151
|
Barese CN, Dunbar CE. Contributions of gene marking to cell and gene therapies. Hum Gene Ther 2011; 22:659-68. [PMID: 21261461 DOI: 10.1089/hum.2010.237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The first human genetic modification studies used replication-incompetent integrating vector vectors to introduce marker genes into T lymphocytes and subsequently into hematopoietic stem cells. Such studies have provided numerous insights into the biology of hematopoiesis and immune reconstitution and contributed to clinical development of gene and cell therapies. Tracking of hematopoietic reconstitution and analysis of the origin of residual malignant disease after hematopoietic transplantation has been possible via gene marking. Introduction of selectable marker genes has enabled preselection of specific T-cell populations for tumor and viral immunotherapy and reduced the threat of graft-versus-host disease, improving the survival of patients after allogeneic marrow transplantation. Marking studies in humans, murine xenografts, and large animals have helped optimize conditions for gene transfer into CD34(+) hematopoietic progenitors, contributing to the achievement of gene transfer efficiencies sufficient for clinical benefit in several serious genetic diseases such as X-linked severe combined immunodeficiency and adrenoleukodystrophy. When adverse events linked to insertional mutagenesis arose in clinical gene therapy trials for inherited immunodeficiencies, additional animal studies using gene-marking vectors have greatly increased our understanding of genotoxicity. The knowledge gained from these studies is being translated into new vector designs and clinical protocols, which we hope will continue to improve the efficiency, effectiveness and safety of these promising therapeutic approaches.
Collapse
Affiliation(s)
- Cecilia N Barese
- Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20852, USA
| | | |
Collapse
|
152
|
Abstract
Cell-based therapies are fast-growing forms of personalized medicine that make use of the steady advances in stem cell manipulation and gene transfer technologies. In this Review, I highlight the latest developments and the crucial challenges for this field, with an emphasis on haematopoietic stem cell gene therapy, which is taken as a representative example given its advanced clinical translation. New technologies for gene correction and targeted integration promise to overcome some of the main hurdles that have long prevented progress in this field. As these approaches marry with our growing capacity for genetic reprogramming of mammalian cells, they may fulfil the promise of safe and effective therapies for currently untreatable diseases.
Collapse
Affiliation(s)
- Luigi Naldini
- HSR-TIGET, San Raffaele Telethon Institute for Gene Therapy and Vita Salute San Raffaele University, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
153
|
Nowrouzi A, Glimm H, von Kalle C, Schmidt M. Retroviral vectors: post entry events and genomic alterations. Viruses 2011; 3:429-55. [PMID: 21994741 PMCID: PMC3185758 DOI: 10.3390/v3050429] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/24/2011] [Accepted: 04/05/2011] [Indexed: 12/16/2022] Open
Abstract
The curative potential of retroviral vectors for somatic gene therapy has been demonstrated impressively in several clinical trials leading to sustained long-term correction of the underlying genetic defect. Preclinical studies and clinical monitoring of gene modified hematopoietic stem and progenitor cells in patients have shown that biologically relevant vector induced side effects, ranging from in vitro immortalization to clonal dominance and oncogenesis in vivo, accompany therapeutic efficiency of integrating retroviral gene transfer systems. Most importantly, it has been demonstrated that the genotoxic potential is not identical among all retroviral vector systems designed for clinical application. Large scale viral integration site determination has uncovered significant differences in the target site selection of retrovirus subfamilies influencing the propensity for inducing genetic alterations in the host genome. In this review we will summarize recent insights gained on the mechanisms of insertional mutagenesis based on intrinsic target site selection of different retrovirus families. We will also discuss examples of side effects occurring in ongoing human gene therapy trials and future prospectives in the field.
Collapse
Affiliation(s)
- Ali Nowrouzi
- Department of Translational Oncology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; E-Mail: (A.N.)
- National Center for Tumor Diseases, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Hanno Glimm
- Department of Translational Oncology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; E-Mail: (A.N.)
- National Center for Tumor Diseases, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Christof von Kalle
- Department of Translational Oncology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; E-Mail: (A.N.)
- National Center for Tumor Diseases, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Authors to whom correspondence should be addressed; E-Mails: (C.v.K.); (M.S.); Tel.: +49-6221-56-6991; +49-6221-42-1600; Fax: +49-6221-56-6930; +49-6221-42-1611
| | - Manfred Schmidt
- Department of Translational Oncology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; E-Mail: (A.N.)
- National Center for Tumor Diseases, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Authors to whom correspondence should be addressed; E-Mails: (C.v.K.); (M.S.); Tel.: +49-6221-56-6991; +49-6221-42-1600; Fax: +49-6221-56-6930; +49-6221-42-1611
| |
Collapse
|
154
|
Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M. Gene therapy for primary immunodeficiencies. Hematol Oncol Clin North Am 2011; 25:89-100. [PMID: 21236392 DOI: 10.1016/j.hoc.2010.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The concept of gene therapy emerged as a way of correcting monogenic inherited diseases by introducing a normal copy of the mutated gene into at least some of the patients' cells. Although this concept has turned out to be quite complicated to implement, it is in the field of primary immunodeficiencies (PIDs) that proof of feasibility has been undoubtedly achieved. There is now a strong rationale in support of gene therapy for at least some PIDs, as discussed in this article.
Collapse
Affiliation(s)
- Alain Fischer
- Developpement Normal et Pathologique du Systeme Immunitaire, INSERM U 768, Hopital Necker, 149 rue de Sevres, Paris, France
| | | | | |
Collapse
|
155
|
Emery DW. The use of chromatin insulators to improve the expression and safety of integrating gene transfer vectors. Hum Gene Ther 2011; 22:761-74. [PMID: 21247248 DOI: 10.1089/hum.2010.233] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The therapeutic application of recombinant retroviruses and other integrating gene transfer vectors has been limited by problems of vector expression and vector-mediated genotoxicity. These problems arise in large part from the interactions between vector sequences and the genomic environment surrounding sites of integration. Strides have been made in overcoming both of these problems through the modification of deleterious vector sequences, the inclusion of better enhancers and promoters, and the use of alternative virus systems. However, these modifications often add other restrictions on vector design, which in turn can further limit therapeutic applications. As an alternative, several groups have been investigating a class of DNA regulatory elements known as chromatin insulators. These elements provide a means of blocking the interaction between an integrating vector and the target cell genome in a manner that is independent of the vector transgene, regulatory elements, or virus of origin. This review outlines the background, rationale, and evidence for using chromatin insulators to improve the expression and safety of gene transfer vectors. Also reviewed are topological factors that constrain the use of insulators in integrating gene transfer vectors, alternative sources of insulators, and the role of chromatin insulators as one of several components for optimal vector design.
Collapse
Affiliation(s)
- David W Emery
- University of Washington Department of Medicine, Division of Medical Genetics, and Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
156
|
Lentiviral vectors for induction of self-differentiation and conditional ablation of dendritic cells. Gene Ther 2011; 18:750-64. [PMID: 21412283 PMCID: PMC3155152 DOI: 10.1038/gt.2011.15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Development of lentiviral vectors (LVs) in the field of immunotherapy and immune regeneration will strongly rely on biosafety of the gene transfer. We demonstrated previously the feasibility of ex vivo genetic programming of mouse bone marrow precursors with LVs encoding granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4), which induced autonomous differentiation of long-lived dendritic cells (DCs), referred to as self-differentiated myeloid-derived antigen-presenting-cells reactive against tumors (SMART-DCs). Here, LV biosafety was enhanced by using a DC-restricted and physiological promoter, the major histocompatibility complex (MHC) II promoter, and including co-expression of the herpes simplex virus-thymidine kinase (sr39HSV-TK) conditional suicide gene. Tricistronic vectors co-expressing sr39HSV-TK, GM-CSF and IL-4 transcriptionally regulated by the MHCII promoter or the ubiquitous cytomegalovirus (CMV) promoter were compared. Despite the different gene transfer effects, such as the kinetics, levels of transgene expression and persistency of integrated vector copies, both vectors induced highly viable SMART-DCs, which persisted for at least 70 days in vivo and could be ablated with the pro-drug Ganciclovir (GCV). SMART-DCs co-expressing the tyrosine-related protein 2 melanoma antigen administered subcutaneously generated antigen-specific, anti-melanoma protective and therapeutic responses in the mouse B16 melanoma model. GCV administration after immunotherapy did not abrogate DC vaccination efficacy. This demonstrates proof-of-principle of genetically programmed DCs that can be ablated pharmacologically.
Collapse
|
157
|
Polyclonal fluctuation of lentiviral vector–transduced and expanded murine hematopoietic stem cells. Blood 2011; 117:3053-64. [DOI: 10.1182/blood-2010-08-303222] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Gene therapy has proven its potential to cure diseases of the hematopoietic system. However, severe adverse events observed in clinical trials have demanded improved gene-transfer conditions. Whereas progress has been made to reduce the genotoxicity of integrating gene vectors, the role of pretransplantation cultivation is less well investigated. We observed that the STIF (stem cell factor [SCF], thrombopoietin [TPO], insulin-like growth factor-2 [IGF-2], and fibroblast growth factor-1 [FGF-1]) cytokine cocktail developed to effectively expand murine hematopoietic stem cells (HSCs) also supports the expansion of leukemia-initiating insertional mutants caused by gammaretroviral gene transfer. We compared 4 protocols to examine the impact of prestimulation and posttransduction culture in STIF in the context of lentiviral gene transfer. Observing 56 transplanted mice for up to 9.5 months, we found consistent engraftment and gene-marking rates after prolonged ex vivo expansion. Although a lentiviral vector with a validated insertional-mutagenic potential was used, longitudinal analysis identifying > 7000 integration sites revealed polyclonal fluctuations, especially in “expanded” groups, with de novo detection of clones even at late time points. Posttransduction expansion in STIF did not enrich clones with insertions in proto-oncogenes but rather increased clonal diversity. Our data indicate that lentiviral transduction in optimized media mediates intact polyclonal hematopoiesis without selection for growth-promoting hits by posttransduction expansion.
Collapse
|
158
|
Abstract
Since their first clinical trial 20 years ago, retroviral (gretroviral and lentiviral) vectors have now been used in more than 350 gene-therapy studies. Retroviral vectors are particularly suited for gene-correction of cells due to long-term and stable expression of the transferred transgene(s), and also because little effort is required for their cloning and production. Several monogenic inherited diseases, mostly immunodeficiencies, can now be successfully treated. The occurrence of insertional mutagenesis in some studies allowed extensive analysis of integration profiles of retroviral vectors, as well as the design of lentiviral vectors with increased safety properties. These new-generation vectors will enable us to continue the successful story of gene therapy, and treat more patients and even more complex diseases.
Collapse
Affiliation(s)
- Patrick Maier
- Department of Radiation Oncology, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | | | | |
Collapse
|
159
|
Grund N, Maier P, Giordano FA, Appelt JU, Zucknick M, Li L, Wenz F, Zeller WJ, Fruehauf S, Allgayer H, Laufs S. Analysis of self-inactivating lentiviral vector integration sites and flanking gene expression in human peripheral blood progenitor cells after alkylator chemotherapy. Hum Gene Ther 2011; 21:943-56. [PMID: 20210626 DOI: 10.1089/hum.2009.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract Hematotoxicity is a major and frequently dose-limiting side effect of chemotherapy. Retroviral methylguanine-DNA-methyltransferase (MGMT; EC 2.1.1.63) gene transfer to primitive hematopoietic progenitor cells (CD34(+) cells) might allow the application of high-dose alkylator chemotherapy with almost mild to absent myelosuppression. Because gammaretroviral vector integration was found in association with malignant or increased proliferation, novel lentiviral vectors with self-inactivating (SIN) capacity might display a safer option for future gene transfer studies. We assessed the influence of chemoselection on integration patterns in 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU)-treated and untreated human CD34(+) cells transduced with an SIN lentiviral vector carrying the MGMT(P140K) transgene, using ligation-mediated PCR (LM-PCR) and next-generation sequencing. In addition, for the first time, the local influence of the lentiviral provirus on the expression of hit and flanking genes in human CD34(+) cells was analyzed at a clonal level. For each colony, the integration site was detected (LM-PCR) and analyzed (QuickMap), and the expression of hit and flanking genes was measured (quantitative RT-PCR). Analyses of both treated and untreated CD34(+) cells revealed preferential integration into genes. Integration patterns in BCNU-treated cells showed mild, but not significant, differences compared with those found in untreated CD34(+) cells. Most importantly, when analyzing the local influence of the provirus, we saw no significant deregulation of the integration-flanking genes. These findings demonstrate that SIN vector-mediated gene transfer might display a feasible and possibly safe option for MGMT(P140K)-mediated chemoprotection of CD34(+) cells.
Collapse
Affiliation(s)
- N Grund
- Department of Experimental Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Ohmine K, Li Y, Bauer TR, Hickstein DD, Russell DW. Tracking of specific integrant clones in dogs treated with foamy virus vectors. Hum Gene Ther 2010; 22:217-24. [PMID: 20738155 DOI: 10.1089/hum.2010.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vector integration can lead to proto-oncogene activation and malignancies during hematopoietic stem cell gene therapy. We previously used foamy virus vectors to deliver the CD18 gene under the control of an internal murine stem cell virus promoter and successfully treated dogs with canine leukocyte adhesion deficiency. Here we have tracked the copy numbers of 11 specific proviruses found in these animals for 36-42 months after transplantation, including examples within or near proto-oncogenes, tumor suppressor genes, and genes unrelated to cancer. We found no evidence for clonal expansion of any of the clones, including those with proviruses in the MECOM gene (MDS1-EVI1 complex). These results suggest that although foamy virus vectors may integrate near proto-oncogenes, this does not necessarily lead to clonal expansion and malignancies. Additionally, we show that copy number estimates of these specific proviruses based on linker-mediated PCR results are different from those obtained by quantitative PCR, but can provide a qualitative assessment of provirus levels.
Collapse
Affiliation(s)
- Ken Ohmine
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
161
|
Heinz N, Schambach A, Galla M, Maetzig T, Baum C, Loew R, Schiedlmeier B. Retroviral and transposon-based tet-regulated all-in-one vectors with reduced background expression and improved dynamic range. Hum Gene Ther 2010; 22:166-76. [PMID: 20825282 DOI: 10.1089/hum.2010.099] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The regulated expression of therapeutic genes may become crucial in gene therapy when their constitutive expression interferes with cell fate in vivo. The efficient regulation of transgene expression requires tightly controlled inducible promoters, as shown for the tetracycline regulatory system (tet-system). However, its application requires the introduction of two components into the target cell genome: the tet-responsive transactivator and the regulated expression cassette. In order to facilitate the usage of the tet-system for approaches in gene therapy, both components have to be transferred by a single vector, thus eliminating the preselection of transactivator positive cells. Published "all-in-one" vectors for regulated transgene expression display a relatively low signal-to-noise ratio, resulting in regulatory windows of around 500-fold even in selected clones. In this study, we show that a modified vector architecture combined with the introduction of new tet-responsive promoters, Ptet, improved the dynamic range of such all-in-one vectors to levels up to 14,000-fold for viral and 25,000-fold for nonviral transfer vectors in nonclonal human cell lines, and up to 2,800-fold in murine hematopoietic cell lines. This improved regulation was the result of a strong reduction of background expression in the off-state, even if cells were transduced at high multiplicity of infection, while induction remained at high levels. In addition, the results indicated that successful regulation of gene expression in different target cells depended on vector architecture as well as the choice of the Ptet-promoter.
Collapse
Affiliation(s)
- Niels Heinz
- Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
162
|
Quantification of lentiviral vector copy numbers in individual hematopoietic colony-forming cells shows vector dose-dependent effects on the frequency and level of transduction. Gene Ther 2010; 18:479-87. [PMID: 21160533 PMCID: PMC3130191 DOI: 10.1038/gt.2010.163] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lentiviral vectors are effective tools for gene transfer and integrate variable numbers of proviral DNA copies in variable proportions of cells. The levels of transduction of a cellular population may therefore depend upon experimental parameters affecting the frequency and/or the distribution of vector integration events in this population. Such analysis would require measuring vector copy numbers (VCN) in individual cells. To evaluate the transduction of hematopoietic progenitor cells at the single-cell level, we measured VCN in individual colony-forming cell (CFC) units, using an adapted quantitative PCR (Q-PCR) method. The feasibility, reproducibility and sensitivity of this approach were tested with characterized cell lines carrying known numbers of vector integration. The method was validated by correlating data in CFC with gene expression or with calculated values, and was found to slightly underestimate VCN. In spite of this, such Q-PCR on CFC was useful to compare transduction levels with different infection protocols and different vectors. Increasing the vector concentration and re-iterating the infection were two different strategies that improved transduction by increasing the frequency of transduced progenitor cells. Repeated infection also augmented the number of integrated copies and the magnitude of this effect seemed to depend on the vector preparation. Thus, the distribution of VCN in hematopoietic colonies may depend upon experimental conditions including features of vectors. This should be carefully evaluated in the context of ex vivo hematopoietic gene therapy studies.
Collapse
|
163
|
Ellis BL, Potts PR, Porteus MH. Creating higher titer lentivirus with caffeine. Hum Gene Ther 2010; 22:93-100. [PMID: 20626321 DOI: 10.1089/hum.2010.068] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The use of lentiviral vectors extends from the laboratory, where they are used for basic studies in virology and as gene transfer vectors gene delivery, to the clinic, where clinical trials using these vectors for gene therapy are currently underway. Lentiviral vectors are useful for gene transfer because they have a large cloning capacity and a broad tropism. Although procedures for lentiviral vector production have been standardized, simple methods to create higher titer virus during production would have extensive and important applications for both research and clinical use. Here we present a simple and inexpensive method to increase the titer by 3- to 8-fold for both integration-competent lentivirus and integration-deficient lentivirus. This is achieved during standard lentiviral production by the addition of caffeine to a final concentration of 2-4 mM. We find that sodium butyrate, a histone deacetylase inhibitor shown previously to increase viral titer, works only ∼50% as well as caffeine. We also show that the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) inhibitor NU7026 can also increase viral titer, but that the combination of caffeine and NU7026 is not more effective than caffeine alone. We show that the time course of caffeine treatment is important in achieving a higher titer virus, and is most effective when caffeine is present from 17 to 41 hr posttransfection. Last, although caffeine increases lentiviral vector titer, it has the opposite effect on the titer of adeno-associated virus type 2 vector. Together, these results provide a novel, simple, and inexpensive way to significantly increase the titer of lentiviral vectors.
Collapse
Affiliation(s)
- Brian L Ellis
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | | | |
Collapse
|
164
|
Abstract
After more than 1500 gene therapy clinical trials in the past two decades, the overall conclusion is that for gene therapy (GT) to be successful, the vector systems must still be improved in terms of delivery, expression and safety. The recent development of more efficient and stable vector systems has created great expectations for the future of GT. Impressive results were obtained in three primary immunodeficiencies and other inherited diseases such as congenital blindness, adrenoleukodystrophy or junctional epidermolysis bullosa. However, the development of leukemia in five children included in the GT clinical trials for X-linked severe combined immunodeficiency and the silencing of the therapeutic gene in the chronic granulomatous disease clearly showed the importance of improving safety and efficiency. In this review, we focus on the main strategies available to achieve physiological or tissue-specific expression of therapeutic transgenes and discuss the importance of controlling transgene expression to improve safety. We propose that tissue-specific and/or physiological viral vectors offer the best balance between efficiency and safety and will be the tools of choice for future clinical trials in GT of inherited diseases.
Collapse
|
165
|
Doering CB, Archer D, Spencer HT. Delivery of nucleic acid therapeutics by genetically engineered hematopoietic stem cells. Adv Drug Deliv Rev 2010; 62:1204-12. [PMID: 20869414 PMCID: PMC2991563 DOI: 10.1016/j.addr.2010.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/17/2010] [Accepted: 09/08/2010] [Indexed: 01/02/2023]
Abstract
Several populations of adult human stem cells have been identified, but only a few of these are in routine clinical use. The hematopoietic stem cell (HSC) is arguably the most well characterized and the most routinely transplanted adult stem cell. Although details regarding several aspects of this cell's phenotype are not well understood, transplant of HSCs has advanced to become the standard of care for the treatment of a range of monogenic diseases and several types of cancer. It has also proven to be an excellent target for genetic manipulation, and clinical trials have already demonstrated the usefulness of targeting this cell as a means of delivering nucleic acid therapeutics for the treatment of several previously incurable diseases. It is anticipated that additional clinical trials will soon follow, such as genetically engineering HSCs with vectors to treat monogenic diseases such as hemophilia A. In addition to the direct targeting of HSCs, induced pluripotent stem (iPS) cells have the potential to replace virtually any engineered stem cell therapeutic, including HSCs. We now know that for the broad use of genetically modified HSCs for the treatment of non-lethal diseases, e.g. hemophilia A, we must be able to regulate the introduction of nucleic acid sequences into these target cells. We can begin to refine transduction protocols to provide safer approaches to genetically manipulate HSCs and strategies are being developed to improve the overall safety of gene transfer. This review focuses on recent advances in the systemic delivery of nucleic acid therapeutics using genetically modified stem cells, specifically focusing on i) the use of retroviral vectors to genetically modify HSCs, ii) the expression of fVIII from hematopoietic stem cells for the treatment of hemophilia A, and iii) the use of genetically engineered hematopoietic cells generated from iPS cells as treatment for disorders of hematopoiesis.
Collapse
Affiliation(s)
- Christopher B Doering
- Aflac Cancer Center and Blood Disorders Service, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
166
|
Toscano MG, Benabdellah K, Muñoz P, Frecha C, Cobo M, Martín F. Was cDNA sequences modulate transgene expression of was promoter-driven lentiviral vectors. Hum Gene Ther 2010; 20:1279-90. [PMID: 19630517 DOI: 10.1089/hum.2009.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract The development of vectors that express a therapeutic transgene efficiently and specifically in hematopoietic cells (HCs) is an important goal for gene therapy of hematological disorders. We have previously shown that a 500-bp fragment from the proximal Was gene promoter in a lentiviral vector (LV) was sufficient to achieve more than 100-fold higher levels of Wiskott-Aldrich syndrome protein in HCs than in nonhematopoietic cells (non-HCs). We show now that this differential was reduced up to 10 times when the enhanced green fluorescent protein gene (eGFP) was expressed instead of Was in the same LV backbone. Insertion of Was cDNA sequences downstream of eGFP in these LVs had a negative effect on transgene expression. This effect varied in different cell types but, overall, Was cDNA sequences increased the hematopoietic specificity of Was promoter-driven LV. We have characterized the minimal fragment required to increase hematopoietic specificity and have demonstrated that the mechanism involves Was promoter regulation and RNA processing. In addition, we have shown that Was cDNA sequences interfere with the enhancer activity of the woodchuck posttranscriptional regulatory element. These results represent the first data showing the role of Was intragenic sequences in gene regulation.
Collapse
Affiliation(s)
- Miguel G Toscano
- Immunology and Cell Biology Department, Institute of Parasitology and Biomedicine López Neyra-CSIC, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | | | | | | | | | | |
Collapse
|
167
|
Xie J, Larochelle A, Maric I, Faulhaber M, Donahue RE, Dunbar CE. Repetitive busulfan administration after hematopoietic stem cell gene therapy associated with a dominant HDAC7 clone in a nonhuman primate. Hum Gene Ther 2010; 21:695-703. [PMID: 20102258 DOI: 10.1089/hum.2009.191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The risk of genotoxicity of retroviral vector-delivered gene therapy targeting hematopoietic stem cells (HSCs) has been highlighted by the development of clonal dominance and malignancies in human and animal gene therapy trials. Large-animal models have proven invaluable to test the safety of retroviral vectors, but the detection of clonal dominance may require years of follow-up. We hypothesized that hematopoietic stress may accelerate the proliferation and therefore the detection of abnormal clones in these models. We administered four monthly busulfan (Bu) infusions to induce hematopoietic stress in a healthy rhesus macaque previously transplanted with CD34+ cells transduced with retroviral vectors carrying a simple marker gene. Busulfan administration resulted in significant cytopenias with each cycle, and prolonged pancytopenia after the final cycle with eventual recovery. Before busulfan treatment there was highly polyclonal marking in all lineages. After Bu administration clonal diversity was markedly decreased in all lineages. Unexpectedly, we found no evidence of selection of the MDS1/EVI1 clones present before Bu administration, but a clone with a vector integration in intron 1 of the histone deacetylase-7 (HDAC7) gene became dominant in granulocytes over time after Bu administration. The overall marking level in the animal was increased significantly after Bu treatment and coincident with expansion of the HDAC7 clone, suggesting an in vivo advantage for this clone under stress. HDAC7 expression was upregulated in marrow progenitors containing the vector. Almost 5 years after Bu administration, the animal developed progressive cytopenias, and at autopsy the marrow showed complete lack of neutrophil or platelet maturation, with a new population of approximately 20% undifferentiated blasts. These data suggest that chemotherapeutic stress may accelerate vector-related clonal dominance, even in the absence of drug resistance genes expressed by the vector. This model may both accelerate the detection of abnormal clones to facilitate analysis of genotoxicity for human gene therapy, and help assess the safety of administering myelotoxic chemotherapeutic agents in patients previously engrafted with vector-containing cells.
Collapse
Affiliation(s)
- Jianjun Xie
- Molecular Hematopoiesis Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
168
|
Sellers S, Gomes TJ, Larochelle A, Lopez R, Adler R, Krouse A, Donahue RE, Childs RW, Dunbar CE. Ex vivo expansion of retrovirally transduced primate CD34+ cells results in overrepresentation of clones with MDS1/EVI1 insertion sites in the myeloid lineage after transplantation. Mol Ther 2010; 18:1633-9. [PMID: 20571542 PMCID: PMC2956935 DOI: 10.1038/mt.2010.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 05/13/2010] [Indexed: 12/19/2022] Open
Abstract
Activation of proto-oncogenes by retroviral insertion is an important issue delaying clinical development of gene therapy. We have reported the nonrandom persistence of hematopoietic clones with vector insertions within the MDS1/EVI1 locus following transplantation of rhesus macaques. We now ask whether prolonged culture of transduced CD34(+) cells before transplantation selects for clones with insertions in the MDS1/EVI11 or other proto-oncogene loci. CD34(+) cells were transduced with standard retroviral vectors for 4 days and then continued in culture for an additional 6 days before transplantation. A 15% of insertions identified in granulocytes 6 months post-transplant were in MDS1/EVI11, significantly increased compared to the frequency in animals transplanted with cells immediately following transduction. MDS1/EVI1 clones became more dominant over time post-transplantation in one animal that was followed long term, accompanied by an increased overall copy number of vector-containing granulocytes, with one MDS1/EVI1 clone eventually accounting for 100% of transduced granulocytes and marrow colony-forming unit (CFU). This vector insertion increased the expression of Evi1 mRNA. There was no overrepresentation of MDS1/EVI1 insertions contributing to lymphoid lineages. Strategies involving prolonged ex vivo expansion of transduced cells may increase the risk of genotoxicity.
Collapse
Affiliation(s)
- Stephanie Sellers
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-1290, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Sorrentino B. Assessing the risk of T-cell malignancies in mouse models of SCID-X1. Mol Ther 2010; 18:868-70. [PMID: 20436493 DOI: 10.1038/mt.2010.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Brian Sorrentino
- Division of Experimental Hematology, Department of Hematology, St Jude Children's Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
170
|
Paruzynski A, Arens A, Gabriel R, Bartholomae CC, Scholz S, Wang W, Wolf S, Glimm H, Schmidt M, von Kalle C. Genome-wide high-throughput integrome analyses by nrLAM-PCR and next-generation sequencing. Nat Protoc 2010; 5:1379-95. [PMID: 20671722 DOI: 10.1038/nprot.2010.87] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-throughput integration site profiling has become a feasible tool to assess vector biosafety and to monitor the cell fate of the gene-corrected cell population in clinical gene therapy studies. Here we report a step-by-step protocol for universal genome-wide and comprehensive integrome analysis that can be performed on >10(2)-10(3) samples of interest in parallel. This assay is composed of fast and cost-efficient non-restrictive linear amplification-mediated PCR; optimized sample preparation for pyrosequencing; and automated bioinformatic data mining, including sequence trimming, alignment to the cellular genome and further annotation. Moreover, the workflow of this large-scale assay can be adapted to any PCR-based method aiming to characterize unknown flanking DNA adjacent to a known DNA region. Thus, in combination with next-generation sequencing technologies, large-scale integrome analysis of > 4 x 10(5)-1 x 10(6) integration site sequences can be accomplished within a single week.
Collapse
Affiliation(s)
- Anna Paruzynski
- Department of Translational Oncology, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Ng YY, Baert MRM, Pike-Overzet K, Rodijk M, Brugman MH, Schambach A, Baum C, Hendriks RW, van Dongen JJM, Staal FJT. Correction of B-cell development in Btk-deficient mice using lentiviral vectors with codon-optimized human BTK. Leukemia 2010; 24:1617-30. [PMID: 20574453 DOI: 10.1038/leu.2010.140] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
X-linked agammaglobulinemia (XLA) is the most common primary immunodeficiency (PID) in man and caused by mutations in the Bruton's tyrosine kinase (BTK) gene. XLA is characterized by a B-cell differentiation arrest in bone marrow, absence of mature B cells and immunoglobulins (Igs), and recurrent bacterial infections. We used self-inactivating lentiviral vectors expressing codon-optimized human BTK under the control of three different ubiquitous or B cell-specific promoters. Btk-/- mice engrafted with transduced cells showed correction of both precursor B-cell and peripheral B-cell development. Lentiviral vectors containing the wildtype BTK sequence did not correct the phenotype. All treated mice with codon-optimized BTK exhibited the recovery of B1 cells in the peritoneal cavity, and of serum IgM and IgG3 levels. Calcium mobilization responses upon B-cell receptor stimulation as well as in vivo responses to T cell-independent antigens were restored. Viral promoters overexpressing BTK >100-fold above normal resulted in erythro-myeloid proliferations independent of insertional mutagenesis. However, transplantation into secondary Btk-/- recipients using cellular promoters resulted in functional restoration of peripheral B cells and IgM levels, without any adverse effects. In conclusion, transduction of human BTK corrects B-cell development and antigen-specific antibody responses in Btk-/- mice, thus indicating the feasibility of lentiviral gene therapy for XLA, provided that BTK expression does not vastly exceed normal levels.
Collapse
Affiliation(s)
- Y Y Ng
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Maier P, Herskind C, Barzan D, Zeller WJ, Wenz F. SNAI2 as a novel radioprotector of normal tissue by gene transfer using a lentiviral bicistronic SIN vector. Radiat Res 2010; 173:612-9. [PMID: 20426660 DOI: 10.1667/rr1952.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tumor radiotherapy with large-field irradiation results in an increase of p53-dependent apoptosis of the radiosensitive hematopoietic stem cells. Proapoptotic PUMA is a transcriptional target of p53. Thus suppression of PUMA expression by gene therapy with the transcription repressor SNAI2 as transgene might be a potential approach for normal tissue protection during radiotherapy. SNAI2 cDNA was cloned in a lentiviral SIN vector in a bicistronic expression cassette followed by a floxed IRES-EMCV linker and EGFP as selection gene. Wild-type p53 TK6 cells were used as the cellular model system. We could demonstrate the significant radioprotective effect of SNAI2 overexpression in a cytotoxicity assay after irradiation with 0-5 Gy compared with untransduced or control vector (inverse oriented SNAI2 cDNA)-transduced cells. Additionally, TK6-SNAI2 compared to TK6-SNAI2inv cells showed a survival advantage in a clonogenic assay after irradiation with 0-3 Gy. Determination of the proportion of sub-G(1) cells in TK6-SNAI2 cells revealed an approximately 50% reduction in apoptosis compared with both control entities. In this study using a bicistronic lentiviral vector, we were able to provide proof of principle that lentiviral overexpression of SNAI2 might be used for radioprotective gene therapy to widen the therapeutic range in radiotherapy.
Collapse
Affiliation(s)
- Patrick Maier
- Department of Radiation Oncology, Mannheim Medical Center, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | | | | | | | | |
Collapse
|
173
|
A self-inactivating lentiviral vector for SCID-X1 gene therapy that does not activate LMO2 expression in human T cells. Blood 2010; 116:900-8. [PMID: 20457870 DOI: 10.1182/blood-2009-10-250209] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To develop safer and more effective vectors for gene therapy of X-linked severe combined immunodeficiency (SCID-X1), we have evaluated new self-inactivating lentiviral vectors based on the HIV virus. The CL20i4-hgamma(c)-Revgen vector contains the entire human common gamma chain (gamma(c)) genomic sequence driven by the gamma(c) promoter. The CL20i4-EF1alpha-hgamma(c)OPT vector uses a promoter fragment from the eukaryotic elongation factor alpha (EF1alpha) gene to express a codon-optimized human gamma(c) cDNA. Both vectors contain a 400-bp insulator fragment from the chicken beta-globin locus within the self-inactivating long-terminal repeat. Transduction of bone marrow cells using either of these vectors restored T, B, and natural killer lymphocyte development and function in a mouse SCID-X1 transplantation model. Transduction of human CD34(+) bone marrow cells from SCID-X1 patients with either vector restored T-cell development in an in vitro assay. In safety studies using a Jurkat LMO2 activation assay, only the CL20i4-EF1alpha-hgamma(c)OPT vector lacked the ability to transactivate LMO2 protein expression, whereas the CL20i4-hgamma(c)-Revgen vector significantly activated LMO2 protein expression. In addition, the CL20i4-EF1alpha-hgamma(c)OPT vector has not caused any tumors in transplanted mice. We conclude that the CL20i4-EF1alpha-hgamma(c)OPT vector may be suitable for testing in a clinical trial based on these preclinical demonstrations of efficacy and safety.
Collapse
|
174
|
Knight S, Bokhoven M, Collins M, Takeuchi Y. Effect of the internal promoter on insertional gene activation by lentiviral vectors with an intact HIV long terminal repeat. J Virol 2010; 84:4856-9. [PMID: 20181689 PMCID: PMC2863782 DOI: 10.1128/jvi.02476-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 02/15/2010] [Indexed: 01/24/2023] Open
Abstract
Insertional mutagenesis by viral vectors is a problem in gene therapy. We recently reported that lentiviral vectors with an intact HIV long terminal repeat (LTR) caused insertional gene activation by transcripts from the 5' LTR splicing to an adjacent gene. Here we demonstrate that the level of transcription from the 5' LTR, and also insertional gene activation, is dependent on the internal promoter in the vector. We also show that there are more transcripts originating from the 5' LTR than from, or reading through, the 3' LTR. This study will allow the design of safer lentiviral vectors for applications in which an intact HIV LTR is required.
Collapse
Affiliation(s)
- Sean Knight
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Marieke Bokhoven
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Mary Collins
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Yasuhiro Takeuchi
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
175
|
Fischer A, Hacein-Bey-Abina S, Cavazanna-Calvo M. Gene Therapy for Primary Immunodeficiencies. Immunol Allergy Clin North Am 2010; 30:237-48. [DOI: 10.1016/j.iac.2010.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
176
|
Abstract
Accidental insertional activation of proto-oncogenes and potential vector mobilization pose serious challenges for human gene therapy using retroviral vectors. Comparative analyses of integration sites of different retroviral vectors have elucidated distinct target site preferences, highlighting vectors based on the alpharetrovirus Rous sarcoma virus (RSV) as those with the most neutral integration spectrum. To date, alpharetroviral vector systems are based mainly on single constructs containing viral coding sequences and intact long terminal repeats (LTR). Even though they are considered to be replication incompetent in mammalian cells, the transfer of intact viral genomes is unacceptable for clinical applications, due to the risk of vector mobilization and the potentially immunogenic expression of viral proteins, which we minimized by setting up a split-packaging system expressing the necessary viral proteins in trans. Moreover, intact LTRs containing transcriptional elements are capable of activating cellular genes. By removing most of these transcriptional elements, we were able to generate a self-inactivating (SIN) alpharetroviral vector, whose LTR transcriptional activity is strongly reduced and whose transgene expression can be driven by an internal promoter of choice. Codon optimization of the alpharetroviral Gag/Pol expression construct and further optimization steps allowed the production of high-titer self-inactivating vector particles in human cells. We demonstrate proof of principle for the versatility of alpharetroviral SIN vectors for the genetic modification of murine and human hematopoietic cells at a low multiplicity of infection.
Collapse
|
177
|
Zweier-Renn LA, Hawley TS, Burkett S, Ramezani A, Riz I, Adler RL, Hickstein DD, Hawley RG. Hematopoietic immortalizing function of the NKL-subclass homeobox gene TLX1. Genes Chromosomes Cancer 2010; 49:119-31. [PMID: 19862821 DOI: 10.1002/gcc.20725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Translocations resulting in ectopic expression of the TLX1 homeobox gene (previously known as HOX11) are recurrent events in human T-cell acute lymphoblastic leukemia (T-ALL). Transduction of primary murine hematopoietic stem/progenitor cells with retroviral vectors expressing TLX1 readily yields immortalized hematopoietic progenitor cell lines. Understanding the processes involved in TLX1-mediated cellular immortalization should yield insights into the growth and differentiation pathways altered by TLX1 during the development of T-ALL. In recent clinical gene therapy trials, hematopoietic clonal dominance or T-ALL-like diseases have occurred as a direct consequence of insertional activation of the EVI1, PRDM16 or LMO2 proto-oncogenes by the retroviral vectors used to deliver the therapeutic genes. Additionally, the generation of murine hematopoietic progenitor cell lines due to retroviral integrations into Evi1 or Prdm16 has also been recently reported. Here, we determined by linker-mediated nested polymerase chain reaction the integration sites in eight TLX1-immortalized hematopoietic cell lines. Notably, no common integration site was observed among the cell lines. Moreover, no insertions into the Evi1 or Prdm16 genes were identified although insertion near Lmo2 was observed in one instance. However, neither Lmo2 nor any of the other genes examined surrounding the integration sites showed differential vector-influenced expression compared to the cell lines lacking such insertions. While we cannot exclude the possibility that insertional side effects transiently provided a selective growth/survival advantage to the hematopoietic progenitor populations, our results unequivocally rule out insertions into Evi1 and Prdm16 as being integral to the TLX1-initiated immortalization process.
Collapse
Affiliation(s)
- Lynnsey A Zweier-Renn
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Dogan Y, Ganser A, Scherr M, Eder M. Quantification of transforming capacity and cooperation of defined genetic alterations in myeloid malignancies. Exp Hematol 2010; 38:11-9. [PMID: 19837127 DOI: 10.1016/j.exphem.2009.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/02/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Mutations found in myeloid malignancies are qualitatively classified as conferring proliferative and survival advantages or impairing cellular differentiation. However, no suitable experimental model to quantify transforming potential of individual mutations and functional cooperation between defined genetic/epigenetic alterations has been established so far. MATERIALS AND METHODS Based on cytokine-independent proliferation as a marker for cellular transformation, we used limiting dilution and clonal expansion of retrovirally transduced cells in the presence or absence of cytokines to quantify the transformation potential of constitutively active receptor mutants and short hairpin RNAs (shRNA) targeting transcription factors by RNA interference. Interleukin-3-dependent 32D cells were transduced with betaGMR-I374N, c-KitV558D, or c-MplS368C, and cloning efficiencies were normalized to viral integration numbers as determined by quantitative polymerase chain reaction. RESULTS In this assay, c-KitV558D and c-MplS368C were about 25-fold more effective than betaGMR-I374N. To study cooperation of defined genetic/epigenetic aberrations, receptor mutants were coexpressed with shRNAs targeting PU.1 and p53. In p53-hypomorphic, but not in 32D wild-type cells, RNA interference against PU.1 significantly enhances transformation efficacy by c-KitV558D, but not by c-MplS368C, as compared to control shRNA. These data demonstrate nonredundant, receptor-specific and p53-dependent responses to reduced PU.1 expression in 32D cells. CONCLUSION This cell culture model represents a useful tool to quantify hematopoietic cell transformation by defined genetic and epigenetic alterations.
Collapse
Affiliation(s)
- Yildirim Dogan
- Hannover Medical School, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover, Germany
| | | | | | | |
Collapse
|
179
|
Abstract
Gene therapy for the correction of inherited or acquired disease has gained increasing importance in recent years. Successful treatment of children suffering from severe combined immunodeficiency (SCID) was achieved using retrovirus vectors for gene transfer. Encouraging improvements of vision were reported in a genetic eye disorder (LCA) leading to early childhood blindness. Adeno-associated virus (AAV) vectors were used for gene transfer in these trials. This chapter gives an overview of the design and delivery of viral vectors for the transport of a therapeutic gene into a target cell or tissue. The construction and production of retrovirus, lentivirus, and AAV vectors are covered. The focus is on production methods suitable for biopharmaceutical upscaling and for downstream processing. Quality control measures and biological safety considerations for the use of vectors in clinical trials are discussed.
Collapse
|
180
|
Abstract
Lentiviruses are capable of infecting many cells irrespective of their cycling status, stably inserting DNA copies of the viral RNA genomes into host chromosomes. This property has led to the development of lentiviral vectors for high-efficiency gene transfer to a wide variety of cell types, from slowly proliferating hematopoietic stem cells to terminally differentiated neurons. Regardless of their advantage over gammaretroviral vectors, which can only introduce transgenes into target cells that are actively dividing, lentiviral vectors are still susceptible to chromosomal position effects that result in transgene silencing or variegated expression. In this chapter, various genetic regulatory elements are described that can be incorporated within lentiviral vector backbones to minimize the influences of neighboring chromatin on single-copy transgene expression. The modifications include utilization of strong internal enhancer-promoter sequences, addition of scaffold/matrix attachment regions, and flanking the transcriptional unit with chromatin domain insulators. Protocols are provided to evaluate the performance as well as the relative biosafety of lentiviral vectors containing these elements.
Collapse
Affiliation(s)
- Ali Ramezani
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC, USA
| | | |
Collapse
|
181
|
Montiel-Equihua CA, Thrasher AJ, Gaspar HB. Development of gene therapy: potential in severe combined immunodeficiency due to adenosine deaminase deficiency. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2009; 3:1-12. [PMID: 24198507 PMCID: PMC3781725 DOI: 10.2147/sccaa.s5570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The history of stem cell gene therapy is strongly linked to the development of gene therapy for severe combined immunodeficiencies (SCID) and especially adenosine deaminase (ADA)-deficient SCID. Here we discuss the developments achieved in over two decades of clinical and laboratory research that led to the establishment of a protocol for the autologous transplant of retroviral vector-mediated gene-modified hematopoietic stem cells, which has proved to be both successful and, to date, safe. Patients in trials in three different countries have shown long-term immunological and metabolic correction. Nevertheless, improvements to the safety profile of viral vectors are underway and will undoubtedly reinforce the position of stem cell gene therapy as a treatment option for ADA-SCID.
Collapse
|
182
|
Sadat MA, Dirscherl S, Sastry L, Dantzer J, Pech N, Griffin S, Hawkins T, Zhao Y, Barese CN, Cross S, Orazi A, An C, Goebel WS, Yoder MC, Li X, Grez M, Cornetta K, Mooney SD, Dinauer MC. Retroviral vector integration in post-transplant hematopoiesis in mice conditioned with either submyeloablative or ablative irradiation. Gene Ther 2009; 16:1452-64. [PMID: 19657370 PMCID: PMC2795029 DOI: 10.1038/gt.2009.96] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 06/09/2009] [Indexed: 12/11/2022]
Abstract
X-linked chronic granulomatous disease (X-CGD) is an inherited immunodeficiency with absent phagocyte NADPH-oxidase activity caused by defects in the gene-encoding gp91(phox). Here, we evaluated strategies for less intensive conditioning for gene therapy of genetic blood disorders without selective advantage for gene correction, such as might be used in a human X-CGD protocol. We compared submyeloablative with ablative irradiation as conditioning in murine X-CGD, examining engraftment, oxidase activity and vector integration in mice transplanted with marrow transduced with a gamma-retroviral vector for gp91(phox) expression. The frequency of oxidase-positive neutrophils in the donor population was unexpectedly higher in many 300 cGy-conditioned mice compared with lethally irradiated recipients, as was the fraction of vector-marked donor secondary CFU-S12. Vector integration sites in marrow, spleen and secondary CFU-S12 DNA from primary recipients were enriched for cancer-associated genes, including Evi1, and integrations in or near cancer-associated genes were more frequent in marrow and secondary CFU-S12 from 300 cGy-conditioned mice compared with fully ablated mice. These findings support the concept that vector integration can confer a selection bias, and suggest that the intensity of the conditioning regimen may further influence the effects of vector integration on clonal selection in post-transplant engraftment and hematopoiesis.
Collapse
Affiliation(s)
- Mohammed A. Sadat
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN USA
| | - Sara Dirscherl
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN USA
| | - Lakshmi Sastry
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Jessica Dantzer
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Nancy Pech
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN USA
| | - Samantha Griffin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Troy Hawkins
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Yiqiang Zhao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Cecilia N. Barese
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN USA
| | - Scott Cross
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Attilio Orazi
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN USA
| | - Caroline An
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN USA
| | - W. Scott Goebel
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN USA
| | - Mervin C. Yoder
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Xiaoman Li
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Medicine; Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Manuel Grez
- Molecular Virology, Georg-Speyer-Haus, Frankfurt, Germany
| | - Kenneth Cornetta
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Medicine; Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Sean D. Mooney
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Mary C. Dinauer
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, IN USA
| |
Collapse
|
183
|
Müther N, Noske N, Ehrhardt A. Viral hybrid vectors for somatic integration - are they the better solution? Viruses 2009; 1:1295-324. [PMID: 21994594 PMCID: PMC3185507 DOI: 10.3390/v1031295] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/04/2009] [Accepted: 12/10/2009] [Indexed: 12/18/2022] Open
Abstract
The turbulent history of clinical trials in viral gene therapy has taught us important lessons about vector design and safety issues. Much effort was spent on analyzing genotoxicity after somatic integration of therapeutic DNA into the host genome. Based on these findings major improvements in vector design including the development of viral hybrid vectors for somatic integration have been achieved. This review provides a state-of-the-art overview of available hybrid vectors utilizing viruses for high transduction efficiencies in concert with various integration machineries for random and targeted integration patterns. It discusses advantages but also limitations of each vector system.
Collapse
Affiliation(s)
- Nadine Müther
- Max von Pettenkofer-Institut, Department of Virology, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9A, 80336 Munich, Germany
| | - Nadja Noske
- Max von Pettenkofer-Institut, Department of Virology, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9A, 80336 Munich, Germany
| | - Anja Ehrhardt
- Max von Pettenkofer-Institut, Department of Virology, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9A, 80336 Munich, Germany
| |
Collapse
|
184
|
Comprehensive genomic access to vector integration in clinical gene therapy. Nat Med 2009; 15:1431-6. [PMID: 19966782 DOI: 10.1038/nm.2057] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Accepted: 06/16/2009] [Indexed: 11/09/2022]
Abstract
Retroviral vectors have induced subtle clonal skewing in many gene therapy patients and severe clonal proliferation and leukemia in some of them, emphasizing the need for comprehensive integration site analyses to assess the biosafety and genomic pharmacokinetics of vectors and clonal fate of gene-modified cells in vivo. Integration site analyses such as linear amplification-mediated PCR (LAM-PCR) require a restriction digest generating unevenly small fragments of the genome. Here we show that each restriction motif allows for identification of only a fraction of all genomic integrants, hampering the understanding and prediction of biological consequences after vector insertion. We developed a model to define genomic access to the viral integration site that provides optimal restriction motif combinations and minimizes the percentage of nonaccessible insertion loci. We introduce a new nonrestrictive LAM-PCR approach that has superior capabilities for comprehensive unbiased integration site retrieval in preclinical and clinical samples independent of restriction motifs and amplification inefficiency.
Collapse
|
185
|
Tittiger M, Ma X, Xu L, Ponder KP. Neonatal intravenous injection of a gammaretroviral vector has a low incidence of tumor induction in mice. Hum Gene Ther 2009; 19:1317-23. [PMID: 19866493 DOI: 10.1089/hum.2008.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neonatal intravenous injection of gammaretroviral vectors (gamma-RVs) with an intact long terminal repeat (LTR) and an internal liver promoter can result in long-term expression in liver cells and correction of mucopolysaccharidosis. Some expression also occurs in blood cells and brain, which likely derives from the LTR, and may contribute to clinical efficacy. The goal of this project was to determine whether neonatal gene therapy with an LTR-intact gamma-RV would induce tumors in mice. Fifty-one normal newborn C57BL/6 mice were injected intravenously at 10(10) transducing units/kg with a gamma-RV expressing canine beta-glucuronidase (GUSB) cDNA. This resulted in transduction of 23 +/- 9% of hepatocytes as determined by histochemical staining, and 0.24 +/- 0.20 copy of gamma-RV DNA per cell in liver as determined by real-time polymerase chain reaction. Serum GUSB activity was stable for 1.75 years after transduction at 705 +/- 119 units/ml. Ninety-six percent of mice survived for the duration of evaluation, which was similar to the survival rate for 65 control mice that were not injected with gamma-RV. One gamma-RV-treated mouse (2%) developed a small (diameter, 2 mm) liver adenoma, which was similar to the frequency of liver adenomas (2%) or hepatocellular carcinoma (2%) in untreated mice. Although 22% of gamma-RV-treated mice developed hematopoietic tumors, none contained high gamma-RV DNA copy numbers, and the frequency was similar to that in the control group (22%). We conclude that neonatal intravenous injection of an LTR-intact gamma-RV does not have a high risk of inducing cancer in mice.
Collapse
Affiliation(s)
- Mindy Tittiger
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
186
|
Arumugam PI, Higashimoto T, Urbinati F, Modlich U, Nestheide S, Xia P, Fox C, Corsinotti A, Baum C, Malik P. Genotoxic potential of lineage-specific lentivirus vectors carrying the beta-globin locus control region. Mol Ther 2009; 17:1929-37. [PMID: 19707188 PMCID: PMC2835044 DOI: 10.1038/mt.2009.183] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 07/15/2009] [Indexed: 01/12/2023] Open
Abstract
Insertional mutagenesis by long terminal repeat (LTR) enhancers in gamma-retrovirus-based vectors (GVs) in clinical trials has prompted deeper investigations into vector genotoxicity. Experimentally, self-inactivating (SIN) lentivirus vectors (LVs) and GV containing internal promoters/enhancers show reduced genotoxicity, although strong ubiquitously-active enhancers dysregulate genes independent of vector type/design. Herein, we explored the genotoxicity of beta-globin (BG) locus control region (LCR), a strong long-range lineage-specific-enhancer, with/without insulator (Ins) elements in LV using primary hematopoietic progenitors to generate in vitro immortalization (IVIM) assay mutants. LCR-containing LV had approximately 200-fold lower transforming potential, compared to the conventional GV. The LCR perturbed expression of few genes in a 300 kilobase (kb) proviral vicinity but no upregulation of genes associated with cancer, including an erythroid-specific transcription factor occurred. A further twofold reduction in transforming activity was observed with insulated LCR-containing LV. Our data indicate that toxicology studies of LCR-containing LV in mice will likely not yield any insertional oncogenesis with the numbers of animals that can be practically studied.
Collapse
Affiliation(s)
- Paritha I Arumugam
- Division of Experimental Hematology/Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Maier P, Spier I, Laufs S, Veldwijk MR, Fruehauf S, Wenz F, Zeller WJ. Chemoprotection of human hematopoietic stem cells by simultaneous lentiviral overexpression of multidrug resistance 1 and O(6)-methylguanine-DNA methyltransferase(P140K). Gene Ther 2009; 17:389-99. [PMID: 19865182 DOI: 10.1038/gt.2009.133] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myelotoxicity is a dose-limiting effect of many chemotherapeutic regimens. Thus, there is great interest in protecting human hematopoietic stem cells by the transfer of drug resistance genes. The main focus of this study was the simultaneous overexpression of multidrug resistance 1 (MDR1) and the O(6)-benzylguanine (O(6)-BG)-resistant mutant MGMT(P140K) (O(6)-methylguanine-DNA methyltransferase) with a bicistronic lentiviral vector (HR'SIN-MDR1-IRES-MGMT(P140K)), with regard to the capability to convey chemoprotection in the leukemia cell line, HL60, and human hematopoietic stem cells (CD34(+)). Combination therapy with O(6)-BG/1-(2-chloroethyl)-3-(4-amino-2-methylpyrimidine-5-yl)methyl-1-nitrosourea) (ACNU) plus paclitaxel showed a significant survival advantage of HL60 cells transduced with this combination vector. In CD34(+) cells, monotherapy with O(6)-BG/temozolomide (TMZ) resulted in an increased percentage of MGMT-positive cells (vs untreated cells) after transduction with HR'SIN-MDR1-IRES-MGMT(P140K) (28.3%). For combination therapy with O(6)-BG/temozolomide plus paclitaxel the increase was higher with the combination vector (52.8%) than with a vector expressing MGMT(P140K) solely (29.1%). With regard to MDR1-positive cells the protective effect of the combination vector (88.5%) was comparable to the single vector HR'SIN-MDR1 (90.0%) for monotherapy with paclitaxel and superior for combination therapy with O(6)-BG/temozolomide plus paclitaxel (84.6 vs 69.7%). In conclusion, the combination vector presents simultaneous protective effects of two drug-resistance genes, offering an opportunity to increase the cancer therapeutic index.
Collapse
Affiliation(s)
- P Maier
- Pharmacology of Cancer Treatment, DKFZ, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
188
|
A new PG13-based packaging cell line for stable production of clinical-grade self-inactivating gamma-retroviral vectors using targeted integration. Gene Ther 2009; 17:272-80. [PMID: 19865181 DOI: 10.1038/gt.2009.134] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The clinical application of self-inactivating (SIN) retroviral vectors has been hampered by the lack of reliable and efficient vector production technologies. To enable production of SIN gamma-retroviral vectors from stable producer clones, a new PG13-based packaging cell, known as PG368, was developed. Viral vector expression constructs can be reliably inserted at a predefined genomic locus of PG368 packaging cells by an Flp-recombinase-mediated targeted cassette exchange (RMCE) reaction. A new, carefully designed vector-targeting construct, pEMTAR-1, eliminated the co-packaging of the selectable marker gene used for the identification of successful recombination at the predefined genomic locus and thus, improved the safety of the production system. Selected clones produced vector supernatants at consistent titers. The targeted insertion of therapeutically relevant SIN vectors for chronic granulomatous disease and X-linked severe combined immunodeficiency into PG368 cells results in stable titers within the range necessary for clinical application. The production of retroviral SIN vectors from stable clinical-grade producer cells is feasible and will contribute to the safe production and application of SIN gamma-retroviral vectors for clinical trials.
Collapse
|
189
|
Maetzig T, Galla M, Brugman MH, Loew R, Baum C, Schambach A. Mechanisms controlling titer and expression of bidirectional lentiviral and gammaretroviral vectors. Gene Ther 2009; 17:400-11. [PMID: 19847204 DOI: 10.1038/gt.2009.129] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bidirectional lentiviral vectors mediate expression of two or more cDNAs from a single internal promoter. In this study, we examined mechanisms that control titer and expression properties of this vector system. To address whether the bidirectional design depends on lentiviral (LV) backbone components, especially the Rev/Rev responsive element (RRE) system, we constructed similar expression cassettes for LV and gammaretroviral (GV) vectors. Bidirectional expression levels could be adjusted by the use of different internal promoters. Furthermore, removal of the constitutive RNA transport element of Mason-Pfizer monkey virus, used in first generation bidirectional LV vectors, improved gene expression. Titers of bidirectional vectors were approximately 10-fold reduced in comparison to unidirectional vectors, independent of the Rev/RRE interaction. We reasoned that titer reductions were due to the formation of interfering double-stranded RNA in packaging cells. Indeed, cotransfection of Nodamuravirus B2 protein, an RNA interference suppressor, increased bidirectional vector titers at least fivefold. We validated the potential of high titer bidirectional vectors by coexpressing a fluorescent marker with O(6)-methylguanine-DNA methyltransferase from integrating, or with Cre recombinase from integrating and non-integrating GV and LV backbones. This allowed for the tracking of chemoprotected and recombined cells by fluorescence marker expression.
Collapse
Affiliation(s)
- T Maetzig
- Department of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
190
|
Rescue of pyruvate kinase deficiency in mice by gene therapy using the human isoenzyme. Mol Ther 2009; 17:2000-9. [PMID: 19755962 DOI: 10.1038/mt.2009.200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human erythrocyte R-type pyruvate kinase deficiency (PKD) is a disorder caused by mutations in the PKLR gene that produces chronic nonspherocytic hemolytic anemia. Besides periodic blood transfusion and splenectomy, severe cases require bone marrow (BM) transplant, which makes this disease a good candidate for gene therapy. Here, the normal human R-type pyruvate kinase (hRPK) complementary (cDNA) was expressed in hematopoietic stem cells (HSCs) derived from pklr deficient mice, using a retroviral vector system. These mice show a similar red blood cell phenotype to that observed in human PKD. Transduced HSCs were transplanted into myeloablated adult PKD mice or in utero injected into nonconditioned PKD fetuses. In the myeloablated recipients, the hematological manifestations of PKD were completely resolved and normal percentages of late erythroid progenitors, reticulocyte and erythrocyte counts, hemoglobin levels and erythrocyte biochemistry were restored. Corrected cells preserved their rescuing capacity after secondary and tertiary transplant. When corrected cells were in utero transplanted, partial correction of the erythrocyte disease was obtained, although a very low number of corrected cells became engrafted, suggesting a different efficiency of cell therapy applied in utero. Our data suggest that transduction of human RPK cDNA in PKLR mutated HSCs could be an effective strategy in severe cases of PKD.
Collapse
|
191
|
Arumugam PI, Urbinati F, Velu CS, Higashimoto T, Grimes HL, Malik P. The 3' region of the chicken hypersensitive site-4 insulator has properties similar to its core and is required for full insulator activity. PLoS One 2009; 4:e6995. [PMID: 19746166 PMCID: PMC2736623 DOI: 10.1371/journal.pone.0006995] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 08/17/2009] [Indexed: 11/19/2022] Open
Abstract
Chromatin insulators separate active transcriptional domains and block the spread of heterochromatin in the genome. Studies on the chicken hypersensitive site-4 (cHS4) element, a prototypic insulator, have identified CTCF and USF-1/2 motifs in the proximal 250 bp of cHS4, termed the "core", which provide enhancer blocking activity and reduce position effects. However, the core alone does not insulate viral vectors effectively. The full-length cHS4 has excellent insulating properties, but its large size severely compromises vector titers. We performed a structure-function analysis of cHS4 flanking lentivirus-vectors and analyzed transgene expression in the clonal progeny of hematopoietic stem cells and epigenetic changes in cHS4 and the transgene promoter. We found that the core only reduced the clonal variegation in expression. Unique insulator activity resided in the distal 400 bp cHS4 sequences, which when combined with the core, restored full insulator activity and open chromatin marks over the transgene promoter and the insulator. These data consolidate the known insulating activity of the canonical 5' core with a novel 3' 400 bp element with properties similar to the core. Together, they have excellent insulating properties and viral titers. Our data have important implications in understanding the molecular basis of insulator function and design of gene therapy vectors.
Collapse
Affiliation(s)
- Paritha I. Arumugam
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Fabrizia Urbinati
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Chinavenmeni S. Velu
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Tomoyasu Higashimoto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - H. Leighton Grimes
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Hematology-Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
192
|
Urbinati F, Arumugam P, Higashimoto T, Perumbeti A, Mitts K, Xia P, Malik P. Mechanism of reduction in titers from lentivirus vectors carrying large inserts in the 3'LTR. Mol Ther 2009; 17:1527-36. [PMID: 19384292 PMCID: PMC2835256 DOI: 10.1038/mt.2009.89] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 03/31/2009] [Indexed: 01/29/2023] Open
Abstract
Self-inactivating (SIN) lentiviruses flanked by the 1.2-kb chicken hypersensitive site-4 (cHS4) insulator element provide consistent, improved expression of transgenes, but have significantly lower titers. The mechanism by which this occurs is unknown. Lengthening the lentiviral (LV) vector transgene cassette by an additional 1.2 kb by an internal cassette caused no further reduction in titers. However, when cHS4 sequences or inert DNA spacers of increasing size were placed in the 3'-long terminal repeat (LTR), infectious titers decreased proportional to the length of the insert. The stage of vector life cycle affected by vectors carrying the large cHS4 3'LTR insert was compared to a control vector: there was no increase in read-through transcription with insertion of the 1.2-kb cHS4 in the 3'LTR. Equal amount of full-length viral mRNA was produced in packaging cells and viral assembly/packaging was unaffected, resulting in comparable amounts of intact vector particles produced by either vectors. However, LV vectors carrying cHS4 in the 3'LTR were inefficiently processed following target-cell entry, with reduced reverse transcription and integration efficiency, and hence lower transduction titers. Therefore, vectors with large insertions in the 3'LTR are transcribed and packaged efficiently, but the LTR insert hinders viral-RNA (vRNA) processing and transduction of target cells. These studies have important implications in design of integrating vectors.
Collapse
Affiliation(s)
- Fabrizia Urbinati
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | |
Collapse
|
193
|
Abstract
In the late 1970s, it was predicted that gene therapy would be applied to humans within a decade. However, despite some success, gene therapy has still not become a routine practise in medicine. In this review, we will examine the problems, both experimental and clinical, associated with the use of viral material for transgenic insertion. We shall also discuss the development of viral vectors involving the most important vector types derived from retroviruses, adenoviruses, herpes simplex viruses and adeno-associated viruses.
Collapse
|
194
|
Modlich U, Navarro S, Zychlinski D, Maetzig T, Knoess S, Brugman MH, Schambach A, Charrier S, Galy A, Thrasher AJ, Bueren J, Baum C. Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol Ther 2009; 17:1919-28. [PMID: 19672245 DOI: 10.1038/mt.2009.179] [Citation(s) in RCA: 304] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gene transfer vectors may cause clonal imbalance and even malignant cell transformation by insertional upregulation of proto-oncogenes. Lentiviral vectors (LV) with their preferred integration in transcribed genes are considered less genotoxic than gammaretroviral vectors (GV) with their preference for integration next to transcriptional start sites and regulatory gene regions. Using a sensitive cell culture assay and a series of self-inactivating (SIN) vectors, we found that the lentiviral insertion pattern was approximately threefold less likely than the gammaretroviral to trigger transformation of primary hematopoietic cells. However, lentivirally induced mutants also showed robust replating, in line with the selection for common insertion sites (CIS) in the first intron of the Evi1 proto-oncogene. This potent proto-oncogene thus represents a CIS for both GV and LV, despite major differences in their integration mechanisms. Altering the vectors' enhancer-promoter elements had a greater effect on safety than the retroviral insertion pattern. Clinical grade LV expressing the Wiskott-Aldrich syndrome (WAS) protein under control of its own promoter had no transforming potential. Mechanistic studies support the conclusion that enhancer-mediated gene activation is the major cause for insertional transformation of hematopoietic cells, opening rational strategies for risk prevention.
Collapse
Affiliation(s)
- Ute Modlich
- Department of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Müller LU, Williams DA. Finding the needle in the hay stack: hematopoietic stem cells in Fanconi anemia. Mutat Res 2009; 668:141-9. [PMID: 19508850 PMCID: PMC2815349 DOI: 10.1016/j.mrfmmm.2009.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 02/09/2009] [Accepted: 03/20/2009] [Indexed: 01/05/2023]
Abstract
Fanconi anemia is a rare bone marrow failure and cancer predisposition syndrome. Childhood onset of aplastic anemia is one of the hallmarks of this condition. Supportive therapy in the form of blood products, androgens, and hematopoietic growth factors may boost blood counts temporarily. However, allogeneic hematopoietic stem cell transplantation (HSCT) currently remains the only curative treatment option for the hematologic manifestations of Fanconi anemia (FA). Here we review current clinical and pre-clinical strategies for treating hematopoietic stem cell (HSC) failure, including the experience with mobilizing and collecting CD34+ hematopoietic stem and progenitor cells as target cells for somatic gene therapy, the current state of FA gene therapy trials, and future prospects for cell and gene therapy.
Collapse
Affiliation(s)
- Lars U.W. Müller
- Department of Medicine, Division of Pediatric Hematology Oncology, Children’s Hospital Boston, and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts
| | - David A. Williams
- Department of Medicine, Division of Pediatric Hematology Oncology, Children’s Hospital Boston, and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
196
|
Self-inactivating retroviral vector-mediated gene transfer induces oncogene activation and immortalization of primary murine bone marrow cells. Mol Ther 2009; 17:1910-8. [PMID: 19638958 DOI: 10.1038/mt.2009.172] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Insertional mutagenesis leading to insurgence of leukemia has been shown as a consequence of retroviral (RV)-mediated gene transfer in animal models and in clinical trials of gene therapy for X-linked severe combined immunodeficiency. Aberrant expression of oncogenes neighboring the gamma-RV vector insertion site via induction by the enhancer element of the viral long terminal repeats (LTRs) is thought to have played a role in leukemogenesis. Consequently, RV vectors devoid of LTR enhancer elements could prove as safer tools for gene transfer. To test this hypothesis, we evaluated the immortalization ability of two RV vectors: one carrying the full-length Moloney leukemia virus (MLV) LTR and one with the same LTR in which the enhancer element was deleted [MLV self-inactivating (SIN)]. Unexpectedly, transduction with MLV SIN resulted in an only slightly and not significant decreased immortalization frequency of primary bone marrow (BM) cultures (about 37%) compared to transduction with MLV (about 48%). Similar to MLV, immortalization by MLV SIN is likely caused by insertional activation of oncogenes including Evi1, Mds1, Mef2c, and Hoxa7. Our results indicate that the MLV SIN, devoid of the LTR enhancer element, was still able to immortalize BM cells by activating nearby gene expression, indicating the need of an accurate selection of the internal promoter to obtain safer SIN RV vectors.
Collapse
|
197
|
Ramezani A, Hawley RG. Correction of murine hemophilia A following nonmyeloablative transplantation of hematopoietic stem cells engineered to encode an enhanced human factor VIII variant using a safety-augmented retroviral vector. Blood 2009; 114:526-34. [PMID: 19470695 PMCID: PMC2713478 DOI: 10.1182/blood-2009-01-199653] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 05/18/2009] [Indexed: 12/21/2022] Open
Abstract
Insertional mutagenesis by retroviral vectors is a major impediment to the clinical application of hematopoietic stem cell gene transfer for the treatment of hematologic disorders. We recently developed an insulated self-inactivating gammaretroviral vector, RMSinOFB, which uses a novel enhancer-blocking element that significantly decreases genotoxicity of retroviral integration. In this study, we used the RMSinOFB vector to evaluate the efficacy of a newly bioengineered factor VIII (fVIII) variant (efVIII)--containing a combination of A1 domain point mutations (L303E/F309S) and an extended partial B domain for improved secretion plus A2 domain mutations (R484A/R489A/P492A) for reduced immunogenicity--toward successful treatment of murine hemophilia A. In cell lines, efVIII was secreted at up to 6-fold higher levels than an L303E/F309S A1 domain-only fVIII variant (sfVIIIDeltaB). Most important, when compared with a conventional gammaretroviral vector expressing sfVIIIDeltaB, lower doses of RMSin-efVIII-OFB-transduced hematopoietic stem cells were needed to generate comparable curative fVIII levels in hemophilia A BALB/c mice after reduced-intensity total body irradiation or nonmyeloablative chemotherapy conditioning regimens. These data suggest that the safety-augmented RMSin-efVIII-OFB platform represents an encouraging step in the development of a clinically appropriate gene addition therapy for hemophilia A.
Collapse
Affiliation(s)
- Ali Ramezani
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, 2300 I Street NW, Washington, DC, USA
| | | |
Collapse
|
198
|
Kustikova OS, Schiedlmeier B, Brugman MH, Stahlhut M, Bartels S, Li Z, Baum C. Cell-intrinsic and vector-related properties cooperate to determine the incidence and consequences of insertional mutagenesis. Mol Ther 2009; 17:1537-47. [PMID: 19532134 DOI: 10.1038/mt.2009.134] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In gene therapeutic approaches targeting hematopoietic cells, insertional mutagenesis may provoke clonal dominance with potential progress to overt leukemia. To investigate the contribution of cell-intrinsic features and determine the frequency of insertional proto-oncogene activation, we sorted hematopoietic subpopulations before transduction with replication-deficient gamma-retroviral vectors and studied the clonal repertoire in transplanted C57BL/6J mice. Progressive clonal dominance only developed in the progeny of populations with intrinsic stem cell potential, where expanding clones with insertional upregulation of proto-oncogenes such as Evi1 were retrieved with a frequency of approximately 10(-4). Longitudinal studies by high-throughput sequencing and locus-specific quantitative PCR showed clones with >50-fold expansion between weeks 5 and 31 after transplantation. In contrast, insertional events in proto-oncogenes did not endow the progeny of multipotent or myeloid-restricted progenitors with the potential for clonal dominance (risk <10(-6)). Transducing sorted hematopoietic stem cells (HSCs) with self-inactivating (SIN) lentiviral vectors in short-term cultures improved chimerism, and although clonal dominance developed, there was no evidence for insertional events in the vicinity of proto-oncogenes as the underlying cause. We conclude that cell-intrinsic properties cooperate with vector-related features to determine the incidence and consequences of insertional mutagenesis. Furthermore, our study offers perspectives for refinement of animal experiments in the assessment of vector-related genotoxicity.
Collapse
Affiliation(s)
- Olga S Kustikova
- Department of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
199
|
De Ravin SS, Malech HL. Partially corrected X-linked severe combined immunodeficiency: long-term problems and treatment options. Immunol Res 2009; 43:223-42. [PMID: 18979075 DOI: 10.1007/s12026-008-8073-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rapid progress has been made from the identification of the molecular defects causing X-linked severe combined immune deficiency (X-SCID) to the development of cutting-edge therapeutic approaches such as hematopoietic stem cell transplant and gene therapy for XSCID. Successful treatment of XSCID has created a new population of patients, many of whom are now adolescents and young adults and are facing a variety of chronic problems secondary to partial correction of their underlying disease. This review focuses on the clinical challenges facing these patients (and their caregivers) and provides an overview of some of the treatment options available, including gene therapy.
Collapse
Affiliation(s)
- Suk See De Ravin
- Genetic Immunotherapy, Laboratory of Host Defense, National Institutes of Health, Building 10, Room 5-3816, 5 West Labs CRC, 10 Center Drive MSC1456, Bethesda, MD 20892-1456, USA.
| | | |
Collapse
|
200
|
Vink CA, Gaspar HB, Gabriel R, Schmidt M, McIvor RS, Thrasher AJ, Qasim W. Sleeping beauty transposition from nonintegrating lentivirus. Mol Ther 2009; 17:1197-204. [PMID: 19417741 DOI: 10.1038/mt.2009.94] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lentiviral vectors enter cells with high efficiency and deliver stable transduction through integration into host chromosomes, but their preference for integration within actively transcribing genes means that insertional mutagenesis following disruption of host proto-oncogenes is a recognized concern. We have addressed this problem by combining the efficient cell and nuclear entry properties of HIV-1-derived lentiviral vectors with the integration profile benefits of Sleeping Beauty (SB) transposase. Importantly, this integration enzyme does not exhibit a preference for integration within active genes. We generated integrase-deficient lentiviral vectors (IDLVs) to carry SB transposon and transposase expression cassettes. IDLVs were able to deliver transient transposase expression to target cells, and episomal lentiviral DNA was found to be a suitable substrate for integration via the SB pathway. The hybrid vector system allows genomic integration of a minimal promoter-transgene cassette flanked by short SB inverted repeats (IRs) but devoid of HIV-1 long terminal repeats (LTRs) or other virus-derived sequences. Importantly, integration site analysis revealed redirection toward a profile mimicking SB-plasmid integration and away from integration within transcriptionally active genes favored by integrase-proficient lentiviral vectors (ILVs).
Collapse
Affiliation(s)
- Conrad A Vink
- Institute of Child Health, University College London, UK
| | | | | | | | | | | | | |
Collapse
|