufficient to raise the bloodstream concentration to 0, 10 µM, or 100 µM HS. This was followed by jejunal reperfusion for 3 h, histologic processing, and measurement of villus height. RESULTS In vitro, there was a significant decrease in AI compared with non-HS-treated control at all time points after treatment with 10 µM HS, and at the 2 h time point with 100 µM HS (P < 0.017). In vivo, after 1 h ischemia, qualitative reduction of injury was noted with 10 µM and 100 µM; after 2 h ischemia, reduction was noted with 10 µM but not 100 µM; and after 3 h ischemia, there was no injury reduction. HS treatment resulted in significant quantitative preservation (P < 0.05) of villus height at all time points and doses, except for 3 h ischemia and delivery of 100 µM (P = 0.129). CONCLUSIONS Hydrogen sulfide provides significant protection to intestinal tissues in vitro and in vivo when delivered after the onset of ischemia.
Collapse
Affiliation(s)
- Peter W Henderson
- Laboratory for Bioregenerative Medicine and Surgery, Department of Surgery, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
160
|
HYDROGEN SULFIDE DOES NOT INCREASE RESUSCITABILITY IN A PORCINE MODEL OF PROLONGED CARDIAC ARREST. Shock 2010; 34:190-5. [DOI: 10.1097/shk.0b013e3181d0ee3d] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
161
|
Yong QC, Hu LF, Wang S, Huang D, Bian JS. Hydrogen sulfide interacts with nitric oxide in the heart: possible involvement of nitroxyl. Cardiovasc Res 2010; 88:482-91. [PMID: 20660605 DOI: 10.1093/cvr/cvq248] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS The present study aims to investigate the interaction between nitric oxide (NO) and hydrogen sulfide (H(2)S), the two important gaseous mediators in rat hearts. METHODS AND RESULTS Intracellular calcium in isolated cardiomyocytes was measured with a spectrofluorometric method using Fura-2. Myocyte contractility was measured with a video edge system. NaHS (50 µM, an H(2)S donor) had no significant effect on the resting calcium level, electrically induced (EI) calcium transients, and cell contractility in ventricular myocytes. Stimulating endogenous NO production with l-arginine or exogenous application of NO donors [sodium nitroprusside (SNP) and 2-(N,N-diethylamino)-diazenolate-2-oxide] decreased myocyte twitch amplitudes accompanied by slower velocities of both cell contraction and relaxation. Surprisingly, NaHS reversed the negative inotropic and lusitropic effects of the above three NO-increasing agents. In addition, the mixture of SNP + NaHS increased, whereas SNP alone decreased, the resting calcium level and the amplitudes of EI calcium transients. Angeli's salt, a nitroxyl anion (HNO) donor, mimicked the effect of SNP + NaHS on calcium handling and myocyte contractility. Three thiols, N-acetyl-cysteine, l-cysteine, and glutathione, abolished the effects of HNO and SNP + NaHS on myocyte contraction. Neither Rp-cAMP [a protein kinase A (PKA) inhibitor] nor Rp-cGMP [a protein kinase G (PKG) inhibitor] affected the effects of SNP + NaHS, suggesting a cAMP/PKA- or cGMP/PKG-independent mechanism. CONCLUSION H(2)S may interact with NO to form a thiol sensitive molecule (probably HNO) which produces positive inotropic and lusitropic effects. Our findings may shed light on the interaction of NO and H(2)S and provide new clues to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Qian-Chen Yong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 18 Medical Drive, MD2, 117597, Singapore, Singapore
| | | | | | | | | |
Collapse
|
162
|
Predmore BL, Lefer DJ. Development of hydrogen sulfide-based therapeutics for cardiovascular disease. J Cardiovasc Transl Res 2010; 3:487-98. [PMID: 20628909 DOI: 10.1007/s12265-010-9201-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
The physiological role of the gaseous signaling molecule hydrogen sulfide (H(2)S) was first realized in the mid-1990s with the work of Abe and Kimura. Since then, it has become evident that this endogenous gas is extremely important in the homeostasis of the cardiovascular system and the pathogenesis of cardiovascular disease. Several biotechnology companies have developed and are developing H(2)S-based therapeutic compounds, and there are ongoing clinical trials investigating the therapeutic potential of H(2)S. Several organic and chemical compounds that are known H(2)S donors have the potential to be developed into effective H(2)S-based therapeutic agents. This review will provide a historical and current perspective on the role(s) of H(2)S in the cardiovascular system and the current state of development and future outlook of H(2)S-based therapies for cardiovascular disease.
Collapse
Affiliation(s)
- Benjamin L Predmore
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, 550 Peachtree Street, NE, Atlanta, GA 30308, USA
| | | |
Collapse
|
163
|
Nicholson CK, Calvert JW. Hydrogen sulfide and ischemia-reperfusion injury. Pharmacol Res 2010; 62:289-97. [PMID: 20542117 DOI: 10.1016/j.phrs.2010.06.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/02/2010] [Accepted: 06/03/2010] [Indexed: 12/20/2022]
Abstract
Gasotransmitters are lipid soluble, endogenously produced gaseous signaling molecules that freely permeate the plasma membrane of a cell to directly activate intracellular targets, thus alleviating the need for membrane-bound receptors. The gasotransmitter family consists of three members: nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H(2)S). H(2)S is the latest gasotransmitter to be identified and characterized and like the other members of the gasotransmitter family, H(2)S was historically considered to be a toxic gas and an environmental/occupational hazard. However with the discovery of its presence and enzymatic production in mammalian tissues, H(2)S has gained much attention as a physiological signaling molecule. Also, much like NO and CO, H(2)S's role in ischemia/reperfusion (I/R) injury has recently begun to be elucidated. As such, modulation of endogenous H(2)S and administration of exogenous H(2)S has now been demonstrated to be cytoprotective in various organ systems through diverse signaling mechanisms. This review will provide a detailed description of the role H(2)S plays in different model systems of I/R injury and will also detail some of the mechanisms involved with its cytoprotection.
Collapse
Affiliation(s)
- Chad K Nicholson
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA 30308, United States
| | | |
Collapse
|
164
|
|