151
|
Miyazato P, Yasunaga JI, Taniguchi Y, Koyanagi Y, Mitsuya H, Matsuoka M. De novo human T-cell leukemia virus type 1 infection of human lymphocytes in NOD-SCID, common gamma-chain knockout mice. J Virol 2006; 80:10683-91. [PMID: 16943297 PMCID: PMC1641804 DOI: 10.1128/jvi.01009-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia, a disease that is triggered after a long latency period. HTLV-1 is known to spread through cell-to-cell contact. In an attempt to study the events in early stages of HTLV-1 infection, we inoculated uninfected human peripheral blood mononuclear cells and the HTLV-1-producing cell line MT-2 into NOD-SCID, common gamma-chain knockout mice (human PBMC-NOG mice). HTLV-1 infection was confirmed with the detection of proviral DNA in recovered samples. Both CD4+ and CD8+ T cells were found to harbor the provirus, although the latter population harbored provirus to a lesser extent. Proviral loads increased with time, and inverse PCR analysis revealed the oligoclonal proliferation of infected cells. Although tax gene transcription was suppressed in human PBMC-NOG mice, it increased after in vitro culture. This is similar to the phenotype of HTLV-1-infected cells isolated from HTLV-1 carriers. Furthermore, the reverse transcriptase inhibitors azidothymidine and tenofovir blocked primary infection in human PBMC-NOG mice. However, when tenofovir was administered 1 week after infection, the proviral loads did not differ from those of untreated mice, indicating that after initial infection, clonal proliferation of infected cells was predominant over de novo infection of previously uninfected cells. In this study, we demonstrated that the human PBMC-NOG mouse model should be a useful tool in studying the early stages of primary HTLV-1 infection.
Collapse
Affiliation(s)
- Paola Miyazato
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, Shogoin Kawahara-cho 53, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | |
Collapse
|
152
|
Switzer WM, Qari SH, Wolfe ND, Burke DS, Folks TM, Heneine W. Ancient origin and molecular features of the novel human T-lymphotropic virus type 3 revealed by complete genome analysis. J Virol 2006; 80:7427-38. [PMID: 16840323 PMCID: PMC1563715 DOI: 10.1128/jvi.00690-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-lymphotropic virus type 3 (HTLV-3) is a new virus recently identified in two primate hunters in Central Africa. Limited sequence analysis shows that HTLV-3 is distinct from HTLV-1 and HTLV-2 but is genetically similar to simian T-lymphotropic virus type 3 (STLV-3). We report here the first complete HTLV-3 sequence obtained by PCR-based genome walking using uncultured peripheral blood lymphocytes from an HTLV-3-infected person. The HTLV-3(2026ND) genome is 8,917 bp long and is genetically equidistant from HTLV-1 and HTLV-2, sharing about 62% identity. Phylogenetic analysis of all gene regions confirms this relationship and shows that HTLV-3 falls within the diversity of STLV-3, suggesting a primate origin. However, HTLV-3(2026ND) is unique, sharing only 87% to 92% sequence identity with STLV-3. SimPlot and phylogenetic analysis did not reveal any evidence of genetic recombination with either HTLV-1, HTLV-2, or STLV-3. Molecular dating estimates that the ancestor of HTLV-3 is as old as HTLV-1 and HTLV-2, with an inferred divergence time of 36,087 to 54,067 years ago. HTLV-3 has a prototypic genomic structure, with all enzymatic, regulatory, and structural proteins preserved. Like STLV-3, HTLV-3 is missing a third 21-bp transcription element found in the long terminal repeats of HTLV-1 and HTLV-2 but instead contains a unique activator protein-1 transcription factor upstream of the 21-bp repeat elements. A PDZ motif, like that in HTLV-1, which is important for cellular signal transduction and transformation, is present in the C terminus of the HTLV-3 Tax protein. A basic leucine zipper region located in the antisense strand of HTLV-1, believed to play a role in viral replication and oncogenesis, was also found in the complementary strand of HTLV-3. The ancient origin of HTLV-3, the broad distribution of STLV-3 in Africa, and the propensity of STLVs to cross species into humans all suggest that HTLV-3 may be prevalent and support the need for expanded surveillance for this virus.
Collapse
Affiliation(s)
- William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-45, Atlanta, GA 30333, USA.
| | | | | | | | | | | |
Collapse
|
153
|
Mesnard JM, Barbeau B, Devaux C. HBZ, a new important player in the mystery of adult T-cell leukemia. Blood 2006; 108:3979-82. [PMID: 16917009 DOI: 10.1182/blood-2006-03-007732] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adult T-cell leukemia (ATL) was first described in 1977. A link between ATL and human T-cell leukemia virus type 1 (HTLV-1) was clearly established in the early 1980s. Over the years, many aspects of HTLV-1-induced cellular dysfunctions have been clarified. However, the detailed mechanism behind ATL occurrence remains unsolved. Presently, we are still unable to explain the absence of viral Tax protein (thought to play a central role in T-cell transformation) in more than 50% of ATL cells. A novel HTLV-1 HBZ protein, encoded on the negative strand, was characterized by our group and is currently the subject of intensive research efforts to determine its function in viral replication and/or pathophysiology. Recently, 4 studies reported on the existence of different HBZ isoforms and have investigated on their function in both ATL cells or animal models. One report suggests that the HBZ gene might have a bimodal function (at the mRNA and protein levels), which could represent an uncharacterized strategy to regulate viral replication and proliferation of infected T cells.
Collapse
MESH Headings
- Animals
- Basic-Leucine Zipper Transcription Factors/genetics
- Basic-Leucine Zipper Transcription Factors/immunology
- Cell Proliferation
- Cell Transformation, Viral/genetics
- Cell Transformation, Viral/immunology
- Disease Models, Animal
- Gene Products, tax/deficiency
- Gene Products, tax/immunology
- Human T-lymphotropic virus 1/genetics
- Human T-lymphotropic virus 1/immunology
- Humans
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Leukemia-Lymphoma, Adult T-Cell/physiopathology
- Protein Isoforms/genetics
- Protein Isoforms/immunology
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- RNA, Viral/genetics
- RNA, Viral/immunology
- Retroviridae Proteins
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- T-Lymphocytes/virology
- Viral Proteins/genetics
- Viral Proteins/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Jean-Michel Mesnard
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, Centre National de la Recherche Scientifique (CNRS) Unité mixte de recherche (UMR) 5121-UM1, Montpellier, France
| | | | | |
Collapse
|
154
|
Cavanagh MH, Landry S, Audet B, Arpin-André C, Hivin P, Paré MÈ, Thête J, Wattel É, Marriott SJ, Mesnard JM, Barbeau B. HTLV-I antisense transcripts initiating in the 3'LTR are alternatively spliced and polyadenylated. Retrovirology 2006; 3:15. [PMID: 16512901 PMCID: PMC1459196 DOI: 10.1186/1742-4690-3-15] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 03/02/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antisense transcription in retroviruses has been suggested for both HIV-1 and HTLV-I, although the existence and coding potential of these transcripts remain controversial. Thorough characterization is required to demonstrate the existence of these transcripts and gain insight into their role in retrovirus biology. RESULTS This report provides the first complete characterization of an antisense retroviral transcript that encodes the previously described HTLV-I HBZ protein. In this study, we show that HBZ-encoding transcripts initiate in the 3' long terminal repeat (LTR) at several positions and consist of two alternatively spliced variants (SP1 and SP2). Expression of the most abundant HBZ spliced variant (SP1) could be detected in different HTLV-I-infected cell lines and importantly in cellular clones isolated from HTLV-I-infected patients. Polyadenylation of HBZ RNA occurred at a distance of 1450 nucleotides downstream of the HBZ stop codon in close proximity of a typical polyA signal. We have also determined that translation mostly initiates from the first exon located in the 3' LTR and that the HBZ isoform produced from the SP1 spliced variant demonstrated inhibition of Tax and c-Jun-dependent transcriptional activation. CONCLUSION These results conclusively demonstrate the existence of antisense transcription in retroviruses, which likely plays a role in HTLV-I-associated pathogenesis through HBZ protein synthesis.
Collapse
Affiliation(s)
- Marie-Hélène Cavanagh
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Département de Biologie médicale, Faculté de Médecine, Université Laval, Ste-Foy (Québec), G1V 4G2, Canada
| | - Sébastien Landry
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Département de Biologie médicale, Faculté de Médecine, Université Laval, Ste-Foy (Québec), G1V 4G2, Canada
| | - Brigitte Audet
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Département de Biologie médicale, Faculté de Médecine, Université Laval, Ste-Foy (Québec), G1V 4G2, Canada
| | - Charlotte Arpin-André
- Laboratoires Infections Rétrovirales et Signalisation Cellulaire, CNRS/UM I UMR 5121/IFR 122, Institut de Biologie, 34960 Montpellier Cedex 2, France
| | - Patrick Hivin
- Laboratoires Infections Rétrovirales et Signalisation Cellulaire, CNRS/UM I UMR 5121/IFR 122, Institut de Biologie, 34960 Montpellier Cedex 2, France
| | - Marie-Ève Paré
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Département de Biologie médicale, Faculté de Médecine, Université Laval, Ste-Foy (Québec), G1V 4G2, Canada
| | - Julien Thête
- Oncovirologie et Biothérapies, UMR5537 CNRS-Université Claude Bernard, Centre Léon Berard and Service d'Hématologie, Pavillon E, Hôpital Edouard Herriot, Place d'Arsonval, Lyon, France
| | - Éric Wattel
- Oncovirologie et Biothérapies, UMR5537 CNRS-Université Claude Bernard, Centre Léon Berard and Service d'Hématologie, Pavillon E, Hôpital Edouard Herriot, Place d'Arsonval, Lyon, France
| | - Susan J Marriott
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jean-Michel Mesnard
- Laboratoires Infections Rétrovirales et Signalisation Cellulaire, CNRS/UM I UMR 5121/IFR 122, Institut de Biologie, 34960 Montpellier Cedex 2, France
| | - Benoit Barbeau
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Département de Biologie médicale, Faculté de Médecine, Université Laval, Ste-Foy (Québec), G1V 4G2, Canada
- Université.du Québec à Montréal, Département des sciences biologiques, C.P. 8888, Succursale C.V., Montréal, Québec, H3C 3P8, Canada
| |
Collapse
|