151
|
Kragstrup TW, Kjaer M, Mackey AL. Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging. Scand J Med Sci Sports 2011; 21:749-57. [PMID: 22092924 DOI: 10.1111/j.1600-0838.2011.01377.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2011] [Indexed: 11/28/2022]
Abstract
The extracellular matrix (ECM) of skeletal muscle is critical for force transmission and for the passive elastic response of skeletal muscle. Structural, biochemical, cellular, and functional changes in skeletal muscle ECM contribute to the deterioration in muscle mechanical properties with aging. Structural changes include an increase in the collagen concentration, a change in the elastic fiber system, and an increase in fat infiltration of skeletal muscle. Biochemical changes include a decreased turnover of collagen with potential accumulation of enzymatically mediated collagen cross-links and a buildup of advanced glycation end-product cross-links. Altered mechanotransduction, poorer activation of satellite cells, poorer chemotactic and delayed inflammatory responses, and a change in modulators of the ECM are important cellular changes. It is possible that the structural and biochemical changes in skeletal muscle ECM contribute to the increased stiffness and impairment in force generated by the contracting muscle fibers seen with aging. The cellular interactions provide and potentially coordinate an adaptation to mechanical loading and ensure successful regeneration after muscle injury. Some of the changes in skeletal muscle ECM with aging may be preventable with resistance or weight training, but it is clear that more human studies are needed on the topic.
Collapse
Affiliation(s)
- T W Kragstrup
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
152
|
Yoshida S, Nabzdyk CS, Pradhan L, LoGerfo FW. Thrombospondin-2 gene silencing in human aortic smooth muscle cells improves cell attachment. J Am Coll Surg 2011; 213:668-76. [PMID: 21840228 DOI: 10.1016/j.jamcollsurg.2011.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/10/2011] [Accepted: 07/12/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Despite decades of research, anastomotic intimal hyperplasia remains a major cause of delayed prosthetic arterial graft failure. Previously, we reported profound upregulation of thrombospondin-2 (TSP-2) mRNA in neointimal smooth muscle cells after prosthetic arterial bypass graft placement. TSP-2 is an antiangiogenic matricellular protein with specific functions yet unknown. In this study, we hypothesized that inhibition of TSP-2 in human aortic smooth muscle cells (HAoSMCs) would reduce cell proliferation and migration in vitro, providing a therapeutic target to mitigate intimal hyperplasia. STUDY DESIGN HAoSMCs were transfected with TSP-2 small interfering ribonucleic acid (siRNA) using a commercial transfection reagent. Gene silencing was evaluated using semiquantitative real-time polymerase chain reaction. ELISA was used to measure TSP-2 protein levels in cell culture supernatants. Cell migration and proliferation were assessed using scratch wound assays and alamar blue assays, respectively. Attachment assays were performed to assess the effect of TSP-2 silencing on HAoSMC adhesion to fibronectin. RESULTS TSP-2 siRNA achieved consistent target gene silencing at 48 hours post-transfection in HAoSMCs. This single transfection allowed suppression of TSP-2 protein expression for more than 30 days. TSP-2 gene silencing did not affect HAoSMC migration or proliferation. MMP-2 levels were also unaffected by changes in TSP-2 protein levels. However, HAoSMC attachment to fibronectin improved significantly in cells treated with TSP-2 siRNA. CONCLUSIONS siRNA-mediated TSP-2 silencing of human aortic HAoSMCs improved cell attachment but had no effect on cell migration or proliferation. The effect on cell attachment was unrelated to changes in MMP activity.
Collapse
Affiliation(s)
- Shunsuke Yoshida
- Department of Surgery, Division of Vascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
153
|
Workman G, Sage EH. Identification of a sequence in the matricellular protein SPARC that interacts with the scavenger receptor stabilin-1. J Cell Biochem 2011; 112:1003-8. [PMID: 21308731 DOI: 10.1002/jcb.23015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SPARC (osteonectin/BM-40), a secreted matricellular protein that promotes cellular deadhesion and motility in wound healing, carcinogenesis, and inflammation, binds to the scavenger receptor stabilin-1 in alternatively activated macrophages and undergoes endocytosis and clearance from the extracellular space. Both SPARC and stabilin-1 are expressed by endothelial cells during inflammation, but their interaction in this context is unknown. We have identified a binding site on SPARC for stabilin-1 by a solid-state peptide array coupled with a modified enzyme-linked immunosorbent assay. A monoclonal antibody that recognizes the identified binding site was also characterized that could be an inhibitor for the SPARC-stabilin-1 interaction in macrophages or endothelial cells.
Collapse
Affiliation(s)
- Gail Workman
- Department of Vascular Biology, Benaroya Research Institute, Seattle, Washington 98101, USA
| | | |
Collapse
|
154
|
Chen YM, Kuo CE, Huang YL, Shie PS, Liao JJ, Yang YC, Chen TY. Molecular cloning and functional analysis of an orange-spotted grouper (Epinephelus coioides) secreted protein acidic and rich in cysteine (SPARC) and characterization of its expression response to nodavirus. FISH & SHELLFISH IMMUNOLOGY 2011; 31:232-242. [PMID: 21609765 DOI: 10.1016/j.fsi.2011.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 05/09/2011] [Accepted: 05/09/2011] [Indexed: 05/30/2023]
Abstract
Mammalian secreted protein acidic and rich in cysteine (SPARC) is the primary regulator of cell shape and cell adhesion to fibronectin. We, for the first time, report the complete sequencing of SPARC cDNA from orange-spotted grouper. Despite the difference in the lengths of the SPARC transcripts, all of the SPARC molecules encoded a signal peptide, follistain-like copper binding sequence (KGHK) domain, and extracellular domain. The grouper SPARC gene was differentially expressed in vivo and contributed differently to high-level expression of SPARC in muscle. Immunohistochemical staining demonstrated a decreased level of SPARC in nodavirus-infected grouper compared with healthy grouper. Comparative real-time polymerase chain reaction analyses of eye tissues of viral nervous necrosis grouper and healthy grouper were performed. Recombinant SPARC produced changes in grouper cell shape 24 h after treatment. The results provide new insight into the pathogenesis of nodavirus, and demonstrate an experimental rationale for SPARC characterization in nodavirus-infected grouper.
Collapse
Affiliation(s)
- Young-Mao Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | | | | | | | | | | | | |
Collapse
|
155
|
Lee H, Jang Y, Seo J, Nam JM, Char K. Nanoparticle-functionalized polymer platform for controlling metastatic cancer cell adhesion, shape, and motility. ACS NANO 2011; 5:5444-5456. [PMID: 21702475 DOI: 10.1021/nn202103z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Controlling and understanding the changes in metastatic cancer cell adhesion, shape, and motility are of paramount importance in cancer research, diagnosis, and treatment. Here, we used gold nanoparticles (AuNPs) as nanotopological structures and protein nanocluster forming substrates. Cell adhesion controlling proteins [in this case, fibronection (Fn) and ephrinB3] were modified to AuNPs, and these particles were then modified to the layer-by-layer (LbL) polymer surface that offers a handle for tuning surface charge and mechanical property of a cell-interfacing substrate. We found that metastatic cancer cell adhesion is affected by nanoparticle density on a surface, and ∼140 particles per 400 μm(2) (∼1.7 μm spacing between AuNPs) is optimal for effective metastatic cell adhesion. It was also shown that the AuNP surface density and protein nanoclustering on a spherical AuNP are controlling factors for the efficient interfacing and signaling of metastatic cancer cells. Importantly, the existence of nanotopological features (AuNPs in this case) is much more critical in inducing more dramatic changes in metastatic cell adhesion, protrusion, polarity, and motility than the presence of a cell adhesion protein, Fn, on the surface. Moreover, cell focal adhesion and motility-related paxillin clusters were heavily formed in cell lamellipodia and filopodia and high expression of phospho-paxillins were observed when the cells were cultured on either an AuNP or Fn-modified AuNP polymer surface. The ephrin signaling that results in the decreased expression of paxillin was found to be more effective when ephrins were modified to the AuNP surface than when ephrinB3 was directly attached to the polymer film. The overall trend for cell motility change is such that a nanoparticle-modified LbL surface induces higher cell motility and the AuNP modification to the LbL surface results in more pronounced change in cell motility than Fn or ephrin modification to the LbL surface.
Collapse
Affiliation(s)
- Hyojin Lee
- Department of Chemistry, Seoul National University, Seoul, 151-747, Korea
| | | | | | | | | |
Collapse
|
156
|
Differential Expression of SPARC in Intestinal-type Gastric Cancer Correlates with Tumor Progression and Nodal Spread. Transl Oncol 2011; 2:310-20. [PMID: 19956393 DOI: 10.1593/tlo.09169] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/13/2009] [Accepted: 08/17/2009] [Indexed: 11/18/2022] Open
Abstract
AIMS Nodal spread is the single most important prognostic factor of survival in gastric cancer patients. In this study, genes that were upregulated in the lymph node metastases of gastric cancer were identified and may serve as putative novel therapeutic target. METHODS Complementary DNA (cDNA) microarray analysis and quantitative real-time polymerase chain reaction of primary gastric carcinomas and matched lymph node metastasis were carried out. Immunohistochemistry with anti-SPARC antibodies was performed on large tissue sections of 40 cases with primary gastric carcinoma (20 diffuse, 20 intestinal) and the corresponding lymph node metastases, as well as on tissue microarrays of 152 gastric cancer cases. RESULTS A cDNA microarray identified SPARC as being upregulated in primary gastric carcinoma tissue and the corresponding lymph node metastasis compared with the nonneoplastic mucosa. SPARC was expressed in fibroblasts and, occasionally, in tumor cells. However, the level of immunoreactivity was particularly strong in stromal cells surrounding the tumor. The level of expression of SPARC, determined by immunohistochemistry, correlated in intestinal-type gastric cancer with the local tumor growth, nodal spread, and tumor stage according to the International Union Against Cancer. CONCLUSIONS Our study provides transcriptional and translational evidence for the differential expression of SPARC in gastric cancer tissue. On the basis of our observations and those made by others, we hypothesize that SPARC is a promising novel target for the treatment of gastric cancer.
Collapse
|
157
|
PPAR Gamma: Coordinating Metabolic and Immune Contributions to Female Fertility. PPAR Res 2011; 2008:243791. [PMID: 18309368 PMCID: PMC2246065 DOI: 10.1155/2008/243791] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 07/02/2007] [Indexed: 01/10/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARG) regulates cellular functions such as adipogenesis and immune cell activation. However, new information has indicated additional roles of PPARG directing the cyclic changes that occur within ovarian tissue of female mammals, including those that facilitate the release of oocytes each estrous cycle. In addition to ovarian PPARG expression and function, many PPARG actions within adipocytes and macrophages have additional direct and indirect implications for ovarian function and female fertility. This encompasses the regulation of lipid uptake and transport, insulin sensitivity, glucose metabolism, and the regulation of inflammatory mediator synthesis and release. This review discusses the developing links between PPARG activity and female reproductive function, and highlights several mechanisms that may facilitate such a relationship.
Collapse
|
158
|
Differential Expression of SPARC in Intestinal-type Gastric Cancer Correlates with Tumor Progression and Nodal Spread. Transl Oncol 2011. [PMID: 19956393 DOI: 10.1593/tlo.09169.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AIMS Nodal spread is the single most important prognostic factor of survival in gastric cancer patients. In this study, genes that were upregulated in the lymph node metastases of gastric cancer were identified and may serve as putative novel therapeutic target. METHODS Complementary DNA (cDNA) microarray analysis and quantitative real-time polymerase chain reaction of primary gastric carcinomas and matched lymph node metastasis were carried out. Immunohistochemistry with anti-SPARC antibodies was performed on large tissue sections of 40 cases with primary gastric carcinoma (20 diffuse, 20 intestinal) and the corresponding lymph node metastases, as well as on tissue microarrays of 152 gastric cancer cases. RESULTS A cDNA microarray identified SPARC as being upregulated in primary gastric carcinoma tissue and the corresponding lymph node metastasis compared with the nonneoplastic mucosa. SPARC was expressed in fibroblasts and, occasionally, in tumor cells. However, the level of immunoreactivity was particularly strong in stromal cells surrounding the tumor. The level of expression of SPARC, determined by immunohistochemistry, correlated in intestinal-type gastric cancer with the local tumor growth, nodal spread, and tumor stage according to the International Union Against Cancer. CONCLUSIONS Our study provides transcriptional and translational evidence for the differential expression of SPARC in gastric cancer tissue. On the basis of our observations and those made by others, we hypothesize that SPARC is a promising novel target for the treatment of gastric cancer.
Collapse
|
159
|
Wyszyńska-Koko J, de Wit AAC, Beerda B, Veerkamp RF, te Pas MFW. Gene expression patterns in the ventral tegmental area relate to oestrus behaviour in high-producing dairy cows. J Anim Breed Genet 2011; 128:183-91. [PMID: 21554412 DOI: 10.1111/j.1439-0388.2010.00915.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reduced oestrus behaviour expression or its absence (silent oestrus) results in subfertility in high-producing dairy cows. Insight into the genomic regulation of oestrus behaviour is likely to help alleviate reproduction problems. Here, gene expression was recorded in the ventral tegmental area (VTA) of high milk production dairy cows differing in the degree of showing oestrus behaviour (H - highly expressing versus L - lowly expressing), which was then analysed. Genes regulating cell morphology and adhesion or coding for immunoglobulin G (IgG) chains were differentially expressed in VTA between cows around day 0 and 12 of the oestrus cycle, but only in cows that earlier in life tended to show high levels of oestrus behaviour (H0 versus H12). The comparisons between H and L groups of cows also revealed differential expression of several genes (e.g. those of the IgG family or encoding for pro-melanin-concentrating hormone). However, any significant changes in VTA genes expression were detected in the comparison of L0 versus L12 cows. Altogether, the genes expression profile in VTA of cows highly expressing oestrus behaviour changes together with phases of the oestrus cycle, while in case of cows expressing oestrus behaviour lowly it remains stable. This supports the existence of genomic regulation by centrally expressed genes on the expression of oestrus behaviour in dairy cows.
Collapse
Affiliation(s)
- J Wyszyńska-Koko
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Wólka Kosowska, Poland.
| | | | | | | | | |
Collapse
|
160
|
Wiederhorn SM, Chae YH, Simon CG, Cahn J, Deng Y, Day D. Cell adhesion to borate glasses by colloidal probe microscopy. Acta Biomater 2011; 7:2256-63. [PMID: 21241832 DOI: 10.1016/j.actbio.2011.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/30/2010] [Accepted: 01/12/2011] [Indexed: 11/30/2022]
Abstract
The adhesion of osteoblast-like cells to silicate and borate glasses was measured in cell growth medium using colloidal probe microscopy. The probes consisted of silicate and borate glass spheres, 25-50 μm in diameter, attached to atomic force microscope cantilevers. Variables of the study included glass composition and time of contact of the cell to the glasses. Increasing the time of contact from 15 to 900 s increased the force of adhesion. The data could be plotted linearly on a log-log plot of adhesive force versus time. Of the seven glasses tested, five had slopes close to 0.5, suggesting a square root dependence of the adhesive force on the contact time. Such behavior can be interpreted as a diffusion limited process occurring during the early stages of cell attachment. We suggest that the rate limiting step in the adhesion process is the diffusion of integrins resident in the cell membrane to the area of cell attachment. Data presented in this paper support the hypothesis of Hench et al. that strong adhesion depends on the formation of a calcium phosphate reaction layer on the surfaces of the glass. Glasses that did not form a calcium phosphate layer exhibited a weaker adhesive force relative to those glasses that did form a calcium phosphate layer.
Collapse
Affiliation(s)
- Sheldon M Wiederhorn
- Ceramics Division/Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA.
| | | | | | | | | | | |
Collapse
|
161
|
Chiquet-Ehrismann R, Tucker RP. Tenascins and the importance of adhesion modulation. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004960. [PMID: 21441591 DOI: 10.1101/cshperspect.a004960] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tenascins are a family of extracellular matrix proteins that evolved in early chordates. There are four family members: tenascin-X, tenascin-R, tenascin-W, and tenascin-C. Tenascin-X associates with type I collagen, and its absence can cause Ehlers-Danlos Syndrome. In contrast, tenascin-R is concentrated in perineuronal nets. The expression of tenascin-C and tenascin-W is developmentally regulated, and both are expressed during disease (e.g., both are associated with cancer stroma and tumor blood vessels). In addition, tenascin-C is highly induced by infections and inflammation. Accordingly, the tenascin-C knockout mouse has a reduced inflammatory response. All tenascins have the potential to modify cell adhesion either directly or through interaction with fibronectin, and cell-tenascin interactions typically lead to increased cell motility. In the case of tenascin-C, there is a correlation between elevated expression and increased metastasis in several types of tumors.
Collapse
Affiliation(s)
- Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland.
| | | |
Collapse
|
162
|
Dozmorov M, Stone R, Clifford JL, Sabichi AL, Engles CD, Hauser PJ, Culkin DJ, Hurst RE. System level changes in gene expression in maturing bladder mucosa. J Urol 2011; 185:1952-8. [PMID: 21421225 DOI: 10.1016/j.juro.2010.12.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Indexed: 11/19/2022]
Abstract
PURPOSE Bladder problems clinically present early in life as birth defects that often lead to kidney failure and late in life as overactive bladder, incontinence and related disorders. We investigated the transcriptome of mouse bladder mucosa at juvenile and adult stages by microarray to identify the pathways associated with normal, healthy growth and maturation. We hypothesized that understanding these pathways could be key to achieving bladder regeneration or reawakening normal function in the elderly population. MATERIALS AND METHODS RNA was isolated from the mucosa at 3, 6, 20 and 30 weeks postnatally. Affymetrix® Mouse 430 v2 arrays were used to profile the expression of approximately 45,000 genes. The software program Statistical Analysis of Microarrays was used to identify genes that significantly changed during the time course. RESULTS No genes were significantly up-regulated during maturation. However, 66 well annotated genes demonstrated a statistically significant downward trend, of which 10 of 10 were confirmed by quantitative polymerase chain reaction. The main functions affected by age were transcription, regulation of cellular processes, neurogenesis, blood vessel development and cell differentiation. Notable genes included collagens, Mmp2, SPARC and several transcription factors, including Crebbp, Runx1, Klf9, Mef2c, Nrp1, Pex1 and Tcf4. These molecules were indirectly regulated by inferred Tgfb1 and Egf growth factors. Analysis of gene promoter regions for overrepresented upstream transcription factor binding sites identified specificity protein 1 and epidermal growth factor receptor-specific transcription factor as potentially major transcriptional regulators driving maturation related changes. CONCLUSIONS These findings identify a coherent set of genes that appear to be down-regulated during urothelial maturation. These genes may represent an attractive target for bladder regeneration or for treating age related loss of function.
Collapse
Affiliation(s)
- Mikhail Dozmorov
- Department of Urology, College of Medicine, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Huynh MH, Zhu SJ, Kollara A, Brown T, Winklbauer R, Ringuette M. Knockdown of SPARC leads to decreased cell-cell adhesion and lens cataracts during post-gastrula development in Xenopus laevis. Dev Genes Evol 2011; 220:315-27. [PMID: 21384171 DOI: 10.1007/s00427-010-0349-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 12/16/2010] [Indexed: 12/01/2022]
Abstract
SPARC is a multifunctional matricellular glycoprotein with complex, transient tissue distribution during embryonic development. In Xenopus laevis embryos, zygotic activation of SPARC is first detected during late gastrulation, undergoing rapid changes in its spatiotemporal distribution throughout organogenesis. Injections of anti-sense Xenopus SPARC morpholinos (XSMOs) into 2- and 4-cell embryos led to a dose-dependent dissociation of embryos during neurula and tailbud stages of development. Animal cap explants derived from XSMO-injected embryos also dissociated, resulting in the formation of amorphous ciliated microspheres. At low doses of XSMOs, lens cataracts were formed, phenocopying that observed in Sparc-null mice. At XSMOs concentrations that did not result in a loss of axial tissue integrity, adhesion between myotomes at intersomitic borders was compromised with a reduction in SPARC concentration. The combined data suggest a critical requirement for SPARC during post-gastrula development in Xenopus embryos and that SPARC, directly or indirectly, promotes cell-cell adhesion in vivo.
Collapse
Affiliation(s)
- My-Hang Huynh
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, 48109-5620, USA
| | | | | | | | | | | |
Collapse
|
164
|
Abstract
Within classical extracellular matrix (ECM) proteins, there are a unique group of proteins that should be regarded as a distinct functional group of molecules. Matricellular proteins including osteopontin (OPN) and tenascin-c (TN-C) are highly expressed at the pathological foci of various inflammatory diseases. Unlike classical ECM proteins, these are soluble proteins and induce cell motility and persistent inflammation rather than providing a scaffold for stable cell adhesion. Osteopontin is a pleiotropic cytokine expressed by various cells. Two forms of OPN are present. A secreted form of OPN (sOPN) is involved in generation of T helper type 1 (Th1) and Th17 cells that are pathogenic T cells for various autoimmune diseases. An intracellular form of OPN (iOPN) is a critical regulator for Toll like receptor-9 (TLR-9) and/or TLR-7-dependent interferon-α (IFN-α) expression by plasmacytoid dendritic cells (DCs) and Th17 development. Indeed, both OPN and TN-C deficient mice are resistant to various Th1- and/or Th17-related autoimmune diseases. Interestingly, thrombin-cleaved forms of sOPN and TN-C share a common integrin receptor, α9β1, and α9β1 integrin-mediated signaling is involved in the pathogenesis of various autoimmune diseases. Thus, OPN, TN-C and its common receptor, α9β1 integrin may serve as potential therapeutic targets for various intractable inflammatory diseases.
Collapse
Affiliation(s)
- Toshimitsu Uede
- Division of Molecular Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo, Japan.
| |
Collapse
|
165
|
Mackey AL, Brandstetter S, Schjerling P, Bojsen-Moller J, Qvortrup K, Pedersen MM, Doessing S, Kjaer M, Magnusson SP, Langberg H. Sequenced response of extracellular matrix deadhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle. FASEB J 2011; 25:1943-59. [PMID: 21368102 DOI: 10.1096/fj.10-176487] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to test the hypothesis that remodeling of skeletal muscle extracellular matrix (ECM) is involved in protecting human muscle against injury. Biopsies were obtained from medial gastrocnemius muscles after a single bout of electrical stimulation (B) or a repeated bout (RB) 30 d later, or 30 d after a single stimulation bout (RBc). A muscle biopsy was collected from the control leg for comparison with the stimulated leg. Satellite cell content, tenascin C, and muscle regeneration were assessed by immunohistochemistry; real-time PCR was used to measure mRNA levels of collagens, laminins, heat-shock proteins (HSPs), inflammation, and related growth factors. The large responses of HSPs, CCL2, and tenascin C detected 48 h after a single bout were attenuated in the RB trial, indicative of protection against injury. Satellite cell content and 12 target genes, including IGF-1, were elevated 30 d after a single bout. Among those displaying the greatest difference vs. control muscle, ECM laminin-β1 and collagen types I and III were elevated ∼6- to 9-fold (P<0.001). The findings indicate that the sequenced events of load-induced early deadhesion and later strengthening of skeletal muscle ECM play a role in protecting human muscle against future injury.
Collapse
Affiliation(s)
- Abigail L Mackey
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Bispebjerg Bakke 23, DK-2400 Copenhagen NV, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Förtsch C, Hupp S, Ma J, Mitchell TJ, Maier E, Benz R, Iliev AI. Changes in astrocyte shape induced by sublytic concentrations of the cholesterol-dependent cytolysin pneumolysin still require pore-forming capacity. Toxins (Basel) 2011; 3:43-62. [PMID: 22069689 PMCID: PMC3210454 DOI: 10.3390/toxins3010043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/30/2010] [Accepted: 01/04/2011] [Indexed: 11/21/2022] Open
Abstract
Streptococcus pneumoniae is a common pathogen that causes various infections, such as sepsis and meningitis. A major pathogenic factor of S. pneumoniae is the cholesterol-dependent cytolysin, pneumolysin. It produces cell lysis at high concentrations and apoptosis at lower concentrations. We have shown that sublytic amounts of pneumolysin induce small GTPase-dependent actin cytoskeleton reorganization and microtubule stabilization in human neuroblastoma cells that are manifested by cell retraction and changes in cell shape. In this study, we utilized a live imaging approach to analyze the role of pneumolysin’s pore-forming capacity in the actin-dependent cell shape changes in primary astrocytes. After the initial challenge with the wild-type toxin, a permeabilized cell population was rapidly established within 20-40 minutes. After the initial rapid permeabilization, the size of the permeabilized population remained unchanged and reached a plateau. Thus, we analyzed the non-permeabilized (non-lytic) population, which demonstrated retraction and shape changes that were inhibited by actin depolymerization. Despite the non-lytic nature of pneumolysin treatment, the toxin’s lytic capacity remained critical for the initiation of cell shape changes. The non-lytic pneumolysin mutants W433F-pneumolysin and delta6-pneumolysin, which bind the cell membrane with affinities similar to that of the wild-type toxin, were not able to induce shape changes. The initiation of cell shape changes and cell retraction by the wild-type toxin were independent of calcium and sodium influx and membrane depolarization, which are known to occur following cellular challenge and suggested to result from the ion channel-like properties of the pneumolysin pores. Excluding the major pore-related phenomena as the initiation mechanism of cell shape changes, the existence of a more complex relationship between the pore-forming capacity of pneumolysin and the actin cytoskeleton reorganization is suggested.
Collapse
Affiliation(s)
- Christina Förtsch
- DFG Membrane, Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (C.F.); (S.H.)
| | - Sabrina Hupp
- DFG Membrane, Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (C.F.); (S.H.)
| | - Jiangtao Ma
- Division of Infection and Immunity, Level 2, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK; (J.M.); (T.J.M.)
| | - Timothy J. Mitchell
- Division of Infection and Immunity, Level 2, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK; (J.M.); (T.J.M.)
| | - Elke Maier
- Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (E.M.); (R.B.)
| | - Roland Benz
- Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (E.M.); (R.B.)
| | - Asparouh I. Iliev
- DFG Membrane, Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (C.F.); (S.H.)
- Author to whom correspondence should be addressed; ; Tel.: +49-931-20148997; Fax: +49-931-20148539
| |
Collapse
|
167
|
Yan Q, Murphy-Ullrich JE, Song Y. Molecular and structural insight into the role of key residues of thrombospondin-1 and calreticulin in thrombospondin-1-calreticulin binding. Biochemistry 2011; 50:566-73. [PMID: 21142150 DOI: 10.1021/bi101639y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thrombospondin-1 (TSP1) binding to calreticulin (CRT) on the cell surface signals focal adhesion disassembly, leading to the intermediate adhesive phenotype, cell migration, anoikis resistance, and collagen stimulation. Residues Lys 24 and 32 in TSP1 and amino acids 24-26 and 32-34 in CRT have been shown through biochemical and cell-based approaches to be critical for TSP1-CRT binding and signaling. This study investigated the molecular and structural basis for these key TSP1 and CRT residues in TSP1-CRT binding. On the basis of a validated TSP1-CRT complex structure, we adopted steered molecular dynamics simulations to determine the effect of mutation of these key residues on TSP1-CRT binding and validated the simulation results with experimental observations. We further performed 30 ns molecular dynamics simulations for wild-type TSP1, CRT, K24A/K32A mutant TSP1, and mutant CRT (residues 24-26 and 32-34 mutated to Ala) and studied the conformational and structural changes in TSP1 and CRT as the result of mutation of these critical residues. Results showed that mutation of residues 24 and 32 to Ala in TSP1 and of amino acids 24-26 and 32-34 to Ala in CRT results in a shortened β-strand in the binding site, decreased hydrogen bond occupancy for β-strand pairs that are located within or near the binding site, increased conformational flexibility of the binding site, a changed degree of dynamically correlated motion between the residues in the binding site and the other residues in protein, and a changed degree of overall correlated motion between the residues in the protein. These changes could directly contribute to the loss or weakened binding between TSP1 and CRT and the resultant effects on TSP1-CRT binding-induced cellular activities. Results from this study provide a molecular and structural insight into the role of these critical residues of TSP1 and CRT in TSP1-CRT binding.
Collapse
Affiliation(s)
- Qi Yan
- Department of Biomedical Engineering, The University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | | | | |
Collapse
|
168
|
Sakwe AM, Koumangoye R, Guillory B, Ochieng J. Annexin A6 contributes to the invasiveness of breast carcinoma cells by influencing the organization and localization of functional focal adhesions. Exp Cell Res 2010; 317:823-37. [PMID: 21185831 DOI: 10.1016/j.yexcr.2010.12.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 12/06/2010] [Accepted: 12/13/2010] [Indexed: 01/21/2023]
Abstract
The interaction of annexin A6 (AnxA6) with membrane phospholipids and either specific extracellular matrix (ECM) components or F-actin suggests that it may influence cellular processes associated with rapid plasma membrane reorganization such as cell adhesion and motility. Here, we examined the putative roles of AnxA6 in adhesion-related cellular processes that contribute to breast cancer progression. We show that breast cancer cells secrete annexins via the exosomal pathway and that the secreted annexins are predominantly cell surface-associated. Depletion of AnxA6 in the invasive BT-549 breast cancer cells is accompanied by enhanced anchorage-independent cell growth but cell-cell cohesion, cell adhesion/spreading onto collagen type IV or fetuin-A, cell motility and invasiveness were strongly inhibited. To explain the loss in adhesion/motility, we show that vinculin-based focal adhesions in the AnxA6-depleted BT-549 cells are elongated and randomly distributed. These focal contacts are also functionally defective because the activation of focal adhesion kinase and the phosphoinositide-3 kinase/Akt pathway were strongly inhibited while the MAP kinase pathway remained constitutively active. Compared with normal human breast tissues, reduced AnxA6 expression in breast carcinoma tissues correlates with enhanced cell proliferation. Together this suggests that reduced AnxA6 expression contributes to breast cancer progression by promoting the loss of functional cell-cell and/or cell-ECM contacts and anchorage-independent cell proliferation.
Collapse
Affiliation(s)
- Amos M Sakwe
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA.
| | | | | | | |
Collapse
|
169
|
Hakimzadeh N, Stewart DJ, Courtman DW. The role of transglutaminase 2 and osteopontin in matrix protein supplemented microencapsulation of marrow stromal cells. Biomaterials 2010; 31:9256-65. [DOI: 10.1016/j.biomaterials.2010.08.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 08/24/2010] [Indexed: 01/14/2023]
|
170
|
Larson J, Yasmin T, Sens DA, Zhou XD, Sens MA, Garrett SH, Dunlevy JR, Cao L, Somji S. SPARC gene expression is repressed in human urothelial cells (UROtsa) exposed to or malignantly transformed by cadmium or arsenite. Toxicol Lett 2010; 199:166-72. [PMID: 20837119 DOI: 10.1016/j.toxlet.2010.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 01/10/2023]
Abstract
SPARC belongs to a class of extracellular matrix-associated proteins that have counteradhesive properties. The ability of SPARC to modulate cell-cell and cell-matrix interactions provides a strong rationale for studies designed to determine its expression in cancer. The objective of this study was to determine if SPARC expression was altered in cadmium (Cd(2+)) and arsenite (As(3+)) induced bladder cancer and if these alterations were present in archival specimens of human bladder cancer. The expression of SPARC was determined in human parental UROtsa cells, their Cd(2+) and As(3+) transformed counterparts and derived tumors, and in archival specimens of human bladder cancer using a combination of real time reverse transcriptase polymerase chain reaction, Western blotting, immunofluorescence localization and immunohistochemical staining. It was demonstrated that SPARC expression was down-regulated in Cd(2+) and As(3+) transformed UROtsa cells. In addition, the malignant epithelial component of tumors derived from these cell lines were also down-regulated for SPARC expression, but the stromal cells recruited to these tumors was highly reactive for SPARC. This finding was shown to translate to specimens of human bladder cancer where tumor cells were SPARC negative, but stromal cells were positive. Acute exposure of UROtsa cells to both cadmium and arsenite reduced the expression of SPARC through a mechanism that did not involve changes in DNA methylation or histone acetylation. These studies suggest that environmental exposure to As(3+) or Cd(2+) can alter cell-cell and cell-matrix interactions in normal urothelial cells through a reduction in the expression of SPARC. The SPARC associated loss of cell-cell and cell-matrix contacts may participate in the multi-step process of bladder carcinogenesis.
Collapse
Affiliation(s)
- Jennifer Larson
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
Tenascin-C (TNC) is highly expressed in melanoma; however, little is known about its functions. Recent studies indicate that TNC has a role within the stem cell niche. We hypothesized that TNC creates a specific environment for melanoma cells to show a stem cell-like phenotype, promoting tumor growth and evading conventional therapies. TNC expression was strongly upregulated in melanoma cells grown as 3D spheres (enriched for stem-like cells) when compared to adherent cells. Downmodulation of TNC by shRNA lentiviruses significantly decreased the growth of melanoma spheres. The incidence of pulmonary metastases after intravenous injection of TNC knockdown cells was significantly lower in NOD/SCID IL2Rγ(null) mice compared with control cells. Melanoma spheres contain an increased number of side population (SP) cells, which show stem cell characteristics, and have the potential for drug resistance due to their high efflux capacity. Knockdown of TNC dramatically decreased the SP fraction in melanoma spheres and lowered their resistance to doxorubicin treatment, likely because of the downregulation of multiple ATP-binding cassette (ABC) transporters, including ABCB5. These data suggest that TNC is critical in melanoma progression as it mediates protective signals in the therapy-resistant population of melanoma.
Collapse
|
172
|
Sweetwyne MT, Pallero MA, Lu A, Van Duyn Graham L, Murphy-Ullrich JE. The calreticulin-binding sequence of thrombospondin 1 regulates collagen expression and organization during tissue remodeling. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1710-24. [PMID: 20724603 DOI: 10.2353/ajpath.2010.090903] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Amino acids 17-35 of the thrombospondin1 (TSP1) N-terminal domain (NTD) bind cell surface calreticulin to signal focal adhesion disassembly, cell migration, and anoikis resistance in vitro. However, the in vivo relevance of this signaling pathway has not been previously determined. We engineered local in vivo expression of the TSP1 calreticulin-binding sequence to determine the role of TSP1 in tissue remodeling. Surgical sponges impregnated with a plasmid encoding the secreted calreticulin-binding sequence [NTD (1-35)-EGFP] or a control sequence [mod NTD (1-35)-EGFP] tagged with enhanced green fluorescent protein were implanted subcutaneously in mice. Sponges expressing NTD (1-35)-EFGP formed a highly organized capsule despite no differences in cellular composition, suggesting stimulation of collagen deposition by the calreticulin-binding sequence of TSP1. TSP1, recombinant NTD, or a peptide of the TSP1 calreticulin-binding sequence (hep I) increased both collagen expression and matrix deposition by fibroblasts in vitro. TSP1 stimulation of collagen was inhibited by a peptide that blocks TSP1 binding to calreticulin, demonstrating the requirement for cell surface calreticulin. Collagen stimulation was independent of TGF-β activity and Smad phosphorylation but was blocked by an Akt inhibitor, suggesting that signaling through the Akt pathway is important for regulation of collagen through TSP1 binding to calreticulin. These studies identify a novel function for the NTD of TSP1 as a mediator of collagen expression and deposition during tissue remodeling.
Collapse
Affiliation(s)
- Mariya T Sweetwyne
- Departments of Cell Biology, University of Alabama, Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | | | | | |
Collapse
|
173
|
Abstract
The family of matricellular proteins comprises molecules with disparate biology. The main characteristic of matricellular proteins is to be expressed during tissue renewal and repair in order to "normalize" the tissue. Tumors are wound that do not heal, and tumor growth and metastasis can be viewed as a consequence of aberrant homeostasis, during which matricellular proteins are often upregulated. In the tumor microenvironment, they can be produced by both tumor cells and surrounding stromal cells, such as fibroblasts and macrophages. In this context, matricellular proteins can exert several functions that actively contribute to tumor progression. They may (a) regulate cellular adhesion and migration and extracellular matrix deposition, (b) control tumor infiltration by macrophages or other leukocytes, (c) affect tumor angiogenesis, (d) regulate TGFbeta and other growth factor receptor signals, (e) directly stimulate integrin receptors to transduce pro-survival or pro-migratory signals, and (f) regulate the wnt/beta-catenin pathways. Most of these functions contribute to settle a chronic low inflammatory state, whose involvement in tissue transformation and tumor progression is now established.
Collapse
|
174
|
Yan Q, Murphy-Ullrich JE, Song Y. Structural insight into the role of thrombospondin-1 binding to calreticulin in calreticulin-induced focal adhesion disassembly. Biochemistry 2010; 49:3685-94. [PMID: 20337411 DOI: 10.1021/bi902067f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thrombospondin-1 (TSP1) binding to calreticulin (CRT) on the cell surface stimulates association of CRT with LDL receptor-related protein (LRP1) to signal focal adhesion disassembly and engagement of cellular activities. The structural basis for this phenomenon is unknown. We studied the binding thermodynamics of the TSP1-CRT complex and the conformational changes in CRT induced by binding to TSP1 with combined binding free energy analysis, molecular dynamics simulation, and anisotropic network model restrained molecular dynamics simulation. Results showed that mutations of Lys 24 and Lys 32 in TSP1 to Ala and of amino acids 24-26 and 32-34 in CRT to Ala significantly weakened the binding of TSP1 and CRT, which is consistent with experimental results. Upon validation of the calculated binding affinity changes of the TSP1-CRT complex by mutations in key residues in TSP1 and CRT with the experimental results, we performed conformational analyses to understand the role of TSP1 binding to CRT in the induction of conformational changes in CRT. Conformational analyses showed that TSP1 binding to CRT resulted in a more "open" conformation and a significant rotational change for the CRT N-domain with respect to the CRT P-domain, which could expose the potential binding site(s) in CRT for binding to LRP1 to signal focal adhesion disassembly. Results offer structural insight into the role of TSP1 binding to CRT in CRT-induced focal adhesion disassembly.
Collapse
Affiliation(s)
- Qi Yan
- Department of Biomedical Engineering, The University of Alabama at Birmingham,Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
175
|
Cai N, Wong CC, Gong YX, Tan SCW, Chan V, Liao K. Modulating cell adhesion dynamics on carbon nanotube monolayer engineered with extracellular matrix proteins. ACS APPLIED MATERIALS & INTERFACES 2010; 2:1038-47. [PMID: 20423124 DOI: 10.1021/am9008117] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Although it has been demonstrated that carbon nanotubes (CNTs) may have potentials for tissue engineering applications because of their unparalleled physical properties, little has been known on the cell adhesion mechanisms on model CNT monolayer pertaining to the design of novel cell therapeutics device. In this study, the adhesion dynamics of primary porcine esophageal fibroblasts (PEFs) on CNT monolayer were elucidated with confocal reflectance interference contrast microscopy (C-RICM) integrating with phase contrast microscopy. Moreover, CNT monolayer (CNT-ML) was functionalized with two typical extracellular matrix (ECM) proteins including collagen type I (COL) and fibronectin (FN) in order to promote its biocompatibility. First, it is shown by atomic force microscopy that the topographical features of CNT-ML were dependent on the types of immobilized ECM protein. Second, significant time lag in adhesion contact evolution (around 10 min) for PEFs was found on both CNT-ML and CNT-COL compared to the negligible time lag on CNT-FN. It was found that adhesion energy of PEFs on the CNT-COL and CNT-FN surfaces reached steady state at 60 and 30 min after cell seeding compared to 70 min on CNT-ML surface. At steady state, the adhesion energy of PEFs on the CNT-COL and CNT-FN surfaces was about twice as much than that on the CNT-ML surface. Moreover, immobilization of collagen or fibronectin on CNT monolayer led to an increase in seeding efficiency and proliferation rate of PEFs. Scanning electron microscopy and immunostaining together demonstrated that PEFs displayed an elongated morphology and highly polarized actin network on both CNT-COL and CNT-FN surfaces, whereas PEFs displayed nonuniform cell morphology and actin organization on the CNT-ML surface. Overall, our results demonstrated that the biophysical responses and biological behavior of PEFs on unmodified or functionalized CNT monolayer were different. Functionalization of CNT through extracellular matrix protein immobilization effectively promotes cell adhesion and proliferation, which may provide information for designing CNT-based biomaterials or novel cell therapeutics devices in biomedical engineering.
Collapse
Affiliation(s)
- Ning Cai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | | | | | | | | | | |
Collapse
|
176
|
Tada M, Omata M. Another key molecule for pathogenesis of hepatocellular carcinoma. J Gastroenterol Hepatol 2009; 24:1803-4. [PMID: 20002936 DOI: 10.1111/j.1440-1746.2009.06150.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
177
|
Gold LI, Eggleton P, Sweetwyne MT, Van Duyn LB, Greives MR, Naylor SM, Michalak M, Murphy-Ullrich JE. Calreticulin: non-endoplasmic reticulum functions in physiology and disease. FASEB J 2009; 24:665-83. [PMID: 19940256 DOI: 10.1096/fj.09-145482] [Citation(s) in RCA: 305] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Calreticulin (CRT), when localized to the endoplasmic reticulum (ER), has important functions in directing proper conformation of proteins and glycoproteins, as well as in homeostatic control of cytosolic and ER calcium levels. There is also steadily accumulating evidence for diverse roles for CRT localized outside the ER, including data suggesting important roles for CRT localized to the outer cell surface of a variety of cell types, in the cytosol, and in the extracellular matrix (ECM). Furthermore, the addition of exogenous CRT rescues numerous CRT-driven functions, such as adhesion, migration, phagocytosis, and immunoregulatory functions of CRT-null cells. Recent studies show that topically applied CRT has diverse and profound biological effects that enhance cutaneous wound healing in animal models. This evidence for extracellular bioactivities of CRT has provided new insights into this classically ER-resident protein, despite a lack of knowledge of how CRT exits from the ER to the cell surface or how it is released into the extracellular milieu. Nonetheless, it has become clear that CRT is a multicompartmental protein that regulates a wide array of cellular responses important in physiological and pathological processes, such as wound healing, the immune response, fibrosis, and cancer.-Gold, L. I., Eggleton, P., Sweetwyne, M. T., Van Duyn, L. B., Greives, M. R., Naylor, S.-M., Michalak, M., Murphy-Ullrich, J. E. Calreticulin: non-endoplamic reticulum functions in physiology and disease.
Collapse
Affiliation(s)
- Leslie I Gold
- Departments of Medicine and Pathology, New York, University School of Medicine, 550 First Ave., NB16S13 New York, NY 10016 USA.
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Bornstein P. Matricellular proteins: an overview. J Cell Commun Signal 2009; 3:163-5. [PMID: 19779848 PMCID: PMC2778588 DOI: 10.1007/s12079-009-0069-z] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/09/2009] [Indexed: 12/23/2022] Open
Affiliation(s)
- Paul Bornstein
- Departments of Biochemistry and Medicine, University of Washington, P.O. Box 219, Tesuque, NM 87574 USA
| |
Collapse
|
179
|
Ramírez-Gómez F, Ortiz-Pineda PA, Rivera-Cardona G, García-Arrarás JE. LPS-induced genes in intestinal tissue of the sea cucumber Holothuria glaberrima. PLoS One 2009; 4:e6178. [PMID: 19584914 PMCID: PMC2702171 DOI: 10.1371/journal.pone.0006178] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 06/16/2009] [Indexed: 01/16/2023] Open
Abstract
Metazoan immunity is mainly associated with specialized cells that are directly involved with the immune response. Nevertheless, both in vertebrates and invertebrates other organs might respond to immune activation and participate either directly or indirectly in the ongoing immune process. However, most of what is known about invertebrate immunity has been restricted to immune effector cells and little information is available on the immune responses of other tissues or organs. We now focus on the immune reactions of the intestinal tissue of an echinoderm. Our study employs a non-conventional model, the echinoderm Holothuria glaberrima, to identify intestinal molecules expressed after an immune challenge presented by an intra-coelomic injection of lipopolysaccharides (LPS). The expression profiles of intestinal genes expressed differentially between LPS-injected animals and control sea water-injected animals were determined using a custom-made Agilent microarray with 7209 sea cucumber intestinal ESTs. Fifty (50) unique sequences were found to be differentially expressed in the intestine of LPS-treated sea cucumbers. Seven (7) of these sequences represented homologues of known proteins, while the remaining (43) had no significant similarity with any protein, EST or RNA database. The known sequences corresponded to cytoskeletal proteins (Actin and alpha-actinin), metabolic enzymes (GAPDH, Ahcy and Gnmt), metal ion transport/metabolism (major yolk protein) and defense/recognition (fibrinogen-like protein). The expression pattern of 11 genes was validated using semi-quantitative RT-PCR. Nine of these corroborated the microarray results and the remaining two showed a similar trend but without statistical significance. Our results show some of the molecular events by which the holothurian intestine responds to an immune challenge and provide important information to the study of the evolution of the immune response.
Collapse
Affiliation(s)
| | - Pablo A. Ortiz-Pineda
- Department of Biology, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico
| | | | - José E. García-Arrarás
- Department of Biology, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico
- * E-mail:
| |
Collapse
|
180
|
Sussman AN, Sun T, Krofft RM, Durvasula RV. SPARC accelerates disease progression in experimental crescentic glomerulonephritis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1827-36. [PMID: 19342370 DOI: 10.2353/ajpath.2009.080464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Podocytopenia characterizes many forms of glomerular disease, preceding the development of glomerulosclerosis. While detachment of viable podocytes from the underlying glomerular basement membrane is an important mechanism of podocyte loss, the underlying factors involved remain unclear. Secreted protein acidic and rich in cysteine (SPARC), a matricellular protein with counteradhesive properties, is normally expressed at low levels by the podocyte but is markedly increased following podocyte injury. Accordingly, we elucidate the role of SPARC in mediating experimental crescentic glomerulonephritis by inducing passive nephrotoxic nephritis in SPARC(+/+) and SPARC(-/-) mice. By days 4, 7, and 21 following disease induction, podocyte number is better preserved, glomerulosclerosis is ameliorated, and proteinuria is reduced in SPARC(-/-) mice as compared with SPARC(+/+) littermates. Moreover, the preserved podocyte number in SPARC(-/-) mice correlates with reduced urinary levels of both nephrin and podocin. To establish a causal role for SPARC in mediating detachment, cultured SPARC(+/+) and SPARC(-/-) podocytes were subjected to mechanical strain as well as trypsin digestion, and detachment assays were performed. While podocytes lacking SPARC were more resistant to stretch-induced detachment, stable re-expression of SPARC restored detachment rates to levels comparable with SPARC(+/+) podocytes. Taken together, this study proves that SPARC plays a causal role in mediating podocyte detachment and accelerating glomerulosclerosis in experimental crescentic glomerulonephritis.
Collapse
Affiliation(s)
- Amy N Sussman
- Department of Medicine, Division of Nephrology, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|
181
|
Barisoni L, Schnaper HW, Kopp JB. Advances in the biology and genetics of the podocytopathies: implications for diagnosis and therapy. Arch Pathol Lab Med 2009; 133:201-16. [PMID: 19195964 DOI: 10.5858/133.2.201] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2008] [Indexed: 11/06/2022]
Abstract
CONTEXT Etiologic factors and pathways leading to altered podocyte phenotype are clearly numerous and involve the activity of different cellular function. OBJECTIVE To focus on recent discoveries in podocyte biology and genetics and their relevance to these human glomerular diseases, named podocytopathies. DATA SOURCES Genetic mutations in genes encoding for proteins in the nucleus, slit diaphragm, podocyte cytoplasm, and cell membrane are responsible for podocyte phenotype and functional abnormalities. Podocyte injury may also derive from secondary stimuli, such as mechanical stress, infections, or use of certain medications. Podocytes can respond to injury in a limited number of ways, which include (1) effacement, (2) apoptosis, (3) arrest of development, and (4) dedifferentiation. Each of these pathways results in a specific glomerular morphology: minimal change nephropathy, focal segmental glomerulosclerosis, diffuse mesangial sclerosis, and collapsing glomerulopathy. CONCLUSIONS Based on current knowledge of podocyte biology, we organized etiologic factors and morphologic features in a taxonomy of podocytopathies, which provides a novel approach to the classification of these diseases. Current and experimental therapeutic approaches are also discussed.
Collapse
Affiliation(s)
- Laura Barisoni
- Department of Pathology and Medicine, Division of Nephrology, New York University School of Medicine, New York, NY 10017, USA.
| | | | | |
Collapse
|
182
|
Barisoni L, Schnaper HW, Kopp JB. Advances in the biology and genetics of the podocytopathies: implications for diagnosis and therapy. Arch Pathol Lab Med 2009. [PMID: 19195964 DOI: 10.1043/1543-2165-133.2.201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONTEXT Etiologic factors and pathways leading to altered podocyte phenotype are clearly numerous and involve the activity of different cellular function. OBJECTIVE To focus on recent discoveries in podocyte biology and genetics and their relevance to these human glomerular diseases, named podocytopathies. DATA SOURCES Genetic mutations in genes encoding for proteins in the nucleus, slit diaphragm, podocyte cytoplasm, and cell membrane are responsible for podocyte phenotype and functional abnormalities. Podocyte injury may also derive from secondary stimuli, such as mechanical stress, infections, or use of certain medications. Podocytes can respond to injury in a limited number of ways, which include (1) effacement, (2) apoptosis, (3) arrest of development, and (4) dedifferentiation. Each of these pathways results in a specific glomerular morphology: minimal change nephropathy, focal segmental glomerulosclerosis, diffuse mesangial sclerosis, and collapsing glomerulopathy. CONCLUSIONS Based on current knowledge of podocyte biology, we organized etiologic factors and morphologic features in a taxonomy of podocytopathies, which provides a novel approach to the classification of these diseases. Current and experimental therapeutic approaches are also discussed.
Collapse
Affiliation(s)
- Laura Barisoni
- Department of Pathology and Medicine, Division of Nephrology, New York University School of Medicine, New York, NY 10017, USA.
| | | | | |
Collapse
|
183
|
Impedance studies of bio-behavior and chemosensitivity of cancer cells by micro-electrode arrays. Biosens Bioelectron 2009; 24:1305-10. [DOI: 10.1016/j.bios.2008.07.044] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/16/2008] [Accepted: 07/22/2008] [Indexed: 11/18/2022]
|
184
|
Liu A, Mosher DF, Murphy-Ullrich JE, Goldblum SE. The counteradhesive proteins, thrombospondin 1 and SPARC/osteonectin, open the tyrosine phosphorylation-responsive paracellular pathway in pulmonary vascular endothelia. Microvasc Res 2009; 77:13-20. [PMID: 18952113 PMCID: PMC3022346 DOI: 10.1016/j.mvr.2008.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/28/2008] [Indexed: 11/30/2022]
Abstract
Counteradhesive proteins are a group of genetically and structurally distinct multidomain proteins that have been grouped together for their ability to inhibit cell-substrate interactions. Three counteradhesive proteins that influence endothelial cell behavior include thrombospondin (TSP)1, (SPARC) (Secreted Protein Acidic and Rich in Cysteine), also known as osteonectin, and tenascin. More recently, these proteins have been shown to regulate not only cell-matrix interactions but cell-cell interactions as well. TSP1 increases tyrosine phosphorylation of components of the cell-cell adherens junctions or zonula adherens (ZA) and opens the paracellular pathway in human lung microvascular endothelia. The epidermal growth factor (EGF)-repeats of TSP1 activate the (EGF) receptor (EGFR) and ErbB2, and these two receptor protein tyrosine kinases (PTK)s participate in ZA protein tyrosine phosphorylation and barrier disruption in response to the TSP1 stimulus. For the barrier response to TSP1, EGFR/ErbB2 activation is necessary but insufficient. Protein tyrosine phosphatase (PTP)mu counter-regulates phosphorylation of selected tyrosine residues within the cytoplasmic domain of EGFR. Although tenascin, like TSP1, also contains EGF-like repeats and is known to activate EGFR, whether it also opens the paracellular pathway is unknown. In addition to TSP1, tenascin, and the other TSP family members, there are numerous other proteins that also contain EGF-like repeats and participate in hemostasis, wound healing, and tissue remodeling. EGFR not only responds to direct binding of EGF motif-containing ligands but can also be transactivated by a wide range of diverse stimuli. In fact, several established mediators of increased vascular permeability and/or lung injury, including thrombin, tumor necrosis factor-alpha, platelet-activating factor, bradykinin, angiopoietin, and H(2)O(2), transactivate EGFR. It is conceivable that EGFR serves a pivotal signaling role in a final common pathway for the pulmonary response to selected injurious stimuli. SPARC/Osteonectin also increases tyrosine phosphorylation of ZA proteins and opens the endothelial paracellular pathway in a PTK-dependent manner. The expression of the counteradhesive proteins is increased in response to a wide range of injurious stimuli. It is likely that these same molecules participate in the host response to acute lung injury and are operative during the barrier response within the pulmonary microvasculature.
Collapse
Affiliation(s)
- Anguo Liu
- University of Maryland School of Medicine, Mucosal Biology Research Center, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
185
|
Williams SA, Schwarzbauer JE. A shared mechanism of adhesion modulation for tenascin-C and fibulin-1. Mol Biol Cell 2008; 20:1141-9. [PMID: 19109427 DOI: 10.1091/mbc.e08-06-0621] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adhesion modulatory proteins are important effectors of cell-matrix interactions during tissue remodeling and regeneration. They comprise a diverse group of matricellular proteins that confer antiadhesive properties to the extracellular matrix (ECM). We compared the inhibitory effects of two adhesion modulatory proteins, fibulin-1 and tenascin-C, both of which bind to the C-terminal heparin-binding (HepII) domain of fibronectin (FN) but are structurally distinct. Here, we report that, like tenascin-C, fibulin-1 inhibits fibroblast spreading and cell-mediated contraction of a fibrin-FN matrix. These proteins act by modulation of focal adhesion kinase and extracellular signal-regulated kinase signaling. The inhibitory effects were bypassed by lysophosphatidic acid, an activator of RhoA GTPase. Fibroblast response to fibulin-1, similar to tenascin-C, was dependent on expression of the heparan sulfate proteoglycan syndecan-4, which also binds to the HepII domain. Therefore, blockade of HepII-mediated signaling by competitive binding of fibulin-1 or tenascin-C represents a shared mechanism of adhesion modulation among disparate modulatory proteins.
Collapse
Affiliation(s)
- Selwyn A Williams
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
186
|
Podhajcer OL, Benedetti LG, Girotti MR, Prada F, Salvatierra E, Llera AS. The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer Metastasis Rev 2008; 27:691-705. [PMID: 18542844 DOI: 10.1007/s10555-008-9146-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tumor growth is essentially the result of an evolving cross-talk between malignant and surrounding stromal cells (fibroblasts, endothelial cells and inflammatory cells). This heterogeneous mass of extracellular matrix and intermingled cells interact through cell-cell and cell-matrix contacts. Malignant cells also secrete soluble proteins that reach neighbor stromal cells, forcing them to provide the soil on which they will grow and metastasize. Different studies including expression array analysis identified the matricellular protein SPARC as a marker of poor prognosis in different cancer types. Further evidence demonstrated that high SPARC levels are often associated with the most aggressive and highly metastatic tumors. Here we describe the most recent evidence that links SPARC with human cancer progression, the controversy regarding its role in certain human cancers and the physiological processes in which SPARC is involved: epithelial-mesenchymal transition, immune surveillance and angiogenesis. Its relevance as a potential target in cancer therapy is also discussed.
Collapse
Affiliation(s)
- Osvaldo L Podhajcer
- Laboratory of Molecular and Cellular Therapy, Fundacion Instituto Leloir, University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
187
|
Sangaletti S, Di Carlo E, Gariboldi S, Miotti S, Cappetti B, Parenza M, Rumio C, Brekken RA, Chiodoni C, Colombo MP. Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. Cancer Res 2008; 68:9050-9. [PMID: 18974151 DOI: 10.1158/0008-5472.can-08-1327] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Other than genetic imprinting and epithelial to mesenchymal transition, cancer cells need interaction with the nearby stroma toward metastasis. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein known to regulate extracellular matrix (ECM) deposition and cell-ECM interaction. Gene expression profiles associate SPARC to malignant progression. Using reciprocal bone marrow chimeras between SPARC knockout and wild-type mice, we show that SPARC produced by inflammatory cells is necessary for spontaneous, but not experimental, i.v. metastasis. Macrophage-derived SPARC induces cancer cell migration and enhances their migration to other ECM proteins at least through alpha(v)beta(5) integrin. Indeed, RNA interference knockdown of beta(5) integrin expression reduces cell migration in vitro and metastasis in vivo. Together these results show that macrophage-derived SPARC takes part in metastasis, acting at the step of integrin-mediated migration of invasive cells.
Collapse
Affiliation(s)
- Sabina Sangaletti
- Department of Experimental Oncology, Immunotherapy and Gene Therapy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale dei Tumori, Universita degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Maclauchlan S, Skokos EA, Agah A, Zeng J, Tian W, Davidson JM, Bornstein P, Kyriakides TR. Enhanced angiogenesis and reduced contraction in thrombospondin-2-null wounds is associated with increased levels of matrix metalloproteinases-2 and -9, and soluble VEGF. J Histochem Cytochem 2008; 57:301-13. [PMID: 19029404 DOI: 10.1369/jhc.2008.952689] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thrombospondin-2 (TSP2) is an inhibitor of angiogenesis with pro-apoptotic and anti-proliferative effects on endothelial cells. Mice deficient in this matricellular protein display improved recovery from ischemia and accelerated wound healing associated with alterations in angiogenesis and extracellular matrix remodeling. In this study, we probed the function of TSP2 by performing a detailed analysis of dermal wounds and wound-derived fibroblasts. Specifically, we analyzed incisional wounds by tensiometry and found no differences in strength recovery between wild-type and TSP2-null mice. In addition, analysis of full-thickness excisional wounds by terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick-end labeling stain and MIB-5 immunohistochemistry revealed similar numbers of apoptotic and proliferating cells, respectively. In contrast, the levels of matrix metalloproteinase (MMP)-2, MMP-9, tissue inhibitors of metalloproteinase (TIMP)-1, TIMP-2, and soluble vascular endothelial growth factor were increased in wounds of TSP2-null mice. Evaluation of the ability of TSP2-null wound fibroblasts to contract collagen gels revealed that it was compromised, even though TSP2-null wounds displayed normal myofibroblast content. Therefore, we conclude that the lack of TSP2 leads to aberrant extracellular matrix remodeling, increased neovascularization, and reduced contraction due in part to elevated levels of MMP-2 and MMP-9. These observations provide in vivo supporting evidence for a newly proposed function of TSP2 as a modulator of extracellular matrix remodeling.
Collapse
Affiliation(s)
- Susan Maclauchlan
- Interdepartmental Program in Vascular Biology and Therapeutics and Departments of Pathology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Golembieski WA, Thomas SL, Schultz CR, Yunker CK, McClung HM, Lemke N, Cazacu S, Barker T, Sage EH, Brodie C, Rempel SA. HSP27 mediates SPARC-induced changes in glioma morphology, migration, and invasion. Glia 2008; 56:1061-75. [PMID: 18442089 DOI: 10.1002/glia.20679] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Secreted protein acidic and rich in cysteine (SPARC) regulates cell-extracellular matrix interactions that influence cell adhesion and migration. We have demonstrated that SPARC is highly expressed in human gliomas, and it promotes brain tumor invasion in vitro and in vivo. To further our understanding regarding SPARC function in glioma migration, we transfected SPARC-green fluorescent protein (GFP) and control GFP vectors into U87MG cells, and assessed the effects of SPARC on cell morphology, migration, and invasion after 24 h. The expression of SPARC was associated with elongated cell morphology, and increased migration and invasion. The effects of SPARC on downstream signaling were assessed from 0 to 6 h and 24 h. SPARC increased the levels of total and phosphorylated HSP27; the latter was preceded by activation of p38 MAPK and inhibited by the p38 MAPK inhibitor SB203580. Augmented expression of SPARC was correlated with increased levels of HSP27 mRNA. In a panel of glioma cell lines, increasing levels of SPARC correlated with increasing total and phosphorylated HSP27. SPARC and HSP27 were colocalized to invading cells in vivo. Inhibition of HSP27 mRNA reversed the SPARC-induced changes in cell morphology, migration, and invasion in vitro. These data indicate that HSP27, a protein that regulates actin polymerization, cell contraction, and migration, is a novel downstream effector of SPARC-regulated cell morphology and migration. As such, it is a potential therapeutic target to inhibit SPARC-induced glioma invasion.
Collapse
Affiliation(s)
- William A Golembieski
- Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Yang R, Amir J, Liu H, Chaqour B. Mechanical strain activates a program of genes functionally involved in paracrine signaling of angiogenesis. Physiol Genomics 2008; 36:1-14. [PMID: 18854370 DOI: 10.1152/physiolgenomics.90291.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Studies were performed to examine the extent to which mechanical stimuli mediate control of angiogenesis in bladder cells both in vitro and in vivo. Differential gene expression between control nonstretched and cyclically stretched bladder smooth muscle cells was assessed using oligonucleotide microarrays and pathway analysis by the web tool Fast Assignment and Transference of Information (FatiGO). Data showed that a substantial proportion (33 of 86) of mechanically responsive genes were angiogenesis-related and include cytokines, growth-related factors, adhesion proteins, and matricellular, signal transduction, extracellular matrix (ECM), and inflammatory molecules. Integrative knowledge of protein-protein interactions revealed that 12 mechano-sensitive gene-encoded proteins have interacting partner(s) in the vascular system confirming their potential role in paracrine regulation of angiogenesis. Angiogenic genes include matricellular proteins such as Cyr61/CCN1, CTGF/CCN2 and tenascin C, components of the VEGF and IGF systems, ECM proteins such as type I collagen and proteoglycans, and matrix metalloproteinases. In an in vivo model of bladder overdistension, 5 of 11 mechano-responsive angiogenic genes, independently tested by real-time PCR, were upregulated as a result of pressure overload including Cyr61/CCN1, CTGF/CCN2, MCP-1, VEGF-A, MMP-1, and midkine. Meanwhile, the molecular anatomy of angiogenic gene promoters reveals the presence of GA box-binding for the myc-associated zinc finger protein, MAZ, often found adjacent to binding sites for mechano-responsive transcription factors (e.g., NF-kappaB), suggesting that the coordinated activity of these factors may induce selective angiogenic gene transcription. These data suggest that mechanical control of angiogenic genes is an integral part of the adaptive and plasticity responses to mechanical overload.
Collapse
Affiliation(s)
- Ru Yang
- Department of Anatomy and Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203-2098, USA
| | | | | | | |
Collapse
|
191
|
Podhajcer OL, Benedetti L, Girotti MR, Prada F, Salvatierra E, Llera AS. The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer Metastasis Rev 2008; 27:523-37. [PMID: 18459035 DOI: 10.1007/s10555-008-9135-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tumor growth is essentially the result of an evolving cross-talk between malignant and surrounding stromal cells (fibroblasts, endothelial cells and inflammatory cells). This heterogeneous mass of extracellular matrix and intermingled cells interact through cell-cell and cell-matrix contacts. Malignant cells also secrete soluble proteins that reach neighbor stromal cells, forcing them to provide the soil on which they will grow and metastasize. Different studies including expression array analysis identified the matricellular protein SPARC as a marker of poor prognosis in different cancer types. Further evidence demonstrated that high SPARC levels are often associated with the most aggressive and highly metastatic tumors. Here we describe the most recent evidence that links SPARC with human cancer progression, the controversy regarding its role in certain human cancers and the physiological processes in which SPARC is involved: epithelial-mesenchymal transition, immune surveillance and angiogenesis. Its relevance as a potential target in cancer therapy is also discussed.
Collapse
Affiliation(s)
- Osvaldo L Podhajcer
- Laboratory of Molecular and Cellular Therapy, Fundacion Instituto Leloir, University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
192
|
Wessel C, Westhoff CC, Nowak K, Moll I, Barth PJ. CD34(+) fibrocytes in melanocytic nevi and malignant melanomas of the skin. Virchows Arch 2008; 453:485-9. [PMID: 18813945 DOI: 10.1007/s00428-008-0667-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 08/01/2008] [Accepted: 08/26/2008] [Indexed: 01/24/2023]
Abstract
CD34(+) fibrocytes are constitutive elements of the human connective tissue. The stroma associated with invasive carcinomas is characterized by a stereotypic loss of CD34(+) fibrocytes and a phenotype change towards CD34(-) alpha-Smooth muscle actin (SMA)(+) myofibroblasts. Secreted protein acidic and rich in cysteine (SPARC) is an important mediator of tumor-associated stromal remodeling. Melanocytic lesions of the skin have not been investigated as to this aspect up to now. Thus, we investigated a total of 20 malignant melanomas and 29 melanocytic nevi. The normal dermis and benign melanocytic nevi showed numerous CD34(+) fibrocytes, whereas malignant melanomas were devoid of this cell type. alpha-SMA-positive myofibroblasts were absent from the normal dermis, melanocytic nevi, and malignant melanomas. SPARC was positive in malignant melanoma cells and negative in their associated stroma, while all melanocytic nevi were completely negative. The stromal phenotype of malignant melanomas (CD34(-) alpha-SMA(-)) differs from that of invasive carcinomas (CD34(-) alpha-SMA(+)) suggesting different pathogenic mechanisms involved in tumor-associated stromal remodeling. SPARC expression appears to be closely related to malignancy in melanocytic lesions.
Collapse
Affiliation(s)
- Cordula Wessel
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | |
Collapse
|
193
|
Heinke J, Wehofsits L, Zhou Q, Zoeller C, Baar KM, Helbing T, Laib A, Augustin H, Bode C, Patterson C, Moser M. BMPER is an endothelial cell regulator and controls bone morphogenetic protein-4-dependent angiogenesis. Circ Res 2008; 103:804-12. [PMID: 18787191 DOI: 10.1161/circresaha.108.178434] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bone morphogenetic proteins (BMPs) are involved in embryonic and adult blood vessel formation in health and disease. BMPER (BMP endothelial cell precursor-derived regulator) is a differentially expressed protein in embryonic endothelial precursor cells. In earlier work, we found that BMPER interacts with BMPs and when overexpressed antagonizes their function in embryonic axis formation. In contrast, in a BMPER-deficient zebrafish model, BMPER behaves as a BMP agonist. Furthermore, lack of BMPER induces a vascular phenotype in zebrafish that is driven by disarray of the intersomitic vasculature. Here, we investigate the impact of BMPER on endothelial cell function and signaling and elucidate its role in BMP-4 function in gain- and loss-of-function models. As shown by Western blotting and immunocytochemistry, BMPER is an extracellular matrix protein expressed by endothelial cells in skin, heart, and lung. We show that BMPER is a downstream target of FoxO3a and consistently exerts activating effects on endothelial cell sprouting and migration in vitro and in vivo. Accordingly, when BMPER is depleted from endothelial cells, sprouting is impaired. In terms of BMPER related intracellular signaling, we show that BMPER is permissive and necessary for Smad 1/5 phosphorylation and induces Erk1/2 activation. Most interestingly, BMPER is necessary for BMP-4 to exert its activating role in endothelial function and to induce Smad 1/5 activation. Vice versa, BMP-4 is necessary for BMPER activity. Taken together, BMPER is a dose-dependent endothelial cell activator that plays a unique and pivotal role in fine-tuning BMP activity in angiogenesis.
Collapse
|
194
|
Daher Z, Noël J, Claing A. Endothelin-1 promotes migration of endothelial cells through the activation of ARF6 and the regulation of FAK activity. Cell Signal 2008; 20:2256-65. [PMID: 18814847 DOI: 10.1016/j.cellsig.2008.08.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 08/24/2008] [Indexed: 01/02/2023]
Abstract
Several proteins act in concert to promote remodeling of the actin cytoskeleton during migration. This process is highly regulated by small GTP-binding proteins of the ADP-ribosylation factor (ARF) family of proteins. Here, we show that endothelin-1 (ET-1) can promote the activation of ARF6 and migration of endothelial cells through the activation of ET(B) receptors. Inhibition of ARF6 expression using RNA interference markedly impairs basal and ET-1 stimulated cell migration. In contrast, depletion of ARF1 has no significant effect. In order to delineate the underlying mechanism, we examined the signaling events activated in endothelial cells following ET-1 stimulation. Here, we show that this hormone promotes the phosphorylation of focal adhesion kinase (FAK), Erk1/2, and the association of FAK to Src, as well as of FAK to GIT1. These have been shown to be important for the formation and turnover of focal adhesions. In non-stimulated cells, depletion of ARF6 leads to increased FAK and Erk1/2 phosphorylation, similar to what is observed in ET-1 treated cells. In these conditions, FAK is found constitutively associated with the soluble tyrosine kinase, Src. In contrast, depletion of ARF6 impairs the ability of GIT1 to form an agonist promoted complex with FAK, thereby preventing disassembly of focal adhesions. As a consequence, ARF6 depleted endothelial cells are impaired in their ability to form capillary tubes. Taken together, our data suggest that ARF6 is central in regulating focal adhesion turnover in endothelial cells. Our study provides a molecular mechanism by which, this small GTPase regulates cell motility, and ultimately angiogenesis.
Collapse
Affiliation(s)
- Zeinab Daher
- Department of Biochemistry, Membrane Protein Study Group (GEPROM), Faculty of Medicine, University of Montréal, PO Box 6128, Downtown station, Montréal, Canada H3C 3J7
| | | | | |
Collapse
|
195
|
Yuelling LM, Fuss B. Autotaxin (ATX): a multi-functional and multi-modular protein possessing enzymatic lysoPLD activity and matricellular properties. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1781:525-30. [PMID: 18485925 PMCID: PMC2564869 DOI: 10.1016/j.bbalip.2008.04.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/15/2008] [Accepted: 04/19/2008] [Indexed: 01/02/2023]
Abstract
Recent studies have established that autotaxin (ATX), also known as phosphodiesterase Ialpha/autotaxin (PD-Ialpha/ATX) or (ecto)nucleotide pyrophosphatase/phosphodiesterase 2 [(E)NPP2], represents a multi-functional and multi-modular protein. ATX was initially thought to function exclusively as a phosphodiesterase/pyrophosphatase. However, it has become apparent that this enzymatically active site, which is ultimately responsible for ATX's originally discovered property of tumor cell motility stimulation, mediates the conversion of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA). In addition, a separate functionally active domain, here referred to as the Modulator of Oligodendrocyte Remodeling and Focal adhesion Organization (MORFO) domain, was discovered in studies analyzing the role of ATX during the differentiation of myelinating cells of the central nervous system (CNS), namely oligodendrocytes. This novel domain was found to mediate anti-adhesive, i.e. matricellular, properties and to promote morphological maturation of oligodendrocytes. In this review, we summarize our current understanding of ATX's structure-function domains and discuss their contribution to the presently known main functional roles of ATX.
Collapse
Affiliation(s)
- Larra M Yuelling
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, PO Box 980709, Richmond, VA 23298, USA
| | | |
Collapse
|
196
|
Abstract
Tenascin-C (TNC) is a mechano-regulated, morphogenic, extracellular matrix protein that is associated with tissue remodeling. The physiological role of TNC remains unclear because transgenic mice engineered for a TNC deficiency, via a defect in TNC secretion, show no major pathologies. We hypothesized that TNC-deficient mice would demonstrate defects in the repair of damaged leg muscles, which would be of functional significance because this tissue is subjected to frequent cycles of mechanical damage and regeneration. TNC-deficient mice demonstrated a blunted expression of the large TNC isoform and a selective atrophy of fast-muscle fibers associated with a defective, fast myogenic expression response to a damaging mechanical challenge. Transcript profiling mapped a set of de-adhesion, angiogenesis, and wound healing regulators as TNC expression targets in striated muscle. Expression of these regulators correlated with the residual expression of a damage-related 200-kDa protein, which resembled the small TNC isoform. Somatic knockin of TNC in fast-muscle fibers confirmed the activation of a complex expression program of interstitial and slow myofiber repair by myofiber-derived TNC. The results presented here show that a TNC-orchestrated molecular pathway integrates muscle repair into the load-dependent control of the striated muscle phenotype.
Collapse
|
197
|
Pallero MA, Elzie CA, Chen J, Mosher DF, Murphy-Ullrich JE. Thrombospondin 1 binding to calreticulin-LRP1 signals resistance to anoikis. FASEB J 2008; 22:3968-79. [PMID: 18653767 DOI: 10.1096/fj.07-104802] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Anoikis, apoptotic cell death due to loss of cell adhesion, is critical for regulation of tissue homeostasis in tissue remodeling. Fibrogenesis is associated with reduced fibroblast apoptosis. The matricellular protein thrombospondin 1 (TSP1) regulates cell adhesion and motility during tissue remodeling and in fibrogenesis. The N-terminal domain of TSP1 binds to the calreticulin-LRP1 receptor co-complex to signal down-regulation of cell adhesion and increased cell motility through focal adhesion disassembly. TSP1 signaling through calreticulin-LRP1 activates cell survival signals such as PI3-kinase. Therefore, we tested the hypothesis that TSP1 supports cell survival under adhesion-independent conditions to facilitate tissue remodeling. Here, we show that platelet TSP1, its N-terminal domain (NoC1) as a recombinant protein, or a peptide comprising the calreticulin-LRP1 binding site [amino acids 17-35 (hep I)] in the N-terminal domain promotes fibroblast survival under anchorage-independent conditions. TSP1 activates Akt and decreases apoptotic signaling through caspase 3 and PARP1 in suspended fibroblasts. Inhibition of PI3K/Akt activity blocks TSP1-mediated anchorage-independent survival. Fibroblasts lacking LRP1 or expressing calreticulin lacking the TSP1 binding site do not respond to TSP1 with anchorage-independent survival. These data define a novel role for TSP1 signaling through the calreticulin/LRP1 co-complex in tissue remodeling and fibrotic responses through stimulation of anoikis resistance.-Pallero, M. A., Elzie, C. A., Chen, J., Mosher, D. F., Murphy-Ullrich, J. E. Thrombospondin 1 binding to calreticulin-LRP1 signals resistance to anoikis.
Collapse
Affiliation(s)
- Manuel A Pallero
- Department of Pathology, VH 668 1530 3rd Ave., South, Birmingham, AL 35294-0019, USA
| | | | | | | | | |
Collapse
|
198
|
Hamilton DW. Functional role of periostin in development and wound repair: implications for connective tissue disease. J Cell Commun Signal 2008; 2:9-17. [PMID: 18642132 DOI: 10.1007/s12079-008-0023-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 06/13/2008] [Indexed: 01/12/2023] Open
Abstract
Integrity of the extracellular matrix (ECM) is essential for maintaining the normal structure and function of connective tissues. ECM is secreted locally by cells and organized into a complex meshwork providing physical support to cells, tissues, and organs. Initially thought to act only as a scaffold, the ECM is now known to provide a myriad of signals to cells regulating all aspects of their phenotype from morphology to differentiation. Matricellular proteins are a class of ECM related molecules defined through their ability to modulate cell-matrix interactions. Matricellular proteins are expressed at high levels during development, but typically only appear in postnatal tissue in wound repair or disease, where their levels increase substantially. Members of the CCN family, tenascin-C, osteopontin, secreted protein acidic rich in cysteine (SPARC), bone sialoprotein, thrombospondins, and galectins have all been classed as matricellular proteins. Periostin, a 90 kDa secreted homophilic cell adhesion protein, was recently added to matricellular class of proteins based on its expression pattern and function during development as well as in wound repair. Periostin is expressed in connective tissues including the periodontal ligament, tendons, skin and bone, and is also prominent in neoplastic tissues, cardiovascular disease, as well as in connective tissue wound repair. This review will focus on the functional role of periostin in tissue physiology. Fundamentally, it appears that periostin influences cell behaviour as well as collagen fibrillogenesis, and therefore exerts control over the structural and functional properties of connective tissues in both health and disease. Periostin is a novel matricellular protein with close homology to Drosophila fasciclin 1. In this review, the functional role of periostin is discussed in the context of connective tissue physiology, in development, disease, and wound repair.
Collapse
Affiliation(s)
- Douglas W Hamilton
- CIHR Group in Skeletal Development & Remodeling, Schulich School of Medicine and Dentistry, Dental Sciences Building, University of Western Ontario, London, Ontario, Canada, N6A 5C1,
| |
Collapse
|
199
|
Yu K, Ge J, Summers JB, Li F, Liu X, Ma P, Kaminski J, Zhuang J. TSP-1 secreted by bone marrow stromal cells contributes to retinal ganglion cell neurite outgrowth and survival. PLoS One 2008; 3:e2470. [PMID: 18575624 PMCID: PMC2430538 DOI: 10.1371/journal.pone.0002470] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 05/16/2008] [Indexed: 01/30/2023] Open
Abstract
Background Bone marrow stromal cells (BMSCs) are pluripotent and thereby a potential candidate for cell replacement therapy for central nervous system degenerative disorders and traumatic injury. However, the mechanism of their differentiation and effect on neural tissues has not been fully elucidated. This study evaluates the effect of BMSCs on neural cell growth and survival in a retinal ganglion cell (RGCs) model by assessing the effect of changes in the expression of a BMSC-secreted protein, thrombospondin-1 (TSP-1), as a putative mechanistic agent acting on RGCs. Methods and Findings The effect of co-culturing BMSCs and RGCs in vitro was evaluated by measuring the following parameters: neurite outgrowth, RGC survival, BMSC neural-like differentiation, and the effect of TSP-1 on both cell lines under basal secretion conditions and when TSP-1 expression was inhibited. Our data show that BMSCs improved RGC survival and neurite outgrowth. Synaptophysin, MAP-2, and TGF-β expression are up-regulated in RGCs co-cultured with BMSCs. Interestingly, the BMSCs progressively displayed neural-like morphology over the seven-day study period. Restriction display polymerase chain reaction (RD-PCR) was performed to screen for differentially expressed genes in BMSCs cultured alone or co-cultured with RGCs. TSP-1, a multifactorial extracellular matrix protein, is critically important in the formation of neural connections during development, so its function in our co-culture model was investigated by small interfering RNA (siRNA) transfection. When TSP-1 expression was decreased with siRNA silencing, BMSCs had no impact on RGC survival, but reduced neurite outgrowth and decreased expression of synaptophysin, MAP-2 and TGF-β in RGCs. Furthermore, the number of BMSCs with neural-like characteristics was significantly decreased by more than two-fold using siRNA silencing. Conclusions Our data suggest that the TSP-1 signaling pathway might have an important role in neural-like differentiation in BMSCs and neurite outgrowth in RGCs. This study provides new insights into the potential reparative mechanisms of neural cell repair.
Collapse
Affiliation(s)
- Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - James Bradley Summers
- Department of Radiology, University of South Alabama, Mobile, Alabama, United States of America
| | - Fan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xuan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ping Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Joseph Kaminski
- Department of Radiology, Medical College of Georgia, Augusta, Georgia, United States of America
- * E-mail: (JK); (JZ)
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- * E-mail: (JK); (JZ)
| |
Collapse
|
200
|
Weaver MS, Workman G, Sage EH. The copper binding domain of SPARC mediates cell survival in vitro via interaction with integrin beta1 and activation of integrin-linked kinase. J Biol Chem 2008; 283:22826-37. [PMID: 18503049 DOI: 10.1074/jbc.m706563200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is important for the normal growth and maintenance of the murine lens. SPARC-null animals develop cataracts associated with a derangement of the lens capsule basement membrane and alterations in lens fiber morphology. Cellular stress and disregulation of apoptotic pathways within lens epithelial cells (LEC) are linked to cataract formation. To identify molecular targets of SPARC that are linked to this disorder, we stressed wild-type (WT) and SPARC-null LEC by serum deprivation or exposure to tunicamycin. SPARC enhanced signaling by integrin-linked kinase (ILK), a serine/threonine kinase known to enhance cell survival in vitro. In response to stress, an ILK-dependent decrease in apoptosis was observed in WT relative to SPARCg-null LEC. Co-immunoprecipitation and cross-linking of cell lysates revealed enhanced levels of a SPARC-integrin beta1 complex during stress. Competition with monoclonal antibodies and peptides indicated that the copper binding domain of SPARC is required for SPARC-mediated response to stress. Inhibiting the binding and/or activity of ILK, integrin beta1, or SPARC resulted in increased apoptosis of stressed LEC. We conclude that SPARC protects cells from stress-induced apoptosis in vitro via an interaction with integrin beta1 heterodimers that enhances ILK activation and pro-survival activity.
Collapse
Affiliation(s)
- Matt S Weaver
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101-2795, USA
| | | | | |
Collapse
|