151
|
Munmun F, Witt-Enderby PA. Melatonin effects on bone: Implications for use as a therapy for managing bone loss. J Pineal Res 2021; 71:e12749. [PMID: 34085304 DOI: 10.1111/jpi.12749] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023]
Abstract
Melatonin is the primary circadian output signal from the brain and is mainly synthesized in pinealocytes. The rhythm and secretion of melatonin are under the control of an endogenous oscillator located in the SCN or the master biological clock. Disruptions in circadian rhythms by shift work, aging, or light at night are associated with bone loss and increased fracture risk. Restoration of nocturnal melatonin peaks to normal levels or therapeutic levels through timed melatonin supplementation has been demonstrated to provide bone-protective actions in various models. Melatonin is a unique molecule with diverse molecular actions targeting melatonin receptors located on the plasma membrane or mitochondria or acting independently of receptors through its actions as an antioxidant or free radical scavenger to stimulate osteoblastogenesis, inhibit osteoclastogenesis, and improve bone density. Its additional actions on entraining circadian rhythms and improving quality of life in an aging population coupled with its safety profile make it an ideal therapeutic candidate for protecting against bone loss in susceptible populations. The intent of this review is to provide a focused discussion on bone loss and disorders of the bone as it relates to melatonin and conditions that modify melatonin levels with the hope that future therapies include those that include melatonin and correct those factors that modify melatonin levels like circadian disruption.
Collapse
Affiliation(s)
- Fahima Munmun
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| | - Paula A Witt-Enderby
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| |
Collapse
|
152
|
Macías I, Alcorta-Sevillano N, Infante A, Rodríguez CI. Cutting Edge Endogenous Promoting and Exogenous Driven Strategies for Bone Regeneration. Int J Mol Sci 2021; 22:7724. [PMID: 34299344 PMCID: PMC8306037 DOI: 10.3390/ijms22147724] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Bone damage leading to bone loss can arise from a wide range of causes, including those intrinsic to individuals such as infections or diseases with metabolic (diabetes), genetic (osteogenesis imperfecta), and/or age-related (osteoporosis) etiology, or extrinsic ones coming from external insults such as trauma or surgery. Although bone tissue has an intrinsic capacity of self-repair, large bone defects often require anabolic treatments targeting bone formation process and/or bone grafts, aiming to restore bone loss. The current bone surrogates used for clinical purposes are autologous, allogeneic, or xenogeneic bone grafts, which although effective imply a number of limitations: the need to remove bone from another location in the case of autologous transplants and the possibility of an immune rejection when using allogeneic or xenogeneic grafts. To overcome these limitations, cutting edge therapies for skeletal regeneration of bone defects are currently under extensive research with promising results; such as those boosting endogenous bone regeneration, by the stimulation of host cells, or the ones driven exogenously with scaffolds, biomolecules, and mesenchymal stem cells as key players of bone healing process.
Collapse
Affiliation(s)
- Iratxe Macías
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
| | - Natividad Alcorta-Sevillano
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
- University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
| |
Collapse
|
153
|
Age-related expansion and increased osteoclastogenic potential of myeloid-derived suppressor cells. Mol Immunol 2021; 137:187-200. [PMID: 34274794 DOI: 10.1016/j.molimm.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 01/24/2023]
Abstract
Aging is associated with excessive bone loss that is not counteracted with the development of new bone. However, the mechanisms underlying age-related bone loss are not completely clear. Myeloid-derived suppressor cells (MDSCs) are a population of heterogenous immature myeloid cells with immunosuppressive functions that are known to stimulate tumor-induced bone lysis. In this study, we investigated the association of MDSCs and age-related bone loss in mice. Our results shown that aging increased the accumulation of MDSCs in the bone marrow and spleen, while in the meantime potentiated the osteoclastogenic activity of the CD11b+Ly6ChiLy6G+ monocytic subpopulation of MDSCs. In addition, CD11b+Ly6ChiLy6G+ MDSCs from old mice exhibited increased expression of c-fms compared to young mice, and were more sensitive to RANKL-induced osteoclast gene expression. On the other hand, old mice showed elevated production of IL-6 and receptor activator of nuclear factor kappa-B ligand (RANKL) in the circulation. Furthermore, IL-6 and RANKL were able to induce the proliferation of CD11b+Ly6ChiLy6G+ MDSCs and up-regulate c-fms expression. Moreover, CD11b+Ly6ChiLy6G+ MDSCs obtained from old mice showed increased antigen-specific T cell suppressive function, pStat3 expression, and cytokine production in response to inflammatory stimulation, compared to those cells obtained from young mice. Our findings suggest that CD11b+Ly6ChiLy6G+ MDSCs are a source of osteoclast precursors that together with the presence of persistent, low-grade inflammation, contribute to age-associated bone loss in mice.
Collapse
|
154
|
Zupan J, Strazar K, Kocijan R, Nau T, Grillari J, Marolt Presen D. Age-related alterations and senescence of mesenchymal stromal cells: Implications for regenerative treatments of bones and joints. Mech Ageing Dev 2021; 198:111539. [PMID: 34242668 DOI: 10.1016/j.mad.2021.111539] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022]
Abstract
The most common clinical manifestations of age-related musculoskeletal degeneration are osteoarthritis and osteoporosis, and these represent an enormous burden on modern society. Mesenchymal stromal cells (MSCs) have pivotal roles in musculoskeletal tissue development. In adult organisms, MSCs retain their ability to regenerate tissues following bone fractures, articular cartilage injuries, and other traumatic injuries of connective tissue. However, their remarkable regenerative ability appears to be impaired through aging, and in particular in age-related diseases of bones and joints. Here, we review age-related alterations of MSCs in musculoskeletal tissues, and address the underlying mechanisms of aging and senescence of MSCs. Furthermore, we focus on the properties of MSCs in osteoarthritis and osteoporosis, and how their changes contribute to onset and progression of these disorders. Finally, we consider current treatments that exploit the enormous potential of MSCs for tissue regeneration, as well as for innovative cell-free extracellular-vesicle-based and anti-aging treatment approaches.
Collapse
Affiliation(s)
- Janja Zupan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Klemen Strazar
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Roland Kocijan
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; Medical Faculty of Bone Diseases, Sigmund Freud University Vienna, 1020, Vienna, Austria
| | - Thomas Nau
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria; Building 14, Mohamed Bin Rashid University of Medicine and Health Sciences Dubai, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1180, Vienna, Austria
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria.
| |
Collapse
|
155
|
The associations of gut microbiota and fecal short-chain fatty acids with bone mass were largely mediated by weight status: a cross-sectional study. Eur J Nutr 2021; 60:4505-4517. [PMID: 34129072 DOI: 10.1007/s00394-021-02597-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/21/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE We aimed to investigate whether the gut microbiota and fecal short-chain fatty acids (SCFAs) are associated with bone mass in healthy children aged 6-9 years. METHODS In this study, 236 healthy children including 145 boys and 91 girls were enrolled. 16S rRNA gene sequencing was used to characterize the composition of their gut microbiota. Total and 10 subtypes of SCFAs in the fecal samples were determined by high-performance liquid chromatography. Dual X-ray absorptiometry was used to measure the bone mineral density (BMD) and bone mineral content (BMC) for total body (TB) and total body less head (TBLH). Z score of TBLH BMD was calculated based on the recommended reference. RESULTS Four gut microbiota principal components (PCs) were identified by the compositional principal component analysis at the genus level. After adjustment of covariates and controlling for the false discovery rate, multiple linear regression analysis showed that PC3 score (positive loadings on genera Lachnoclostridium and Blautia) was significantly negatively associated with TBLH BMD/BMC/Z score, TB BMC and pelvic BMD (β: - 0.207 to - 0.108, p: 0.002-0.048), whereas fecal total and several subtypes of SCFAs were correlated positively with TBLH BMD/Z score and pelvic BMD (β: 0.118-0.174, p: 0.038-0.048). However, these associations disappeared after additional adjustment for body weight. Mediation analysis suggested that body weight significantly mediated 60.4% and 78.0% of the estimated association of PC3 score and SCFAs with TBLH BMD Z score, respectively. CONCLUSIONS The associations of gut microbiota composition and fecal SCFA concentrations with bone mass in children were largely mediated by body weight.
Collapse
|
156
|
Turcotte AF, O’Connor S, Morin SN, Gibbs JC, Willie BM, Jean S, Gagnon C. Association between obesity and risk of fracture, bone mineral density and bone quality in adults: A systematic review and meta-analysis. PLoS One 2021; 16:e0252487. [PMID: 34101735 PMCID: PMC8186797 DOI: 10.1371/journal.pone.0252487] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/15/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The association between obesity and fracture risk may be skeletal site- and sex-specific but results among studies are inconsistent. Whilst several studies reported higher bone mineral density (BMD) in patients with obesity, altered bone quality could be a major determinant of bone fragility in this population. OBJECTIVES This systematic review and meta-analysis aimed to compare, in men, premenopausal women and postmenopausal women with obesity vs. individuals without obesity: 1) the incidence of fractures overall and by site; 2) BMD; and 3) bone quality parameters (circulating bone turnover markers and bone microarchitecture and strength by advanced imaging techniques). DATA SOURCES PubMed (MEDLINE), EMBASE, Cochrane Library and Web of Science were searched from inception of databases until the 13th of January 2021. DATA SYNTHESIS Each outcome was stratified by sex and menopausal status in women. The meta-analysis was performed using a random-effect model with inverse-variance method. The risks of hip and wrist fracture were reduced by 25% (n = 8: RR = 0.75, 95% CI: 0.62, 0.91, P = 0.003, I2 = 95%) and 15% (n = 2 studies: RR = 0.85, 95% CI: 0.81, 0.88), respectively, while ankle fracture risk was increased by 60% (n = 2 studies: RR = 1.60, 95% CI: 1.52, 1.68) in postmenopausal women with obesity compared with those without obesity. In men with obesity, hip fracture risk was decreased by 41% (n = 5 studies: RR = 0.59, 95% CI: 0.44, 0.79). Obesity was associated with increased BMD, better bone microarchitecture and strength, and generally lower or unchanged circulating bone resorption, formation and osteocyte markers. However, heterogeneity among studies was high for most outcomes, and overall quality of evidence was very low to low for all outcomes. CONCLUSIONS This meta-analysis highlights areas for future research including the need for site-specific fracture studies, especially in men and premenopausal women, and studies comparing bone microarchitecture between individuals with and without obesity. SYSTEMATIC REVIEW REGISTRATION NUMBER CRD42020159189.
Collapse
Affiliation(s)
- Anne-Frédérique Turcotte
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec (QC), Canada
- Obesity, Type 2 Diabetes and Metabolism Unit, Institut universitaire de cardiologie et de pneumologie de Québec–Université Laval Research Center, Québec (QC), Canada
- Department of Medicine, Faculty of Medicine, Laval University, Québec (QC), Canada
| | - Sarah O’Connor
- Institut universitaire de cardiologie et de pneumologie de Québec–Université Laval Research Center, Québec (QC), Canada
- Department of Pharmacy, Faculty of Pharmacy, Laval University, Québec (QC), Canada
- Bureau d’information et études en santé des populations, Institut national de santé publique du Québec, Québec (QC), Canada
| | - Suzanne N. Morin
- Department of Medicine, Faculty of Medicine, McGill University, Montreal (QC), Canada
| | - Jenna C. Gibbs
- Department of Kinesiology and Physical Education, McGill University, Montreal (QC), Canada
| | - Bettina M. Willie
- Department of Pediatric Surgery, Shriners Hospital for Children-Canada, Research Centre, McGill University, Montreal (QC), Canada
| | - Sonia Jean
- Department of Medicine, Faculty of Medicine, Laval University, Québec (QC), Canada
- Bureau d’information et études en santé des populations, Institut national de santé publique du Québec, Québec (QC), Canada
| | - Claudia Gagnon
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec (QC), Canada
- Obesity, Type 2 Diabetes and Metabolism Unit, Institut universitaire de cardiologie et de pneumologie de Québec–Université Laval Research Center, Québec (QC), Canada
- Department of Medicine, Faculty of Medicine, Laval University, Québec (QC), Canada
| |
Collapse
|
157
|
Puelker SM, Ribeiro de Castro SR, de Souza RR, Maifrino LBM, Nucci RAB, Sitta MDC. Age-Related Effects on Right Femoral Bone of Male Wistar Rats: A Morphometric and Biomechanical Study. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2021. [DOI: 10.1055/s-0041-1730107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Introduction Study of the variations of bone characteristics with age in different animal models is important to design musculoskeletal studies. Thus, this study aimed to evaluate the bone mass, dimensions, and biomechanical parameters of the femur in young, middle-aged, and aged Wistar rats.
Materials and Methods Thirty male rats (Rattus norvegicus) were divided in three groups (n = 10 per group)—3-month-old young rats, 12-month-old middle-aged rats, and 18-months-old aged rats. The right femurs were subjected sequentially to morphometric study (bone weight, cortical thickness) and biomechanical tests (maximum resistance strength and bone stiffness).
Results We observed a significant increase in femur histological (cortical thickness) and biomechanical (maximum strength and bone stiffness) parameters with aging when compared with young animals.
Conclusions With the advancing age, the right femoral bone of middle-aged and old animals had greater variations when compared with young animals. However, further studies with the aid of a comparison between right and left femur and other long bones in both male and female rats are needed to corroborate with our findings.
Collapse
Affiliation(s)
- Sheila Martins Puelker
- Department of Aging Sciences, Sao Judas Tadeu University, Rua Taquari, Sao Paulo, Brazil
| | | | | | - Laura Beatriz Mesiano Maifrino
- Medical School of the ABC District, Av. Lauro Gomes, Sao Paulo, Brazil
- Dante Pazzanese Institute of Cardiology, Av. Dr. Dante Pazzanese, Sao Paulo, Brazil
| | - Ricardo Aparecido Baptista Nucci
- Department of Aging Sciences, Sao Judas Tadeu University, Rua Taquari, Sao Paulo, Brazil
- Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Maria do Carmo Sitta
- Division of Geriatrics, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
158
|
Endocrine role of bone in the regulation of energy metabolism. Bone Res 2021; 9:25. [PMID: 34016950 PMCID: PMC8137703 DOI: 10.1038/s41413-021-00142-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/20/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Bone mainly functions as a supportive framework for the whole body and is the major regulator of calcium homeostasis and hematopoietic function. Recently, an increasing number of studies have characterized the significance of bone as an endocrine organ, suggesting that bone-derived factors regulate local bone metabolism and metabolic functions. In addition, these factors can regulate global energy homeostasis by altering insulin sensitivity, feeding behavior, and adipocyte commitment. These findings may provide a new pathological mechanism for related metabolic diseases or be used in the diagnosis, treatment, and prevention of metabolic diseases such as osteoporosis, obesity, and diabetes mellitus. In this review, we summarize the regulatory effect of bone and bone-derived factors on energy metabolism and discuss directions for future research.
Collapse
|
159
|
Dong X, He L, Zang X, He Y, An J, Wu B, Liu X, Bi H, Zhang Y, Xiao E. Adipose-Derived Stem Cells Promote Bone Coupling in Bisphosphonate-Related Osteonecrosis of the Jaw by TGF-β1. Front Cell Dev Biol 2021; 9:639590. [PMID: 34055774 PMCID: PMC8154543 DOI: 10.3389/fcell.2021.639590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/06/2021] [Indexed: 11/25/2022] Open
Abstract
This study aimed to investigate molecularly targeted therapy to revive bone remodeling and prevent BRONJ by local adipose-derived stem cells (ADSCs) transplantation. Clinical samples of BRONJ and healthy jawbones were used to examine the bone coupling-related cells and TGF-β1 expression. Bone coupling-related cells and TGF-β1 expression were also assessed in BRONJ-like animal model to confirm the results in clinical samples. ADSCs were locally administered in vivo and the therapeutic effects were evaluated by gross observation, radiological imaging, and histological examination. Furthermore, ADSCs-conditioned medium (ADSCs-CM) and neutralizing antibody were applied to assess the effects of ADSCs-derived TGF-β1 on restoring bone coupling in vivo. Osteoclast formation and resorption assays were performed to evaluate the effects of ADSCs-derived TGF-β1 on ZA-treated pre-osteoclasts. Cell migration was performed to assess the effects of ADSCs-derived TGF-β1 on patients’ bone marrow stem cells (BMSCs). The number of osteoclasts, Runx2-positive bone-lining cells (BLCs) and TGF-β1 expression were decreased in BRONJ and animal model jaw bone samples. These reductions were significantly rescued and necrotic jawbone healing was effectively promoted by local ADSCs administration in BRONJ-like animal models. Mechanistically, ADSCs-CM mainly contributed to promoting bone coupling, while TGF-β1 neutralizing antibody in the conditioned medium inhibited these effects. Besides, osteoclastogenesis and patients’ BMSCs migration were also rescued by ADSCs-derived TGF-β1. Furthermore, bone resorption-released bone matrix TGF-β1, together with ADSCs-derived TGF-β1, synergistically contributed to rescuing BMSCs migration. Collectively, ADSCs promoted bone healing of BRONJ by TGF-β1-activated osteoclastogenesis and BMSCs migration capacities.
Collapse
Affiliation(s)
- Xian Dong
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Linhai He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China.,First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaolong Zang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yang He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jingang An
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Baoping Wu
- The First People's Hospital of Jinzhong, Jinzhong, China
| | - Xinhua Liu
- The First People's Hospital of Jinzhong, Jinzhong, China
| | - Hongsen Bi
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yi Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - E Xiao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
160
|
Frank M, Reisinger AG, Pahr DH, Thurner PJ. Effects of Osteoporosis on Bone Morphometry and Material Properties of Individual Human Trabeculae in the Femoral Head. JBMR Plus 2021; 5:e10503. [PMID: 34189388 PMCID: PMC8216141 DOI: 10.1002/jbm4.10503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/30/2021] [Accepted: 04/10/2021] [Indexed: 12/02/2022] Open
Abstract
Osteoporosis is the most common bone disease and is conventionally classified as a decrease of total bone mass. Current diagnosis of osteoporosis is based on clinical risk factors and dual energy X‐ray absorptiometry (DEXA) scans, but changes in bone quantity (bone mass) and quality (trabecular structure, material properties, and tissue composition) are not distinguished. Yet, osteoporosis is known to cause a deterioration of the trabecular network, which might be related to changes at the tissue scale—the material properties. The goal of the current study was to use a previously established test method to perform a thorough characterization of the material properties of individual human trabeculae from femoral heads in cyclic tensile tests in a close to physiologic, wet environment. A previously developed rheological model was used to extract elastic, viscous, and plastic aspects of material behavior. Bone morphometry and tissue mineralization were determined with a density calibrated micro‐computed tomography (μCT) set‐up. Osteoporotic trabeculae neither showed a significantly changed material or mechanical behavior nor changes in tissue mineralization, compared with age‐matched healthy controls. However, donors with osteopenia indicated significantly reduced apparent yield strain and elastic work with respect to osteoporosis, suggesting possible initial differences at disease onset. Bone morphometry indicated a lower bone volume to total volume for osteoporotic donors, caused by a smaller trabecular number and a larger trabecular separation. A correlation of age with tissue properties and bone morphometry revealed a similar behavior as in osteoporotic bone. In the range studied, age does affect morphometry but not material properties, except for moderately increased tissue strength in healthy donors and moderately increased hardening exponent in osteoporotic donors. Taken together, the distinct changes of trabecular bone quality in the femoral head caused by osteoporosis and aging could not be linked to suspected relevant changes in material properties or tissue mineralization. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Martin Frank
- Institute of Lightweight Design and Structural Biomechanics TU Wien Gumpendorfer Straße 7 Vienna 1060 Austria
| | - Andreas G Reisinger
- Department of Anatomy and Biomechanics, Division Biomechanics Karl Landsteiner University of Health Sciences Dr. Karl-Dorrek-Straße 30 Krems 3500 Austria
| | - Dieter H Pahr
- Institute of Lightweight Design and Structural Biomechanics TU Wien Gumpendorfer Straße 7 Vienna 1060 Austria.,Department of Anatomy and Biomechanics, Division Biomechanics Karl Landsteiner University of Health Sciences Dr. Karl-Dorrek-Straße 30 Krems 3500 Austria
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics TU Wien Gumpendorfer Straße 7 Vienna 1060 Austria
| |
Collapse
|
161
|
Bone Metastases from Gastric Cancer: What We Know and How to Deal with Them. J Clin Med 2021; 10:jcm10081777. [PMID: 33921760 PMCID: PMC8073984 DOI: 10.3390/jcm10081777] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is the third cause of cancer-related death worldwide; the prognosis is poor especially in the case of metastatic disease. Liver, lymph nodes, peritoneum, and lung are the most frequent sites of metastases from GC; however, bone metastases from GC have been reported in the literature. Nevertheless, it is unclear how the metastatic sites may affect the prognosis. In particular, knowledge about the impact of bone metastases on GC patients’ outcome is scant, and this may be related to the rarity of bone lesions and/or their underestimation at the time of diagnosis. In fact, there is still a lack of specific recommendation for their detection at the diagnosis. Then, the majority of the evidences in this field came from retrospective analysis on very heterogeneous study populations. In this context, the aim of this narrative review is to delineate an overview about the evidences existing about bone metastases in GC patients, focusing on their incidence and biology, the prognostic role of bone involvement, and their possible implication in the treatment choice.
Collapse
|
162
|
Diana A, Carlino F, Giunta EF, Franzese E, Guerrera LP, Di Lauro V, Ciardiello F, Daniele B, Orditura M. Cancer Treatment-Induced Bone Loss (CTIBL): State of the Art and Proper Management in Breast Cancer Patients on Endocrine Therapy. Curr Treat Options Oncol 2021; 22:45. [PMID: 33864145 PMCID: PMC8052225 DOI: 10.1007/s11864-021-00835-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
OPINION STATEMENT About 70-80% of early breast cancer (BC) patients receive adjuvant endocrine therapy (ET) for at least 5 years. ET includes in the majority of cases the use of aromatase inhibitors, as upfront or switch strategy, that lead to impaired bone health. Given the high incidence and also the high prevalence of BC, cancer treatment-induced bone loss (CTIBL) represents the most common long-term adverse event experimented by patients with hormone receptor positive tumours. CTIBL is responsible for osteoporosis occurrence and, as a consequence, fragility fractures that may negatively affect quality of life and survival expectancy. As recommended by main international guidelines, BC women on aromatase inhibitors should be carefully assessed for their fracture risk at baseline and periodically reassessed during adjuvant ET in order to early detect significant worsening in terms of bone health. Antiresorptive agents, together with adequate intake of calcium and vitamin D, should be administered in BC patients during all course of ET, especially in those at high risk of osteoporotic fractures, as calculated by tools available for clinicians. Bisphosphonates, such as zoledronate or pamidronate, and anti-RANKL antibody, denosumab, are the two classes of antiresorptive drugs used in clinical practice with similar efficacy in preventing bone loss induced by aromatase inhibitor therapy. The choice between them, in the absence of direct comparison, should be based on patients' preference and compliance; the different safety profile is mainly related to the route of administration, although both types of drugs are manageable with due care, since most of the adverse events are predictable and preventable. Despite advances in management of CTIBL, several issues such as the optimal time of starting antiresorptive agents and the duration of treatment remain unanswered. Future clinical trials as well as increased awareness of bone health are needed to improve prevention, assessment and treatment of CTIBL in these long-term survivor patients.
Collapse
Affiliation(s)
- Anna Diana
- Medical Oncology, Department of Precision Medicine, School of Medicine, "Luigi Vanvitelli" University of Campania, 80131, Naples, Italy.
- Medical Oncology Unit, Ospedale del Mare, 80147, Naples, Italy.
| | - Francesca Carlino
- Medical Oncology, Department of Precision Medicine, School of Medicine, "Luigi Vanvitelli" University of Campania, 80131, Naples, Italy
| | - Emilio Francesco Giunta
- Medical Oncology, Department of Precision Medicine, School of Medicine, "Luigi Vanvitelli" University of Campania, 80131, Naples, Italy
| | - Elisena Franzese
- Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione Pascale, Istituto di Ricovero e Cura a Carattere Scientifico, Naples, Italy
| | - Luigi Pio Guerrera
- Medical Oncology, Department of Precision Medicine, School of Medicine, "Luigi Vanvitelli" University of Campania, 80131, Naples, Italy
| | - Vincenzo Di Lauro
- Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione Pascale, Istituto di Ricovero e Cura a Carattere Scientifico, Naples, Italy
| | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, School of Medicine, "Luigi Vanvitelli" University of Campania, 80131, Naples, Italy
| | - Bruno Daniele
- Medical Oncology Unit, Ospedale del Mare, 80147, Naples, Italy
| | - Michele Orditura
- Medical Oncology, Department of Precision Medicine, School of Medicine, "Luigi Vanvitelli" University of Campania, 80131, Naples, Italy
| |
Collapse
|
163
|
Influence of Age on Calvarial Critical Size Defect Dimensions: A Radiographic and Histological Study. J Craniofac Surg 2021; 32:2896-2900. [PMID: 33867513 PMCID: PMC8549460 DOI: 10.1097/scs.0000000000007690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Calvarial critical-size defect has been used to assess techniques and materials in the bone regeneration field. Previous studies utilized young adult rats with 3 months of age, which might not reflect the geriatric conditions. This study aimed to assess the dimensions of the calvarial critical-size defect in aged rats. Seventy-two rats in a randomized block design were allocated into a control young adult (11–12 weeks), and a test old group (22–24 months). Both groups were divided according to bone defect's size: 3 mm, 5 mm, and 7 mm defects, which were surgically created and followed for 4 and 8 weeks. Radiographic and histologic analyses were performed. Based on the results, additional groups with 4 mm defect size were added following the same protocols. Young groups yielded higher bone volumes, defect closure percentages, and density of newly formed bone. Closure of cranial defects was only observed in 3 mm defects in both age groups after 8 weeks; however, the 4 mm defect group demonstrated bony bridging after 8 weeks in young but not old rats. Results confirmed that 5-mm defect is considered a critical size for calvarial bone defects in young adult rats; however, 4 mm defect might be considered critical size for the aged rats after 8 weeks.
Collapse
|
164
|
Pedrosa M, Ferreira MT, E Batista de Carvalho LA, M Marques MP, Curate F. The association of osteochemometrics and bone mineral density in humans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:434-444. [PMID: 33852736 DOI: 10.1002/ajpa.24283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/12/2021] [Accepted: 03/24/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Even though much is known about bone mineral and matrix composition, studies about their relationship with several bone properties and its alterations related to bone diseases such as osteoporosis are practically non-existent in humans. Thus, the development of methods to understand the effects of bone properties at a microscopic level is paramount. This research aimed to evaluate whether Fourier transform infrared-attenuated total reflectance (FTIR-ATR) band intensity ratios correlate with femoral bone mass, bone mineral content (BMC) (total and femoral neck), bone mineral per unit area (BMD) (total, femoral neck, greater trochanter, intertrochanteric region, and Ward's area) and the area (total and femoral neck). A sample of femora from the 21st Century Identified Skeleton Collection (N = 78, 42 females and 36 males) was employed and BMC, BMD, and the femoral areas were acquired by DXA. RESULTS It was found that only females' BMD had a significant association with the femoral FTIR-ATR indices under study, whereas bone collagen (Am/P) and the content of carbonate Type A (API) in males correlated with the total proximal femur area of the regions of interest and the femoral neck area. DISCUSSION Men and women showed different changes related to their chemical composition in BMD, BMC, and probed area, most likely due to differences in structure and physiology, as well as mechanical strength in the proximal femoral sites where BMD was analyzed.
Collapse
Affiliation(s)
- Mariana Pedrosa
- Centre for Functional Ecology, Laboratory of Forensic Anthropology, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, Coimbra, Portugal.,Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Maria Teresa Ferreira
- Centre for Functional Ecology, Laboratory of Forensic Anthropology, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, Coimbra, Portugal.,Research Centre for Anthropology and Health, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, Coimbra, Portugal
| | | | - Maria Paula M Marques
- Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, Coimbra, Portugal.,Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Francisco Curate
- Centre for Functional Ecology, Laboratory of Forensic Anthropology, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, Coimbra, Portugal.,Research Centre for Anthropology and Health, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, Coimbra, Portugal.,School of Technology of Tomar, Polytechnic Institute of Tomar, Tomar, Portugal
| |
Collapse
|
165
|
Lagos LV, Lee SA, Bedford MR, Stein HH. Formulating diets based on digestible calcium instead of total calcium does not affect growth performance or carcass characteristics, but microbial phytase ameliorates bone resorption caused by low calcium in diets fed to pigs from 11 to 130 kg. J Anim Sci 2021; 99:6149108. [PMID: 33624767 DOI: 10.1093/jas/skab057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/18/2021] [Indexed: 11/14/2022] Open
Abstract
An experiment was conducted to test the hypothesis that the requirement for Ca expressed as a ratio between standardized total tract digestible (STTD) Ca and STTD P obtained in short-term experiments may be applied to pigs fed diets without or with microbial phytase from 11 to 130 kg. In a 5-phase program, 160 pigs (body weight: 11.2 ± 1.8 kg) were randomly allotted to 32 pens and 4 corn-soybean meal-based diets in a 2 × 2 factorial design with 2 diet formulation principles (total Ca or STTD Ca), and 2 phytase inclusion levels (0 or 500 units/kg of feed) assuming phytase released 0.11% STTD P and 0.16% total Ca. The STTD Ca:STTD P ratios were 1.40:1, 1.35:1, 1.25:1, 1.18:1, and 1.10:1 for phases 1 to 5, and STTD P was at the requirement. Weights of pigs and feed left in feeders were recorded at the end of each phase. At the conclusion of phase 1 (day 24), 1 pig per pen was euthanized and a blood sample and the right femur were collected. At the end of phases 2 to 5, a blood sample was collected from the same pig in each pen. At the conclusion of the experiment (day 126), the right femur of 1 pig per pen was collected and carcass characteristics from this pig were measured. No interactions were observed between diet formulation principle and phytase inclusion for growth performance in any phase and no differences among treatments were observed for overall growth performance. Plasma Ca and P and bone ash at the end of phase 1 were also not influenced by dietary treatments. However, on day 126, pigs fed nonphytase diets formulated based on total Ca had greater bone ash than pigs fed STTD Ca-based diets, but if phytase was used, no differences were observed between the 2 formulation principles (interaction P < 0.05). At the end of phases 2 and 3, pigs fed diets without phytase had greater (P < 0.05) plasma P than pigs fed diets with phytase, but no differences were observed at the end of phases 4 and 5. A negative quadratic effect (P < 0.05) of phase (2 to 5) on the concentration of plasma Ca was observed, whereas plasma P increased (quadratic; P < 0.05) from phases 2 to 5. However, there was no interaction or effect of diet formulation principle or phytase inclusion on any carcass characteristics measured. In conclusion, STTD Ca to STTD P ratios can be used in diet formulation for growing-finishing pigs without affecting growth performance or carcass characteristics and phytase inclusion ameliorates bone resorption caused by low dietary Ca and P.
Collapse
Affiliation(s)
- L Vanessa Lagos
- Division of Nutritional Sciences, University of Illinois, Urbana 61801, IL, USA
| | - Su A Lee
- Department of Animal Sciences, University of Illinois, Urbana 61801, IL, USA
| | | | - Hans H Stein
- Division of Nutritional Sciences, University of Illinois, Urbana 61801, IL, USA
- Department of Animal Sciences, University of Illinois, Urbana 61801, IL, USA
| |
Collapse
|
166
|
Viani A, Mácová P, Machová D, Mali G. Technical Note: Post-burial alteration of bones: Quantitative characterization with solid-state 1H MAS NMR. Forensic Sci Int 2021; 323:110783. [PMID: 33878550 DOI: 10.1016/j.forsciint.2021.110783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/28/2021] [Accepted: 04/05/2021] [Indexed: 12/01/2022]
Abstract
The identification of markers of the modifications occurring in human bones after death and of the sedimentary and post-sedimentary processes affecting their state of preservation, is of interest for several scientific disciplines. A new index, obtained from spectral deconvolution of the 1H MAS NMR spectra of bones, relating the number of organic protons to the amount of hydrogen nuclei in the OH- groups of bioapatite, is proposed as indicator of the state of preservation of the organic fraction. In the osteological material from three different archaeological sites, this index resulted positively correlated with the extent of collagen loss derived from infrared spectroscopy. Its sensitivity to changes in the physical and chemical characteristics of bone allows to identify distinct diagenetic pathways specific to each site and to distinguish different trajectories within the same site.
Collapse
Affiliation(s)
- Alberto Viani
- Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, Prosecká 809/76, 190 00 Praha 9, Czech Republic.
| | - Petra Mácová
- Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, Prosecká 809/76, 190 00 Praha 9, Czech Republic
| | - Dita Machová
- Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, Prosecká 809/76, 190 00 Praha 9, Czech Republic
| | - Gregor Mali
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
167
|
Impact of renin-angiotensin system inhibitors and beta-blockers on dental implant stability. Int J Implant Dent 2021; 7:31. [PMID: 33829330 PMCID: PMC8026804 DOI: 10.1186/s40729-021-00309-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Current experimental research suggests antihypertensive medication reduces the failure risk of dental implants due to enhanced bone remodeling. However, evidence from clinical studies evaluating the impact of antihypertensive medication on implant stability is lacking. METHODS We retrospectively analyzed 377 implants in 196 patients (46 implants inserted in antihypertensive drug users (AH) and 331 implants in non-users (NAH)) for implant stability measured by radiofrequency analysis, and we determined the implant stability quotient (ISQ). AH subgroups were stratified by the use of beta-blockers, renin-angiotensin system (RAS) inhibitors, and both of the aforementioned. The impact of antihypertensive medication on ISQ values at implant insertion (primary stability) and implant exposure (secondary stability) was analyzed by a linear regression model with a regression coefficient and its 95% confidence interval (95% CI), adjusted for potential confounders. RESULTS Time between implant insertion and implant exposure was 117.1 ± 56.6 days. ISQ values at insertion were 71.8 ± 8.7 for NAH and 74.1 ± 5.6 for AH, respectively. ISQ at exposure was 73.7 ± 8.1 for NAH and 75.7 ± 5.9 for AH. Regression analysis revealed that none of the AH subgroups were significantly related to ISQ at implant insertion. However, renin-angiotensin system inhibitors (RAS) were significantly associated with higher ISQ values at exposure (reg. coeff. 3.59, 95% CI 0.46-6.71 (p=0.025)). CONCLUSIONS Outcome of the present study indicates enhanced bone remodeling and osseointegration following dental implant insertion in patients taking RAS inhibitors than in non-users. Future randomized prospective studies must confirm these indicative results.
Collapse
|
168
|
Current Evidence and Possible Future Applications of Creatine Supplementation for Older Adults. Nutrients 2021; 13:nu13030745. [PMID: 33652673 PMCID: PMC7996960 DOI: 10.3390/nu13030745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/02/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia, defined as age-related reduction in muscle mass, strength, and physical performance, is associated with other age-related health conditions such as osteoporosis, osteosarcopenia, sarcopenic obesity, physical frailty, and cachexia. From a healthy aging perspective, lifestyle interventions that may help overcome characteristics and associated comorbidities of sarcopenia are clinically important. One possible intervention is creatine supplementation (CR). Accumulating research over the past few decades shows that CR, primarily when combined with resistance training (RT), has favourable effects on aging muscle, bone and fat mass, muscle and bone strength, and tasks of physical performance in healthy older adults. However, research is very limited regarding the efficacy of CR in older adults with sarcopenia or osteoporosis and no research exists in older adults with osteosarcopenia, sarcopenic obesity, physical frailty, or cachexia. Therefore, the purpose of this narrative review is (1) to evaluate and summarize current research involving CR, with and without RT, on properties of muscle and bone in older adults and (2) to provide a rationale and justification for future research involving CR in older adults with osteosarcopenia, sarcopenic obesity, physical frailty, or cachexia.
Collapse
|
169
|
Montoya C, Du Y, Gianforcaro AL, Orrego S, Yang M, Lelkes PI. On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook. Bone Res 2021; 9:12. [PMID: 33574225 PMCID: PMC7878740 DOI: 10.1038/s41413-020-00131-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/31/2023] Open
Abstract
The demand for biomaterials that promote the repair, replacement, or restoration of hard and soft tissues continues to grow as the population ages. Traditionally, smart biomaterials have been thought as those that respond to stimuli. However, the continuous evolution of the field warrants a fresh look at the concept of smartness of biomaterials. This review presents a redefinition of the term "Smart Biomaterial" and discusses recent advances in and applications of smart biomaterials for hard tissue restoration and regeneration. To clarify the use of the term "smart biomaterials", we propose four degrees of smartness according to the level of interaction of the biomaterials with the bio-environment and the biological/cellular responses they elicit, defining these materials as inert, active, responsive, and autonomous. Then, we present an up-to-date survey of applications of smart biomaterials for hard tissues, based on the materials' responses (external and internal stimuli) and their use as immune-modulatory biomaterials. Finally, we discuss the limitations and obstacles to the translation from basic research (bench) to clinical utilization that is required for the development of clinically relevant applications of these technologies.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
| | - Yu Du
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anthony L Gianforcaro
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Peter I Lelkes
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA.
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
170
|
Shah FA, Ruscsák K, Palmquist A. Mapping Bone Surface Composition Using Real-Time Surface Tracked Micro-Raman Spectroscopy. Cells Tissues Organs 2021; 209:266-275. [PMID: 33540403 DOI: 10.1159/000511079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/10/2020] [Indexed: 11/19/2022] Open
Abstract
The surface of bone tells a story - one that is worth a thousand words - of how it is built and how it is repaired. Chemical (i.e., composition) and physical (i.e., morphology) characteristics of the bone surface are analogous to a historical record of osteogenesis and provide key insights into bone quality. Analysis of bone chemistry is of particular relevance to the advancement of human health, cell biology, anthropology/archaeology, and biomedical engineering. Although scanning electron microscopy remains a popular and versatile technique to image bone across multiple length scales, limited chemical information can be obtained. Micro-Raman spectroscopy is a valuable tool for nondestructive chemical/compositional analysis of bone. However, signal integrity losses occur frequently during wide-field mapping of non-planar surfaces. Samples for conventional Raman imaging are, therefore, rendered planar through polishing or sectioning to ensure uniform signal quality. Here, we demonstrate ν1 PO43- and ν1 CO32- peak intensity losses where the sample surface and the plane of focus are offset by over 1-2 μm when underfocused and 2-3 μm when overfocused at 0.5-1 s integration time (15 mW, 633 nm laser). A technique is described for mapping the composition of the inherently irregular/non-planar surface of bone. The challenge posed by the native topology characteristic of this unique biological system is circumvented via real-time focus-tracking based on laser focus optimization by continuous closed-loop feedback. At the surface of deproteinized and decellularized/defatted sheep tibial cortical bone, regions of interest up to 1 mm2 were scanned at micrometer and submicrometer resolution. Despite surface height deviations exceeding 100 μm, it is possible to seamlessly probe local gradients in organic and inorganic constituents of the extracellular matrix as markers of bone metabolism and bone turnover, blood vessels and osteocyte lacunae, and the rope-like mineralized bundles that comprise the mineral phase at the bone surface.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,
| | - Krisztina Ruscsák
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
171
|
Reichenbach M, Mendez P, da Silva Madaleno C, Ugorets V, Rikeit P, Boerno S, Jatzlau J, Knaus P. Differential Impact of Fluid Shear Stress and YAP/TAZ on BMP/TGF‐β Induced Osteogenic Target Genes. Adv Biol (Weinh) 2021; 5:e2000051. [DOI: 10.1002/adbi.202000051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 12/08/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Maria Reichenbach
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| | - Paul‐Lennard Mendez
- International Max Planck Research School for Biology and Computation Max Planck Institute for Molecular Genetics Ihnestr. 63 Berlin 14195 Germany
| | - Carolina da Silva Madaleno
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
- Berlin‐Brandenburg School for Regenerative Therapies (BSRT) Charité—Universitätsmedizin Berlin Föhrer Str. 15 Berlin 13353 Germany
| | - Vladimir Ugorets
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| | - Paul Rikeit
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
- Berlin‐Brandenburg School for Regenerative Therapies (BSRT) Charité—Universitätsmedizin Berlin Föhrer Str. 15 Berlin 13353 Germany
| | - Stefan Boerno
- Sequencing Core Facility Max Planck Institute for Molecular Genetics Ihnestr. 63 Berlin 14195 Germany
| | - Jerome Jatzlau
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
- Berlin‐Brandenburg School for Regenerative Therapies (BSRT) Charité—Universitätsmedizin Berlin Föhrer Str. 15 Berlin 13353 Germany
| | - Petra Knaus
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| |
Collapse
|
172
|
Pueringer J, Cohn JE, Othman S, Shokri T, Ducic Y, Sokoya M. Tennis-related adult maxillofacial trauma injuries. PHYSICIAN SPORTSMED 2021; 49:64-67. [PMID: 32400246 DOI: 10.1080/00913847.2020.1768451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objectives: Tennis participation continues to increase amongst adults across the United States. The purpose of this study was to analyze trends in adult tennis-related facial injury epidemiology, demographics, diagnoses, and locations of injury. Materials and methods: The National Electronic Injury Surveillance System was evaluated for tennis-related facial injuries in adults from 2009 through 2018. Number of injuries were extrapolated, and data were analyzed for age, sex, specific injury diagnoses, locations, and discharge disposition. Descriptive statistics were used to present and describe variables of interest. Chi-squared testing (χ2) was performed to compare categorical variables. Results: During the study period, 342 tennis-related facial trauma ED visits were analyzed. Lacerations were the most common injury (45%), followed by contusions or abrasions (33.3%), concussions (11.7%), and fractures (8.5%). The most common sites of injury were the face (47.4%) and head (27.2%) regions. Males accounted for 62.0% of injuries, while females accounted for the remaining 38.0%. Patients between 34-65 years-old accounted for 47.7% of all injuries, and athletes over 65 years-old had the highest rate of fractures (10.1%). Conclusions: Facial trauma incurred secondary to tennis may follow patient-specific patterns. The incidence of tennis-related facial trauma is smaller compared to other sports, but the severity of such injuries remain a danger. Facial protection and enforcement in tennis is virtually absent, and these findings strengthen the need to educate athletes, families, and physicians on injury awareness and prevention.
Collapse
Affiliation(s)
- John Pueringer
- Medical Student, Philadelphia College of Osteopathic Medicine , Philadelphia, PA, USA
| | - Jason E Cohn
- Department of Otolaryngology-Head and Neck Surgery, Philadelphia College of Osteopathic Medicine , Philadelphia, PA, USA
| | - Sammy Othman
- Medical Student, Drexel University College of Medicine , Philadelphia, PA, USA
| | - Tom Shokri
- Department of Otolaryngology-Head and Neck Surgery, Penn State Hershey Medical Center , Hershey, PA, USA
| | - Yadranko Ducic
- Department of Otolaryngology- Head & Neck Surgery, Otolaryngology and Facial Plastic Surgery Associates , Fort Worth, TX, USA
| | - Mofiyinfolu Sokoya
- Department of Otolaryngology-Head and Neck Surgery, University of Arizona College of Medicine , Tucson, AZ, USA
| |
Collapse
|
173
|
Lugli F, Sciutto G, Oliveri P, Malegori C, Prati S, Gatti L, Silvestrini S, Romandini M, Catelli E, Casale M, Talamo S, Iacumin P, Benazzi S, Mazzeo R. Near-infrared hyperspectral imaging (NIR-HSI) and normalized difference image (NDI) data processing: An advanced method to map collagen in archaeological bones. Talanta 2021; 226:122126. [PMID: 33676680 DOI: 10.1016/j.talanta.2021.122126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/28/2022]
Abstract
In the present study, an innovative and highly efficient near-infrared hyperspectral imaging (NIR-HSI) method is proposed to provide spectral maps able to reveal collagen distribution in large-size bones, also offering semi-quantitative estimations. A recently introduced method for the construction of chemical maps, based on Normalized Difference Images (NDI), is declined in an innovative approach, through the exploitation of the NDI values computed for each pixel of the hyperspectral image to localize collagen and to extract information on its content by a direct comparison with known reference samples. The developed approach addresses an urgent issue of the analytical chemistry applied to bioarcheology researches, which rely on well-preserved collagen in bones to obtain key information on chronology, paleoecology and taxonomy. Indeed, the high demand for large-sample datasets and the consequent application of a wide variety of destructive analytical methods led to the considerable destruction of precious bone samples. NIR-HSI pre-screening allows researchers to properly select the sampling points for subsequent specific analyses, to minimize costs and time and to preserve integrity of archaeological bones (which are available in a very limited amount), providing further opportunities to understand our past.
Collapse
Affiliation(s)
- F Lugli
- University of Bologna, Department of Cultural Heritage, Ravenna Campus, Via Degli Ariani, 1, 48121, Ravenna, Italy
| | - G Sciutto
- University of Bologna, Department of Chemistry "G. Ciamician", Ravenna Campus, Via Guaccimanni, 42, 48121, Ravenna, Italy.
| | - P Oliveri
- University of Genova, Department of Pharmacy, Viale Cembrano 4, I-16148, Genova, Italy.
| | - C Malegori
- University of Genova, Department of Pharmacy, Viale Cembrano 4, I-16148, Genova, Italy
| | - S Prati
- University of Bologna, Department of Chemistry "G. Ciamician", Ravenna Campus, Via Guaccimanni, 42, 48121, Ravenna, Italy
| | - L Gatti
- University of Bologna, Department of Chemistry "G. Ciamician", Ravenna Campus, Via Guaccimanni, 42, 48121, Ravenna, Italy
| | - S Silvestrini
- University of Bologna, Department of Cultural Heritage, Ravenna Campus, Via Degli Ariani, 1, 48121, Ravenna, Italy
| | - M Romandini
- University of Bologna, Department of Cultural Heritage, Ravenna Campus, Via Degli Ariani, 1, 48121, Ravenna, Italy
| | - E Catelli
- University of Bologna, Department of Chemistry "G. Ciamician", Ravenna Campus, Via Guaccimanni, 42, 48121, Ravenna, Italy
| | - M Casale
- University of Genova, Department of Pharmacy, Viale Cembrano 4, I-16148, Genova, Italy
| | - S Talamo
- University of Bologna, Department of Chemistry "G. Ciamician", Via Selmi, 2, 40126, Bologna, Italy; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - P Iacumin
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze, 11/a, Parma, Italy
| | - S Benazzi
- University of Bologna, Department of Cultural Heritage, Ravenna Campus, Via Degli Ariani, 1, 48121, Ravenna, Italy; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - R Mazzeo
- University of Bologna, Department of Chemistry "G. Ciamician", Ravenna Campus, Via Guaccimanni, 42, 48121, Ravenna, Italy
| |
Collapse
|
174
|
Kim MY, Lee K, Shin HI, Lee KJ, Jeong D. Metabolic activities affect femur and lumbar vertebrae remodeling, and anti-resorptive risedronate disturbs femoral cortical bone remodeling. Exp Mol Med 2021; 53:103-114. [PMID: 33436949 PMCID: PMC8080628 DOI: 10.1038/s12276-020-00548-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 01/29/2023] Open
Abstract
Metabolic activities are closely correlated with bone remodeling and long-term anti-resorptive bisphosphonate treatment frequently causes atypical femoral fractures through unclear mechanisms. To explore whether metabolic alterations affect bone remodeling in femurs and lumbar vertebrae and whether anti-osteoporotic bisphosphonates perturb their reconstruction, we studied three mouse strains with different fat and lean body masses (BALB/c, C57BL6, and C3H mice). These mice displayed variable physical activity, food and drink intake, energy expenditure, and respiratory quotients. Following intraperitoneal calcein injection, double calcein labeling of the femoral diaphysis, as well as serum levels of the bone-formation marker procollagen type-I N-terminal propeptide and the bone-resorption marker C-terminal telopeptide of type-I collagen, revealed increased bone turnover in mice in the following order: C3H > BALB/c ≥ C57BL6 mice. In addition, bone reconstitution in femurs was distinct from that in lumbar vertebrae in both healthy control and estrogen-deficient osteoporotic mice with metabolic perturbation, particularly in terms of femoral trabecular and cortical bone remodeling in CH3 mice. Interestingly, subcutaneous administration of bisphosphonate risedronate to C3H mice with normal femoral bone density led to enlarged femoral cortical bones with a low bone mineral density, resulting in bone fragility; however, this phenomenon was not observed in mice with ovariectomy-induced femoral cortical bone loss. Together, these results suggest that diverse metabolic activities support various forms of bone remodeling and that femur remodeling differs from lumbar vertebra remodeling. Moreover, our findings imply that the adverse effect of bisphosphonate agents on femoral cortical bone remodeling should be considered when prescribing them to osteoporotic patients.
Collapse
Affiliation(s)
- Mi Yeong Kim
- grid.413028.c0000 0001 0674 4447Laboratory of Bone Metabolism and Control, Department of Microbiology, Yeungnam University College of Medicine, Daegu, 42415 Korea
| | - Kyunghee Lee
- grid.413028.c0000 0001 0674 4447Laboratory of Bone Metabolism and Control, Department of Microbiology, Yeungnam University College of Medicine, Daegu, 42415 Korea
| | - Hong-In Shin
- grid.258803.40000 0001 0661 1556IHBR, Department of Oral Pathology, School of Dentistry, Kyungpook National University, Daegu, 41940 Korea
| | - Kyung-Jae Lee
- grid.412091.f0000 0001 0669 3109Department of Orthopaedic Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, 42601 Korea
| | - Daewon Jeong
- grid.413028.c0000 0001 0674 4447Laboratory of Bone Metabolism and Control, Department of Microbiology, Yeungnam University College of Medicine, Daegu, 42415 Korea
| |
Collapse
|
175
|
Zamparini F, Prati C, Generali L, Spinelli A, Taddei P, Gandolfi MG. Micro-Nano Surface Characterization and Bioactivity of a Calcium Phosphate-Incorporated Titanium Implant Surface. J Funct Biomater 2021; 12:jfb12010003. [PMID: 33430238 PMCID: PMC7838783 DOI: 10.3390/jfb12010003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
The surface topography of dental implants and micro-nano surface characterization have gained particular interest for the improvement of the osseointegration phases. The aim of this study was to evaluate the surface micro-nanomorphology and bioactivity (apatite forming ability) of Ossean® surface, a resorbable blast medium (RBM) blasted surface further processed through the incorporation of a low amount of calcium phosphate. The implants were analyzed using environmental scanning electronic microscopy (ESEM), connected to Energy dispersive X-ray spectroscopy (EDX), field emission gun SEM-EDX (SEM-FEG) micro-Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) before and after immersion in weekly refreshed Hank’s balanced salt solution (HBSS) for 28 days. The analysis of the samples before immersion showed a moderately rough surface, with micropits and microgrooves distributed on all of the surface; EDX microanalysis revealed the constitutional elements of the implant surface, namely titanium (Ti), aluminum (Al) and vanadium (V). Limited traces of calcium (Ca) and phosphorous (P) were detected, attributable to the incorporated calcium phosphate. No traces of calcium phosphate phases were detected by micro-Raman spectroscopy. ESEM analysis of the implant aged in HBSS for 28 days revealed a significantly different surface, compared to the implant before immersion. At original magnifications <2000×, a homogeneous mineral layer was present on all the surface, covering all the pits and microgrooves. At original magnifications ≥10,000×, the mineral layer revealed the presence of small microspherulites. The structure of these spherulites (approx. 2 µm diameter) was observed in nanoimmersion mode revealing a regular shape with a hairy-like contour. Micro-Raman analysis showed the presence of B-type carbonated apatite on the implant surface, which was further confirmed by XPS analysis. This implant showed a micro-nano-textured surface supporting the formation of a biocompatible apatite when immersed in HBSS. These properties may likely favor bone anchorage and healing by stimulation of mineralizing cells.
Collapse
Affiliation(s)
- Fausto Zamparini
- Laboratory of Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (F.Z.); (A.S.)
- Endodontic Clinical Section, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Carlo Prati
- Endodontic Clinical Section, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Luigi Generali
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Andrea Spinelli
- Laboratory of Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (F.Z.); (A.S.)
- Endodontic Clinical Section, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Paola Taddei
- Biochemistry Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Maria Giovanna Gandolfi
- Laboratory of Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (F.Z.); (A.S.)
- Correspondence:
| |
Collapse
|
176
|
Estell EG, Rosen CJ. Emerging insights into the comparative effectiveness of anabolic therapies for osteoporosis. Nat Rev Endocrinol 2021; 17:31-46. [PMID: 33149262 DOI: 10.1038/s41574-020-00426-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/01/2023]
Abstract
Over the past three decades, the mainstay of treatment for osteoporosis has been antiresorptive agents (such as bisphosphonates), which have been effective with continued administration in lowering fracture risk. However, the clinical landscape has changed as adherence to these medications has declined due to perceived adverse effects. As a result, decreases in hip fracture rates that followed the introduction of bisphosphonates have now levelled off, which is coincident with a decline in the use of the antiresorptive agents. In the past two decades, two types of anabolic agents (including three new drugs), which represent a novel approach to improving bone quality by increasing bone formation, have been approved. These therapies are expected to lead to a new clinical paradigm in which anabolic agents will be used either alone or in combination with antiresorptive agents to build new bone and reduce fracture risk. This Review examines the mechanisms of action for these anabolic agents by detailing their receptor-activating properties for key cell types in the bone and marrow niches. Using these advances in bone biology as context, the comparative effectiveness of these anabolic agents is discussed in relation to other therapeutic options for osteoporosis to better guide their clinical application in the future.
Collapse
Affiliation(s)
- Eben G Estell
- Maine Medical Center Research Institute, Scarborough, ME, USA
| | | |
Collapse
|
177
|
Alrashidi NA, Zafar TA, Khan I. High‐Amylose Cornstarch Variably Affects Food Intake and Body Composition of Rats When Substituted to Standard versus a Moderately High‐Fat High‐Sugar Diet. STARCH-STARKE 2020. [DOI: 10.1002/star.202000036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Noura A Alrashidi
- Department of Food Science and Nutrition, College of Life Sciences Kuwait University P.O. Box 5969, 13060‐Safat Kuwait
| | - Tasleem A. Zafar
- Department of Food Science and Nutrition, College of Life Sciences Kuwait University P.O. Box 5969, 13060‐Safat Kuwait
| | - Islam Khan
- Department of Biochemistry, Faculty of Medicine Kuwait University P.O. Box 5969, 13060‐Safat Kuwait
| |
Collapse
|
178
|
Mumtaz H, Lara-Castillo N, Scott JM, Begonia M, Dallas M, Johnson ML, Ganesh T. Age and gender related differences in load-strain response in C57Bl/6 mice. Aging (Albany NY) 2020; 12:24721-24733. [PMID: 33346747 PMCID: PMC7803533 DOI: 10.18632/aging.202350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
We examined the changes in mechanical strain response of male and female mouse tibia and ulna, using axial compression tests, to assess age-related changes in tibiae and ulnae by a non-contact strain measurement technique called the digital image correlation (DIC) and the standard strain gage. A unique aspect of the study was to compare bones from the same animal to study variations in behavior with aging. This study was conducted using male and female C57Bl/6 mice at 6, 12 and 22 months of age (N=6-7 per age and sex) using three load levels. The DIC technique was able to detect a greater number of statistically significant differences in comparison to the strain gaging method. Male ulna showed significantly higher DIC strains compared to strains captured from strain gage at all three levels of load at 6 months and in the lowest load at 12 months. DIC measurements revealed that the ulna becomes stiffer with aging for both males and females, which resulted in 0.4 to 0.8 times reduced strains in the 22-month group compared to the 6 month group. Male tibia showed three-fold increased strains in the 22 months group at 11.5 N load compared to 6 months group (p<.05).
Collapse
Affiliation(s)
- Hammad Mumtaz
- University of Missouri-Kansas City, Department of Civil and Mechanical Engineering, Kansas, MO 64110, USA
| | - Nuria Lara-Castillo
- University of Missouri-Kansas City, School of Dentistry, Department of Oral and Craniofacial Sciences, Kansas, MO 64108, USA
| | - JoAnna M. Scott
- University of Missouri-Kansas City, Office of Research and Graduate Programs, Kansas, MO 64108, USA
| | - Mark Begonia
- Virginia Polytechnic Institute and State University, Biomedical Engineering and Mechanics, Blacksburg, VA 24061, USA
| | - Mark Dallas
- University of Missouri-Kansas City, School of Dentistry, Department of Oral and Craniofacial Sciences, Kansas, MO 64108, USA
| | - Mark L. Johnson
- University of Missouri-Kansas City, School of Dentistry, Department of Oral and Craniofacial Sciences, Kansas, MO 64108, USA
| | - Thiagarajan Ganesh
- University of Missouri-Kansas City, Department of Civil and Mechanical Engineering, Kansas, MO 64110, USA
| |
Collapse
|
179
|
Barr C, Sharafieh R, Schwarz G, Wu R, Klueh U, Kreutzer D. Noninflammatory Stress-Induced Remodeling of Mandibular Bone: Impact of Age and Pregnancy. J Oral Maxillofac Surg 2020; 79:1147-1155. [PMID: 33412113 DOI: 10.1016/j.joms.2020.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE The impact of noninflammatory stress, such as aging and pregnancy, on human long bone remodeling is well-established, but little is known about the impact of these stressors on oral bones, including the mandibular bone. To begin to fill this gap in our knowledge, we utilized a mouse mandibular model to evaluate the impact of noninflammatory simple stressors, ie, aging and pregnancy, on bone mandibular architecture and bone density in the mandible using micro-CT. MATERIALS AND METHODS For the present study, mandibles were obtained from both aged and pregnant C57BL/6 mice and analyzed using micro-CT technology. Micro-CT metrics included bone volume fraction (BVF), total volume (TV), tissue density, and apparent density in the mandible on the mandibular area of compact and trabecular bone, in which the teeth are embedded. All bone-related metrics data from aged and pregnant mice were analyzed using ANOVA analysis and visualized in boxplots. RESULTS Age-dependent bone remodeling occurred over 4 to 18 weeks of age, ie, increases in BVF, TV, BV/TV, as well as tissue and bone density. Evaluation of bone remodeling in breeder mice (repeated pregnancy model) and virgin mice (age-matched controls) at 37 weeks of age demonstrated that breeder mice had a dramatic decline in all bone metrics measured. CONCLUSIONS This study underscores the need for more research on noninflammatory stress-related mandibular bone remodeling (eg, age and pregnancy), which compromises bone strength and tooth anchoring. The data also underscores loss of alveolar bone height, as in periodontitis, is an important metric for a more complete assessment of bone loss. This report on mice provides essential data that can be applied for oral-maxillofacial surgeons and periodontists when planning for dental implants in patients with such stressors. Periodontitis related bone loss occurs independent of skeletal homeostasis, although osteoporosis may adversely affect alveolar bone height in humans.
Collapse
Affiliation(s)
- Charles Barr
- Former Professor, Department of Oral Health and Diagnostic Sciences. School of Dental Medicine, University of Connecticut, Farmington, CT
| | - Roshanak Sharafieh
- Assistant Professor, Department of Surgery, School of Medicine, University of Connecticut, Farmington, CT
| | - Gregory Schwarz
- Graduate Student, Department of Surgery, School of Medicine, University of Connecticut, Farmington, CT
| | - Rong Wu
- Research Associate II and Statistician, Connecticut Institute for Clinical and Translational Science, University of Connecticut, Farmington, CT
| | - Ulrike Klueh
- Associate Professor, Department of Biomedical Engineering, School of Engineering, Wayne State University, Detroit, MI
| | - Don Kreutzer
- Professor, Former Chair and Head of Immunology, Department of Surgery, School of Medicine, University of Connecticut, Farmington, CT.
| |
Collapse
|
180
|
Microstructure and mechanical properties of subchondral bone are negatively regulated by tramadol in osteoarthritis in mice. Biosci Rep 2020; 40:226099. [PMID: 32803252 PMCID: PMC7475645 DOI: 10.1042/bsr20194207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 07/27/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022] Open
Abstract
Objectives: In the treatment of osteoarthritis (OA), tramadol, a common weak opioid, has become popular due to its effectiveness in inhibition of pain. In the present study, we aimed to explore the effect of tramadol on subchondral bone, especially changes in the microstructure and mechanical properties. Methods: A mouse model of OA was established in the present study by destabilization of the medial meniscus (DMM). A vehicle or drug was administered for 4 weeks. Specimens were harvested and analyzed radiologically and histologically using micro-computed tomography (micro-CT), scanning electron microscopy (SEM), atomic force microscopy (AFM) and histological staining to evaluate the knee joints of mice undergoing different forms of intervention. Results: In the early stages of OA induced by DMM, the subchondral bone volume fraction in the OA group was significantly higher than in the sham+vehicle (sham+veh) group, while the volume in the treatment groups was lower than in the DMM+vehicle (DMM+veh) and sham+veh groups. In addition, the elastic moduli in the treatment groups clearly decreased compared with the DMM+veh and sham+veh groups. Observations of the subchondral bone surface by SEM indicated serious destruction, principally manifesting as a decrease in lacunae and more numerous and scattered cracks. Histological staining demonstrated that there was no difference in the degeneration of either the articular cartilage or synovial cells whether tramadol was used or not. Conclusion: Although tramadol is effective in inhibiting pain in early OA, it negatively regulates the microstructure and mechanical properties of subchondral bone in joints.
Collapse
|
181
|
Antonakakis M, Schrader S, Aydin Ü, Khan A, Gross J, Zervakis M, Rampp S, Wolters CH. Inter-Subject Variability of Skull Conductivity and Thickness in Calibrated Realistic Head Models. Neuroimage 2020; 223:117353. [DOI: 10.1016/j.neuroimage.2020.117353] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/19/2020] [Accepted: 09/05/2020] [Indexed: 01/11/2023] Open
|
182
|
Ibrahim A, Magliulo N, Groben J, Padilla A, Akbik F, Abdel Hamid Z. Hardness, an Important Indicator of Bone Quality, and the Role of Collagen in Bone Hardness. J Funct Biomater 2020; 11:jfb11040085. [PMID: 33271801 PMCID: PMC7712352 DOI: 10.3390/jfb11040085] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 01/22/2023] Open
Abstract
Bone is a nanocomposite material where the hard inorganic (hydroxyapatite crystallites) and organic (collagen fibrils) components are hierarchically arranged in the nanometer scale. Bone quality is dependent on the spatial distributions in the shape, size and composition of bone constituents (mineral, collagen and water). Bone hardness is an important property of bone, which includes both elastic and plastic deformation. In this study, a microhardness test was performed on a deer bone samples. The deer tibia shaft (diaphysis) was divided into several cross-sections of equal thickness; samples were prepared in untreated, boiled water treatment (100 °C for 30 min) and sodium hypochlorite (NaOCl) treatment conditions. Microhardness tests were performed on various regions of the tibial diaphysis to study the heterogeneous characteristics of bone microhardness and highlight the role of the organic matrix in bone hardness. The results indicated that boiled water treatment has a strong negative correlation with bone hardness. The untreated bone was significantly (+20%) harder than the boiled-water-treated bone. In general, the hardness values near the periosteal surface was significantly (23 to 45%) higher than the ones near the endosteal surface. Samples treated with NaOCl showed a significant reduction in hardness.
Collapse
Affiliation(s)
- Ahmed Ibrahim
- Mechanical Engineering Department, Farmingdale State College, Farmingdale, New York, NY 11735, USA; (N.M.); (J.G.)
- Correspondence:
| | - Nicole Magliulo
- Mechanical Engineering Department, Farmingdale State College, Farmingdale, New York, NY 11735, USA; (N.M.); (J.G.)
| | - James Groben
- Mechanical Engineering Department, Farmingdale State College, Farmingdale, New York, NY 11735, USA; (N.M.); (J.G.)
| | - Ashley Padilla
- Biology Department, Farmingdale State College, Farmingdale, New York, NY 11735, USA;
| | - Firas Akbik
- Chemistry Department, Hofstra University, Hempstead, NY 11549, USA;
| | - Z. Abdel Hamid
- Central Metallurgical Research and Development Institute, Helwan 11421, Egypt;
| |
Collapse
|
183
|
Abstract
Osteocytes are an ancient cell, appearing in fossilized skeletal remains of early fish and dinosaurs. Despite its relative high abundance, even in the context of nonskeletal cells, the osteocyte is perhaps among the least studied cells in all of vertebrate biology. Osteocytes are cells embedded in bone, able to modify their surrounding extracellular matrix via specialized molecular remodeling mechanisms that are independent of the bone forming osteoblasts and bone-resorbing osteoclasts. Osteocytes communicate with osteoclasts and osteoblasts via distinct signaling molecules that include the RankL/OPG axis and the Sost/Dkk1/Wnt axis, among others. Osteocytes also extend their influence beyond the local bone environment by functioning as an endocrine cell that controls phosphate reabsorption in the kidney, insulin secretion in the pancreas, and skeletal muscle function. These cells are also finely tuned sensors of mechanical stimulation to coordinate with effector cells to adjust bone mass, size, and shape to conform to mechanical demands.
Collapse
Affiliation(s)
- Alexander G Robling
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| |
Collapse
|
184
|
Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther 2020; 11:492. [PMID: 33225992 PMCID: PMC7681994 DOI: 10.1186/s13287-020-02001-1] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal disorders are among the leading debilitating factors affecting millions of people worldwide. The use of stem cells for tissue repair has raised many promises in various medical fields, including skeletal disorders. Mesenchymal stem cells (MSCs) are multipotent stromal cells with mesodermal and neural crest origin. These cells are one of the most attractive candidates in regenerative medicine, and their use could be helpful in repairing and regeneration of skeletal disorders through several mechanisms including homing, angiogenesis, differentiation, and response to inflammatory condition. The most widely studied sources of MSCs are bone marrow (BM), adipose tissue, muscle, umbilical cord (UC), umbilical cord blood (UCB), placenta (PL), Wharton's jelly (WJ), and amniotic fluid. These cells are capable of differentiating into osteoblasts, chondrocytes, adipocytes, and myocytes in vitro. MSCs obtained from various sources have diverse capabilities of secreting many different cytokines, growth factors, and chemokines. It is believed that the salutary effects of MSCs from different sources are not alike in terms of repairing or reformation of injured skeletal tissues. Accordingly, differential identification of MSCs' secretome enables us to make optimal choices in skeletal disorders considering various sources. This review discusses and compares the therapeutic abilities of MSCs from different sources for bone and cartilage diseases.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Tissue Engineering Laboratory, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
185
|
Redox Potential and Antioxidant Capacity of Bovine Bone Collagen Peptides towards Stable Free Radicals, and Bovine Meat Lipids and Proteins. Effect of Animal Age, Bone Anatomy and Proteases-A Step Forward towards Collagen-Rich Tissue Valorisation. Molecules 2020; 25:molecules25225422. [PMID: 33228162 PMCID: PMC7699565 DOI: 10.3390/molecules25225422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022] Open
Abstract
Collagen antioxidant peptides are being widely studied. However, no research has paid attention to biological parameters such as the age and anatomy of collagen-rich tissues, which can determine a change in tissue structure and composition, and then in bioactivity. Moreover, only few research works have studied and assessed peptides antioxidant activity on the food matrix. This work aimed to investigate the effect of bovine's bone age and anatomy, and of six different enzymes, on the antioxidant activity of collagen peptides. Collagen was extracted from young and old bovine femur and tibia; six different enzymes were used for peptides' release. The redox potential, the quenching of stable free radicals, and the antioxidant capacity on bovine meat lipids and proteins was evaluated, under heating from ambient temperature to 80 °C. Age and anatomy showed a significant effect; the influence of anatomy becomes most important with age. Each enzyme's effectiveness toward age and anatomy was not the same. The greatest amount of peptides was released from young bones' collagen hydrolysed with papain. The antioxidant activity was higher at higher temperatures, except for meat proteins. Assessing the effect of age and anatomy of collagen-rich tissues can promote a better application of collagen bioactive peptides.
Collapse
|
186
|
Nieuwoudt MK, Shahlori R, Naot D, Patel R, Holtkamp H, Aguergaray C, Watson M, Musson D, Brown C, Dalbeth N, Cornish J, Simpson MC. Raman spectroscopy reveals age- and sex-related differences in cortical bone from people with osteoarthritis. Sci Rep 2020; 10:19443. [PMID: 33173169 PMCID: PMC7656243 DOI: 10.1038/s41598-020-76337-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/08/2020] [Indexed: 01/02/2023] Open
Abstract
Bone strength in human cortical bone is determined by the composition and structure of both the mineral and collagen matrices and influenced by factors such as age, gender, health, lifestyle and genetic factors. Age-related changes in the bone matrix are known to result in loss of mechanical strength and increased fragility. In this study we show how Raman spectroscopy, with its exquisite sensitivity to the molecular structure of bone, reveals new insights into age- and sex-related differences. Raman analysis of 18 samples of cortical hip bone obtained from people aged between 47–82 years with osteoarthritis (OA) found subtle changes in the lipid and collagen secondary structure, and the carbonate (CO32−) and phosphate (PO43−) mineral ratios in the bone matrix. Significant differences were observed between older and younger bones, and between older female and older male bones; no significant differences were observed between younger male and female bones. Older female bones presented the lowest mineral to matrix ratios (MMR) and highest CO32−/PO43− ratios, and relative to lipid/collagen –CH2 deformation modes at 1450 cm−1 they had lowest overall mineral content, higher collagen cross linking and lipid content but lower levels of α-helix collagen structures than older male and younger male and female bones. These observations provided further insight on bone composition changes observed in the bone volume fraction (BV/TV) for the older female bones from microCT measurements on the same samples, while tissue mineral density (TMD) measurements had shown no significant differences between the samples.
Collapse
Affiliation(s)
- Michel K Nieuwoudt
- The Photon Factory, The University of Auckland, Auckland, 1142, New Zealand. .,School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand. .,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand. .,The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand.
| | - Rayomand Shahlori
- The Photon Factory, The University of Auckland, Auckland, 1142, New Zealand.,School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Dorit Naot
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Rhea Patel
- The Photon Factory, The University of Auckland, Auckland, 1142, New Zealand.,Department of Chemical and Materials Engineering, The University of Auckland, Auckland, 1142, New Zealand
| | - Hannah Holtkamp
- The Photon Factory, The University of Auckland, Auckland, 1142, New Zealand.,School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Claude Aguergaray
- The Photon Factory, The University of Auckland, Auckland, 1142, New Zealand.,The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand.,Department of Physics, The University of Auckland, Auckland, 1142, New Zealand
| | - Maureen Watson
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - David Musson
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Cameron Brown
- Medical Engineering Research Faculty, CPME, IHBI, SEF, Queensland University of Technology, Brisbane, Australia
| | - Nicola Dalbeth
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Jillian Cornish
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - M Cather Simpson
- The Photon Factory, The University of Auckland, Auckland, 1142, New Zealand. .,School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand. .,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand. .,The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand. .,Department of Physics, The University of Auckland, Auckland, 1142, New Zealand.
| |
Collapse
|
187
|
|
188
|
Coopman R, Fennis J, Ghaeminia H, Van de Vyvere G, Politis C, Hoppenreijs TJM. Volumetric osseous changes in the completely edentulous maxilla after sinus grafting and lateral bone augmentation: a systematic review. Int J Oral Maxillofac Surg 2020; 49:1470-1480. [PMID: 32241580 DOI: 10.1016/j.ijom.2020.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
Abstract
The aim of this systematic review was to evaluate the volumetric changes associated with different bone grafting techniques in the completely edentulous atrophic maxilla before dental implant placement. A search was performed according to the PRISMA guidelines. A PICO question was formed, and the PubMed, Scopus, Embase, and Cochrane Library databases were searched, covering the period 2000-2018. Relevant data were extracted from the results regarding study population, surgical details, technical information on volumetric data acquirement, and volumetric outcome after bone augmentation procedures before implant placement. Six articles with a combined population of 84 patients were included. All patients had a completely edentulous maxilla, with a crestal horizontal width of <3-4mm or a crestal vertical height of <6-7mm. The iliac bone and ascending ramus were most frequently used as grafts. Five of the six studies reported volumes of sinus inlay graft (SIG) and four reported volumes of lateral bone augmentation (LBA). Radiographic analyses of the augmented areas differed among the studies. Volume loss after bone augmentation procedures ranged from 5% to 50% for SIG and from 5% to 47% for LBA. All surgical augmentation techniques for the edentulous maxilla are prone to resorption; no procedure seemed to be superior, but some interesting observations were made.
Collapse
Affiliation(s)
- R Coopman
- Department of Oral and Maxillofacial Surgery, Rijnstate Hospital, Arnhem, Netherlands; Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.
| | - J Fennis
- Department of Oral and Maxillofacial Surgery, Rijnstate Hospital, Arnhem, Netherlands
| | - H Ghaeminia
- Department of Oral and Maxillofacial Surgery, Rijnstate Hospital, Arnhem, Netherlands
| | - G Van de Vyvere
- Department of Oral and Maxillofacial Surgery, Onze-Lieve-Vrouw Ziekenhuis, Aalst, Belgium
| | - C Politis
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium; OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, Catholic University Leuven, Leuven, Belgium
| | - T J M Hoppenreijs
- Department of Oral and Maxillofacial Surgery, Rijnstate Hospital, Arnhem, Netherlands
| |
Collapse
|
189
|
Eisa NH, Reddy SV, Elmansi AM, Kondrikova G, Kondrikov D, Shi XM, Novince CM, Hamrick MW, McGee-Lawrence ME, Isales CM, Fulzele S, Hill WD. Kynurenine Promotes RANKL-Induced Osteoclastogenesis In Vitro by Activating the Aryl Hydrocarbon Receptor Pathway. Int J Mol Sci 2020; 21:ijms21217931. [PMID: 33114603 PMCID: PMC7662708 DOI: 10.3390/ijms21217931] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 12/31/2022] Open
Abstract
There is increasing evidence of the involvement of the tryptophan metabolite kynurenine (KYN) in disrupting osteogenesis and contributing to aging-related bone loss. Here, we show that KYN has an effect on bone resorption by increasing osteoclastogenesis. We have previously reported that in vivo treatment with KYN significantly increased osteoclast number lining bone surfaces. Here, we report the direct effect of KYN on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in Raw 264.7 macrophage cells, and we propose a potential mechanism for these KYN-mediated effects. We show that KYN/RANKL treatment results in enhancement of RANKL-induced osteoclast differentiation. KYN drives upregulation and activation of the key osteoclast transcription factors, c-fos and NFATc1 resulting in an increase in the number of multinucleated TRAP+ osteoclasts, and in hydroxyapatite bone resorptive activity. Mechanistically, the KYN receptor, aryl hydrocarbon receptor (AhR), plays an important role in the induction of osteoclastogenesis. We show that blocking AhR signaling using an AhR antagonist, or AhR siRNA, downregulates the KYN/RANKL-mediated increase in c-fos and NFATc1 and inhibits the formation of multinucleated TRAP + osteoclasts. Altogether, this work highlights that the novelty of the KYN and AhR pathways might have a potential role in helping to regulate osteoclast function with age and supports pursuing additional research to determine if they are potential therapeutic targets for the prevention or treatment of osteoporosis.
Collapse
Affiliation(s)
- Nada H. Eisa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, USA; (N.H.E.); (A.M.E.); (G.K.); (D.K.)
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sakamuri V. Reddy
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Ahmed M. Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, USA; (N.H.E.); (A.M.E.); (G.K.); (D.K.)
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA
| | - Galina Kondrikova
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, USA; (N.H.E.); (A.M.E.); (G.K.); (D.K.)
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, USA; (N.H.E.); (A.M.E.); (G.K.); (D.K.)
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA
| | - Xing-Ming Shi
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.W.H.); (M.E.M.-L.); (C.M.I.); (S.F.)
| | - Chad M. Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
- Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mark W. Hamrick
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.W.H.); (M.E.M.-L.); (C.M.I.); (S.F.)
- Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Meghan E. McGee-Lawrence
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.W.H.); (M.E.M.-L.); (C.M.I.); (S.F.)
- Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Carlos M. Isales
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.W.H.); (M.E.M.-L.); (C.M.I.); (S.F.)
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.W.H.); (M.E.M.-L.); (C.M.I.); (S.F.)
- Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - William D. Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, USA; (N.H.E.); (A.M.E.); (G.K.); (D.K.)
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA
- Correspondence: ; Tel.: +1-(843)-792-6623
| |
Collapse
|
190
|
Liau GZQ, Lin HY, Wang Y, Nistala KRY, Cheong CK, Hui JHP. Pediatric Femoral Shaft Fracture: An Age-Based Treatment Algorithm. Indian J Orthop 2020; 55:55-67. [PMID: 33569099 PMCID: PMC7851225 DOI: 10.1007/s43465-020-00281-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/29/2020] [Indexed: 02/04/2023]
Abstract
PURPOSE Fractures of the femoral shaft in children are common. The rates of bone growth and remodeling in children vary according to their ages, which affect their respective management. METHODS This paper evaluates the incidence and patterns of pediatric femoral shaft fracture and the current concepts of treatments available. RESULTS The type of fracture-closed or open; stable or unstable-needs to be taken into account. Child abuse should be suspected in fractures sustained by infants. For younger children, non-surgical management is preferred, which include Pavlik harness (< 6 months old) and early spica casting (6 months to 6 years old). Older children (> 6 years old) usually benefit from surgical treatments as outcomes of non-surgical alternatives are worse and are associated with prolonged recovery times. These operative measures for older children that are 6-12 years old include elastic stable intramedullary nailing and submuscular plating. Factors to be considered when devising an appropriate intervention include body mass, location of injury, and nature of fracture. For adolescent and skeletally mature teenagers (> 12 years old), rigid antegrade entry intramedullary fixation is indicated. In the event of open fractures or polytrauma, external fixation should be considered as a temporary treatment method for initial fracture stabilization. CONCLUSION An age-based and evidence-based algorithm has been proposed to guide surgeons in the process of evaluating an appropriate treatment.
Collapse
Affiliation(s)
- Glen Zi Qiang Liau
- University Orthopaedic, Hand and Reconstructive Microsurgery Cluster, National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228 Singapore
| | - Hong Yi Lin
- Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Yuhang Wang
- Yong Loo Lin School of Medicine, Singapore, Singapore
| | | | | | - James Hoi Po Hui
- University Orthopaedic, Hand and Reconstructive Microsurgery Cluster, National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228 Singapore
- Department of Orthopaedic Surgery, National University Health System, Singapore, Singapore
| |
Collapse
|
191
|
Chevalier C, Kieser S, Çolakoğlu M, Hadadi N, Brun J, Rigo D, Suárez-Zamorano N, Spiljar M, Fabbiano S, Busse B, Ivanišević J, Macpherson A, Bonnet N, Trajkovski M. Warmth Prevents Bone Loss Through the Gut Microbiota. Cell Metab 2020; 32:575-590.e7. [PMID: 32916104 PMCID: PMC7116155 DOI: 10.1016/j.cmet.2020.08.012] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/25/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
Osteoporosis is the most prevalent metabolic bone disease, characterized by low bone mass and microarchitectural deterioration. Here, we show that warmth exposure (34°C) protects against ovariectomy-induced bone loss by increasing trabecular bone volume, connectivity density, and thickness, leading to improved biomechanical bone strength in adult female, as well as in young male mice. Transplantation of the warm-adapted microbiota phenocopies the warmth-induced bone effects. Both warmth and warm microbiota transplantation revert the ovariectomy-induced transcriptomics changes of the tibia and increase periosteal bone formation. Combinatorial metagenomics/metabolomics analysis shows that warmth enhances bacterial polyamine biosynthesis, resulting in higher total polyamine levels in vivo. Spermine and spermidine supplementation increases bone strength, while inhibiting polyamine biosynthesis in vivo limits the beneficial warmth effects on the bone. Our data suggest warmth exposure as a potential treatment option for osteoporosis while providing a mechanistic framework for its benefits in bone disease.
Collapse
Affiliation(s)
- Claire Chevalier
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Silas Kieser
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Melis Çolakoğlu
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Noushin Hadadi
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Julia Brun
- Division of Bone Diseases, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Dorothée Rigo
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Suárez-Zamorano
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Martina Spiljar
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Salvatore Fabbiano
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Björn Busse
- Institute for Osteology and Biomechanics, University Clinics Hamburg, 22529 Hamburg, Germany
| | - Julijana Ivanišević
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Andrew Macpherson
- Department for Biomedical Research, University of Bern, University Clinics for Visceral Surgery and Medicine, Inselspital, Bern University Hospitals, 3008 Bern, Switzerland
| | - Nicolas Bonnet
- Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Division of Bone Diseases, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
192
|
Xu W, Wong G, Hwang YY, Larbi A. The untwining of immunosenescence and aging. Semin Immunopathol 2020; 42:559-572. [PMID: 33165716 PMCID: PMC7665974 DOI: 10.1007/s00281-020-00824-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023]
Abstract
From a holistic point of view, aging results from the cumulative erosion of the various systems. Among these, the immune system is interconnected to the rest as immune cells are present in all organs and recirculate through bloodstream. Immunosenescence is the term used to define the remodelling of immune changes during aging. Because immune cells-and particularly lymphocytes-can further differentiate after their maturation in response to pathogen recognition, it is therefore unclear when senescence is induced in these cells. Additionally, it is also unclear which signals triggers senescence in immune cells (i) aging per se, (ii) specific response to pathogens, (iii) underlying conditions, or (iv) inflammaging. In this review, we will cover the current knowledge and concepts linked to immunosenescence and we focus this review on lymphocytes and T cells, which represent the typical model for replicative senescence. With the evidence presented, we propose to disentangle the senescence of immune cells from chronological aging.
Collapse
Affiliation(s)
- Weili Xu
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos, Singapore, Singapore
| | - Glenn Wong
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos, Singapore, Singapore
| | - You Yi Hwang
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos, Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos, Singapore, Singapore.
- Department of Geriatrics, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
193
|
Abstract
This systematic investigation of bioapatite, the mineral component of human bone, aims to characterize its crystallographic state, including lattice parameters and average crystallite size, and correlate these values with respect to anatomical position (bone function), physicality, and bone chemical composition. In sample sets of buried bone from three different human adult skeletons, anatomical variation of crystallographic parameters and correlation to chemical composition were indeed observed. In general, the observed bioapatite a unit-cell edge-length among all analyzed human bones in this study was larger by 0.1–0.2% compared to that of stoichiometric hydroxylapatite (HAp), and substantially larger than that of fluorapatite (FAp). Across all analyzed samples, the a (=b) lattice parameter (unit cell edge-length) varies more than does the c lattice parameter. Average crystallite size (average coherent diffracting domain size) in the c-direction was equal to approximately 25 nm, ranging among the analyzed 18 bone samples from about 20–32 nm, and varying more than crystallite size in the a,b-direction (~8–10 nm). Neither lattice parameters nor average bioapatite crystallite sizes appeared to be correlated with bone mechanical function. The relative chemical composition of the bone material, however, was shown to correlate with the a (=b) lattice parameter. To our knowledge, this research provides, for the first time, the systematic study of the crystallographic parameters of human bone bioapatite in the context of anatomical position, physical constitution, and bone chemical composition using X-ray powder diffraction (XRPD) and Fourier transform infrared spectroscopy (FTIR).
Collapse
|
194
|
Hor YY, Ooi CH, Lew LC, Jaafar MH, Lau ASY, Lee BK, Azlan A, Choi SB, Azzam G, Liong MT. The molecular mechanisms of probiotic strains in improving ageing bone and muscle of d-galactose-induced ageing rats. J Appl Microbiol 2020; 130:1307-1322. [PMID: 32638482 DOI: 10.1111/jam.14776] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022]
Abstract
AIM The aim of this study was to evaluate the molecular mechanisms of Lactobacillus strains in improving ageing of the musculoskeletal system. METHODS AND RESULTS The anti-ageing mechanism of three probiotics strains Lactobacillus fermentum DR9, Lactobacillus paracasei OFS 0291 and L. helveticus OFS 1515 were evaluated on gastrocnemius muscle and tibia of d-galactose-induced ageing rats. Upon senescence induction, aged rats demonstrated reduced antioxidative genes CAT and SOD expression in both bone and muscle compared to the young rats (P < 0·05). Strain L. fermentum DR9 demonstrated improved expression of SOD in bone and muscle compared to the aged rats (P < 0·05). In the evaluation of myogenesis-related genes, L. paracasei OFS 0291 and L. fermentum DR9 increased the mRNA expression of IGF-1; L. helveticus OFS 1515 and L. fermentum DR9 reduced the expression of MyoD, in contrast to the aged controls (P < 0·05). Protective effects of L. fermentum DR9 on ageing muscle were believed to be contributed by increased AMPK-α2 expression. Among the osteoclastogenesis genes studied, TNF-α expression was highly elevated in tibia of aged rats, while all three probiotics strains ameliorated the expression. Lactobacillus fermentum DR9 also reduced the expression of IL-6 and TRAP in tibia when compared to the aged rats (P < 0·05). All probiotics treatment resulted in declined proinflammatory cytokines IL-1β in muscle and bone. CONCLUSIONS Lactobacillus fermentum DR9 appeared to be the strongest strain in modulation of musculoskeletal health during ageing. SIGNIFICANCE AND IMPACT OF THE STUDY The study demonstrated the protective effects of the bacteria on muscle and bone through antioxidative and anti-inflammatory actions. Therefore, L. fermentum DR9 may serve as a promising targeted anti-ageing therapy.
Collapse
Affiliation(s)
- Y-Y Hor
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| | - C-H Ooi
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - L-C Lew
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| | - M H Jaafar
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| | - A S-Y Lau
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - B-K Lee
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - A Azlan
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - S-B Choi
- School of Data Sciences, Perdana University, Selangor, Malaysia
| | - G Azzam
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia.,School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - M-T Liong
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
195
|
Remodeling process in bone of aged rats in response to resistance training. Life Sci 2020; 256:118008. [DOI: 10.1016/j.lfs.2020.118008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
|
196
|
Bayarı SH, Özdemir K, Sen EH, Araujo-Andrade C, Erdal YS. Application of ATR-FTIR spectroscopy and chemometrics for the discrimination of human bone remains from different archaeological sites in Turkey. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118311. [PMID: 32330809 DOI: 10.1016/j.saa.2020.118311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Examining diagenetic parameters such as the organic carbonate contents and the crystallinity of bone apatite quantify the post-mortem alteration of bone. Burial conditions are one of the factors that can influence the diagenesis process. We studied the changes to the organic and mineral components and crystallinity of human bone remains from five Medieval sites in Turkey: Hakemi Use, Komana, İznik, Oluz Höyük and Tasmasor using Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) and principal component analysis (PCA). Analysis of spectral band ratios related to organic and mineral components of bone demonstrated differences in the molecular content in the skeletal remains from the five sites. In order to examine the degree of carbonation of a phosphate matrix, curve-fitting procedures were applied to the carbonate band. We found that the infrared crystallinity index appears to not be sensitive to carbonate content at room temperature for the bone remains studied here. The recrystallization process in bone remains behaved differently among the archaeological sites. The results demonstrate that the burial environments differently affect the organic and mineral components of archaeological bone remains.
Collapse
Affiliation(s)
- Sevgi Haman Bayarı
- Hacettepe University, Department of Physics Eng., 06800 Beytepe-Ankara, Turkey.
| | - Kameray Özdemir
- Hacettepe University, Department of Anthropology, 06800 Beytepe-Ankara, Turkey
| | - Elif Hilal Sen
- Hacettepe University, Department of Physics Eng., 06800 Beytepe-Ankara, Turkey
| | | | - Yılmaz Selim Erdal
- Hacettepe University, Department of Anthropology, 06800 Beytepe-Ankara, Turkey; Hacettepe University Skeletal Biology Lab (Husbio_l), 06800 Ankara, Turkey
| |
Collapse
|
197
|
Schröder M, Riksen EA, He J, Skallerud BH, Møller ME, Lian AM, Syversen U, Reseland JE. Vitamin K2 Modulates Vitamin D-Induced Mechanical Properties of Human 3D Bone Spheroids In Vitro. JBMR Plus 2020; 4:e10394. [PMID: 32995695 PMCID: PMC7507351 DOI: 10.1002/jbm4.10394] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Rotational culture promotes primary human osteoblasts (hOBs) to form three-dimensional (3D) multicellular spheroids with bone tissue-like structure without any scaffolding material. Cell-based bone models enable us to investigate the effect of different agents on the mechanical strength of bone. Given that low dietary intake of both vitamin D and K is negatively associated with fracture risk, we aimed to assess the effect of these vitamins in this system. Osteospheres of hOBs were generated with menaquinone-4 (MK-4; 10μM) and 25-hydroxyvitamin D3 [25(OH)D3; 0.01μM], alone and in combination, or without vitamins. The mechanical properties were tested by nanoindentation using a flat-punch compression method, and the mineralized extracellular bone matrix was characterized by microscopy. The in vitro response of hOBs to MK-4 and 25(OH)D3 was further evaluated in two-dimensional (2D) cultures and in the 3D bone constructs applying gene expression analysis and multiplex immunoassays. Mechanical testing revealed that 25(OH)D3 induced a stiffer and MK-4 a softer or more flexible osteosphere compared with control. Combined vitamin conditions induced the same flexibility as MK-4 alone. Enhanced levels of periostin (p < 0.001) and altered distribution of collagen type I (COL-1) were found in osteospheres supplemented with MK-4. In contrast, 25(OH)D3 reduced COL-1, both at the mRNA and protein levels, increased alkaline phosphatase, and stimulated mineral deposition in the osteospheres. With the two vitamins in combination, enhanced gene expression of periostin and COL-1 was seen, as well as extended osteoid formation into the central region and increased mineral deposition all over the area. Moreover, we observed enhanced levels of osteocalcin in 2D and osteopontin in 3D cultures exposed to 25(OH)D3 alone and combined with MK-4. In conclusion, the two vitamins seem to affect bone mechanical properties differently: vitamin D enhancing stiffness and K2 conveying flexibility to bone. These effects may translate to increased fracture resistance in vivo. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Maria Schröder
- Department of Biomaterials University of Oslo Oslo Norway
| | | | - Jianying He
- Department of Structural Engineering, Faculty of Engineering Norwegian University of Science and Technology (NTNU) Trondheim Norway
| | - Bjørn Helge Skallerud
- Department of Structural Engineering, Faculty of Engineering Norwegian University of Science and Technology (NTNU) Trondheim Norway
| | | | - Aina-Mari Lian
- Oral Research Laboratory, Institute for Clinical Dentistry University of Oslo Oslo Norway
| | - Unni Syversen
- Oral Research Laboratory, Institute for Clinical Dentistry University of Oslo Oslo Norway.,Department of Clinical and Molecular Medicine NTNU Trondheim Norway.,Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital Trondheim University Hospital Trondheim Norway
| | | |
Collapse
|
198
|
Karadas O, Mese G, Ozcivici E. Low magnitude high frequency vibrations expedite the osteogenesis of bone marrow stem cells on paper based 3D scaffolds. Biomed Eng Lett 2020; 10:431-441. [PMID: 32850178 PMCID: PMC7438393 DOI: 10.1007/s13534-020-00161-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/12/2020] [Accepted: 06/27/2020] [Indexed: 01/08/2023] Open
Abstract
Anabolic effects of low magnitude high frequency (LMHF) vibrations on bone tissue were consistently shown in the literature in vivo, however in vitro efforts to elucidate underlying mechanisms are generally limited to 2D cell culture studies. Three dimensional cell culture platforms better mimic the natural microenvironment and biological processes usually differ in 3D compared to 2D culture. In this study, we used laboratory grade filter paper as a scaffold material for studying the effects of LHMF vibrations on osteogenesis of bone marrow mesenchymal stem cells in a 3D system. LMHF vibrations were applied 15 min/day at 0.1 g acceleration and 90 Hz frequency for 21 days to residing cells under quiescent and osteogenic conditions. mRNA expression analysis was performed for alkaline phosphatase (ALP) and osteocalcin (OCN) genes, Alizarin red S staining was performed for mineral nodule formation and infrared spectroscopy was performed for determination of extracellular matrix composition. The highest osteocalcin expression, mineral nodule formation and the phosphate bands arising from the inorganic phase was observed for the cells incubated in osteogenic induction medium with vibration. Our results showed that filter paper can be used as a model scaffold system for studying the effects of mechanical loads on cells, and LMHF vibrations induced the osteogenic differentiation of stem cells.
Collapse
Affiliation(s)
- Ozge Karadas
- Department of Bioengineering, Rm A210, Izmir Institute of Technology, Urla, Izmir, 35430 Turkey
| | - Gulistan Mese
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Rm A210, Izmir Institute of Technology, Urla, Izmir, 35430 Turkey
| |
Collapse
|
199
|
Zhang Y, Luo Y. Femoral bone mineral density distribution is dominantly regulated by strain energy density in remodeling. Biomed Mater Eng 2020; 31:179-190. [PMID: 32597795 DOI: 10.3233/bme-206000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND It is well known that there is a relationship between bone strength and the forces that are daily applied to the bone. However, bone is a highly heterogeneous material and it is still not clear how mechanical variables regulate the distribution of bone mass in a femur. METHODS We studied the role of four mechanical variables, i.e. principal tensile/compressive stress, von Mises stress, and strain energy density (SED), in the regulation of bone mineral density (BMD) distribution in the human femur. The actual BMD in a femur was extracted from quantitative computed tomography (QCT) and used as a reference for comparison. A finite element model of the femur was constructed from the same set of QCT scans and then used in iterative simulations of femur remodeling under stance and walking loading. The finite element model was initially assigned a homogeneous BMD distribution. During the remodeling, femur BMD was locally modified according to one of the four mechanical variables. The simulations were stopped when BMD change in two consecutive iterations was adequately small. The four simulated BMD patterns were then compared with the actual BMD. RESULTS It was found that the BMD pattern regulated by SED had the best similarity with the actual BMD. The medullary canal was successfully reproduced by simulated remodeling, indicating that in addition to its biological functions, the medullary canal has important biomechanical functions. CONCLUSIONS Both the actual and simulated BMD distributions showed that the proximal femur has much lower BMD than the femur shaft, which may explain why hip fractures most often occur at the proximal femur.
Collapse
Affiliation(s)
- Yichen Zhang
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada
| | - Yunhua Luo
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada.,Department of Biomedical Engineering, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
200
|
Borda AF, Garfinkle JS, Covell DA, Wang M, Doyle L, Sedgley CM. Outcome assessment of orthodontic clear aligner vs fixed appliance treatment in a teenage population with mild malocclusions. Angle Orthod 2020; 90:485-490. [PMID: 33378505 DOI: 10.2319/122919-844.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/01/2020] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To assess the efficacy and efficiency of treatment in adolescents presenting with mild malocclusions, comparing outcomes using clear aligners to fixed appliances. MATERIALS AND METHODS Patients identified retrospectively and consecutively from one private practice had been treated with either clear aligners (Invisalign, Align Technology, Santa Clara, Calif) or fixed appliances (0.022 Damon, Ormco, Orange, Calif; n = 26/group). Assessments of occlusion were made using the American Board of Orthodontics Discrepancy Index (DI) for initial records and Cast-Radiograph Evaluation (CRE) for final records. Number of appointments, number of emergency visits, and overall treatment time were determined from chart reviews. Data were analyzed using Pearson's correlation, Wilcoxon rank tests, unpaired t-tests, and Chi-square tests, with significance set to P ≤ .05. RESULTS Pretreatment, the aligner and fixed groups showed no significant difference in overall severity (DI: 11.9 ± 5.3 vs 11.6 ± 4.8) or in any individual DI category. Posttreatment scores showed finishes for the aligner group had fewer discrepancies from ideal relative to the fixed appliance group (CRE: 30.1 ± 8.3 vs 37.0 ± 9.3; P < .01). Patients treated with aligners had fewer appointments (13.7 ± 4.4 vs 19.3 ± 3.6; P < .0001), fewer emergency visits (0.8 ± 1.0 vs 3.6 ± 2.5; P < .0001), and shorter overall treatment time (16.9 ± 5.7 vs 23.4 ± 4.4 months; P < .0001). CONCLUSIONS Outcomes for treatment of mild malocclusions in adolescents showed equivalent effectiveness of clear aligners compared to fixed appliances, with significantly improved results for clear aligner treatment in terms of tooth alignment, occlusal relations, and overjet. Assessment of the number of appointments, number of emergency visits, and overall treatment time showed better outcomes for treatment with clear aligners.
Collapse
|