151
|
Beitnes JO, Lunde K, Brinchmann JE, Aakhus S. Stem cells for cardiac repair in acute myocardial infarction. Expert Rev Cardiovasc Ther 2012; 9:1015-25. [PMID: 21878046 DOI: 10.1586/erc.11.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite recent advances in medical therapy, reperfusion strategies, implantable cardioverter-defibrillators and cardiac assist devices, ischemic heart disease is a frequent cause of morbidity and mortality worldwide. Cell therapy has been introduced as a new treatment modality to regenerate lost cardiomyocytes. At present, several cell types seem to improve left ventricular function in animal models as well as in humans, but evidence for true generation of new myocardium is confined to the experimental models. In the clinical perspective, myocardial regeneration has been replaced by myocardial repair, as other mechanisms seem to be involved. Clinical studies on adult stem cells suggest, at best, moderate beneficial effects on surrogate end points, but some applications may qualify for evaluation in larger trials. Complete regeneration of the myocardium by cell therapy after a large myocardial infarction is still visionary, but pluripotent stem cells and tissue engineering are important tools to solve the puzzle.
Collapse
Affiliation(s)
- Jan Otto Beitnes
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Nydalen, Oslo, Norway.
| | | | | | | |
Collapse
|
152
|
Mohammadi Gorji S, Karimpor Malekshah AA, Hashemi-Soteh MB, Rafiei A, Parivar K, Aghdami N. Effect of mesenchymal stem cells on Doxorubicin-induced fibrosis. CELL JOURNAL 2012; 14:142-51. [PMID: 23508361 PMCID: PMC3584430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 01/04/2012] [Indexed: 10/29/2022]
Abstract
OBJECTIVE The aim of this study was to test the effect of intravenous injection of mesenchymal stem cells (MSCs) on doxorubicin (DOX)-induced fibrosis in the heart. We investigated the mechanisms that possibly mediate this effect. MATERIALS AND METHODS In this experimental study, fibrosis in the myocardium of adult male Wistar rats (weights 180-200 g, 9-10 weeks of age, total n=30) was created by DOX administration. DOX (2.5 mg/kg) was administered intraperitoneally 3 times a week, for a total dose of 15 mg/kg over a period of 2 weeks. MSCs from Wistar rats were separated and cultured in Dulbecco's modified eagle medium (DMEM). The condition medium (CM) which contained factors secreted by MSCs was also collected from MSCs cultured in serum-free DMEM. Two weeks after the first injection of DOX, MSCs, CM and standard medium (SM) were transplanted via intravenous injection. Four weeks after transplantation, histological (Masson's trichrome staining for fibrosis detection) and molecular [real-time polymerase chain reaction (RT-PCR)] analyses were conducted. In addition, insulin-like growth factor (IGF-1) and hepatocyte growth factor (HGF) in the CM were measured with an enzyme-linked immunosorbent assay (ELISA). For immunosuppressive treatment, cyclosporine A was given (intraperitoneally, 5 mg/kg/day) starting on the day of surgery until the end of study in all groups. Fibrosis rate and relative gene expression were compared by analysis of variance (ANOVA) and post-Tukey's test. HGF and (IGF-1 in the CM were analyzed by independent sample t test. P<0.01 was considered statistically significant. RESULTS Our data demonstrated that intravenously transplanted MSCs and CM significantly reduced fibrosis and significantly increased Bcl-2 expression levels in the myocardium compared to the DOX group (p<0.01). However, there was no significant difference between Bax expression levels in these groups. In addition, secretion of HGF and IGF-1 was detected in the CM (p<0.01). CONCLUSION We conclude that intravenous transplantation of MSCs and CM can attenuate myocardial fibrosis and increase Bcl-2 expression. This may be mediated by paracrine signaling from MSCs via anti-fibrotic and anti-apoptotic factors such as HGF and IGF-1.
Collapse
Affiliation(s)
- Simin Mohammadi Gorji
- 1. Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Abbas Ali Karimpor Malekshah
- 2. Department of Anatomy and Embryology, Cellular and Molecular Research Center, Faculty of
Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Mohammad Baghere Hashemi-Soteh
- 3. Department of Biochemistry and Genetics, Cellular and Molecular Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- 4. Department of Immunology, Cellular and Molecular Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kazem Parivar
- 1. Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran, * Corresponding Address:
P.O.Box: 14515-775Department of BiologyIslamic Azad UniversityScience and Research BranchTehranIran
kazem_
| | - Nasser Aghdami
- 5. Department of Regenerative Medicine and Cell Therapy, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran,6. Department of stem cell and Developmental biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran, * Corresponding Address:
P.O.Box: 14515-775Department of BiologyIslamic Azad UniversityScience and Research BranchTehranIran
kazem_
| |
Collapse
|
153
|
Lönn J, Starkhammar Johansson C, Kälvegren H, Brudin L, Skoglund C, Garvin P, Särndahl E, Ravald N, Richter A, Bengtsson T, Nayeri F. Hepatocyte growth factor in patients with coronary artery disease and its relation to periodontal condition. RESULTS IN IMMUNOLOGY 2011; 2:7-12. [PMID: 24371561 DOI: 10.1016/j.rinim.2011.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 12/24/2022]
Abstract
Hepatocyte growth factor (HGF) is an angiogenic, cardioprotective factor important for tissue and vascular repair. High levels of HGF are associated with chronic inflammatory diseases, such as coronary artery disease (CAD) and periodontitis, and are suggested as a marker of the ongoing atherosclerotic event in patients with CAD. Periodontal disease is more prevalent among patients with CAD than among healthy people. Recent studies indicate a reduced biological activity of HGF in different chronic inflammatory conditions. Biologically active HGF has high affinity to heparan sulfate proteoglycan (HSPG) on cell-membrane and extracellular matrix. The aim of the study was to investigate the serum concentration and the biological activity of HGF with ELISA and surface plasmon resonance (SPR), respectively, before and at various time points after percutaneous coronary intervention (PCI) in patients with CAD, and to examine the relationship with periodontal condition. The periodontal status of the CAD patients was examined, and the presence of P. gingivalis in periodontal pockets was analyzed with PCR. The HGF concentration was significantly higher, at all time-points, in patients with CAD compared to the age-matched controls (P< 0.001), but was independent of periodontal status. The HGF concentration and the affinity to HSPG adversely fluctuated over time, and the biological activity increased one month after intervention in patients without periodontitis. We conclude that elevated concentration of HGF but with reduced biological activity might indicate a chronic inflammatory profile in patients with CAD and periodontitis.
Collapse
Affiliation(s)
- J Lönn
- Division of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden ; PEAS Institute, Linköping, Sweden
| | - C Starkhammar Johansson
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Centre for Oral Rehabilitation, Public Dental Health Care, County Council of Östergötland, Linköping, Sweden
| | - H Kälvegren
- Division of Clinical Pathology and Clinical Genetics, Linköping University, Faculty of Health Sciences, Linköping, Sweden
| | - L Brudin
- Department of Medical and Health Sciences, University Hospital, Linköping, Sweden
| | - C Skoglund
- Department of Medical and Health and Sciences, Division of Drug Research, Faculty of Health Sciences, Linköping University, Linköping, Sweden ; Department of Physics, Chemistry and Biology, Division of Molecular Physics and Nanoscience, Linköping University, Linköping, Sweden
| | - P Garvin
- Division of Community Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - E Särndahl
- Division of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden ; Department of Cardiology, Örebro University Hospital, SE-701 85 Örebro, Sweden
| | - N Ravald
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Centre for Oral Rehabilitation, Public Dental Health Care, County Council of Östergötland, Linköping, Sweden
| | - A Richter
- Department of Cardiology, Heart Center, Linköping University Hospital, Linköping, Sweden
| | - T Bengtsson
- Division of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - F Nayeri
- PEAS Institute, Linköping, Sweden ; Department of Molecular and Clinical Medicine, Division of Infectious Diseases, University Hospital, Linköping, Sweden
| |
Collapse
|
154
|
Izumida Y, Aoki T, Yasuda D, Koizumi T, Suganuma C, Saito K, Murai N, Shimizu Y, Hayashi K, Odaira M, Kusano T, Kushima M, Kudano M. Hepatocyte growth factor is constitutively produced by donor-derived bone marrow cells and promotes regeneration of pancreatic beta-cells. Biochem Biophys Res Commun 2011; 333:273-82. [PMID: 15950193 DOI: 10.1016/j.bbrc.2005.05.100] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 05/17/2005] [Indexed: 01/29/2023]
Abstract
Recent studies have demonstrated that the transplantation of bone marrow cells following diabetes induced by streptozotocin can support the recovery of pancreatic b-cell mass and a partial reversal of hyperglycemia. To address this issue, we examined whether the c-Met/hepatocyte growth factor (HGF) signaling pathway was involved in the recovery of b-cell injury after bone marrow transplantation (BMT). In this model, donor-derived bone marrow cells were positive for HGF immunoreactivity in the recipient spleen, liver, lung, and pancreas as well as in the host hepatocytes. Indeed, plasma HGF levels were maintained at a high value.The frequency of c-Met expression and its proliferative activity and differentiative response in the pancreatic ductal cells in the BMT group were greater than those in the PBS-treated group, resulting in an elevated number of endogenous insulin-producing cells. The induction of the c-Met/HGF signaling pathway following BMT promotes pancreatic regeneration in diabetic rats.
Collapse
Affiliation(s)
- Yoshihiko Izumida
- Department of General and Gastrointestinal Surgery, Showa University, School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Milkiewicz KL, Aimone LD, Albom MS, Angeles TS, Chang H, Grobelny JV, Husten J, LoSardo C, Miknyoczki S, Murthy S, Rolon-Steele D, Underiner TL, Weinberg LR, Worrell CS, Zeigler KS, Dorsey BD. Improvement in oral bioavailability of 2,4-diaminopyrimidine c-Met inhibitors by incorporation of a 3-amidobenzazepin-2-one group. Bioorg Med Chem 2011; 19:6274-84. [DOI: 10.1016/j.bmc.2011.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/30/2011] [Accepted: 09/06/2011] [Indexed: 11/25/2022]
|
156
|
Lamblin N, Bauters A, Fertin M, de Groote P, Pinet F, Bauters C. Circulating levels of hepatocyte growth factor and left ventricular remodelling after acute myocardial infarction (from the REVE-2 study). Eur J Heart Fail 2011; 13:1314-22. [PMID: 21996026 DOI: 10.1093/eurjhf/hfr137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Aim As experimental studies suggest that hepatocyte growth factor (HGF) is cardioprotective after myocardial infarction (MI), this study sought to investigate relationships between circulating levels of HGF and left ventricular (LV) remodelling in patients after acute MI. METHODS AND RESULTS This prospective multicentre study included 246 patients with a first anterior Q-wave MI. Serial echocardiographic studies were performed at hospital discharge and 3 and 12 months after MI; quantitative analysis was performed at a core echocardiography laboratory. Blood samples to measure HGF, brain natriuretic peptide (BNP), and C-reactive protein were obtained at discharge and at the 1, 3, and 12 month follow-up visits. Plasma HGF levels were high at baseline, decreased at 1 month, and remained stable thereafter. In the post-MI period (at 3 and 12 months), HGF levels were positively associated with LV volumes, wall motion systolic index, E/Ea, and BNP; and negatively with LV ejection fraction. High HGF levels were associated with higher C-reactive protein levels. Multivariate analysis showed that both BNP (P < 0.0001) and C-reactive protein (P < 0.0001) were independently associated with HGF levels at 3 and 12 months. Patients who died or were rehospitalized for heart failure during follow-up had higher HGF levels at 1 month (P = 0.0006), 3 months (P = 0.018), and 1 year (P = 0.006) after MI. CONCLUSIONS Circulating HGF levels correlate with all markers of LV remodelling after MI and are associated with rehospitalization for heart failure.
Collapse
Affiliation(s)
- Nicolas Lamblin
- Centre Hospitalier Régional et Universitaire de Lille, Lille Cedex, France
| | | | | | | | | | | |
Collapse
|
157
|
Liu X, Wang Q, Yang G, Marando C, Koblish HK, Hall LM, Fridman JS, Behshad E, Wynn R, Li Y, Boer J, Diamond S, He C, Xu M, Zhuo J, Yao W, Newton RC, Scherle PA. A novel kinase inhibitor, INCB28060, blocks c-MET-dependent signaling, neoplastic activities, and cross-talk with EGFR and HER-3. Clin Cancer Res 2011; 17:7127-38. [PMID: 21918175 DOI: 10.1158/1078-0432.ccr-11-1157] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE The c-MET receptor tyrosine kinase plays important roles in the formation, progression, and dissemination of human cancer and presents an attractive therapeutic target. This study describes the preclinical characterization of INCB28060, a novel inhibitor of c-MET kinase. EXPERIMENTAL DESIGN Studies were conducted using a series of in vitro and in vivo biochemical and biological experiments. RESULTS INCB28060 exhibits picomolar enzymatic potency and is highly specific for c-MET with more than 10,000-fold selectivity over a large panel of human kinases. This inhibitor potently blocks c-MET phosphorylation and activation of its key downstream effectors in c-MET-dependent tumor cell lines. As a result, INCB28060 potently inhibits c-MET-dependent tumor cell proliferation and migration and effectively induces apoptosis in vitro. Oral dosing of INCB28060 results in time- and dose-dependent inhibition of c-MET phosphorylation and tumor growth in c-MET-driven mouse tumor models, and the inhibitor is well tolerated at doses that achieve complete tumor inhibition. In a further exploration of potential interactions between c-MET and other signaling pathways, we found that activated c-MET positively regulates the activity of epidermal growth factor receptors (EGFR) and HER-3, as well as expression of their ligands. These effects are reversed with INCB28060 treatment. Finally, we confirmed that circulating hepatocyte growth factor levels are significantly elevated in patients with various cancers. CONCLUSIONS Activated c-MET has pleiotropic effects on multiple cancer-promoting signaling pathways and may play a critical role in driving tumor cell growth and survival. INCB28060 is a potent and selective c-MET kinase inhibitor that may have therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Xiangdong Liu
- Incyte Corporation, Wilmington, Delaware 19880, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Wright JW, Harding JW. Brain renin-angiotensin—A new look at an old system. Prog Neurobiol 2011; 95:49-67. [DOI: 10.1016/j.pneurobio.2011.07.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 06/27/2011] [Accepted: 07/03/2011] [Indexed: 12/15/2022]
|
159
|
Schröder K, Schütz S, Schlöffel I, Bätz S, Takac I, Weissmann N, Michaelis UR, Koyanagi M, Brandes RP. Hepatocyte growth factor induces a proangiogenic phenotype and mobilizes endothelial progenitor cells by activating Nox2. Antioxid Redox Signal 2011; 15:915-23. [PMID: 21050133 DOI: 10.1089/ars.2010.3533] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hepatocyte growth factor (HGF) by stimulating the receptor tyrosine kinase c-Met induces angiogenesis and tissue regeneration. HGF has been shown to antagonize the angiotensin II-induced senescence of endothelial progenitor cells (EPCs), which is mediated by NADPH oxidase-dependent reactive oxygen species (ROS) formation. As growth factors, however, usually require ROS for their signaling, we hypothesized that the proangiogenic effects of HGF require NADPH oxidases and focused on the homolog Nox2, which is most abundantly expressed in EPCs and endothelial cells. Indeed, HGF increased the H(2)O(2) formation in EPCs and human umbilical vein endothelial cells (HUVECs), and this effect was not observed in Nox2-deficient cells. HGF induced the mobilization of EPCs and vascular outgrowth from aortic explants in wild-type (WT) but not Nox2(y/-) mice. HGF also stimulated migration and tube formation in HUVECs, and antisense oligonucleotides against Nox2 prevented this effect. To identify the signal transduction underlying these effects, we focused on the kinases Jak2 and Jnk. In HUVECs, HGF increased the phosphorylation of these in a Nox2-dependent manner as demonstrated by antisense oligonucleotides. Also, the HGF-induced Jak2-dependent activation of a STAT3 reporter construct was attenuated after downregulation of Nox2. Accordingly, the HGF-stimulated tube formation of HUVEC was blocked by inhibitors of Jak2 and Jnk. In vivo treatment with the Jnk inhibitor SP600125 blocked the HGF-induced mobilization of EPCs. Ex vivo, SP600125 blocked HGF-induced migration and tube formation. We conclude that HGF-induced mobilization of EPCs and the proangiogenic effects of the growth factor require a Nox2-dependent ROS-mediated activation of Jak2 and Jnk.
Collapse
Affiliation(s)
- Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Abstract
INTRODUCTION The aberrantly upregulated c-mesenchymal-epithelia transition factor (c-MET) signaling pathway has been considered to be an attractive target for cancer intervention owing to the important roles it plays in tumor formation, progression, metastasis, angiogenesis and drug resistance. Based on the historical preclinical evidence, a number of c-MET pathway targeted agents are being developed in the clinic, and recent clinical data have begun to provide some insight into which tumor types and patient populations a c-MET pathway inhibitor may be beneficial for. AREAS COVERED Through reviewing recent publications in the literature and information disclosed in other public forums, we describe the current understanding of c-MET biology in human malignancies and discuss the latest progress in the development of c-MET pathway inhibitors for cancer treatment. EXPERT OPINION The c-MET pathway inhibitors currently being evaluated in the clinic have demonstrated compelling evidence of clinical activity in different cancer types and may provide significant therapeutic opportunities. The challenges, however, are to identify the tumor types and patient populations that benefit most, and find the most effective combinations of therapies while minimizing potential toxicity.
Collapse
Affiliation(s)
- Xiangdong Liu
- Incyte Corporation, Experimental Station, Wilmington, DE 19880, USA.
| | | | | |
Collapse
|
161
|
Yuan QY, Zhu ZW, Wang Z, Wang XM, Li XS, Huang J, Si LY. A novel method of augmenting gene expression and angiogenesis in the normal and ischemic canine myocardium. Heart Vessels 2011; 27:316-26. [PMID: 21688013 DOI: 10.1007/s00380-011-0165-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 04/22/2011] [Indexed: 02/07/2023]
Abstract
This study presents a novel method that direct intramyocardial injection of low-dose plasmid DNA and microbubbles combined with insonation could further augment gene expression in normal and ischemic canine myocardium. Plasmids encoding enhanced green fluorescent protein (pEGFP) and hepatocyte growth factor (pHGF) (500 μg) were individually mixed with 0.5 ml of microbubble solution (MB) and injected into the normal or acute ischemic canine myocardium. The dogs in the plasmid + MB/US group underwent insonation (US). Other dogs were randomly divided into three treatment groups: plasmid and insonation, plasmid and MB injection, and plasmid injection only. The EGFP and HGF mRNA expressions were assessed in the myocardium at the injection site and at sites 0.5 and 1 cm remote from the injection site. Compared to plasmid transfer alone, a mean 13.4-fold enhancement of gene expression was achieved in the EGFP + MB/US group at 48 h (p < 0.01). HGF mRNA expression in ischemic zones was markedly elevated after 28 days, with a mean 9.0-fold enhancement in the HGF + MB/US group (p < 0.01). EGFP protein expression was detected in the normal myocardium at 1 cm remote from the injection site in the EGFP + MB/US group. Similarly, HGF protein expression was detected in the ischemic myocardium at 0.5 cm remote from the injection site in the HGF + MB/US group. These findings indicate that the radius of gene expression was partly extended in the two plasmid + MB/US groups. The capillary density increased from 20.9 ± 5.3/mm(2) in control myocardial infarction dogs without treatment to 126.7 ± 38.2/mm(2) in the HGF + MB/US group (p < 0.01). Taken together, the present data demonstrate that direct intramyocardial injection of an angiogenic gene and microbubbles combined with insonation can augment gene expression and angiogenesis. Consequently, this strategy may be a useful tool for gene therapy of ischemic heart disease.
Collapse
Affiliation(s)
- Qiao-Ying Yuan
- Department of Geriatrics, Southwest Hospital, Third Military Medical University, Gao Tan Yan Street, Sha Ping Ba District, Chongqing, 400038, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
162
|
Parachoniak CA, Luo Y, Abella JV, Keen JH, Park M. GGA3 functions as a switch to promote Met receptor recycling, essential for sustained ERK and cell migration. Dev Cell 2011; 20:751-63. [PMID: 21664574 PMCID: PMC3115551 DOI: 10.1016/j.devcel.2011.05.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 02/08/2011] [Accepted: 05/09/2011] [Indexed: 12/21/2022]
Abstract
Cells are dependent on correct sorting of activated receptor tyrosine kinases (RTKs) for the outcome of growth factor signaling. Upon activation, RTKs are coupled through the endocytic machinery for degradation or recycled to the cell surface. However, the molecular mechanisms governing RTK recycling are poorly understood. Here, we show that Golgi-localized gamma ear-containing Arf-binding protein 3 (GGA3) interacts selectively with the Met/hepatocyte growth factor RTK when stimulated, to sort it for recycling in association with "gyrating" clathrin. GGA3 loss abrogates Met recycling from a Rab4 endosomal subdomain, resulting in pronounced trafficking of Met toward degradation. Decreased Met recycling attenuates ERK activation and cell migration. Met recycling, sustained ERK activation, and migration require interaction of GGA3 with Arf6 and an unexpected association with the Crk adaptor. The data show that GGA3 defines an active recycling pathway and support a broader role for GGA3-mediated cargo selection in targeting receptors destined for recycling.
Collapse
Affiliation(s)
- Christine Anna Parachoniak
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Yi Luo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jasmine Vanessa Abella
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - James H. Keen
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Morag Park
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
- Department of Medicine, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Oncology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
163
|
Iekushi K, Taniyama Y, Kusunoki H, Azuma J, Sanada F, Okayama K, Koibuchi N, Iwabayashi M, Rakugi H, Morishita R. Hepatocyte growth factor attenuates transforming growth factor-β-angiotensin II crosstalk through inhibition of the PTEN/Akt pathway. Hypertension 2011; 58:190-6. [PMID: 21670418 DOI: 10.1161/hypertensionaha.111.173013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Both angiotensin II (Ang II) and transforming growth factor (TGF)-β1 are thought to be involved in the progression of chronic kidney disease. In contrast, hepatocyte growth factor (HGF) counteracts the actions of Ang II and TGF-β1. Therefore, in this study, we investigated the molecular mechanisms of how HGF antagonizes the Ang II-TGF-β axis in renal cells. In cultured human mesangial cells, TGF-β1 increased angiotensin type 1 receptor (AT(1)R) mRNA, mainly dependent on the Akt/phosphatidylinositol 3-kinase signaling pathway. Furthermore, TGF-β1 decreased the expression and phosphatase activity of phosphatase and tensin homolog, deleted on chromosome 10 (PTEN), a negative regulator of the phosphatidylinositol 3-kinase/Akt pathway. These data revealed positive feedback of the Ang II-TGF-β pathway, because Ang II increased TGF-β expression. In contrast, HGF significantly attenuated the increase in AT(1)R gene expression, and inhibited the decrease in PTEN induced by TGF-β1. Of importance, a PTEN-specific inhibitor significantly attenuated the reduction in TGF-β1-induced AT(1)R expression by HGF. These data suggest that HGF attenuated TGF-β1-induced AT(1)R expression through the PTEN/Akt pathway. To investigate this hypothesis, we performed in vivo experiments in mice with increased circulating levels of HGF produced by transgenically expressing HGF under control of a cardiac-specific transgene (HGF-Tg). In HGF-Tg mice, renal injury and fibrosis were significantly decreased, associated with reduction in AT(1)R expression and increase in PTEN after Ang II infusion, as compared with control mice. Moreover, these renal protective effects were abrogated by a neutralizing antibody against HGF. Thus, the present study demonstrated that HGF counteracts the vicious cycle of Ang II-TGF-β1-AT(1)R, mediating the inhibition of PTEN.
Collapse
Affiliation(s)
- Kazuma Iekushi
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Ruvinov E, Harel-Adar T, Cohen S. Bioengineering the infarcted heart by applying bio-inspired materials. J Cardiovasc Transl Res 2011; 4:559-74. [PMID: 21656074 DOI: 10.1007/s12265-011-9288-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/23/2011] [Indexed: 12/18/2022]
Abstract
Induction of cardiac muscle regeneration following myocardial infarction (MI) represents a major challenge in cardiovascular therapy, as the current clinical approaches are limited in their ability to regenerate a new muscle tissue and to replace infarcted myocardium. Here, we describe the conception of two strategies based on bio-inspired materials, aimed at myocardial repair after MI. In the first strategy, alginate biomaterial was designed with affinity-binding moieties, enabling the binding of heparin-binding proteins and their controlled presentation and release. The combined features of this unique alginate hydrogel, as a temporary extracellular matrix replacement and a depot for bio-molecules such as insulin-like growth factor-1 and hepatocyte growth factor, led to improvements in cardiac structure and function, as demonstrated by the biomaterial's abilities to thicken the scar and prevent left-ventricular remodeling and dilatation. Endogenous regeneration occurring at the infarct as manifested by the enhanced angiogenesis, cardiomyocyte proliferation, and appearance of cardiac-related stem cells is likely to have contributed to this. In the second strategy, phosphatidylserine (PS)-presenting liposomes were developed to mimic apoptotic cells bodies, specifically their capability of immunomodulating activated macrophages into anti-inflammatory state. In a rat model of acute MI, targeting of PS-presenting liposomes to infarct macrophages after injection via the femoral vein was demonstrated by magnetic resonance imaging. The treatment promoted angiogenesis, the preservation of small scars, and prevention of ventricular dilatation and remodeling. Collectively, the two bio-inspired material-based strategies presented herein represent unique and clinical accessible approaches for myocardial infarct repair.
Collapse
Affiliation(s)
- Emil Ruvinov
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, PO Box 653, 84105, Israel.
| | | | | |
Collapse
|
165
|
Nakazato K, Naganuma W, Ogawa K, Yaoita H, Mizuno S, Nakamura T, Maruyama Y. Attenuation of ischemic myocardial injury and dysfunction by cardiac fibroblast-derived factor(s). Fukushima J Med Sci 2011; 56:1-16. [PMID: 21485651 DOI: 10.5387/fms.56.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fibroblasts, the majority of non-cardiomyocytes in the heart, are known to release several kinds of substances such as cytokines and hormones that affect cell and tissue functions. We hypothesized that undefined substance (s) derived from cardiac fibroblasts may have the potential to protect against ischemic myocardium. To assess our hypothesis, using rats, we investigated: (1) the effect of cardiac fibroblast-conditioned medium (CM) on the viability of hypoxic cardiomyocytes in vitro, (2) the effect of CM on left ventricular (LV) function in global ischemia-reperfusion in an ex vive model, (3) the mechanism underlying cardioprotection by CM. Seventy-two hours after starting a hypoxic culture, the viability of cardiomyocytes was higher (P < 0.05) in the CM treated group (41.4%) compared to the control (20.5%). In Langendorff's preparation, 30 min after ischemia-reperfusion, LV end-diastolic pressure was lower, and LV developed pressure and -LVdP/dt were higher (P < 0.01 or P < 0.05) in the CM group than in the control, although coronary flow did not differ between the two groups. Pretreatment with a protein kinase C inhibitor or a mitochondrial ATP-sensitive K+ channel blocker attenuated these changes of LV function in the CM group. Such cardioprotection was achieved by a fraction of the CM having a molecular weight (MW) > 50,000, but not by that of the CM with a lower MW. In addition, a specific antibody against hepatocyte growth factor (HGF, MW is 84,000) did not reduce the cardioprotection afforded by CM. There may be an unknown cardioprotective substance other than HGF in rats, which mimics ischemic preconditioning and has MW > 50,000.
Collapse
Affiliation(s)
- Kazuhiko Nakazato
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan.
| | | | | | | | | | | | | |
Collapse
|
166
|
Pharmacologic and genetic strategies to enhance cell therapy for cardiac regeneration. J Mol Cell Cardiol 2011; 51:619-25. [PMID: 21645519 DOI: 10.1016/j.yjmcc.2011.05.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/18/2011] [Accepted: 05/20/2011] [Indexed: 01/16/2023]
Abstract
Cell-based therapy is emerging as an exciting potential therapeutic approach for cardiac regeneration following myocardial infarction (MI). As heart failure (HF) prevalence increases over time, development of new interventions designed to aid cardiac recovery from injury are crucial and should be considered more broadly. In this regard, substantial efforts to enhance the efficacy and safety of cell therapy are continuously growing along several fronts, including modifications to improve the reprogramming efficiency of inducible pluripotent stem cells (iPS), genetic engineering of adult stem cells, and administration of growth factors or small molecules to activate regenerative pathways in the injured heart. These interventions are emerging as potential therapeutic alternatives and/or adjuncts based on their potential to promote stem cell homing, proliferation, differentiation, and/or survival. Given the promise of therapeutic interventions to enhance the regenerative capacity of multipotent stem cells as well as specifically guide endogenous or exogenous stem cells into a cardiac lineage, their application in cardiac regenerative medicine should be the focus of future clinical research. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
|
167
|
Poynter JA, Herrmann JL, Manukyan MC, Wang Y, Abarbanell AM, Weil BR, Brewster BD, Meldrum DR. Intracoronary mesenchymal stem cells promote postischemic myocardial functional recovery, decrease inflammation, and reduce apoptosis via a signal transducer and activator of transcription 3 mechanism. J Am Coll Surg 2011; 213:253-60. [PMID: 21546276 DOI: 10.1016/j.jamcollsurg.2011.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) regulates myocardial apoptosis, cellular proliferation, and the immune response after ischemia/reperfusion (I/R). STAT3 is also necessary for the production of vascular endothelial growth factor (VEGF) by mesenchymal stem cells (MSCs), which are known to reduce myocardial injury after I/R. However, it remains unknown whether STAT3 is an important mediator of MSC-based cardioprotection. We hypothesized that knockout of stem cell STAT3 would reduce MSC-derived myocardial functional recovery and increase myocardial inflammatory and apoptotic signaling. STUDY DESIGN With a Langendorff apparatus, male rat hearts were subjected to 15 minutes of equilibration and 25 minutes of ischemia, followed by 40 minutes of reperfusion. Immediately before ischemia, hearts received intracoronary infusions of vehicle, wild-type MSCs (WT MSCs) or STAT3 knockout MSCs (STAT3KO MSCs). Heart function was measured continuously. Myocardial homogenates were analyzed for production of interleukin (IL)-1, IL-6, and tumor necrosis factor-α (TNF-α). Additionally, MSC production of hepatocyte growth factor (HGF) and insulin-like growth factor-1 (IGF-1) were measured in vitro. RESULTS Hearts treated with WT MSCs exhibited the greatest functional recovery, and those treated with STAT3KO MSCs had equivalent recovery to vehicle. The highest proinflammatory cytokine levels were seen in vehicle-treated hearts, and the lowest in the WT MSC group. STAT3KO MSCs produced less IGF-1, but more HGF than WT MSCs. Finally, hearts treated with STAT3KO MSCs or vehicle had significantly higher caspase-3 levels than those treated with WT MSCs. CONCLUSIONS Intracoronary infusions of MSCs improve postischemic left ventricular function and reduce proapoptotic and proinflammatory signaling via a STAT3-dependent mechanism.
Collapse
Affiliation(s)
- Jeffrey A Poynter
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Sala V, Crepaldi T. Novel therapy for myocardial infarction: can HGF/Met be beneficial? Cell Mol Life Sci 2011; 68:1703-17. [PMID: 21327916 PMCID: PMC11114731 DOI: 10.1007/s00018-011-0633-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/19/2011] [Accepted: 01/27/2011] [Indexed: 12/20/2022]
Abstract
Myocardial infarction (MI) is a leading cause of hospitalization worldwide. A recently developed strategy to improve the management of MI is based on the use of growth factors which are able to enhance the intrinsic capacity of the heart to repair itself or regenerate after damage. Among others, hepatocyte growth factor (HGF) has been proposed as a modulator of cardiac repair of damage due to the pleiotropic effects elicited by Met receptor stimulation. In this review we describe the mechanistic basis for autocrine and paracrine protection of HGF in the injured heart. We also analyse the role of HGF/Met in stem cell maintenance and in stem cell therapies for MI. Finally, we summarize the most significant results on the use of HGF in experimental models of heart injury and discuss the potential of the molecule for treating ischaemic heart disease in humans.
Collapse
Affiliation(s)
- V. Sala
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Corso Massimo D’Azeglio 52, 10126 Turin, Italy
| | - T. Crepaldi
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Corso Massimo D’Azeglio 52, 10126 Turin, Italy
| |
Collapse
|
169
|
Siltanen A, Kitabayashi K, Lakkisto P, Mäkelä J, Pätilä T, Ono M, Tikkanen I, Sawa Y, Kankuri E, Harjula A. hHGF overexpression in myoblast sheets enhances their angiogenic potential in rat chronic heart failure. PLoS One 2011; 6:e19161. [PMID: 21541335 PMCID: PMC3082550 DOI: 10.1371/journal.pone.0019161] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/28/2011] [Indexed: 11/19/2022] Open
Abstract
After severe myocardial infarction (MI), heart failure results from ischemia, fibrosis, and remodeling. A promising therapy to enhance cardiac function and induce therapeutic angiogenesis via a paracrine mechanism in MI is myoblast sheet transplantation. We hypothesized that in a rat model of MI-induced chronic heart failure, this therapy could be further improved by overexpression of the antiapoptotic, antifibrotic, and proangiogenic hepatocyte growth factor (HGF) in the myoblast sheets. We studied the ability of wild type (L6-WT) and human HGF-expressing (L6-HGF) L6 myoblast sheet-derived paracrine factors to stimulate cardiomyocyte, endothelial cell, or smooth muscle cell migration in culture. Further, we studied the autocrine effect of hHGF-expression on myoblast gene expression profiles by use of microarray analysis. We induced MI in Wistar rats by left anterior descending coronary artery (LAD) ligation and allowed heart failure to develop for 4 weeks. Thereafter, we administered L6-WT (n = 15) or L6-HGF (n = 16) myoblast sheet therapy. Control rats (n = 13) underwent LAD ligation and rethoracotomy without therapy, and five rats underwent a sham operation in both surgeries. We evaluated cardiac function with echocardiography at 2 and 4 weeks after therapy, and analyzed cardiac angiogenesis and left ventricular architecture from histological sections at 4 weeks. Paracrine mediators from L6-HGF myoblast sheets effectively induced migration of cardiac endothelial and smooth muscle cells but not cardiomyocytes. Microarray data revealed that hHGF-expression modulated myoblast gene expression. In vivo, L6-HGF sheet therapy effectively stimulated angiogenesis in the infarcted and non-infarcted areas. Both L6-WT and L6-HGF therapies enhanced cardiac function and inhibited remodeling in a similar fashion. In conclusion, L6-HGF therapy effectively induced angiogenesis in the chronically failing heart. Cardiac function, however, was not further enhanced by hHGF expression.
Collapse
Affiliation(s)
- Antti Siltanen
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Locatelli A, Lange CA. Met receptors induce Sam68-dependent cell migration by activation of alternate extracellular signal-regulated kinase family members. J Biol Chem 2011; 286:21062-72. [PMID: 21489997 DOI: 10.1074/jbc.m110.211409] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The hepatocyte growth factor (HGF)/Met receptor signaling pathway is deregulated in diverse human malignancies and plays a central role in oncogenesis, tumor progression, and invasive cancer growth. Similarly, altered expression and splicing (i.e. inclusion of variant exon 5, "v5") of the cell adhesion marker, CD44, is associated with advanced cancer phenotypes. We sought to further understand how HGF regulates CD44v5 expression. Immortalized nontumorigenic keratinocyte (HaCaT) cells abundantly express both Met receptors and CD44v5 transmembrane glycoproteins. HGF stimulated CD44v5 protein expression and HaCaT cell migration; these events required activation of the ERK1/2 MAPK module and Sam68, a protein involved in RNA processing, splicing, and v5 inclusion. Similar to HaCaT cells, highly migratory MDA-MB-231 breast cancer cells also required Sam68 expression for HGF-induced migration. However, MDA-MB-231 cell migration occurred independently of ERK1/2 and CD44v5 expression and instead required ERK5 signaling to Sam68. Phospho-mutant, but not WT-Sam68, blocked HGF-induced cell migration in both cell types; MDA-MB-435 cells behaved similarly. These results suggest that Sam68 acts as a convergence point for ERK signaling to cell migration; blockade of phospho-Sam68 may provide a new avenue for therapeutic inhibition of metastatic cancers.
Collapse
Affiliation(s)
- Alessia Locatelli
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
171
|
A mouse model for spatial and temporal expression of HGF in the heart. Transgenic Res 2011; 20:1203-16. [DOI: 10.1007/s11248-011-9485-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 01/09/2011] [Indexed: 10/18/2022]
|
172
|
Activated Met signalling in the developing mouse heart leads to cardiac disease. PLoS One 2011; 6:e14675. [PMID: 21347410 PMCID: PMC3036588 DOI: 10.1371/journal.pone.0014675] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 01/13/2011] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The Hepatocyte Growth Factor (HGF) is a pleiotropic cytokine involved in many physiological processes, including skeletal muscle, placenta and liver development. Little is known about its role and that of Met tyrosine kinase receptor in cardiac development. METHODOLOGY/PRINCIPAL FINDINGS In this study, we generated two transgenic mice with cardiac-specific, tetracycline-suppressible expression of either Hepatocyte Growth Factor (HGF) or the constitutively activated Tpr-Met kinase to explore: i) the effect of stimulation of the endogenous Met receptor by autocrine production of HGF and ii) the consequence of sustained activation of Met signalling in the heart. We first showed that Met is present in the neonatal cardiomyocytes and is responsive to exogenous HGF. Exogenous HGF starting from prenatal stage enhanced cardiac proliferation and reduced sarcomeric proteins and Connexin43 (Cx43) in newborn mice. As adults, these transgenics developed systolic contractile dysfunction. Conversely, prenatal Tpr-Met expression was lethal after birth. Inducing Tpr-Met expression during postnatal life caused early-onset heart failure, characterized by decreased Cx43, upregulation of fetal genes and hypertrophy. CONCLUSIONS/SIGNIFICANCE Taken together, our data show that excessive activation of the HGF/Met system in development may result in cardiac damage and suggest that Met signalling may be implicated in the pathogenesis of cardiac disease.
Collapse
|
173
|
Rastogi S, Guerrero M, Wang M, Ilsar I, Sabbah MS, Gupta RC, Sabbah HN. Myocardial transfection with naked DNA plasmid encoding hepatocyte growth factor prevents the progression of heart failure in dogs. Am J Physiol Heart Circ Physiol 2011; 300:H1501-9. [PMID: 21217070 DOI: 10.1152/ajpheart.00636.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study examined the effects of localized intramyocardial injections of hepatocyte growth factor (HGF) naked DNA plasmid on the progression of left ventricular (LV) dysfunction and remodeling in dogs with moderate heart failure (HF). Twenty-one dogs with intracoronary microembolization-induced HF [LV ejection fraction (EF) = 35-40%] were randomized into three treatment groups, namely, high-dose HGF plasmid (4.0 mg, n = 7), low-dose HGF plasmid (0.4 mg, n = 7), and sham-operated controls treated with normal saline (n = 7). A total of 10-15 injections of HGF plasmid or saline were made directly into the anterior wall of LV. LV EF and end-systolic volume (ESV) were measured before randomization (pretreatment) and at the end of 3 mo of follow-up (posttreatment). Treatment effect (Δ) was calculated as the change from pre- to posttreatment. Protein expression of sarcoplasmic reticulum (SR) Ca(2+)-cycling proteins was determined in LV tissue obtained from the sites of HGF injection and remote areas. Low-dose HGF attenuated the decline in EF (ΔEF: -3 ± 1 vs. -8 ± 1%, P < 0.05) and the increase in ESV (ΔESV: 6 ± 2 vs. 10 ± 1 ml, P < 0.05) seen in control sham-operated dogs, whereas high-dose HGF significantly increased EF (ΔEF: 4 ± 1 vs. -8 ± 1%, P < 0.05) and prevented the increase in ΔESV (ESV: -1 ± 1 vs. 10 ± 1 ml, P < 0.05) compared with control dogs. Treatment with high- and low-dose HGF improved the expression of the SR Ca(2+)-cycling proteins compared with controls. In conclusion, regional intramyocardial injections of HGF naked DNA plasmid improve regional and global LV function and prevent progressive LV remodeling.
Collapse
Affiliation(s)
- Sharad Rastogi
- Division of Cardiovascular Medicine, Department of Medicine, Henry Ford Heart & Vascular Institute, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | |
Collapse
|
174
|
Eagleson KL, Campbell DB, Thompson BL, Bergman MY, Levitt P. The autism risk genes MET and PLAUR differentially impact cortical development. Autism Res 2010; 4:68-83. [PMID: 21328570 DOI: 10.1002/aur.172] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/01/2010] [Indexed: 02/06/2023]
Abstract
Candidate risk genes for autism spectrum disorder (ASD) have been identified, but the challenge of determining their contribution to pathogenesis remains. We previously identified two ASD risk genes encoding the receptor tyrosine kinase MET and the urokinase plasminogen activator receptor (PLAUR), which is thought to modulate availability of the MET ligand. We also reported a role for Met signaling in cortical interneuron development in vitro and a reduction of these neurons in uPAR (mouse ortholog of PLAUR) null mice, suggesting that disruption of either gene impacts cortical development similarly. Here, we modify this conclusion, reporting that interneuron numbers are unchanged in the neocortex of Met(fx/fx) / Dlx5/6(cre) mice, in which Met is ablated from cells arising from the ventral telencephalon (VTel). Consistent with this, Met transcript is not detected in the VTel during interneuron genesis and migration; furthermore, during the postnatal period of interneuron maturation, Met is co-expressed in glutamatergic projection neurons, but not interneurons. Low levels of Met protein are expressed in the VTel at E12.5 and E14.5, likely reflecting the arrival of Met containing corticofugal axons. Met expression, however, is induced in E12.5 VTel cells after 2 days in vitro, perhaps underlying discrepancies between observations in vitro and in Met(fx/fx) / Dlx5/6(cre) mice. We suggest that, in vivo, Met impacts the development of cortical projection neurons, whereas uPAR influences interneuron maturation. An altered balance between excitation and inhibition has been postulated as a biological mechanism for ASD; this imbalance could arise from different risk genes differentially affecting either or both elements.
Collapse
Affiliation(s)
- Kathie L Eagleson
- Zilkha Neurogenetic Institute, Keck School of Medicine at USC, Los Angeles, California 90033, USA.
| | | | | | | | | |
Collapse
|
175
|
Yasui T, Ohuchida K, Zhao M, Onimaru M, Egami T, Fujita H, Ohtsuka T, Mizumoto K, Tanaka M. Tumor-stroma interactions reduce the efficacy of adenoviral therapy through the HGF-MET pathway. Cancer Sci 2010; 102:484-91. [PMID: 21105966 DOI: 10.1111/j.1349-7006.2010.01783.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Many preclinical studies have shown the potential of adenovirus-based cancer gene therapy. However, successful translation of these promising results into the clinic has not yet been achieved. Pancreatic ductal adenocarcinoma (PDAC) is characterized by abundant desmoplastic stroma, and tumor-stromal cell interactions play a critical role in tumor progression. Therefore, we hypothesized that tumor-stroma interactions reduce the efficacy of adenoviral therapy. We investigated the effect of fibroblasts on adenovirus-based gene therapy using SUIT-2 and PANC-1 pancreatic cancer cells cultured with or without fibroblast-conditioned culture supernatant then infected with Ad-LacZ. After 48 h, the cells were stained for β-galactosidase. The results showed that the number of β-galactosidase-positive cells was significantly reduced after culture with fibroblast-conditioned supernatant (P < 0.05). Because the hepatocyte growth factor (HGF)/MET pathway plays an important role in tumor-stroma interactions we next investigated the involvement of this pathway in tumor-stroma interactions leading to the decreased efficacy of adenoviral therapy. SUIT-2 cells were cultured with or without SU11274 (a MET inhibitor) and/or fibroblast-conditioned culture supernatant, then infected with Ad-GFP. After 48 h, GFP-positive cells were counted. The number of GFP-positive cells in cultures containing fibroblast-conditioned supernatant plus SU11274 was significantly greater than in cultures without SU11274. In conclusion, our results suggest that stromal cells in PDAC reduce the efficacy of adenoviral therapy through a mechanism involving the HGF/MET pathway. Control of such tumor-stroma interactions may lead to improvements in adenoviral gene therapy for PDAC.
Collapse
Affiliation(s)
- Takaharu Yasui
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Saeed M, Saloner D, Do L, Wilson M, Martin A. Cardiovascular magnetic resonance imaging in delivering and evaluating the efficacy of hepatocyte growth factor gene in chronic infarct scar. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2010; 12:111-22. [PMID: 21421190 DOI: 10.1016/j.carrev.2010.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/12/2010] [Accepted: 05/20/2010] [Indexed: 12/31/2022]
Abstract
BACKGROUND In an open-chest model of acute infarct, epicardial delivery of hepatocyte growth factor (pCK-HGF-X7) gene improved left ventricle (LV) function. This study was designed to test (a) the efficacy of HGF gene in infarct scar delivered under magnetic resonance (MR) guidance and (b) the potential of multiple MR sequences in assessing the effects of pCK-HGF-X7 (treatment) and pCK-LacZ (control) genes on myocardial structure and function. MATERIALS AND METHODS Swine (six per group) were subjected to myocardial infarct, under X-ray fluoroscopy, and developed LV remodeling at 5 weeks. Multiple clinical magnetic resonance (MR) imaging sequences were performed before delivery of gene (at 5 weeks after infarction) and 5 weeks after delivery of gene. Under MR guidance, the active endovascular catheter was introduced into LV to transendocardially deliver 3.96 × 10(11) viral copies of pCK-HGF-X7 or pCK-LacZ in the border and core of the infarct scar. Histological evaluation of the infarct scar was performed 5 weeks after delivery of gene. RESULTS At 5 weeks after infarction, there was no significant difference in measured cardiovascular MR parameters between the groups. The pCK-HGF-X7 gene caused significant improvement in the following parameters (P<.05 for these parameters): three-dimensional (3D) strain (radial, circumferential, and longitudinal) and perfusion (maximum upslope, peak signal intensity, and time to peak) compared with control pCK-LacZ at 5 weeks after delivery of the genes. The ejection fraction was higher in pCK-HGF-X7-treated (43 ± 1%) than in pCK-LacZ control (37 ± 1%, P<.05) animals. These changes are associated with a decrease in infarct scar size (11.3 ± 2.0% in pCK-LacZ control and 6.7 ± 1.3% in pCK-HGF-X7-treated animals, P<.01) and infarct transmurality in four out of five infarct scar segments (P<.05) on delayed contrast-enhanced MR imaging. Microscopic study confirmed the increase in capillary (P<.05) and arteriole (P<.05) density of infarct scar in pCK-HGF-X7-treated animals compared with pCK-LacZ control animals. CONCLUSIONS Hepatocyte growth factor gene (pCK-HGF-X7) delivered under MR guidance into infarct scar ameliorated global function and 3D strain, increased regional perfusion and infarct resorption, and enhanced angiogenesis/arteriogenesis. This feasibility study provides novel approach and analysis methods and instrumentation for delivering and evaluating new locally delivered therapies.
Collapse
Affiliation(s)
- Maythem Saeed
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94107-1701, USA.
| | | | | | | | | |
Collapse
|
177
|
Abstract
In patients with ischemic heart disease, the goal of cell therapy is to improve perfusion and function of the damaged heart muscle. For this review, we selected articles that reported the findings from the major clinical studies of cardiovascular stem cell therapy in patients with chronic ischemic heart disease. Because of the current status of development of clinical investigation in this field, all relevant studies were included. Initial clinical trials have shown that adult cell-based therapy is safe and may improve the quality of life and the functional status of patients with chronic myocardial ischemia. Adult bone marrow mononuclear cells have been most frequently used in cardiac cell therapy trials to date, but new cell types are now being assessed in both preclinical and clinical studies. Although not well defined, mechanisms underlying the benefits associated with cell therapy are most likely multiple and include a paracrine effect. Cell therapy in patients with chronic ischemic heart disease has been shown to be safe and feasible. Initial data have shown that cell therapy with autologous bone marrow cells is associated with modest functional improvements. This finding needs to be confirmed in subsequent phase 2 and 3 trials.
Collapse
Affiliation(s)
- Emerson C Perin
- Stem Cell Center, Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, TX, USA.
| | | |
Collapse
|
178
|
Segers VF, Lee RT. Protein therapeutics for cardiac regeneration after myocardial infarction. J Cardiovasc Transl Res 2010; 3:469-77. [PMID: 20607468 PMCID: PMC2967710 DOI: 10.1007/s12265-010-9207-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 06/21/2010] [Indexed: 12/27/2022]
Abstract
Although most medicines have historically been small molecules, many newly approved drugs are derived from proteins. Protein therapies have been developed for treatment of diseases in almost every organ system, including the heart. Great excitement has now arisen in the field of regenerative medicine, particularly for cardiac regeneration after myocardial infarction. Every year, millions of people suffer from acute myocardial infarction, but the adult mammalian myocardium has limited regeneration potential. Regeneration of the heart after myocardium infarction is therefore an exciting target for protein therapeutics. In this review, we discuss different classes of proteins that have therapeutic potential to regenerate the heart after myocardial infarction. Protein candidates have been described that induce angiogenesis, including fibroblast growth factors and vascular endothelial growth factors, although thus far clinical development has been disappointing. Chemotactic factors that attract stem cells, e.g., hepatocyte growth factor and stromal cell-derived factor-1, may also be useful. Finally, neuregulins and periostin are proteins that induce cell-cycle reentry of cardiomyocytes, and growth factors like IGF-1 can induce growth and differentiation of stem cells. As our knowledge of the biology of regenerative processes and the role of specific proteins in these processes increases, the use of proteins as regenerative drugs could develop as a cardiac therapy.
Collapse
Affiliation(s)
| | - Richard T. Lee
- Harvard Stem Cell Institute and the Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139
| |
Collapse
|
179
|
Mungunsukh O, Lee YH, Marquez AP, Cecchi F, Bottaro DP, Day RM. A tandem repeat of a fragment of Listeria monocytogenes internalin B protein induces cell survival and proliferation. Am J Physiol Lung Cell Mol Physiol 2010; 299:L905-14. [PMID: 20889677 DOI: 10.1152/ajplung.00094.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hepatocyte growth factor (HGF) is critical for tissue homeostasis and repair in many organs including the lung, heart, kidney, liver, nervous system, and skin. HGF is a heterodimeric protein containing 20 disulfide bonds distributed among an amino-terminal hairpin, four kringle domains, and a serine protease-like domain. Due to its complex structure, recombinant production of HGF in prokaryotes requires denaturation and refolding, processes that are impractical for large-scale manufacture. Thus, pharmaceutical quantities of HGF are not available despite its potential applications. A fragment of the Listeria monocytogenes internalin B protein from amino acids 36-321 (InlB₃₆₋₃₂₁) was demonstrated to bind to and partially activate the HGF receptor Met. InlB₃₆₋₃₂₁ has a stable β-sheet structure and is easily produced in its native conformation by Escherichia coli. We cloned InlB₃₆₋₃₂₁ (1×InlB₃₆₋₃₂₁) and engineered a head-to-tail repeat of InlB₃₆₋₃₂₁ with a linker peptide (2×InlB₃₆₋₃₂₁); 1×InlB₃₆₋₃₂₁ and 2×InlB₃₆₋₃₂₁ were purified from E. coli. Both 1× and 2×InlB₃₆₋₃₂₁ activated the Met tyrosine kinase. We subsequently compared signal transduction of the two proteins in primary lung endothelial cells. 2×InlB₃₆₋₃₂₁ activated ERK1/2, STAT3, and phosphatidylinositol 3-kinase/Akt pathways, whereas 1×InlB₃₆₋₃₂₁ activated only STAT3 and ERK1/2. The 2×InlB₃₆₋₃₂₁ promoted improved motility compared with 1×InlB₃₆₋₃₂₁ and additionally stimulated proliferation equivalent to full-length HGF. Both the 1× and 2×InlB₃₆₋₃₂₁ prevented apoptosis by the profibrotic peptide angiotensin II in cell culture and ex vivo lung slice cultures. The ease of large-scale production and capacity of 2×InlB₃₆₋₃₂₁ to mimic HGF make it a potential candidate as a pharmaceutical agent for tissue repair.
Collapse
Affiliation(s)
- Ognoon Mungunsukh
- Dept. of Pharmacology, Uniformed Services University of the Health Sciences, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
180
|
Tao ZW, Li LG, Geng ZH, Dang T, Zhu SJ. Growth factors induce the improved cardiac remodeling in autologous mesenchymal stem cell-implanted failing rat hearts. J Zhejiang Univ Sci B 2010; 11:238-48. [PMID: 20349520 DOI: 10.1631/jzus.b0900244] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Therapeutically delivered mesenchymal stem cells (MSCs) improve ventricular remodeling. However, the mechanism underlying MSC cardiac remodeling has not been clearly determined. Congestive heart failure (CHF) was induced in rats by cauterization of the left ventricular free wall. MSCs were cultured from autologous bone marrow and injected into the border zone and the remote myocardium 5 d after injury. Ten weeks later, when compared with sham operation, CHF significantly increased nucleus mitotic index, capillary density, and expression of insulin-like growth factor 1, hepatocyte growth factor and vascular endothelial growth factor in the border zone (P<0.01) and decreased each of them in the remote myocardium (P<0.05 or P<0.01). MSC implantation in CHF dramatically elevated expression of these growth factors in the remote myocardium and further elevated their expression in the border zone when compared with CHF without MSC addition (P<0.05 or P<0.01). This was paralleled by a higher nucleus mitotic index and a significantly increased capillary density both in the remote myocardium and in the border zone, and by a lower percentage of area of collagen and a higher percentage of area of myocardium in the border zone (P<0.05 or P<0.01), and cardiac remodeling markedly improved. Autologous MSC implantation promoted expression of growth factors in rat failing myocardium, which might enhance cardiomyogenesis and angiogenesis, and improved cardiac remodeling.
Collapse
Affiliation(s)
- Ze-wei Tao
- Department of Cardiovascular Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | | | | | | | | |
Collapse
|
181
|
The paracrine effect: pivotal mechanism in cell-based cardiac repair. J Cardiovasc Transl Res 2010; 3:652-62. [PMID: 20559770 DOI: 10.1007/s12265-010-9198-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 05/26/2010] [Indexed: 12/27/2022]
Abstract
Cardiac cell therapy has emerged as a controversial yet promising therapeutic strategy. Both experimental data and clinical applications in this field have shown modest but tangible benefits on cardiac structure and function and underscore that transplanted stem-progenitor cells can attenuate the postinfarct microenvironment. The paracrine factors secreted by these cells represent a pivotal mechanism underlying the benefits of cell-mediated cardiac repair. This article reviews key studies behind the paracrine effect related to the cardiac reparative effects of cardiac cell therapy.
Collapse
|
182
|
Epidermal growth factor protects the heart against low-flow ischemia-induced injury. J Physiol Biochem 2010; 66:55-62. [PMID: 20422337 DOI: 10.1007/s13105-010-0009-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 11/16/2009] [Indexed: 12/26/2022]
Abstract
The role of ErbB4 and ErbB2 in the heart of adult mammals is well established. The heart also expresses ErbB1 (the epidermal growth factor (EGF) receptor), but this receptor has received less attention. We studied the effect of EGF on the response of isolated mouse heart to low-flow ischemia and reperfusion. Reducing perfusate flow to 10% for 30 min resulted in an increase in anaerobic metabolism and the leakage of lactate dehydrogenase during reperfusion. In addition, left ventricle +dP/dt and developed pressure were depressed (20-25%) during reperfusion. The addition of EGF 5 min before and throughout the ischemic period prevented the increase in anaerobic metabolism and the leakage of intracellular lactate dehydrogenase during reperfusion. EGF improved both +dP/dt and developed pressure during ischemia and prevented the decrease in dP/dt during reperfusion. To determine whether the effect of EGF on cell integrity depends on its effect on contractility, we studied nonbeating isolated myocytes. In these cells, anoxia and reoxygenation reduced cell viability by nearly 25%. EGF prevented such a decrease. Our results indicate that, like ErbB4 and ErbB2, ErbB1 also has an important role in the heart of adult animals.
Collapse
|
183
|
Abstract
The race for a cure to cancer continues, fueled by unprecedented discoveries of fundamental biology underlying carcinogenesis and tumorigenesis. The expansion of the target list and tools to approach them is moving the oncology community extraordinarily rapidly to clinical trials, bringing new hope for cancer patients. This effort is also propelling biological discoveries in cardiovascular research, because many of the targets being explored in cancer play fundamental roles in the heart and vasculature. The combined efforts of cardiovascular and cancer biologists, along with clinical investigators in these fields, will be needed to understand how to safely exploit these efforts. Here, we discuss a few of the many research foci in oncology where we believe such collaboration will be particularly important.
Collapse
Affiliation(s)
- Xuyang Peng
- Cardiovascular Medicine, Vanderbilt University Medical Center, PRB 359B Pierce Ave., Nashville, TN 37232, USA.
| | | | | |
Collapse
|
184
|
Konopka A, Janas J, Piotrowski W, Stepińska J. Hepatocyte growth factor--a new marker for prognosis in acute coronary syndrome. Growth Factors 2010; 28:75-81. [PMID: 19939200 DOI: 10.3109/08977190903403984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED This study was designed to check the properties of hepatocyte growth factor (HGF) as a new marker of myocardial necrosis. MATERIALS AND METHOD In one hundred and four patients with acute coronary syndrome (ACS), plasma human HGF (hHGF) concentrations were assessed twice, i.e. just after admission to hospital and 24 h afterwards. The primary composite endpoint was assessed at three-month follow-up. RESULTS The maximal concentration of hHGF (1902 pg/ml) was reached at the time of admission to hospital due to ACS with significant decrease 24 h after the first measurement (705 pg/ml p < 0.0001). hHGF levels in ST segment elevation myocardial infarction (STEMI) were higher than in non-ST segment elevation myocardial infarction (NSTEMI) and in patients who reached composite primary endpoint (33 patients-4211 pg/ml) vs. event-free 71 patients (1013 pg/ml p < 0.01). The correlation between values of hHGF and N-terminal prohormone B-type natriuretic peptide and cardiac troponin I was revealed. CONCLUSION HGF is a very early, good marker of myocardial necrosis and a sensitive short- and long-term prognostic factor in ACS.
Collapse
Affiliation(s)
- Anna Konopka
- Institute of Cardiology CCU, ul. Alpejska 42, Warsaw, Poland.
| | | | | | | |
Collapse
|
185
|
Lionetti V, Cantoni S, Cavallini C, Bianchi F, Valente S, Frascari I, Olivi E, Aquaro GD, Bonavita F, Scarlata I, Maioli M, Vaccari V, Tassinari R, Bartoli A, Recchia FA, Pasquinelli G, Ventura C. Hyaluronan mixed esters of butyric and retinoic acid affording myocardial survival and repair without stem cell transplantation. J Biol Chem 2010; 285:9949-9961. [PMID: 20097747 PMCID: PMC2843241 DOI: 10.1074/jbc.m109.087254] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/15/2010] [Indexed: 12/14/2022] Open
Abstract
Possible cardiac repair by adult stem cell transplantation is currently hampered by poor cell viability and delivery efficiency, uncertain differentiating fate in vivo, the needs of ex vivo cell expansion, and consequent delay in transplantation after the onset of heart attack. By the aid of magnetic resonance imaging, positron emission tomography, and immunohistochemistry, we show that injection of a hyaluronan mixed ester of butyric and retinoic acid (HBR) into infarcted rat hearts afforded substantial cardiovascular repair and recovery of myocardial performance. HBR restored cardiac [(18)F]fluorodeoxyglucose uptake and increased capillary density and led to the recruitment of endogenous Stro-1-positive stem cells. A terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling assay demonstrated that HBR-treated hearts exhibited a decrease in the number of apoptotic cardiomyocytes. In isolated rat cardiomyocytes and Stro-1 stem cells, HBR enhanced the transcription of vascular endothelial growth factor, hepatocyte growth factor, kdr, akt, and pim-1. HBR also increased the secretion of vascular endothelial growth factor and hepatocyte growth factor, suggesting that the mixed ester may have recruited both myocardial and Stro-1 cells also. An increase in capillarogenesis was induced in vitro with medium obtained from HBR-exposed cells. In the infarcted myocardium, HBR injection increased histone H4 acetylation significantly. Acetyl-H4 immunoreactivity increased in rat cardiomyocytes and Stro-1 cells exposed to HBR, compared with untreated cells. In conclusion, efficient cardiac regenerative therapy can be afforded by HBR without the need of stem cell transplantation or vector-mediated gene delivery.
Collapse
Affiliation(s)
- Vincenzo Lionetti
- Sector of Medicine, Scuola Superiore S. Anna, I-56124 Pisa, Italy; Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche Fondazione G. Monasterio, I-56124 Pisa, Italy
| | - Silvia Cantoni
- Laboratory of Molecular Biology and Stem Cell Engineering, Cardiovascular Department-National Institute of Biostructures and Biosystems, S. Orsola-Malpighi Hospital, University of Bologna, I-40138 Bologna, Italy; Bioscience Institute, RSM-47891 Falciano, Republic of San Marino
| | - Claudia Cavallini
- Laboratory of Molecular Biology and Stem Cell Engineering, Cardiovascular Department-National Institute of Biostructures and Biosystems, S. Orsola-Malpighi Hospital, University of Bologna, I-40138 Bologna, Italy; Bioscience Institute, RSM-47891 Falciano, Republic of San Marino
| | - Francesca Bianchi
- Laboratory of Molecular Biology and Stem Cell Engineering, Cardiovascular Department-National Institute of Biostructures and Biosystems, S. Orsola-Malpighi Hospital, University of Bologna, I-40138 Bologna, Italy; Bioscience Institute, RSM-47891 Falciano, Republic of San Marino
| | - Sabrina Valente
- Department of Hematology, Oncology, and Clinical Pathology, University of Bologna, I-40138 Bologna, Italy
| | - Irene Frascari
- Laboratory of Molecular Biology and Stem Cell Engineering, Cardiovascular Department-National Institute of Biostructures and Biosystems, S. Orsola-Malpighi Hospital, University of Bologna, I-40138 Bologna, Italy; Bioscience Institute, RSM-47891 Falciano, Republic of San Marino
| | - Elena Olivi
- Laboratory of Molecular Biology and Stem Cell Engineering, Cardiovascular Department-National Institute of Biostructures and Biosystems, S. Orsola-Malpighi Hospital, University of Bologna, I-40138 Bologna, Italy; Bioscience Institute, RSM-47891 Falciano, Republic of San Marino
| | - Giovanni D Aquaro
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche Fondazione G. Monasterio, I-56124 Pisa, Italy
| | - Francesca Bonavita
- Laboratory of Molecular Biology and Stem Cell Engineering, Cardiovascular Department-National Institute of Biostructures and Biosystems, S. Orsola-Malpighi Hospital, University of Bologna, I-40138 Bologna, Italy; Bioscience Institute, RSM-47891 Falciano, Republic of San Marino
| | - Ignazio Scarlata
- Laboratory of Molecular Biology and Stem Cell Engineering, Cardiovascular Department-National Institute of Biostructures and Biosystems, S. Orsola-Malpighi Hospital, University of Bologna, I-40138 Bologna, Italy; Bioscience Institute, RSM-47891 Falciano, Republic of San Marino
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy
| | - Valentina Vaccari
- Laboratory of Molecular Biology and Stem Cell Engineering, Cardiovascular Department-National Institute of Biostructures and Biosystems, S. Orsola-Malpighi Hospital, University of Bologna, I-40138 Bologna, Italy; Bioscience Institute, RSM-47891 Falciano, Republic of San Marino
| | - Riccardo Tassinari
- Laboratory of Molecular Biology and Stem Cell Engineering, Cardiovascular Department-National Institute of Biostructures and Biosystems, S. Orsola-Malpighi Hospital, University of Bologna, I-40138 Bologna, Italy; Bioscience Institute, RSM-47891 Falciano, Republic of San Marino
| | | | - Fabio A Recchia
- Sector of Medicine, Scuola Superiore S. Anna, I-56124 Pisa, Italy; Department of Physiology, New York Medical College, Valhalla, New York 10595
| | - Gianandrea Pasquinelli
- Department of Hematology, Oncology, and Clinical Pathology, University of Bologna, I-40138 Bologna, Italy
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, Cardiovascular Department-National Institute of Biostructures and Biosystems, S. Orsola-Malpighi Hospital, University of Bologna, I-40138 Bologna, Italy; Bioscience Institute, RSM-47891 Falciano, Republic of San Marino.
| |
Collapse
|
186
|
Hepatocyte growth factor inhibits CNS autoimmunity by inducing tolerogenic dendritic cells and CD25+Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A 2010; 107:6424-9. [PMID: 20332205 DOI: 10.1073/pnas.0912437107] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immune-mediated diseases of the CNS, such as multiple sclerosis and its animal model, experimental autoimmune encephalitis (EAE), are characterized by the activation of antigen-presenting cells and the infiltration of autoreactive lymphocytes within the CNS, leading to demyelination, axonal damage, and neurological deficits. Hepatocyte growth factor (HGF) is a pleiotropic factor known for both neuronal and oligodendrocytic protective properties. Here, we assess the effect of a selective overexpression of HGF by neurons in the CNS of C57BL/6 mice carrying an HGF transgene (HGF-Tg mice). EAE induced either by immunization with myelin oligodendrocyte glycoprotein peptide or by adoptive transfer of T cells was inhibited in HGF-Tg mice. Notably, the level of inflammatory cells infiltrating the CNS decreased, except for CD25(+)Foxp3(+) regulatory T (T(reg)) cells, which increased. A strong T-helper cell type 2 cytokine bias was observed: IFN-gamma and IL-12p70 decreased in the spinal cord of HGF-Tg mice, whereas IL-4 and IL-10 increased. Antigen-specific response assays showed that HGF is a potent immunomodulatory factor that inhibits dendritic cell (DC) function along with differentiation of IL-10-producing T(reg) cells, a decrease in IL-17-producing T cells, and down-regulation of surface markers of T-cell activation. These effects were reversed fully when DC were pretreated with anti-cMet (HGF receptor) antibodies. Our results suggest that, by combining both potentially neuroprotective and immunomodulatory effects, HGF is a promising candidate for the development of new treatments for immune-mediated demyelinating diseases associated with neurodegeneration such as multiple sclerosis.
Collapse
|
187
|
Ruvinov E, Leor J, Cohen S. The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials 2010; 31:4573-82. [PMID: 20206988 DOI: 10.1016/j.biomaterials.2010.02.026] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 02/10/2010] [Indexed: 01/09/2023]
Abstract
Enhancing tissue self-repair through the use of active acellular biomaterials is one of the main goals of regenerative medicine. We now describe the features of an injectable alginate biomaterial designed to affinity-bind heparin-binding proteins and release them at a rate reflected by their association constant to alginate-sulfate. The interactions of hepatocyte growth factor (HGF) with alginate-sulfate resulted in factor protection from proteolysis, as shown by mass spectroscopy analysis after trypsin digestion. When the HGF/alginate-sulfate bioconjugate was incorporated into alginate hydrogel, HGF release was sustained by a factor of 3, as compared to the release rate from non-modified hydrogel. The released factor retained activity, as shown by its induction of ERK1/2 activation and affording cytoprotection in rat neonatal cardiomyocyte cultures. In vivo, an injectable form of the affinity-binding alginate system extended by 10-fold, as compared to a saline-treated group, retention of HGF in myocardial tissue when delivered immediately after myocardial infarction. In a severe murine hindlimb ischemia model, HGF delivery from the affinity-binding system improved tissue blood perfusion and induced mature blood vessel network formation. The therapeutic efficacy of the affinity-binding system, as well as its ease of delivery by injection, provides a proof-of-concept for the potential use of this bioactive biomaterial strategy in cardiovascular repair.
Collapse
Affiliation(s)
- Emil Ruvinov
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
188
|
Pietronave S, Forte G, Locarno D, Merlin S, Zamperone A, Nicotra G, Isidoro C, Nardo PD, Prat M. Agonist monoclonal antibodies against HGF receptor protect cardiac muscle cells from apoptosis. Am J Physiol Heart Circ Physiol 2010; 298:H1155-65. [PMID: 20061536 DOI: 10.1152/ajpheart.01323.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Hepatocyte growth factor (HGF), a pleiotropic cytokine with mitogenic, motogenic, morphogenic, and antiapoptotic effects in various cell types, is a cardioprotective growth factor that can counteract the loss of cardiomyocytes usually observed in cardiac diseases. HGF is a quite unstable molecule in its biologically active heterodimeric form. Since all HGF-induced biological responses are mediated by its high-affinity tyrosine kinase receptor (Met/HGF-R) encoded by the Met gene, we asked whether a monoclonal antibody (MAb) that displays receptor full agonist activity could protect cardiac muscle cell lines from hydrogen peroxide-induced apoptosis. We report that the MAb efficiently inhibited hydrogen peroxide-induced cell shrinkage, DNA fragmentation, annexin V positivity, mitochondrial translocation of bax, and caspase activation. The MAb was thus able to counteract apoptosis evaluated by both morphological and biochemical criteria. The agonist activity of the MAb was mediated by Met/HGF-R, since a Met/HGF-R-specific short hairpin RNA (shRNA) inhibited both activation of transduction pathways and motility triggered by MAb DO-24. The protective antiapoptotic effect of MAb DO-24 was dependent on activation of the ras-MAPK Erk1/2 and phosphatidylinositol 3-kinase (PI3-kinase)-Akt transduction pathways, since it was abrogated by treatments with their specific pharmacological inhibitors, PD-98059 and wortmannin. Moreover, the MAb induced a motogenic, but not mitogenic, response in these cells, mimicking in all aspects the natural ligand HGF but displaying a significant higher stability than HGF in culture. This MAb may thus be a valuable substitute for HGF, being more easily available in a biologically active, highly stable, and purified form.
Collapse
Affiliation(s)
- Stefano Pietronave
- Dept. of Medical Sciences, Università del Piemonte Orientale "A. Avogadro," Novara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Tang J, Wang J, Guo L, Kong X, Yang J, Zheng F, Zhang L, Huang Y. Mesenchymal stem cells modified with stromal cell-derived factor 1 alpha improve cardiac remodeling via paracrine activation of hepatocyte growth factor in a rat model of myocardial infarction. Mol Cells 2010; 29:9-19. [PMID: 20016947 DOI: 10.1007/s10059-010-0001-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/10/2009] [Accepted: 09/25/2009] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether SDF-1 transfection improve MSC viability and paracrine action in infarcted hearts. We found SDF-1-modified MSCs effectively expressed SDF-1 for at least 21 days after exposure to hypoxia. The apoptosis of Ad-SDF-1-MSCs was 42% of that seen in Ad-EGFP-MSCs and 53% of untreated MSCs. In the infarcted hearts, the number of DAPI-labeling cells in the Ad-SDF-1-MSC group was 5-fold that in the Ad-EGFP-MSC group. Importantly, expression of antifibrotic factor, HGF, was detected in cultured MSCs, and HGF expression levels were higher in Ad-SDF-MSC-treated hearts, compared with Ad-EGFP-MSC or control hearts. Compared with the control group, Ad-SDF-MSC transplantation significantly decreased the expression of collagens I and III and matrix metalloproteinase 2 and 9, but heart function was improved in d-SDF-MSC-treated animals. In conclusion, SDF-1-modified MSCs enhanced the tolerance of engrafted MSCs to hypoxic injury in vitro and improved their viability in infarcted hearts, thus helping preserve the contractile function and attenuate left ventricle (LV) remodeling, and this may be at least partly mediated by enhanced paracrine signaling from MSCs via antifibrotic factors such as HGF.
Collapse
Affiliation(s)
- Junming Tang
- Institute of Clinical Medicine, Renmin Hospital, Yunyang Medical College, Shiyan, Hubei, 442000, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Vogel S, Trapp T, Börger V, Peters C, Lakbir D, Dilloo D, Sorg RV. Hepatocyte growth factor-mediated attraction of mesenchymal stem cells for apoptotic neuronal and cardiomyocytic cells. Cell Mol Life Sci 2010; 67:295-303. [PMID: 19888551 PMCID: PMC11115944 DOI: 10.1007/s00018-009-0183-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/29/2009] [Accepted: 10/13/2009] [Indexed: 12/31/2022]
Abstract
Human bone marrow-derived mesenchymal stem cells (MSC) home to injured tissues and have regenerative capacity. In this study, we have investigated in vitro the influence of apoptotic and necrotic cell death, thus distinct types of tissue damage, on MSC migration. Concordant with an increased overall motility, MSC migrated towards apoptotic, but not vital or necrotic neuronal and cardiac cells. Hepatocyte growth factor (HGF) was expressed by the apoptotic cells only. MSC, in contrast, revealed expression of the HGF-receptor, c-Met. Blocking HGF bioactivity resulted in significant reduction of MSC migration. Moreover, recombinant HGF attracted MSC in a dose-dependent manner. Thus, apoptosis initiates chemoattraction of MSC via the HGF/c-Met axis, thereby linking tissue damage to the recruitment of cells with regenerative potential.
Collapse
Affiliation(s)
- Sebastian Vogel
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Moorenstrasse 5, Bldg. 14.80, 40225 Düsseldorf, Germany
| | - Thorsten Trapp
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Moorenstrasse 5, Bldg. 14.80, 40225 Düsseldorf, Germany
| | - Verena Börger
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Moorenstrasse 5, Bldg. 14.80, 40225 Düsseldorf, Germany
| | - Corinna Peters
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Moorenstrasse 5, Bldg. 14.80, 40225 Düsseldorf, Germany
| | - Dalila Lakbir
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Moorenstrasse 5, Bldg. 14.80, 40225 Düsseldorf, Germany
| | - Dagmar Dilloo
- Department of Pediatric Hematology and Oncology, University Medical Center, Bonn, Germany
| | - Rüdiger V. Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Moorenstrasse 5, Bldg. 14.80, 40225 Düsseldorf, Germany
| |
Collapse
|
191
|
Nakamura T, Mizuno S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:588-610. [PMID: 20551596 PMCID: PMC3081175 DOI: 10.2183/pjab.86.588] [Citation(s) in RCA: 378] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
It has been more than 25 years since HGF was discovered as a mitogen of hepatocytes. HGF is produced by stromal cells, and stimulates epithelial cell proliferation, motility, morphogenesis and angiogenesis in various organs via tyrosine phosphorylation of its receptor, c-Met. In fetal stages, HGF-neutralization, or c-Met gene destruction, leads to hypoplasia of many organs, indicating that HGF signals are essential for organ development. Endogenous HGF is required for self-repair of injured livers, kidneys, lungs and so on. In addition, HGF exerts protective effects on epithelial and non-epithelial organs (including the heart and brain) via anti-apoptotic and anti-inflammatory signals. During organ diseases, plasma HGF levels significantly increased, while anti-HGF antibody infusion accelerated tissue destruction in rodents. Thus, endogenous HGF is required for minimization of diseases, while insufficient production of HGF leads to organ failure. This is the reason why HGF supplementation produces therapeutic outcomes under pathological conditions. Moreover, emerging studies delineated key roles of HGF during tumor metastasis, while HGF-antagonism leads to anti-tumor outcomes. Taken together, HGF-based molecules, including HGF-variants, HGF-fragments and c-Met-binders are available as regenerative or anti-tumor drugs. Molecular analysis of the HGF-c-Met system could provide bridges between basic biology and clinical medicine.
Collapse
Affiliation(s)
- Toshikazu Nakamura
- Kringle Pharma Joint Research Division for Regenerative Drug Discovery, Center for Advanced Science and Innovation, Osaka University, Osaka, Japan.
| | | |
Collapse
|
192
|
Yang ZJ, Xu SL, Chen B, Zhang SL, Zhang YL, Wei W, Ma DC, Wang LS, Zhu TB, Li CJ, Wang H, Cao KJ, Gao W, Huang J, Ma WZ, Wu ZZ. HEPATOCYTE GROWTH FACTOR PLAYS A CRITICAL ROLE IN THE REGULATION OF CYTOKINE PRODUCTION AND INDUCTION OF ENDOTHELIAL PROGENITOR CELL MOBILIZATION: A PILOT GENE THERAPY STUDY IN PATIENTS WITH CORONARY HEART DISEASE. Clin Exp Pharmacol Physiol 2009; 36:790-6. [DOI: 10.1111/j.1440-1681.2009.05151.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
193
|
Wang N, Tong G, Yang J, Zhou Z, Pan H, Huo Y, Xu J, Zhang X, Ling F, Li P. Effect of hepatocyte growth-promoting factors on myocardial ischemia during exercise in patients with severe coronary artery disease. Int Heart J 2009; 50:291-9. [PMID: 19506333 DOI: 10.1536/ihj.50.291] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hepatocyte growth-promoting factor (pHGF) has the greatest potential as a therapeutic agent for vascular growth factor. The aim of this study was to investigate the effect of pHGF on myocardial ischemia and exercise capacity in patients with severe coronary artery disease (CAD). Forty-nine patients were enrolled for a two week treatment period. Treadmill graded exercise tests with gas analysis were conducted before and after therapy. Serum levels of HGF were significantly elevated after therapy. The degrees of exercise-induced ST segment depression were decreased more significantly in the pHGF group. Similar differences were also found in the maximum heart rate and the maximum heart rate when the ST segment was depressed 1 mm while undergoing the treadmill graded exercise test. Both were increased more significantly in the pHGF group. Total exercise time, systolic blood pressure in the peak of exercise, the length of time that ST segment depression of 1 mm is needed, and total work all were increased in both groups after intervention. Furthermore, total exercise time and total work were increased more significantly in the pHGF group. The levels of HGF increased significantly after pHGF treatment. pHGF could favorably improve exercise-induced myocardial ischemia and enhance exercise capacity in patients with severe CAD.
Collapse
Affiliation(s)
- Ningfu Wang
- Department of Cardiology, the First People's Hospital of Hangzhou and Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou City, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Brown DA, MacLellan WR, Dunn JCY, Wu BM, Beygui RE. Hypoxic Cell Death is Reduced by pH Buffering in a Model of Engineered Heart Tissue. ACTA ACUST UNITED AC 2009; 36:94-113. [DOI: 10.1080/10731190801932090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
195
|
Wang L, Deng J, Tian W, Xiang B, Yang T, Li G, Wang J, Gruwel M, Kashour T, Rendell J, Glogowski M, Tomanek B, Freed D, Deslauriers R, Arora RC, Tian G. Adipose-derived stem cells are an effective cell candidate for treatment of heart failure: an MR imaging study of rat hearts. Am J Physiol Heart Circ Physiol 2009; 297:H1020-31. [PMID: 19574490 DOI: 10.1152/ajpheart.01082.2008] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study assessed the potential therapeutic efficacy of adipose-derived stem cells (ASCs) on infarcted hearts. Myocardial infarction was induced in rat hearts by occlusion of the left anterior descending artery (LAD). One week after LAD occlusion, the rats were divided into three groups and subjected to transplantation of ASCs or transplantation of cell culture medium (CCM) or remained untreated. During a 1-mo recovery period, magnetic resonance imaging showed that the ASC-treated hearts had a significantly greater left ventricular (LV) ejection fraction and LV wall thickening than did the CCM-treated and untreated hearts. The capillary density in infarct border zone was significantly higher in the ASC-treated hearts than in the CCM-treated and untreated hearts. However, only 0.5% of the ASCs recovered from the ASC-treated hearts were stained positive for cardiac-specific fibril proteins. It was also found that ASCs under a normal culture condition secreted three cardiac protective growth factors: vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor-1. Results of this study suggest that ASCs were able to improve cardiac function of infarcted rat hearts. Paracrine effect may be the mechanism underlying the improved cardiac function and increased capillary density.
Collapse
Affiliation(s)
- Lei Wang
- Institute for Biodiagnostics, National Research Council Canada, Winnipeg, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Suga H, Eto H, Shigeura T, Inoue K, Aoi N, Kato H, Nishimura S, Manabe I, Gonda K, Yoshimura K. IFATS collection: Fibroblast growth factor-2-induced hepatocyte growth factor secretion by adipose-derived stromal cells inhibits postinjury fibrogenesis through a c-Jun N-terminal kinase-dependent mechanism. Stem Cells 2009; 27:238-49. [PMID: 18772314 DOI: 10.1634/stemcells.2008-0261] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Adipose-derived stem/stromal cells (ASCs) not only function as tissue-specific progenitor cells but also are multipotent and secrete angiogenic growth factors, such as hepatocyte growth factor (HGF), under certain circumstances. However, the biological role and regulatory mechanism of this secretion have not been well studied. We focused on the role of ASCs in the process of adipose tissue injury and repair and found that among injury-associated growth factors, fibroblast growth factor-2 (FGF-2) strongly promoted ASC proliferation and HGF secretion through a c-Jun N-terminal kinase (JNK) signaling pathway. In a mouse model of ischemia-reperfusion injury of adipose tissue, regenerative changes following necrotic and apoptotic changes were seen for 2 weeks. Acute release of FGF-2 by injured adipose tissue was followed by upregulation of HGF. During the adipose tissue remodeling process, adipose-derived 5-bromo-2-deoxyuridine-positive cells were shown to be ASCs (CD31-CD34+). Inhibition of JNK signaling inhibited the activation of ASCs and delayed the remodeling process. In addition, inhibition of FGF-2 or JNK signaling prevented postinjury upregulation of HGF and led to increased fibrogenesis in the injured adipose tissue. Increased fibrogenesis also followed the administration of a neutralizing antibody against HGF. FGF-2 released from injured tissue acts through a JNK signaling pathway to stimulate ASCs to proliferate and secrete HGF, contributing to the regeneration of adipose tissue and suppression of fibrogenesis after injury. This study revealed a functional role for ASCs in the response to injury and provides new insight into the therapeutic potential of ASCs.
Collapse
Affiliation(s)
- Hirotaka Suga
- Department of Plastic Surgery, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Eder JP, Vande Woude GF, Boerner SA, LoRusso PM. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res 2009; 15:2207-14. [PMID: 19318488 DOI: 10.1158/1078-0432.ccr-08-1306] [Citation(s) in RCA: 418] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A wide variety of human malignancies exhibit sustained c-Met stimulation, overexpression, or mutation, including carcinomas of the breast, liver, lung, ovary, kidney, and thyroid. Notably, activating mutations in c-Met have been positively identified in patients with a particular hereditary form of papillary renal cancer, directly implicating c-Met in human tumorigenesis. Aberrant signaling of the c-Met signaling pathway due to dysregulation of the c-Met receptor or overexpression of its ligand, hepatocyte growth factor (HGF), has been associated with an aggressive phenotype. Extensive evidence that c-Met signaling is involved in the progression and spread of several cancers and an enhanced understanding of its role in disease have generated considerable interest in c-Met and HGF as major targets in cancer drug development. This has led to the development of a variety of c-Met pathway antagonists with potential clinical applications. The three main approaches of pathway-selective anticancer drug development have included antagonism of ligand/receptor interaction, inhibition of the tyrosine kinase catalytic activity, and blockade of the receptor/effector interaction. Several c-Met antagonists are now under clinical investigation. Preliminary clinical results of several of these agents, including both monoclonal antibodies and small-molecule tyrosine kinase inhibitors, have been encouraging. Several multitargeted therapies have also been under investigation in the clinic and have demonstrated promise, particularly with regard to tyrosine kinase inhibition.
Collapse
|
198
|
Zhang G, Hu Q, Braunlin EA, Suggs LJ, Zhang J. Enhancing efficacy of stem cell transplantation to the heart with a PEGylated fibrin biomatrix. Tissue Eng Part A 2009; 14:1025-36. [PMID: 18476809 DOI: 10.1089/ten.tea.2007.0289] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bone marrow-derived mononuclear cell (BMNC) transplantation provides the possibility of rescue or regeneration of myocardium lost during acute myocardial infarction (AMI). The extensive death of transplanted cells and the lack of sustained engraftment may limit its application. We investigated whether delivery of BMNCs by an injectable PEGylated fibrin biomatrix that covalently binds hepatocyte growth factor (HGF) would enhance the rate of cell engraftment and improve cardiac function. Balb/C female mice with AMI secondary to left anterior descending coronary ligation were randomly assigned to one of six groups: the Saline control group (n = 8) received a myocardial injection of saline (50 microL); the Cell group (n = 10) received a myocardial injection in the peri-infarct and infarct zones consisting of 500,000 murine BMNCs suspended in 50 microL saline; and the Biomatrix + HGF (n = 9) and Biomatrix + HGF + Cell (n = 9) group hearts received the HGF-loaded injectable biomatrix (identical volume) with or without entrapped BMNCs. Control groups consisting of the biomatrix alone (n = 9) and Biomatrix + Cells (n = 9) without HGF were also included for comparison. The left ventricular (LV) function was measured by echocardiography at days 14 and 28 post-MI. All animals were euthanized 4 weeks after AMI and transplantation for evaluation of angiogenesis, apoptosis, and fibrosis by immunohistochemistry. Cell prevalence rate at 4 weeks increased 15-fold in hearts receiving the Biomatrix + HGF + Cell delivery (p < 0.01), which was accompanied by the lowest levels of apoptosis and the highest LV function recovery among the treated groups.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Biomedical Engineering, University of Texas, Austin, Texas 78712-0238, USA
| | | | | | | | | |
Collapse
|
199
|
Shen D, Tang Q, Huang Z, Chen Y, Xiong R, Wu H, Huang J, Feng S, Yan L, Bian Z. The effects of NK4 on viral myocarditis mice. Cardiovasc Pathol 2009; 18:323-31. [PMID: 19150247 DOI: 10.1016/j.carpath.2008.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 08/11/2008] [Accepted: 10/21/2008] [Indexed: 11/15/2022] Open
Abstract
NK4 may be a promising agent to inhibit tumor invasion and metastasis. To observe the effects of NK4 on the cardiovascular system with pathological injury and to discuss the mechanism, we established an experimental model of viral myocarditis (VCM) by coxsackievirus B3 infection in Balb/c mice on Day 0 and administered NK4 twice daily to the VCM and control mice from Day 20 to Day 45. We then evaluated the cardiac function by means of ultrasonic inspection. Hepatocyte growth factor, TNF (tumor necrosis factor)-alpha, and angiotensin II levels in the myocardial tissue were measured with enzyme-linked immunosorbent assay. Myocardium histopathology was examined with hematoxylin and eosin stain. Collagen deposition of the myocardium was detected through Masson staining. Microvessel staining with the RECA antibody and apoptosis detection with terminal deoxynucleotidyl transferase-mediated dUTP-biotin end labeling were performed in the myocardium. The changes in MMP3 (matrix metalloproteinase 3), MMP9, TIMP1 (tissue inhibitor of metalloproteinase 1), and TGF (transforming growth factor)-beta1 expression in the myocardium were measured by reverse-transcriptase polymerase chain reaction. We found that NK4 intervention increased TGF-beta and angiotensin II expression, suppressed MMPs, improved the activities of TIMPs, and then promoted collagen deposition in the myocardium. NK4 intervention also decreased the microvessels' density and increased the apoptotic cell count in the myocardia of VCM mice. However, we did not observe the obvious changes in the myocardia of control mice after NK4 intervention. These data suggest that NK4 made negative impacts on the restoration of cardiac function and the recovery from VCM in the experimental mice.
Collapse
Affiliation(s)
- Difei Shen
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
|