151
|
Gailani D, Bane CE, Gruber A. Factor XI and contact activation as targets for antithrombotic therapy. J Thromb Haemost 2015; 13:1383-95. [PMID: 25976012 PMCID: PMC4516614 DOI: 10.1111/jth.13005] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/01/2015] [Indexed: 11/26/2022]
Abstract
The most commonly used anticoagulants produce therapeutic antithrombotic effects either by inhibiting thrombin or factor Xa (FXa) or by lowering the plasma levels of the precursors of these key enzymes, prothrombin and FX. These drugs do not distinguish between thrombin generation contributing to thrombosis from thrombin generation required for hemostasis. Thus, anticoagulants increase bleeding risk, and many patients who would benefit from therapy go untreated because of comorbidities that place them at unacceptable risk for hemorrhage. Studies in animals demonstrate that components of the plasma contact activation system contribute to experimentally induced thrombosis, despite playing little or no role in hemostasis. Attention has focused on FXII, the zymogen of a protease (FXIIa) that initiates contact activation when blood is exposed to foreign surfaces, and FXI, the zymogen of the protease FXIa, which links contact activation to the thrombin generation mechanism. In the case of FXI, epidemiologic data indicate this protein contributes to stroke and venous thromboembolism, and perhaps myocardial infarction, in humans. A phase 2 trial showing that reduction of FXI may be more effective than low molecular weight heparin at preventing venous thrombosis during knee replacement surgery provides proof of concept for the premise that an antithrombotic effect can be uncoupled from an anticoagulant effect in humans by targeting components of contact activation. Here, we review data on the role of FXI and FXII in thrombosis and results of preclinical and human trials for therapies targeting these proteins.
Collapse
Affiliation(s)
- David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Charles E. Bane
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Andras Gruber
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR
| |
Collapse
|
152
|
Björkqvist J, de Maat S, Lewandrowski U, Di Gennaro A, Oschatz C, Schönig K, Nöthen MM, Drouet C, Braley H, Nolte MW, Sickmann A, Panousis C, Maas C, Renné T. Defective glycosylation of coagulation factor XII underlies hereditary angioedema type III. J Clin Invest 2015; 125:3132-46. [PMID: 26193639 DOI: 10.1172/jci77139] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/04/2015] [Indexed: 12/15/2022] Open
Abstract
Hereditary angioedema type III (HAEIII) is a rare inherited swelling disorder that is associated with point mutations in the gene encoding the plasma protease factor XII (FXII). Here, we demonstrate that HAEIII-associated mutant FXII, derived either from HAEIII patients or recombinantly produced, is defective in mucin-type Thr309-linked glycosylation. Loss of glycosylation led to increased contact-mediated autoactivation of zymogen FXII, resulting in excessive activation of the bradykinin-forming kallikrein-kinin pathway. In contrast, both FXII-driven coagulation and the ability of C1-esterase inhibitor to bind and inhibit activated FXII were not affected by the mutation. Intravital laser-scanning microscopy revealed that, compared with control animals, both F12-/- mice reconstituted with recombinant mutant forms of FXII and humanized HAEIII mouse models with inducible liver-specific expression of Thr309Lys-mutated FXII exhibited increased contact-driven microvascular leakage. An FXII-neutralizing antibody abolished bradykinin generation in HAEIII patient plasma and blunted edema in HAEIII mice. Together, the results of this study characterize the mechanism of HAEIII and establish FXII inhibition as a potential therapeutic strategy to interfere with excessive vascular leakage in HAEIII and potentially alleviate edema due to other causes.
Collapse
|
153
|
Zhao L, Wu M, Xiao C, Yang L, Zhou L, Gao N, Li Z, Chen J, Chen J, Liu J, Qin H, Zhao J. Discovery of an intrinsic tenase complex inhibitor: Pure nonasaccharide from fucosylated glycosaminoglycan. Proc Natl Acad Sci U S A 2015; 112:8284-9. [PMID: 26100870 PMCID: PMC4500213 DOI: 10.1073/pnas.1504229112] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Selective inhibition of the intrinsic coagulation pathway is a promising strategy for developing safer anticoagulants that do not cause serious bleeding. Intrinsic tenase, the final and rate-limiting enzyme complex in the intrinsic coagulation pathway, is an attractive but less explored target for anticoagulants due to the lack of a pure selective inhibitor. Fucosylated glycosaminoglycan (FG), which has a distinct but complicated and ill-defined structure, is a potent natural anticoagulant with nonselective and adverse activities. Herein we present a range of oligosaccharides prepared via the deacetylation-deaminative cleavage of FG. Analysis of these purified oligosaccharides reveals the precise structure of FG. Among these fragments, nonasaccharide is the minimum fragment that retains the potent selective inhibition of the intrinsic tenase while avoiding the adverse effects of native FG. In vivo, the nonasaccharide shows 97% inhibition of venous thrombus at a dose of 10 mg/kg in rats and has no obvious bleeding risk. This nonasaccharide may therefore serve as a novel promising anticoagulant.
Collapse
Affiliation(s)
- Longyan Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Chuang Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Lutan Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jianchao Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jikai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Hongbo Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China;
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China;
| |
Collapse
|
154
|
The polyphosphate-factor XII pathway drives coagulation in prostate cancer-associated thrombosis. Blood 2015; 126:1379-89. [PMID: 26153520 DOI: 10.1182/blood-2015-01-622811] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/25/2015] [Indexed: 12/21/2022] Open
Abstract
Cancer is a leading cause of thrombosis. We identify a new procoagulant mechanism that contributes to thromboembolism in prostate cancer and allows for safe anticoagulation therapy development. Prostate cancer-mediated procoagulant activity was reduced in plasma in the absence of factor XII or its substrate of the intrinsic coagulation pathway factor XI. Prostate cancer cells and secreted prostasomes expose long chain polyphosphate on their surface that colocalized with active factor XII and initiated coagulation in a factor XII-dependent manner. Polyphosphate content correlated with the procoagulant activity of prostasomes. Inherited deficiency in factor XI or XII or high-molecular-weight kininogen, but not plasma kallikrein, protected mice from prostasome-induced lethal pulmonary embolism. Targeting polyphosphate or factor XII conferred resistance to prostate cancer-driven thrombosis in mice, without increasing bleeding. Inhibition of factor XII with recombinant 3F7 antibody reduced the increased prostasome-mediated procoagulant activity in patient plasma. The data illustrate a critical role for polyphosphate/factor XII-triggered coagulation in prostate cancer-associated thrombosis with implications for anticoagulation without therapy-associated bleeding in malignancies.
Collapse
|
155
|
FXIa and platelet polyphosphate as therapeutic targets during human blood clotting on collagen/tissue factor surfaces under flow. Blood 2015; 126:1494-502. [PMID: 26136249 DOI: 10.1182/blood-2015-04-641472] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/18/2015] [Indexed: 11/20/2022] Open
Abstract
Factor XIIa (FXIIa) and factor XIa (FXIa) contribute to thrombosis in animal models, whereas platelet-derived polyphosphate (polyP) may potentiate contact or thrombin-feedback pathways. The significance of these mediators in human blood under thrombotic flow conditions on tissue factor (TF) -bearing surfaces remains inadequately resolved. Human blood (corn trypsin inhibitor treated [4 μg/mL]) was tested by microfluidic assay for clotting on collagen/TF at TF surface concentration ([TF]wall) from ∼0.1 to 2 molecules per μm(2). Anti-FXI antibodies (14E11 and O1A6) or polyP-binding protein (PPXbd) were used to block FXIIa-dependent FXI activation, FXIa-dependent factor IX (FIX) activation, or platelet-derived polyP, respectively. Fibrin formation was sensitive to 14E11 at 0 to 0.1 molecules per µm(2) and sensitive to O1A6 at 0 to 0.2 molecules per µm(2). However, neither antibody reduced fibrin generation at ∼2 molecules per µm(2) when the extrinsic pathway became dominant. Interestingly, PPXbd reduced fibrin generation at low [TF]wall (0.1 molecules per µm(2)) but not at zero or high [TF]wall, suggesting a role for polyP distinct from FXIIa activation and requiring low extrinsic pathway participation. Regardless of [TF]wall, PPXbd enhanced fibrin sensitivity to tissue plasminogen activator and promoted clot retraction during fibrinolysis concomitant with an observed PPXbd-mediated reduction of fibrin fiber diameter. This is the first detection of endogenous polyP function in human blood under thrombotic flow conditions. When triggered by low [TF]wall, thrombosis may be druggable by contact pathway inhibition, although thrombolytic susceptibility may benefit from polyP antagonism regardless of [TF]wall.
Collapse
|
156
|
Han Y, Zhu T, Jiao L, Hua B, Cai H, Zhao Y. Normal range and genetic analysis of coagulation factor XII in the general Chinese population. Thromb Res 2015; 136:440-4. [PMID: 26105808 DOI: 10.1016/j.thromres.2015.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/20/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND It has been reported that the average activity of coagulation factor XII depends on the ethnicity of the population under study but little information is available on Chinese. We here provide an analysis of the range of activities and antigenic levels of factor XII in healthy Han Chinese and correlate the measurements with polymorphisms and mutations in the corresponding gene. METHODS Plasma samples were obtained from 549 healthy Chinese adults (264 men, 285 women; age 16-79years) undergoing routine check-ups. The samples were subjected to an activated partial thromboplastin time-based factor XII activity assay as well as an enzyme-linked immunosorbent assay. Partial gene sequence analyses were performed in subjects with low factor XII activity and in normal controls. RESULTS Ninety-five percent of the subjects had factor XII activities between 47% and 160.25%, with no evidence for an influence of sex or age. Among 15 subjects with activity levels ≤47%, we found one novel nonsense and two missense mutations that may lead to dysfunctional proteins. No mutations were found in a selection of subjects with activities above 47%. Interestingly, however, the particular sequence at a known C/T polymorphism at position 46 just upstream of the translational start codon was correlated with factor XII activity. Subjects homozygous for the T allele, which has an allelic frequency of 0.69, showed significantly lower factor XII activities compared to subjects homozygous for the C allele or those heterozygous for C/T. CONCLUSIONS The survey determined the normal range of factor XII activities in healthy Chinese and identified mutations as well as a biased representation of a polymorphic nucleotide in subjects with abnormally low activities. The results provide an essential basis for the diagnosis of FXII deficiencies in Chinese.
Collapse
Affiliation(s)
- Yanxin Han
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Tienan Zhu
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Li Jiao
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Baolai Hua
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Huacong Cai
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yongqiang Zhao
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
157
|
Abstract
Throughout evolution, organisms have developed means to contain wounds by simultaneously limiting bleeding and eliminating pathogens and damaged host cells via the recruitment of innate defense mechanisms. Disease emerges when there is unchecked activation of innate immune and/or coagulation responses. A key component of innate immunity is the complement system. Concurrent excess activation of coagulation and complement - two major blood-borne proteolytic pathways - is evident in numerous diseases, including atherosclerosis, diabetes, venous thromboembolic disease, thrombotic microangiopathies, arthritis, cancer, and infectious diseases. Delineating the cross-talk between these two cascades will uncover novel therapeutic insights.
Collapse
Affiliation(s)
- E M Conway
- Centre for Blood Research, Life Sciences Institute, Division of Hematology, Department of Medicine, Faculty of Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
158
|
Smith SA, Morrissey JH. 2013 scientific sessions Sol Sherry distinguished lecture in thrombosis: polyphosphate: a novel modulator of hemostasis and thrombosis. Arterioscler Thromb Vasc Biol 2015; 35:1298-305. [PMID: 25908762 PMCID: PMC4441552 DOI: 10.1161/atvbaha.115.301927] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/10/2015] [Indexed: 11/16/2022]
Abstract
Polyphosphate is a highly anionic, linear polymer of inorganic phosphates that is found throughout biology, including in many infectious microorganisms. Recently, polyphosphate was discovered to be stored in a subset of the secretory granules of human platelets and mast cells, and to be secreted on activation of these cells. Work from our laboratory and others has now shown that polyphosphate is a novel, potent modulator of the blood clotting and complement systems that likely plays roles in hemostasis, thrombosis, inflammation, and host responses to pathogens. Therapeutics targeting polyphosphate may have the potential to limit thrombosis with fewer hemorrhagic complications than conventional anticoagulant drugs that target essential proteases of the blood clotting cascade.
Collapse
Affiliation(s)
- Stephanie A Smith
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign
| | - James H Morrissey
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign.
| |
Collapse
|
159
|
Jaffer IH, Fredenburgh JC, Hirsh J, Weitz JI. Medical device-induced thrombosis: what causes it and how can we prevent it? J Thromb Haemost 2015; 13 Suppl 1:S72-81. [PMID: 26149053 DOI: 10.1111/jth.12961] [Citation(s) in RCA: 314] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Blood-contacting medical devices, such as vascular grafts, stents, heart valves, and catheters, are often used to treat cardiovascular diseases. Thrombus formation is a common cause of failure of these devices. This study (i) examines the interface between devices and blood, (ii) reviews the pathogenesis of clotting on blood-contacting medical devices, (iii) describes contemporary methods to prevent thrombosis on blood-contacting medical devices, (iv) explains why some anticoagulants are better than others for prevention of thrombosis on medical devices, and (v) identifies future directions in biomaterial research for prevention of thrombosis on blood-contacting medical devices.
Collapse
Affiliation(s)
- I H Jaffer
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - J C Fredenburgh
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - J Hirsh
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - J I Weitz
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
160
|
Sato Y, Sugi T, Sakai R. Autoantibodies to Factor XII and Kininogen-Dependent Antiphosphatidylethanolamine Antibodies in Patients with Recurrent Pregnancy Loss Augment Platelet Aggregation. Am J Reprod Immunol 2015; 74:279-89. [DOI: 10.1111/aji.12402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/01/2015] [Indexed: 11/26/2022] Open
Affiliation(s)
- Yoshihiro Sato
- Laboratory for Recurrent Pregnancy Loss; Sugi Women's Clinic; Yokohama Japan
| | - Toshitaka Sugi
- Laboratory for Recurrent Pregnancy Loss; Sugi Women's Clinic; Yokohama Japan
| | - Rie Sakai
- Laboratory for Recurrent Pregnancy Loss; Sugi Women's Clinic; Yokohama Japan
| |
Collapse
|
161
|
Dobrovolskaia MA, McNeil SE. Safe anticoagulation when heart and lungs are "on vacation". ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:S11. [PMID: 26046056 PMCID: PMC4437941 DOI: 10.3978/j.issn.2305-5839.2015.02.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 11/14/2022]
Abstract
Circulation and oxygenation of blood outside the body is commonly required during complex surgical interventions involving coronary pulmonary bypass (CPB) and extracorporeal membrane oxygenation (ECMO). Both CPB and ECMO are life-supporting procedures utilizing a heart-lung machine, which subjects the blood to unphysiological conditions, potentially promoting undesirable blood coagulation. Traditionally, thrombotic complications from CPB and ECMO are resolved by heparin, an inexpensive broad spectrum anticoagulant that prevents blood clotting, but often results in bleeding. Despite hemostatic support therapy and constant monitoring, the lives of patients undergoing CPB and ECMO are often threatened by uncontrolled bleeding. There is an urgent need for novel strategies which provide safe anti-coagulation alternatives during CPB and ECMO procedures. Several non-traditional approaches, including nitric oxide donors as well as various protease and contact activation inhibitors, have been investigated and shown some success. More recently, Larsson et al. isolated a recombinant fully human (3F7) antibody inhibiting Factor XIIa. The antibody was shown to be both an efficacious and safe alternative to heparin. Below we will examine this study in more detail and offer considerations for translation of this novel concept to the clinic.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Scott E McNeil
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| |
Collapse
|
162
|
Pathak M, Wilmann P, Awford J, Li C, Hamad BK, Fischer PM, Dreveny I, Dekker LV, Emsley J. Coagulation factor XII protease domain crystal structure. J Thromb Haemost 2015; 13:580-91. [PMID: 25604127 PMCID: PMC4418343 DOI: 10.1111/jth.12849] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/12/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Coagulation factor XII is a serine protease that is important for kinin generation and blood coagulation, cleaving the substrates plasma kallikrein and FXI. OBJECTIVE To investigate FXII zymogen activation and substrate recognition by determining the crystal structure of the FXII protease domain. METHODS AND RESULTS A series of recombinant FXII protease constructs were characterized by measurement of cleavage of chromogenic peptide and plasma kallikrein protein substrates. This revealed that the FXII protease construct spanning the light chain has unexpectedly weak proteolytic activity compared to β-FXIIa, which has an additional nine amino acid remnant of the heavy chain present. Consistent with these data, the crystal structure of the light chain protease reveals a zymogen conformation for active site residues Gly193 and Ser195, where the oxyanion hole is absent. The Asp194 side chain salt bridge to Arg73 constitutes an atypical conformation of the 70-loop. In one crystal form, the S1 pocket loops are partially flexible, which is typical of a zymogen. In a second crystal form of the deglycosylated light chain, the S1 pocket loops are ordered, and a short α-helix in the 180-loop of the structure results in an enlarged and distorted S1 pocket with a buried conformation of Asp189, which is critical for P1 Arg substrate recognition. The FXII structures define patches of negative charge surrounding the active site cleft that may be critical for interactions with inhibitors and substrates. CONCLUSIONS These data provide the first structural basis for understanding FXII substrate recognition and zymogen activation.
Collapse
Affiliation(s)
- M Pathak
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
|
164
|
Zakharova NV, Artemenko EO, Podoplelova NA, Sveshnikova AN, Demina IA, Ataullakhanov FI, Panteleev MA. Platelet surface-associated activation and secretion-mediated inhibition of coagulation factor XII. PLoS One 2015; 10:e0116665. [PMID: 25688860 PMCID: PMC4331558 DOI: 10.1371/journal.pone.0116665] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 12/11/2014] [Indexed: 01/23/2023] Open
Abstract
Coagulation factor XII (fXII) is important for arterial thrombosis, but its physiological activation mechanisms are unclear. In this study, we elucidated the role of platelets and platelet-derived material in fXII activation. FXII activation was only observed upon potent platelet stimulation (with thrombin, collagen-related peptide, or calcium ionophore, but not ADP) accompanied by phosphatidylserine exposure and was localised to the platelet surface. Platelets from three patients with grey platelet syndrome did not activate fXII, which suggests that platelet-associated fXII-activating material might be released from α-granules. FXII was preferentially bound by phosphotidylserine-positive platelets and annexin V abrogated platelet-dependent fXII activation; however, artificial phosphotidylserine/phosphatidylcholine microvesicles did not support fXII activation under the conditions herein. Confocal microscopy using DAPI as a poly-phosphate marker did not reveal poly-phosphates associated with an activated platelet surface. Experimental data for fXII activation indicates an auto-inhibition mechanism (ki/ka = 180 molecules/platelet). Unlike surface-associated fXII activation, platelet secretion inhibited activated fXII (fXIIa), particularly due to a released C1-inhibitor. Platelet surface-associated fXIIa formation triggered contact pathway-dependent clotting in recalcified plasma. Computer modelling suggests that fXIIa inactivation was greatly decreased in thrombi under high blood flow due to inhibitor washout. Combined, the surface-associated fXII activation and its inhibition in solution herein may be regarded as a flow-sensitive regulator that can shift the balance between surface-associated clotting and plasma-dependent inhibition, which may explain the role of fXII at high shear and why fXII is important for thrombosis but negligible in haemostasis.
Collapse
Affiliation(s)
- Natalia V. Zakharova
- National Research Center for Hematology, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Elena O. Artemenko
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Nadezhda A. Podoplelova
- National Research Center for Hematology, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anastasia N. Sveshnikova
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Irina A. Demina
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Fazly I. Ataullakhanov
- National Research Center for Hematology, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
- Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Mikhail A. Panteleev
- National Research Center for Hematology, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
- Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- * E-mail:
| |
Collapse
|
165
|
Labberton L, Kenne E, Renné T. New agents for thromboprotection. A role for factor XII and XIIa inhibition. Hamostaseologie 2015; 35:338-50. [PMID: 25609114 DOI: 10.5482/hamo-14-11-0060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/13/2015] [Indexed: 11/05/2022] Open
Abstract
Blood coagulation is essential for hemostasis, however excessive coagulation can lead to thrombosis. Factor XII starts the intrinsic coagulation pathway and contact-induced factor XII activation provides the mechanistic basis for the diagnostic aPTT clotting assay. Despite its function for fibrin formation in test tubes, patients and animals lacking factor XII have a completely normal hemostasis. The lack of a bleeding tendency observed in factor XII deficiency states is in sharp contrast to deficiencies of other components of the coagulation cascade and factor XII has been considered to have no function for coagulation in vivo. Recently, experimental animal models showed that factor XII is activated by an inorganic polymer, polyphosphate, which is released from procoagulant platelets and that polyphosphate-driven factor XII activation has an essential role in pathologic thrombus formation. Cumulatively, the data suggest to target polyphosphate, factor XII, or its activated form factor XIIa for anticoagulation. As the factor XII pathway specifically contributes to thrombosis but not to hemostasis, interference with this pathway provides a unique opportunity for safe anticoagulation that is not associated with excess bleeding. The review summarizes current knowledge on factor XII functions, activators and inhibitors.
Collapse
Affiliation(s)
| | | | - T Renné
- Thomas Renné, M.D. Ph.D., Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna (L2:05), 171 76 Stockholm, Sweden, Tel. +46/8/51 77 33 90, +49/(0)40/741 05 89 84, Fax +46/31 03 76, +49/(0)40/741 05 75 76, E-mail:
| |
Collapse
|
166
|
van Montfoort ML, Meijers JCM. Recent insights into the role of the contact pathway in thrombo-inflammatory disorders. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2014; 2014:60-5. [PMID: 25696835 DOI: 10.1182/asheducation-2014.1.60] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The contact pathway of coagulation consists of the proteins factor XI, factor XII, prekallikrein, and high-molecular-weight kininogen. Activation of the contact system leads to procoagulant and proinflammatory reactions. The contact system is essential for surface-initiated coagulation, as exemplified by aPTT, but there is probably no role for the contact system in initiating physiologic in vivo coagulation. However, over the last few years, there has been renewed interest, especially because of experimental evidence suggesting that the contact system contributes to thrombosis. Knockout mice deficient in one of the contact proteins were protected against artificially induced thrombosis. Furthermore, inhibiting agents such as monoclonal antibodies, antisense oligonucleotides, and small molecules were found to prevent thrombosis in rodents and primates in both venous and arterial vascular beds. Although it remains to be established whether targeting the contact system will be effective in humans and which of the contact factors is the best target for anticoagulation, it would constitute a promising approach for future effective and safe antithrombotic therapy.
Collapse
Affiliation(s)
- Maurits L van Montfoort
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; and
| | - Joost C M Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; and Department of Plasma Proteins, Sanquin Research, Amsterdam, the Netherlands
| |
Collapse
|
167
|
Abstract
Abstract
The contact pathway of coagulation consists of the proteins factor XI, factor XII, prekallikrein, and high-molecular-weight kininogen. Activation of the contact system leads to procoagulant and proinflammatory reactions. The contact system is essential for surface-initiated coagulation, as exemplified by aPTT, but there is probably no role for the contact system in initiating physiologic in vivo coagulation. However, over the last few years, there has been renewed interest, especially because of experimental evidence suggesting that the contact system contributes to thrombosis. Knockout mice deficient in one of the contact proteins were protected against artificially induced thrombosis. Furthermore, inhibiting agents such as monoclonal antibodies, antisense oligonucleotides, and small molecules were found to prevent thrombosis in rodents and primates in both venous and arterial vascular beds. Although it remains to be established whether targeting the contact system will be effective in humans and which of the contact factors is the best target for anticoagulation, it would constitute a promising approach for future effective and safe antithrombotic therapy.
Collapse
|
168
|
Gailani D. Future prospects for contact factors as therapeutic targets. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2014; 2014:52-59. [PMID: 25696834 PMCID: PMC4364029 DOI: 10.1182/asheducation-2014.1.52] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Anticoagulants currently used in clinical practice to treat or prevent thromboembolic disease are effective, but place patients at increased risk for serious bleeding because they interfere with plasma enzymes (thrombin and factor Xa) that are essential for hemostasis. In the past 10 years, work with genetically altered mice and studies in baboons and rabbits have demonstrated that the plasma contact proteases factor XI, factor XII, and prekallikrein contribute to the formation of occlusive thrombi despite having limited roles in hemostasis. In the case of factor XI, epidemiologic data from human populations indicate that elevated levels of this protein increase risk for stroke and venous thromboembolism and may also influence risk for myocardial infarction. These findings suggest that inhibiting contact activation may produce an antithrombotic effect without significantly compromising hemostasis. This chapter reviews strategies that are being developed for therapeutic targeting of factor XI and factor XII and their performances in preclinical and early human trials.
Collapse
Affiliation(s)
- David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| |
Collapse
|
169
|
Loeffen R, van Oerle R, de Groot P, Waltenberger J, Crijns H, Spronk H, ten Cate H. Increased factor XIa levels in patients with a first acute myocardial infarction: The introduction of a new thrombin generation based factor XIa assay. Thromb Res 2014; 134:1328-34. [DOI: 10.1016/j.thromres.2014.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 09/09/2014] [Accepted: 09/12/2014] [Indexed: 12/01/2022]
|
170
|
Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay. Thromb Res 2014; 134:1335-43. [PMID: 25303860 DOI: 10.1016/j.thromres.2014.09.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/01/2014] [Accepted: 09/24/2014] [Indexed: 11/22/2022]
Abstract
Generation of active Factor XII (FXIIa) triggers blood clotting on artificial surfaces and may also enhance intravascular thrombosis. We developed a patterned kaolin (0 to 0.3 pg/μm(2))/type 1 collagen fibril surface for controlled microfluidic clotting assays. Perfusion of whole blood (treated only with a low level of 4 μg/mL of the XIIa inhibitor, corn trypsin inhibitor) drove platelet deposition followed by fibrin formation. At venous wall shear rate (100 s(-1)), kaolin accelerated onset of fibrin formation by ~100 sec when compared to collagen alone (250 sec vs. 350 sec), with little effect on platelet deposition. Even with kaolin present, arterial wall shear rate (1000 s(-1)) delayed and suppressed fibrin formation compared to venous wall shear rate. A comparison of surfaces for extrinsic activation (tissue factor TF/collagen) versus contact activation (kaolin/collagen) that each generated equal platelet deposition at 100 s(-1) revealed: (1) TF surfaces promoted much faster fibrin onset (at 100 sec) and more endpoint fibrin at 600 sec at either 100 s(-1) or 1000 s(-1), and (2) kaolin and TF surfaces had a similar sensitivity for reduced fibrin deposition at 1000 s(-1) (compared to fibrin formed at 100 s(-1)) despite differing coagulation triggers. Anti-platelet drugs inhibiting P2Y1, P2Y12, cyclooxygenase-1 or activating IP-receptor or guanylate cyclase reduced platelet and fibrin deposition on kaolin/collagen. Since FXIIa or FXIa inhibition may offer safe antithrombotic therapy, especially for biomaterial thrombosis, these defined collagen/kaolin surfaces may prove useful in drug screening tests or in clinical diagnostic assays of blood under flow conditions.
Collapse
|
171
|
Engel R, Brain CM, Paget J, Lionikiene AS, Mutch NJ. Single-chain factor XII exhibits activity when complexed to polyphosphate. J Thromb Haemost 2014; 12:1513-22. [PMID: 25039405 DOI: 10.1111/jth.12663] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/07/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND The mechanism underpinning factor XII autoactivation was originally characterized with non-physiological surfaces, such as dextran sulfate (DS), ellagic acid, and kaolin. Several 'natural' anionic activating surfaces, such as platelet polyphosphate (polyP), have now been identified. OBJECTIVE To analyze the autoactivation of FXII by polyP of a similar length to that found in platelets (polyP70 ). METHODS AND RESULTS PolyP70 showed similar efficacy to DS in stimulating autoactivation of FXII, as detected with amidolytic substrate. Western blotting revealed different forms of FXII with the two activating surfaces: two-chain αFXIIa was formed with DS, whereas single-chain FXII (scFXII; 80 kDa) was formed with polyP70 . Dissociation of scFXII from polyP70 abrogated amidolytic activity, suggesting reversible exposure of the active site. Activity of scFXII-polyP70 was enhanced by Zn(2+) and was sensitive to NaCl concentration. A bell-shaped concentration response to polyP70 was evident, as is typical of surface-mediated reactions. Reaction of scFXII-polyP70 with various concentrations of S2302 generated a sigmoidal curve, in contrast to a hyperbolic curve for αFXIIa, from which a Hill coefficient of 3.67 was derived, indicative of positive cooperative binding. scFXII-polyP70 was more sensitive to inhibition by H-d-Pro-Phe-Arg-chloromethylketone and corn trypsin inhibitor than αFXIIa, but inhibition profiles for C1-inhibitor were similar. Active scFXII-polyP70 was also able to cleave its physiological targets FXI and prekallikrein to their active forms. CONCLUSIONS Autoactivation of FXII by polyP, of the size found in platelets, proceeds via an active single-chain intermediate. scFXII-polyP70 shows activity towards physiological substrates, and may represent the primary event in initiating contact activation in vivo.
Collapse
Affiliation(s)
- R Engel
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | | | | | |
Collapse
|
172
|
Kenne E, Renné T. Factor XII: a drug target for safe interference with thrombosis and inflammation. Drug Discov Today 2014; 19:1459-64. [PMID: 24993156 DOI: 10.1016/j.drudis.2014.06.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/23/2014] [Indexed: 02/02/2023]
Abstract
Data from experimental animal models revealed an essential role for factor XII (FXII) in thrombotic occlusive diseases. In contrast to other blood coagulation factors, deficiency in the protease is not associated with abnormal bleeding from injury sites (hemostasis) in patients or in animals. Cumulatively, these findings suggest that FXII could be targeted as a new method of anticoagulation that is devoid of bleeding risks. An FXIIa-neutralizing antibody, 3F7, has been developed that inhibited thrombosis in an extracorporeal membrane oxygenation (ECMO) system as efficiently as heparin. However, in sharp contrast to heparin, 3F7 treatment was not associated with an increase in therapy-associated hemorrhage. In this review, we summarize current knowledge of FXII physiology and pharmacology.
Collapse
Affiliation(s)
- Ellinor Kenne
- Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, SE-171 76 Stockholm, Sweden; Center of Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Thomas Renné
- Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, SE-171 76 Stockholm, Sweden; Center of Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden; Institute of Clinical Chemistry and Laboratory Medicien, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.
| |
Collapse
|
173
|
Bane CE, Gailani D. Factor XI as a target for antithrombotic therapy. Drug Discov Today 2014; 19:1454-8. [PMID: 24886766 DOI: 10.1016/j.drudis.2014.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/20/2014] [Indexed: 11/19/2022]
Abstract
Anticoagulants currently used in clinical practice to treat thromboembolic disorders are effective but increase the risk of severe bleeding because they target proteins that are essential for normal coagulation (hemostasis). Drugs with better safety profiles are required for prevention and treatment of thromboembolic disease. Coagulation factor XIa has emerged as a novel target for safer anticoagulant therapy because of its role in thrombosis and its relatively small contribution to hemostasis.
Collapse
Affiliation(s)
- Charles E Bane
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
174
|
Kuijpers MJE, van der Meijden PEJ, Feijge MAH, Mattheij NJA, May F, Govers-Riemslag J, Meijers JCM, Heemskerk JWM, Renné T, Cosemans JMEM. Factor XII regulates the pathological process of thrombus formation on ruptured plaques. Arterioscler Thromb Vasc Biol 2014; 34:1674-80. [PMID: 24855058 DOI: 10.1161/atvbaha.114.303315] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Atherothrombosis is the main cause of myocardial infarction and ischemic stroke. Although the extrinsic (tissue factor-factor VIIa [FVIIa]) pathway is considered as a major trigger of coagulation in atherothrombosis, the role of the intrinsic coagulation pathway via coagulation FXII herein is unknown. Here, we studied the roles of the extrinsic and intrinsic coagulation pathways in thrombus formation on atherosclerotic plaques both in vivo and ex vivo. APPROACH AND RESULTS Plaque rupture after ultrasound treatment evoked immediate formation of subocclusive thrombi in the carotid arteries of Apoe(-/-) mice, which became unstable in the presence of structurally different FXIIa inhibitors. In contrast, inhibition of FVIIa reduced thrombus size at a more initial stage without affecting embolization. Genetic deficiency in FXII (human and mouse) or FXI (mouse) reduced ex vivo whole-blood thrombus and fibrin formation on immobilized plaque homogenates. Localization studies by confocal microscopy indicated that FXIIa bound to thrombi and fibrin particularly in luminal-exposed thrombus areas. CONCLUSIONS The FVIIa- and FXIIa-triggered coagulation pathways have distinct but complementary roles in atherothrombus formation. The tissue factor-FVIIa pathway contributes to initial thrombus buildup, whereas FXIIa bound to thrombi ensures thrombus stability.
Collapse
Affiliation(s)
- Marijke J E Kuijpers
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., P.E.J.v.d.M., M.A.H.F., N.J.A.M., J.G.-R., J.W.M.H., J.M.E.M.C.); CSL Behring GmbH, Marburg, Germany (F.M.); Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.C.M.M.); Department of Plasma Proteins, Sanquin, Amsterdam, The Netherlands (J.C.M.M.); Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden (T.R.); and Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (T.R.)
| | - Paola E J van der Meijden
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., P.E.J.v.d.M., M.A.H.F., N.J.A.M., J.G.-R., J.W.M.H., J.M.E.M.C.); CSL Behring GmbH, Marburg, Germany (F.M.); Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.C.M.M.); Department of Plasma Proteins, Sanquin, Amsterdam, The Netherlands (J.C.M.M.); Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden (T.R.); and Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (T.R.)
| | - Marion A H Feijge
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., P.E.J.v.d.M., M.A.H.F., N.J.A.M., J.G.-R., J.W.M.H., J.M.E.M.C.); CSL Behring GmbH, Marburg, Germany (F.M.); Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.C.M.M.); Department of Plasma Proteins, Sanquin, Amsterdam, The Netherlands (J.C.M.M.); Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden (T.R.); and Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (T.R.)
| | - Nadine J A Mattheij
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., P.E.J.v.d.M., M.A.H.F., N.J.A.M., J.G.-R., J.W.M.H., J.M.E.M.C.); CSL Behring GmbH, Marburg, Germany (F.M.); Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.C.M.M.); Department of Plasma Proteins, Sanquin, Amsterdam, The Netherlands (J.C.M.M.); Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden (T.R.); and Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (T.R.)
| | - Frauke May
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., P.E.J.v.d.M., M.A.H.F., N.J.A.M., J.G.-R., J.W.M.H., J.M.E.M.C.); CSL Behring GmbH, Marburg, Germany (F.M.); Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.C.M.M.); Department of Plasma Proteins, Sanquin, Amsterdam, The Netherlands (J.C.M.M.); Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden (T.R.); and Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (T.R.)
| | - José Govers-Riemslag
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., P.E.J.v.d.M., M.A.H.F., N.J.A.M., J.G.-R., J.W.M.H., J.M.E.M.C.); CSL Behring GmbH, Marburg, Germany (F.M.); Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.C.M.M.); Department of Plasma Proteins, Sanquin, Amsterdam, The Netherlands (J.C.M.M.); Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden (T.R.); and Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (T.R.)
| | - Joost C M Meijers
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., P.E.J.v.d.M., M.A.H.F., N.J.A.M., J.G.-R., J.W.M.H., J.M.E.M.C.); CSL Behring GmbH, Marburg, Germany (F.M.); Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.C.M.M.); Department of Plasma Proteins, Sanquin, Amsterdam, The Netherlands (J.C.M.M.); Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden (T.R.); and Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (T.R.)
| | - Johan W M Heemskerk
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., P.E.J.v.d.M., M.A.H.F., N.J.A.M., J.G.-R., J.W.M.H., J.M.E.M.C.); CSL Behring GmbH, Marburg, Germany (F.M.); Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.C.M.M.); Department of Plasma Proteins, Sanquin, Amsterdam, The Netherlands (J.C.M.M.); Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden (T.R.); and Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (T.R.)
| | - Thomas Renné
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., P.E.J.v.d.M., M.A.H.F., N.J.A.M., J.G.-R., J.W.M.H., J.M.E.M.C.); CSL Behring GmbH, Marburg, Germany (F.M.); Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.C.M.M.); Department of Plasma Proteins, Sanquin, Amsterdam, The Netherlands (J.C.M.M.); Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden (T.R.); and Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (T.R.)
| | - Judith M E M Cosemans
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., P.E.J.v.d.M., M.A.H.F., N.J.A.M., J.G.-R., J.W.M.H., J.M.E.M.C.); CSL Behring GmbH, Marburg, Germany (F.M.); Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.C.M.M.); Department of Plasma Proteins, Sanquin, Amsterdam, The Netherlands (J.C.M.M.); Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden (T.R.); and Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (T.R.).
| |
Collapse
|
175
|
de Maat S, Tersteeg C, Herczenik E, Maas C. Tracking down contact activation - from coagulationin vitroto inflammationin vivo. Int J Lab Hematol 2014; 36:374-81. [DOI: 10.1111/ijlh.12222] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/28/2014] [Indexed: 02/07/2023]
Affiliation(s)
- S. de Maat
- Department of Clinical Chemistry and Haematology; University Medical Center Utrecht; Utrecht the Netherlands
| | - C. Tersteeg
- Department of Clinical Chemistry and Haematology; University Medical Center Utrecht; Utrecht the Netherlands
| | - E. Herczenik
- Department of Clinical Chemistry and Haematology; University Medical Center Utrecht; Utrecht the Netherlands
| | - C. Maas
- Department of Clinical Chemistry and Haematology; University Medical Center Utrecht; Utrecht the Netherlands
| |
Collapse
|
176
|
Abstract
In this issue of Blood, Matafonov et al demonstrate that an inhibiting monoclonal antibody against coagulation factor XII (fXII) reduces fibrin formation and platelet accumulation in a primate thrombosis model.1
Collapse
|