151
|
Lai C, Bhansali RS, Kuo EJ, Mannis G, Lin RJ. Older Adults With Newly Diagnosed AML: Hot Topics for the Practicing Clinician. Am Soc Clin Oncol Educ Book 2023; 43:e390018. [PMID: 37155946 DOI: 10.1200/edbk_390018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Over the past decade, our understanding of AML pathogenesis and pathophysiology has improved significantly with mutational profiling. This has led to translational advances in therapeutic options, as there have been 10 new US Food and Drug Administration (FDA) approvals for AML therapies since 2017, half of which target specific driver mutations in FLT3, IDH1, or IDH2. These new agents have expanded the therapeutic armamentarium for AML, particularly for patients who are considered ineligible for intensive chemotherapy with anthracycline- and cytarabine-containing regimens. These new treatment options are relevant because the median age at diagnosis is 68 years, and outcomes for patients older than 60 years have historically been dismal. However, the optimal approach to incorporating novel agents into frontline regimens remains a clinical challenge, particularly with regard to sequencing of therapies, considering the role of allogeneic hematopoietic stem cell transplantation and managing toxicities.
Collapse
Affiliation(s)
- Catherine Lai
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Rahul S Bhansali
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Eric J Kuo
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - Gabriel Mannis
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - Richard J Lin
- Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
152
|
Fujino K, Ureshino H, Yoshida T, Ichinohe T. Benefit of the Reduced Dose Combination of Azacitidine and Venetoclax in an Elderly Patient With Acute Myeloid Leukemia. Cureus 2023; 15:e39481. [PMID: 37362503 PMCID: PMC10290478 DOI: 10.7759/cureus.39481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Elderly patients with acute myeloid leukemia (AML) have been found to clinically benefit from the combination of azacitidine (AZA) and venetoclax (VEN), although the safety and efficacy of the treatment in extremely elderly patients (age >85 years) have not been fully established. An 88-year-old woman diagnosed with AML was given a lower dose of AZA and VEN. She eventually developed grade 4 hypokalemia, necessitating treatment interruption. However, a lower dose of VEN was successfully continued in the subsequent cycle of treatment, resulting in complete remission. Hence, reduced AZA and VEN doses may be beneficial for extremely elderly AML patients.
Collapse
Affiliation(s)
- Keita Fujino
- Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, JPN
| | - Hiroshi Ureshino
- Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, JPN
| | - Tetsumi Yoshida
- Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, JPN
| | - Tatsuo Ichinohe
- Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, JPN
| |
Collapse
|
153
|
Li Y, Solis-Ruiz J, Yang F, Long N, Tong CH, Lacbawan FL, Racke FK, Press RD. NGS-defined measurable residual disease (MRD) after initial chemotherapy as a prognostic biomarker for acute myeloid leukemia. Blood Cancer J 2023; 13:59. [PMID: 37088803 PMCID: PMC10123056 DOI: 10.1038/s41408-023-00833-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
Treated AML patients often have measurable residual disease (MRD) due to persisting low-level clones. This study assessed whether residual post-treatment somatic mutations, detected by NGS, were significantly prognostic for subsequent clinical outcomes. AML patients (n = 128) underwent both pre-and post-treatment testing with the same 42-gene MRD-validated NGS assay. After induction, 59 (46%) patients were mutation-negative (0.0024 VAF detection limit) and 69 (54%) had ≥1 persisting NGS-detectable mutation. Compared with NGS-negative patients, NGS-positive patients had shorter overall survival (17 months versus median not reached; P = 0.004; hazard ratio = 2.2 [95% CI: 1.3-3.7]) and a shorter time to relapse (14 months versus median not reached; P = 0.014; HR = 1.9 [95% CI: 1.1-3.1]). Among 95 patients with a complete morphologic remission (CR), 43 (45%) were MRD-positive by NGS and 52 (55%) were MRD-negative. These MRD-positive CR patients had a shorter overall survival (16.8 months versus median not reached; P = 0.013; HR = 2.1 [95% CI: 1.2-3.9]) than did the MRD-negative CR patients. Post-treatment persisting MRD positivity, defined by the same NGS-based test used at diagnosis, is thus a more sensitive biomarker for low-level leukemic clones compared to traditional non-molecular methods and is prognostic of subsequent relapse and death.
Collapse
Affiliation(s)
- Yonghong Li
- Quest Diagnostics, San Juan Capistrano, CA, USA
| | - Jose Solis-Ruiz
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Fei Yang
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Nicola Long
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | | | | | | | - Richard D Press
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
154
|
Oshikawa G, Sasaki K. Optimizing Treatment Options for Newly Diagnosed Acute Myeloid Leukemia in Older Patients with Comorbidities. Cancers (Basel) 2023; 15:2399. [PMID: 37190327 PMCID: PMC10136601 DOI: 10.3390/cancers15082399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Traditionally, the goal of AML therapy has been to induce remission through intensive chemotherapy, maintain long-term remission using consolidation therapy, and achieve higher rates of a cure by allogeneic transplantation in patients with a poor prognosis. However, for the elderly patients and those with comorbidities, the toxicity often surpasses the therapeutic benefits of intensive chemotherapy. Consequently, low-intensity therapies, such as the combination of a hypomethylating agent with venetoclax, have emerged as promising treatment options for elderly patients. Given the rise of low-intensity therapies as the leading treatment option for the elderly, it is increasingly important to consider patients' age and comorbidities when selecting a treatment option. The recently proposed comorbidity-based risk stratification for AML allows prognosis stratification not only in patients undergoing intensive chemotherapy, but also in those receiving low-intensity chemotherapy. Optimizing treatment intensity based on such risk stratification is anticipated to balance treatment efficacy and safety, and will ultimately improve the life expectancy for patients with AML.
Collapse
Affiliation(s)
- Gaku Oshikawa
- Department of Hematology, Japanese Red Cross Musashino Hospital, 1-26-1 Kyonan-cho Musashino-shi, Tokyo 180-8610, Japan
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 428, Houston, TX 77030, USA
| |
Collapse
|
155
|
El-Cheikh J, Bidaoui G, Saleh M, Moukalled N, Abou Dalle I, Bazarbachi A. Venetoclax: A New Partner in the Novel Treatment Era for Acute Myeloid Leukemia and Myelodysplastic Syndrome. Clin Hematol Int 2023:10.1007/s44228-023-00041-x. [PMID: 37071328 DOI: 10.1007/s44228-023-00041-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/09/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Acute Myeloid Leukemia (AML) and Myelodysplastic Syndrome (MDS) are two closely related blood cancers that are more frequent in older adults. AML is the most common type of adult acute leukemia, and MDS is characterized by ineffective blood cell production and abnormalities in the bone marrow and blood. Both can be resistant to treatment, often due to dysfunction in the process of apoptosis, the body's natural mechanism for cell death. Venetoclax, an orally-administered medication that selectively targets the BCL-2 protein, has shown promise in enhancing treatment sensitivity in some hematological malignancies by reducing the apoptotic threshold. This review aims to evaluate the effectiveness of venetoclax in treating AML and MDS, as well as potential mechanisms of resistance to the medication. METHODS A literature search was conducted utilizing PUBMED to capture all relevant research articles on the use of venetoclax as a therapy for both diseases. The MeSH terms "acute myeloid leukemia", "myelodysplastic syndrome" and "venetoclax" were searched. Furthermore, Clinicaltrials.gov was accessed to ensure the inclusion of all ongoing clinical trials. RESULTS Although Venetoclax showed modest results as a single-agent therapy in AML, venetoclax-based combination therapies? mainly with hypomethylating agents or low-dose cytarabine? yielded significantly positive results. Preliminary results oN the use of venetoclax-based combination therapy with HMA, mainly azacitidine, in unfit high-risk MDS also yielded optimistic results. Identification of mutations for which various drugs have been approved has spurred active investigation of venetoclax in combination trials. CONCLUSION Venetoclax-based combination therapies have been shown to induce rapid responses and increase overall survival in AML patients unfit for intensive chemotherapy. These therapies are also yielding positive preliminary results in high-risk MDS patients in phase I trials. Resistance to venetoclax and drug-related toxicity are two main obstacles that need to be overcome to reap the full benefits of this therapy.
Collapse
Affiliation(s)
- Jean El-Cheikh
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
- Department of Internal Medicine, Medical Center, Bone Marrow Transplantation Program, American University of Beirut, P.O. Box 113-6044, Beirut, Lebanon.
| | - Ghassan Bidaoui
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mustafa Saleh
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Nour Moukalled
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Iman Abou Dalle
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Bazarbachi
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
156
|
Blum S, Tsilimidos G, Bresser H, Lübbert M. Role of Bcl-2 inhibition in myelodysplastic syndromes. Int J Cancer 2023; 152:1526-1535. [PMID: 36444492 DOI: 10.1002/ijc.34377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/09/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022]
Abstract
Myelodysplasic syndromes (MDS) are diseases occurring mainly in the elderly population. Although hematopoietic stem cell transplantation is the only hope for cure, a majority of the patients suffering from MDS are too old or frail for intensive treatment regimens such as intensive chemotherapy and transplantation. The gold standard for those patients is currently treatment with hypomethylating agents, although real-life data could not reproduce the overall survival rates reported for the pivotal azacitidine phase III study. MDS treatment is often inspired by treatment for acute myeloid leukemia (AML). The new gold standard for elderly and frail patients not able to undergo intensive treatment regimens in AML is the combination of hypomethylating agents with venetoclax, a BCL-2 inhibitor that also showed excellent treatment outcomes in other hematological malignancies. In this review, we explain the rationale for the use of venetoclax in hematological malignancies, study outcomes available so far and the current knowledge of its use in MDS.
Collapse
Affiliation(s)
- Sabine Blum
- Service and Central Laboratory of Haematology, Department of Oncology and Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Gerasimos Tsilimidos
- Service and Central Laboratory of Haematology, Department of Oncology and Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Helena Bresser
- Department of Internal Medicine I, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Michael Lübbert
- Department of Internal Medicine I, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| |
Collapse
|
157
|
Fedorov K, Maiti A, Konopleva M. Targeting FLT3 Mutation in Acute Myeloid Leukemia: Current Strategies and Future Directions. Cancers (Basel) 2023; 15:cancers15082312. [PMID: 37190240 DOI: 10.3390/cancers15082312] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
FLT3 mutations are present in 30% of newly diagnosed patients with acute myeloid leukemia. Two broad categories of FLT3 mutations are ITD and TKD, with the former having substantial clinical significance. Patients with FLT3-ITD mutation present with a higher disease burden and have inferior overall survival, due to high relapse rates after achieving remission. The development of targeted therapies with FLT3 inhibitors over the past decade has substantially improved clinical outcomes. Currently, two FLT3 inhibitors are approved for use in patients with acute myeloid leukemia: midostaurin in the frontline setting, in combination with intensive chemotherapy; and gilteritinib as monotherapy in the relapsed refractory setting. The addition of FLT3 inhibitors to hypomethylating agents and venetoclax offers superior responses in several completed and ongoing studies, with encouraging preliminary data. However, responses to FLT3 inhibitors are of limited duration due to the emergence of resistance. A protective environment within the bone marrow makes eradication of FLT3mut leukemic cells difficult, while prior exposure to FLT3 inhibitors leads to the development of alternative FLT3 mutations as well as activating mutations in downstream signaling, promoting resistance to currently available therapies. Multiple novel therapeutic strategies are under investigation, including BCL-2, menin, and MERTK inhibitors, as well as FLT3-directed BiTEs and CAR-T therapy.
Collapse
Affiliation(s)
- Kateryna Fedorov
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marina Konopleva
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| |
Collapse
|
158
|
Hoff FW, Patel PA, Belli AJ, Hansen E, Foss H, Schulte M, Wang CK, Madanat YF. Real-world outcomes of frontline venetoclax-based therapy in older adults with acute myeloid leukemia: an analysis utilizing EHR data. Leuk Lymphoma 2023:1-6. [PMID: 37052347 DOI: 10.1080/10428194.2023.2197090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Venetoclax (VEN) in combination with hypomethylating agents (HMA) or low-dose cytarabine has become the standard of care for patients with acute myeloid leukemia (AML) who are ineligible to receive intensive induction chemotherapy. Clinical trials are performed in a controlled setting that can be difficult to emulate in the real world. We sought to investigate outcomes of patients treated with VEN-based therapy in the real world. Patients with an age of ≥65 years who received frontline VEN-based therapy were identified using the COTA database (n = 112). The majority of patients (91%) were treated in the community setting and had adverse-risk AML (63%). The real-world overall response rate (rwORR) was 55% with a median real-world overall survival (rwOS) of 13 months after VEN/HMA. The rwORR was lower and median rwOS was shorter than those reported in the VIALE-A trial, underscoring the importance of studying novel therapies using real-world data.
Collapse
Affiliation(s)
- Fieke W Hoff
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern, Dallas, TX, USA
| | - Prapti A Patel
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern, Dallas, TX, USA
| | | | | | | | | | | | - Yazan F Madanat
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
159
|
Yeoh ZH, Wei A. Venetoclax and hypomethylating agent therapy for accelerated and blast phase BCR::ABL negative myeloproliferative and extramedullary disease. Leuk Lymphoma 2023; 64:757-760. [PMID: 37037568 DOI: 10.1080/10428194.2023.2197533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Affiliation(s)
- Zhi-Han Yeoh
- Clinical Haematology, Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Andrew Wei
- Clinical Haematology, Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| |
Collapse
|
160
|
Sasaki K, Ravandi F, Kadia TM, Borthakur G, Short NJ, Jain N, Daver NG, Jabbour EJ, Garcia-Manero G, Loghavi S, Patel KP, Montalban-Bravo G, Masarova L, DiNardo CD, Kantarjian HM. Prediction of survival with lower intensity therapy among older patients with acute myeloid leukemia. Cancer 2023; 129:1017-1029. [PMID: 36715486 DOI: 10.1002/cncr.34609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND The aim of this study was to develop a prognostic model for survival in older/unfit patients with newly diagnosed acute myeloid leukemia (AML) who were treated with lower-intensity chemotherapy regimens. METHODS The authors reviewed all older/unfit patients with newly diagnosed AML who received lower-intensity chemotherapy from 2000 until 2020 at their institution. A total of 1462 patients were included. They were divided (3:1 basis) into a training (n = 1088) and a validation group (n = 374). RESULTS In the training cohort of 1088 patients (median age, 72 years), the multivariate analysis identified 11 consistent independent adverse factors associated with survival: older age, therapy-related myeloid neoplasm, existence of previous myelodysplastic syndrome or myeloproliferative neoplasms, poor performance status, pulmonary comorbidity, anemia, thrombocytopenia, elevated lactate dehydrogenase, cytogenetic abnormalities, and the presence of infection at diagnosis, and therapy not containing venetoclax. The 3-year survival rates were 52%, 24%, 10%, and 1% in favorable, intermediate, poor, and very poor risk, respectively. This survival model was validated in an independent cohort. In a subset of patients in whom molecular mutation profiles were performed in more recent times, adding the mutation profiles after accounting for the effects of previous factors identified IDH2 (favorable), NPM1 (favorable), and TP53 (unfavorable) mutations as molecular prognostic factors. CONCLUSION The proposed survival model with lower-intensity chemotherapy in older/unfit patients with newly diagnosed AML may help to advise patients on their expected outcome, to propose different strategies in first complete remission, and to compare the results of different existing or future investigational therapies. PLAIN LANGUAGE SUMMARY Lower intensity therapy can be considered for older patients to avoid severe toxicities and adverse events. However, survival prediction in AML was commonly developed in patients who received intensive chemotherapy. In this study, we have proposed a survival model to guide therapeutic approach in older patients who received lower-intensity therapy.
Collapse
Affiliation(s)
- Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elias J Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Lucia Masarova
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
161
|
Todisco E, Papayannidis C, Fracchiolla N, Petracci E, Zingaretti C, Vetro C, Martelli MP, Zappasodi P, Di Renzo N, Gallo S, Audisio E, Griguolo D, Cerchione C, Selleri C, Mattei D, Bernardi M, Fumagalli M, Rizzuto G, Facchini L, Basilico CM, Manfra I, Borlenghi E, Cairoli R, Salutari P, Gottardi M, Molteni A, Martini V, Lunghi M, Fianchi L, Cilloni D, Lanza F, Abruzzese E, Cascavilla N, Rivellini F, Ferrara F, Maurillo L, Nanni J, Romano A, Cardinali V, Gigli F, Roncoroni E, Federico V, Marconi G, Volpi R, Sciumè M, Tarella C, Rossi G, Martinelli G. AVALON: The Italian cohort study on real-life efficacy of hypomethylating agents plus venetoclax in newly diagnosed or relapsed/refractory patients with acute myeloid leukemia. Cancer 2023; 129:992-1004. [PMID: 36692409 DOI: 10.1002/cncr.34608] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/21/2022] [Accepted: 10/29/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Venetoclax in combination with hypomethylating agents (HMA) is revolutionizing the therapy of acute myeloid leukemia (AML). However, evidence on large sets of patients is lacking, especially in relapsed or refractory leukemia. METHODS AVALON is a multicentric cohort study that was conducted in Italy on patients with AML who received venetoclax-based therapies from 2015 to 2020. The study was approved by the ethics committee of the participating institution and was conducted in accordance with the Declaration of Helsinki. The effectiveness and toxicity of venetoclax + HMA in 190 (43 newly diagnosed, 68 refractory, and 79 relapsed) patients with AML are reported here. RESULTS In the newly diagnosed AML, the overall response rate and survival confirmed the brilliant results demonstrated in VIALE-A. In the relapsed or refractory AML, the combination demonstrated a surprisingly complete remission rate (44.1% in refractory and 39.7% in relapsed evaluable patients) and conferred to treated patients a good expectation of survival. Toxicities were overall manageable, and most incidents occurred in the first 60 days of therapy. Infections were confirmed as the most common nonhematologic adverse event. CONCLUSIONS Real-life data show that the combination of venetoclax and HMA offers an expectation of remission and long-term survival to elderly, newly diagnosed patients, and to relapsed or chemoresistant AML, increasing the chance of cure through a different mechanism of action. The venetoclax + HMA combination is expected to constitute the base for triplet combinations and integration of target therapies. Our data contribute to ameliorate the understanding of venetoclax + HMA effectiveness and toxicities in real life.
Collapse
Affiliation(s)
- Elisabetta Todisco
- Divisione di Oncoematologia, IRCCS Istituto Europeo di Oncologia, Milano, Italy.,SC Ematologia, Ospedale Busto Arsizio, ASST Valle Olona, Varese, Italy
| | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Nicola Fracchiolla
- UOC Oncoematologia, Fondazione IRCCS "Ca'Granda" Ospedale Maggiore Policlinico, Milano, Italy
| | - Elisabetta Petracci
- Unità di Biostatistica e Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (ISRT) "Dino Amadori", Meldola, Italy
| | - Chiara Zingaretti
- Unità di Biostatistica e Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (ISRT) "Dino Amadori", Meldola, Italy
| | - Calogero Vetro
- Divisione di Ematologia, AOU Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Maria Paola Martelli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Ospedale "Santa Maria della Misericordia", Perugia, Italy
| | - Patrizia Zappasodi
- Dipartimento di Oncoematologia, Fondazione IRCCS Policlinico "San Matteo", Pavia, Italy
| | - Nicola Di Renzo
- Unità di Ematologia e TCS, Ospedale "Vito Fazzi", Lecce, Italy
| | - Susanna Gallo
- SCDU di Ematologia e Terapie Cellulari, AO Ordine Mauriziano, Torino, Italy
| | - Ernesta Audisio
- SC Ematologia 2, AOU Città della Salute e della Scienza, Torino, Italy
| | | | - Claudio Cerchione
- Dipartimento di Oncologia ed Ematologia Clinica e Sperimentale, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Carmine Selleri
- UOC Ematologia, AOU "San Giovanni di Dio e Ruggi D'Aragona", Salerno, Italy
| | - Daniele Mattei
- SC di Ematologia, AO "Santa Croce e Carle", Cuneo, Italy
| | - Massimo Bernardi
- UO Ematologia e Centro Trapianto di Midollo Osseo, IRCCS Ospedale "San Raffaele", Milano, Italy
| | - Monica Fumagalli
- SC Ematologia, Ospedale "San Gerardo", ASST di Monza, Monza, Italy
| | - Giuliana Rizzuto
- UOC Ematologia e Centro Trapianto di Midollo Osseo, ASST "Papa Giovanni XXIII", Bergamo, Italy
| | - Luca Facchini
- UOC Ematologia, Azienda USL IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Ilenia Manfra
- UO Ematologia, Azienda Ospedaliera "S. G. Moscati", Avellino, Italy
| | - Erika Borlenghi
- UO Ematologia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Roberto Cairoli
- SC Ematologia, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Prassede Salutari
- UOC Ematologia Clinica, Ospedale Civile "Santo Spirito", Pescara, Italy
| | - Michele Gottardi
- Dipartimento di Oncologia, UOC Oncoematologia, Istituto Oncologico Veneto (IOV) IRCCS, Padova, Italy
| | | | | | - Monia Lunghi
- SCDU Ematologia, AOU "Maggiore della Carità", Novara, Italy
| | - Luana Fianchi
- UOC Ematologia e TCSE, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Daniela Cilloni
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
| | - Francesco Lanza
- UO Ematologia, Ospedale "Santa Maria delle Croci", AUSL Romagna, Ravenna, Italy
| | - Elisabetta Abruzzese
- Dipartimento di Ematologia, Ospedale "S. Eugenio", Università Tor Vergata, Roma, Italy
| | - Nicola Cascavilla
- UO Ematologia, Ospedale "Casa Sollievo della Sofferenza" IRCCS, San Giovanni Rotondo, Italy
| | - Flavia Rivellini
- UOC Oncoematologia, Presidio Ospedaliero "A. Tortora", Pagani, Italy
| | | | - Luca Maurillo
- Dipartimento di Biomedicina e Prevenzione, Università Tor Vergata, Roma, Italy
| | - Jacopo Nanni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Alessandra Romano
- Divisione di Ematologia, AOU Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Valeria Cardinali
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Ospedale "Santa Maria della Misericordia", Perugia, Italy
| | - Federica Gigli
- Divisione di Oncoematologia, IRCCS Istituto Europeo di Oncologia, Milano, Italy
| | - Elisa Roncoroni
- Dipartimento di Oncoematologia, Fondazione IRCCS Policlinico "San Matteo", Pavia, Italy
| | | | - Giovanni Marconi
- Dipartimento di Oncologia ed Ematologia Clinica e Sperimentale, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Roberta Volpi
- Unità di Biostatistica e Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (ISRT) "Dino Amadori", Meldola, Italy
| | - Mariarita Sciumè
- UOC Oncoematologia, Fondazione IRCCS "Ca'Granda" Ospedale Maggiore Policlinico, Milano, Italy
| | - Corrado Tarella
- Divisione di Oncoematologia, IRCCS Istituto Europeo di Oncologia, Milano, Italy
| | - Giuseppe Rossi
- UO Ematologia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Giovanni Martinelli
- Dipartimento di Oncologia ed Ematologia Clinica e Sperimentale, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | |
Collapse
|
162
|
Gando Y, Yasu T. Real-world treatment patterns of venetoclax and azacytidine therapy in Japanese patients with acute myeloid leukemia. Ann Hematol 2023; 102:1283-1285. [PMID: 36991229 DOI: 10.1007/s00277-023-05201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Affiliation(s)
- Yoshito Gando
- Department of Medicinal Therapy Research, Pharmaceutical Education and Research Center, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Takeo Yasu
- Department of Medicinal Therapy Research, Pharmaceutical Education and Research Center, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan.
| |
Collapse
|
163
|
Sciumè M, Bosi A, Canzi M, Ceparano G, Serpenti F, De Roberto P, Fabris S, Tagliaferri E, Cavallaro F, Onida F, Fracchiolla NS. Real-life monocentric experience of venetoclax-based regimens for acute myeloid leukemia. Front Oncol 2023; 13:1149298. [PMID: 37051529 PMCID: PMC10083332 DOI: 10.3389/fonc.2023.1149298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
IntroductionCombination of venetoclax and hypomethylating agents (HMAs) has become a standard of care in acute myeloid leukemia (AML) aged >75 years or who have comorbidities that preclude intensive induction chemotherapy.MethodsWe conducted a monocentric retrospective analysis on adult patients affected by treatment-naïve AML not eligible for standard induction therapy or refractory/relapsed (R/R) AML treated with venetoclax combinations outside clinical trials. Venetoclax was administered at the dose of 400 mg/daily after a short ramp-up and reduced in case of concomitant CYP3A4 inhibitors.ResultsSixty consecutive AML were identified. Twenty-three patients (38%) were affected by treatment-naïve AML and 37 (62%) by R/R AML. Median age was 70 years. Among R/R AML 30% had received a prior allogeneic stem cell transplantation (allo-HSCT). In combination with venetoclax, 50 patients (83%) received azacitidine. Antifungal prophylaxis was performed in 33 patients (55%).Overall response rate was 60%, with 53% of complete remission (CR; 78% for treatment-naïve and 49% for R/R, p 0.017). Median overall survival was 130 days for R/R patients and 269 days for treatment-naïve patients; median event free survival was 145 days for R/R cohort and 199 days for treatment-naïve AML.Measurable residual disease was negative in 26% of evaluable patients in CR/CR with incomplete hematologic recovery after 2 cycles and in 50% after 4 cycles, with no significant association with survival.Eleven patients (18%) received an allo-HSCT after venetoclax combinations. Most common grade 3/4 adverse events were infectious (51% of the patients), or hematological without infections (25% of the patients). Use of CYP3A4 inhibitors was associated with a trend to shorter cytopenias and with a lower rate of infections. Invasive fungal infections were less frequent among patients receiving azole prophylaxis (6% vs 26%; p 0.0659).DiscussionVenetoclax-based regimens are a viable option for AML considered not eligible for standard induction therapy and a valid rescue therapy in the R/R setting.Azole prophylaxis did not significantly affect response and it was associated with a lower rate of invasive fungal infections. Despite a limited number of patients, the association of venetoclax and HMAs proved to be also a feasible bridging therapy to transplantation.
Collapse
Affiliation(s)
- Mariarita Sciumè
- Hematology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- *Correspondence: Mariarita Sciumè,
| | - Alessandro Bosi
- Department of Oncology and Hemato-Oncology, Università Degli Studi di Milano, Milan, Italy
| | - Marta Canzi
- Department of Oncology and Hemato-Oncology, Università Degli Studi di Milano, Milan, Italy
| | - Giusy Ceparano
- Department of Oncology and Hemato-Oncology, Università Degli Studi di Milano, Milan, Italy
| | - Fabio Serpenti
- Department of Oncology and Hemato-Oncology, Università Degli Studi di Milano, Milan, Italy
| | - Pasquale De Roberto
- Hematology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sonia Fabris
- Hematology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Tagliaferri
- Hematology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Cavallaro
- Hematology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Onida
- Hematology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università Degli Studi di Milano, Milan, Italy
| | - Nicola Stefano Fracchiolla
- Hematology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
164
|
Nakao F, Setoguchi K, Semba Y, Yamauchi T, Nogami J, Sasaki K, Imanaga H, Terasaki T, Miyazaki M, Hirabayashi S, Miyawaki K, Kikushige Y, Masuda T, Akashi K, Maeda T. Targeting a mitochondrial E3 ubiquitin ligase complex to overcome AML cell-intrinsic Venetoclax resistance. Leukemia 2023; 37:1028-1038. [PMID: 36973350 DOI: 10.1038/s41375-023-01879-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
To identify molecules/pathways governing Venetoclax (VEN) sensitivity, we performed genome-wide CRISPR/Cas9 screens using a mouse AML line insensitive to VEN-induced mitochondrial apoptosis. Levels of sgRNAs targeting March5, Ube2j2 or Ube2k significantly decreased upon VEN treatment, suggesting synthetic lethal interaction. Depletion of either Ube2j2 or Ube2k sensitized AML cells to VEN only in the presence of March5, suggesting coordinate function of the E2s Ube2j2 and Ube2k with the E3 ligase March5. We next performed CRISPR screens using March5 knockout cells and identified Noxa as a key March5 substrate. Mechanistically, Bax released from Bcl2 upon VEN treatment was entrapped by Mcl1 and Bcl-XL and failed to induce apoptosis in March5 intact AML cells. By contrast, in March5 knockout cells, liberated Bax did not bind to Mcl1, as Noxa likely occupied Mcl1 BH3-binding grooves and efficiently induced mitochondrial apoptosis. We reveal molecular mechanisms underlying AML cell-intrinsic VEN resistance and suggest a novel means to sensitize AML cells to VEN.
Collapse
Affiliation(s)
- Fumihiko Nakao
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kiyoko Setoguchi
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yuichiro Semba
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takuji Yamauchi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Jumpei Nogami
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kensuke Sasaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroshi Imanaga
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Tatsuya Terasaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Manaka Miyazaki
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shigeki Hirabayashi
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kohta Miyawaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshikane Kikushige
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Takahiro Maeda
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| |
Collapse
|
165
|
Trabal A, Gibson A, He J, McCall D, Roth M, Nuñez C, Garcia M, Buzbee M, Toepfer L, Bidikian A, Daver N, Kadia T, Short NJ, Issa GC, Ravandi F, DiNardo CD, Montalban Bravo G, Garces S, Marcogliese A, Paek H, Dreyer Z, Brackett J, Redell M, Yi J, Garcia-Manero G, Konopleva M, Stevens A, Cuglievan B. Venetoclax for Acute Myeloid Leukemia in Pediatric Patients: A Texas Medical Center Experience. Cancers (Basel) 2023; 15:cancers15071983. [PMID: 37046645 PMCID: PMC10093646 DOI: 10.3390/cancers15071983] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The BCL-2 inhibitor venetoclax improves survival for adult patients with acute myeloid leukemia (AML) in combination with lower-intensity therapies, but its benefit in pediatric patients with AML remains unclear. We retrospectively reviewed two Texas Medical Center institutions’ experience with venetoclax in 43 pediatric patients with AML; median age 17 years (range, 0.6–21). This population was highly refractory; 44% of patients (n = 19) had ≥3 prior lines of therapy, 37% (n = 16) had received a prior bone marrow transplant, and 81% (n = 35) had unfavorable genetics KMT2A (n = 17), WT1 (n = 13), FLT3-ITD (n = 10), monosomy 7 (n = 5), TP53 (n = 3), Inv(3) (n = 3), IDH1/2 (n = 2), monosomy 5 (n = 1), NUP98 (n = 1) and ASXL1 (n = 1). The majority (86%) received venetoclax with a hypomethylating agent. Grade 3 or 4 adverse events included febrile neutropenia in 37% (n = 16), non-febrile neutropenia in 12% (n = 5), anemia in 14% (n = 6), and thrombocytopenia in 14% (n = 6). Of 40 patients evaluable for response, 10 patients (25%) achieved complete response (CR), 6 patients (15%) achieved CR with incomplete blood count recovery (CRi), and 2 patients (5%) had a partial response, (CR/CRi composite = 40%; ORR = 45%). Eleven (25%) patients received a hematopoietic stem cell transplant following venetoclax combination therapy, and six remain alive (median follow-up time 33.6 months). Median event-free survival and overall survival duration was 3.7 months and 8.7 months, respectively. Our findings suggest that in pediatric patients with AML, venetoclax is well-tolerated, with a safety profile similar to that in adults. More studies are needed to establish an optimal venetoclax-based regimen for the pediatric population.
Collapse
|
166
|
Bhansali RS, Pratz KW, Lai C. Recent advances in targeted therapies in acute myeloid leukemia. J Hematol Oncol 2023; 16:29. [PMID: 36966300 PMCID: PMC10039574 DOI: 10.1186/s13045-023-01424-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. While survival for younger patients over the last several decades has improved nearly sixfold with the optimization of intensive induction chemotherapy and allogeneic stem cell transplantation (alloHSCT), this effect has been largely mitigated in older and less fit patients as well as those with adverse-risk disease characteristics. However, the last 10 years has been marked by major advances in the molecular profiling of AML characterized by a deeper understanding of disease pathobiology and therapeutic vulnerabilities. In this regard, the classification of AML subtypes has recently evolved from a morphologic to a molecular and genetic basis, reflected by recent updates from the World Health Organization and the new International Consensus Classification system. After years of stagnation in new drug approvals for AML, there has been a rapid expansion of the armamentarium against this disease since 2017. Low-intensity induction therapy with hypomethylating agents and venetoclax has substantially improved outcomes, including in those previously considered to have a poor prognosis. Furthermore, targeted oral therapies against driver mutations in AML have been added to the repertoire. But with an accelerated increase in treatment options, several questions arise such as how to best sequence therapy, how to combine therapies, and if there is a role for maintenance therapy in those who achieve remission and cannot undergo alloHSCT. Moreover, certain subtypes of AML, such as those with TP53 mutations, still have dismal outcomes despite these recent advances, underscoring an ongoing unmet need and opportunity for translational advances. In this review, we will discuss recent updates in the classification and risk stratification of AML, explore the literature regarding low-intensity and novel oral combination therapies, and briefly highlight investigative agents currently in early clinical development for high-risk disease subtypes.
Collapse
Affiliation(s)
- Rahul S Bhansali
- Division of Hematology/Oncology, Department of Medicine, Hospital of the University of Pennsylvania, South Pavilion, 12th Floor, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Keith W Pratz
- Division of Hematology/Oncology, Department of Medicine, Hospital of the University of Pennsylvania, South Pavilion, 12th Floor, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Catherine Lai
- Division of Hematology/Oncology, Department of Medicine, Hospital of the University of Pennsylvania, South Pavilion, 12th Floor, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
167
|
Bruzzese A, Martino EA, Mendicino F, Lucia E, Olivito V, Neri A, Morabito F, Vigna E, Gentile M. Venetoclax in acute myeloid leukemia. Expert Opin Investig Drugs 2023; 32:271-276. [PMID: 36933006 DOI: 10.1080/13543784.2023.2193679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
| | | | | | - Eugenio Lucia
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | - Antonino Neri
- Scientific Directorate IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | | | - Ernesto Vigna
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| |
Collapse
|
168
|
Sandoval C, Calle Y, Godoy K, Farías J. An Updated Overview of the Role of CYP450 during Xenobiotic Metabolization in Regulating the Acute Myeloid Leukemia Microenvironment. Int J Mol Sci 2023; 24:ijms24076031. [PMID: 37047003 PMCID: PMC10094375 DOI: 10.3390/ijms24076031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Oxidative stress is associated with several acute and chronic disorders, including hematological malignancies such as acute myeloid leukemia, the most prevalent acute leukemia in adults. Xenobiotics are usually harmless compounds that may be detrimental, such as pharmaceuticals, environmental pollutants, cosmetics, and even food additives. The storage of xenobiotics can serve as a defense mechanism or a means of bioaccumulation, leading to adverse effects. During the absorption, metabolism, and cellular excretion of xenobiotics, three steps may be distinguished: (i) inflow by transporter enzymes, (ii) phases I and II, and (iii) phase III. Phase I enzymes, such as those in the cytochrome P450 superfamily, catalyze the conversion of xenobiotics into more polar compounds, contributing to an elevated acute myeloid leukemia risk. Furthermore, genetic polymorphism influences the variability and susceptibility of related myeloid neoplasms, infant leukemias associated with mixed-lineage leukemia (MLL) gene rearrangements, and a subset of de novo acute myeloid leukemia. Recent research has shown a sustained interest in determining the regulators of cytochrome P450, family 2, subfamily E, member 1 (CYP2E1) expression and activity as an emerging field that requires further investigation in acute myeloid leukemia evolution. Therefore, this review suggests that CYP2E1 and its mutations can be a therapeutic or diagnostic target in acute myeloid leukemia.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Yolanda Calle
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - Karina Godoy
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
169
|
Xie X, Zhang W, Zhou X, Ye Z, Wang H, Qiu Y, Pan Y, Hu Y, Li L, Chen Z, Yang W, Lu Y, Zou S, Li Y, Bai X. Abemaciclib drives the therapeutic differentiation of acute myeloid leukaemia stem cells. Br J Haematol 2023; 201:940-953. [PMID: 36916190 DOI: 10.1111/bjh.18735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/15/2023]
Abstract
Self-renewal and differentiation arrest are two features of leukaemia stem cells (LSCs) responsible for the high relapse rate of acute myeloid leukaemia (AML). To screen drugs to overcome differentiation blockade for AML, we conducted screening of 2040 small molecules from a library of United States Food and Drug Administration-approved drugs and found that the cyclin-dependent kinase (CDK)4/6 inhibitor, abemaciclib, exerts high anti-leukaemic activity. Abemaciclib significantly suppressed proliferation and promoted the differentiation of LSCs in vitro. Abemaciclib also efficiently induced differentiation and impaired self-renewal of LSCs, thus reducing the leukaemic cell burden and improving survival in various preclinical animal models, including patient-derived xenografts. Importantly, abemaciclib strongly enhanced anti-tumour effects in combination with venetoclax, a B-cell lymphoma 2 (Bcl-2) inhibitor. This treatment combination led to a marked decrease in LSC-enriched populations and resulted in a synergistic anti-leukaemic effect. Target screening revealed that in addition to CDK4/6, abemaciclib bound to and inhibited CDK9, consequently attenuating the protein levels of global p-Ser2 RNA Polymerase II (Pol II) carboxy terminal domain (CTD), Myc, Bcl-2, and myeloid cell leukaemia-1 (Mcl-1), which was important for the anti-AML effect of abemaciclib. Collectively, these data provide a strong rationale for the clinical evaluation of abemaciclib to induce LSC differentiation and treat highly aggressive AML as well as other advanced haematological malignancies.
Collapse
Affiliation(s)
- Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wuju Zhang
- Department of Oncology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhixin Ye
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hao Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yating Pan
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Luyao Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhuanzhuan Chen
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wanwen Yang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yao Lu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuxin Zou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
170
|
Venditti A, Cairoli R, Caira M, Finsinger P, Finocchiaro F, Neri B, De Benedittis D, Rossi G, Ferrara F. Assessing eligibility for treatment in acute myeloid leukemia in 2023. Expert Rev Hematol 2023; 16:181-190. [PMID: 36876439 DOI: 10.1080/17474086.2023.2185603] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
INTRODUCTION Age has historically been considered the main criterion to determine eligibility for intensive chemotherapy in patients with acute myeloid leukemia (AML), but age alone can no longer be considered an absolute indicator in determining which patients should be defined as unfit. Assessment of fitness for a given treatment today serves an important role in tailoring therapeutic options. AREAS COVERED This review examines the main options used in real life to define eligibility for intensive and nonintensive chemotherapy in patients with AML, with a main focus on the Italian SIE/SIES/GITMO Consensus Criteria. Other published real-life experiences are also reviewed, analyzing the correlation between these criteria and short-term mortality, and thus expected outcomes. EXPERT OPINION Assessment of fitness is mandatory at diagnosis to tailor treatment to the greatest degree possible, evaluating the patient's individual profile. This is especially relevant when considering the availability of newer, less toxic therapeutic regimens, which have shown promising results in patients with AML who are older or considered unfit for intensive treatment. Fitness assessment is now a fundamental part of AML management and a critical step that can potentially influence outcomes and not just predict them.
Collapse
Affiliation(s)
- Adriano Venditti
- Ematologia, Dipartimento di Biomedicina e Prevenzione, Università di Roma "Tor Vergata", Rome, Italy
| | - Roberto Cairoli
- Dipartimento Ematologia, Oncologia e Medicina Molecolare, ASST Grande Ospedale Metropolitano Niguarda-Milano, Milan, Italy
| | - Morena Caira
- Medical Department, AbbVie srl, Campoverde di Aprilia, Latina, Italy
| | - Paola Finsinger
- Medical Department, AbbVie srl, Campoverde di Aprilia, Latina, Italy
| | - Fabio Finocchiaro
- Medical Department, AbbVie srl, Campoverde di Aprilia, Latina, Italy
| | - Benedetta Neri
- Medical Department, AbbVie srl, Campoverde di Aprilia, Latina, Italy
| | | | | | | |
Collapse
|
171
|
Gene Mutations and Targeted Therapies of Myeloid Sarcoma. Curr Treat Options Oncol 2023; 24:338-352. [PMID: 36877373 DOI: 10.1007/s11864-023-01063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 03/07/2023]
Abstract
OPINION STATEMENT Myeloid sarcoma, a rare malignant tumor characterized by the invasion of extramedullary tissue by immature myeloid cells, commonly occurs concomitantly with acute myeloid leukemia, myelodysplastic syndromes, or myeloproliferative neoplasms. The rarity of myeloid sarcoma poses challenges for diagnosis and treatment. Currently, treatments for myeloid sarcoma remain controversial and primarily follow protocols for acute myeloid leukemia, such as chemotherapy utilizing multi-agent regimens, in addition to radiation therapy and/or surgery. The advancements in next-generation sequencing technology have led to significant progress in the field of molecular genetics, resulting in the identification of both diagnostic and therapeutic targets. The application of targeted therapeutics, such as FMS-like tyrosine kinase 3(FLT3) inhibitors, isocitrate dehydrogenases(IDH) inhibitors, and the B cell lymphoma 2(BCL2) inhibitors, has facilitated the gradual transformation of traditional chemotherapy into targeted precision therapy for acute myeloid leukemia. However, the field of targeted therapy for myeloid sarcoma is relatively under-investigated and not well-described. In this review, we comprehensively summarize the molecular genetic characteristics of myeloid sarcoma and the current application of targeted therapeutics.
Collapse
|
172
|
Dumas PY, Pigneux A. [Management of AML in the elderly]. Bull Cancer 2023; 110:424-432. [PMID: 36870810 DOI: 10.1016/j.bulcan.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023]
Abstract
Elderly patients with acute myeloid leukemia, ineligible for intensive chemotherapy, have long had a very poor prognosis and have always represented one of the main patient populations included in early phase clinical research trials. In recent years, many molecules have shown very interesting efficacy, often targeted therapies whose indication is based on a specific mutation profile (gilteritinib, ivosidenib), or mutation-independent (venetoclax), but also drugs whose indication is based on a specific biomarker (tamibarotene) or on new generation immunotherapies targeting macrophages (magrolimab) or other immune effectors while targeting leukemic cells resulting in forced immunological synapse (flotetuzumab) or activation of lymphocyte effectors associated with inhibition of the AML cells' stem signature in their microenvironment (cusatuzumab sabatolimab). All of these new strategies are discussed in this review, as well as the challenges of this frail population, which has benefited in recent months from all the major advances in the field, questioning in a second phase the modification of practices in younger patients.
Collapse
Affiliation(s)
- Pierre-Yves Dumas
- CHU de Bordeaux, service d'hématologie clinique et thérapie cellulaire, Inserm U1312, 1, avenue Magellan, 33604 Pessac, France.
| | - Arnaud Pigneux
- CHU de Bordeaux, service d'hématologie clinique et thérapie cellulaire, Inserm U1312, 1, avenue Magellan, 33604 Pessac, France
| |
Collapse
|
173
|
Wang H, Yao Y, Mao L, Lou Y, Ren Y, Ye X, Yang M, Ma L, Zhang Y, Zhou Y, Wu J, Huang X, Wang Y, Xu H, Tong H, Zhu HH, Jin J. Venetoclax plus '2 + 5' modified intensive chemotherapy with daunorubicin and cytarabine in fit elderly patients with untreated de novo acute myeloid leukaemia: a single-centre retrospective analysis. Br J Haematol 2023; 201:568-572. [PMID: 36863709 DOI: 10.1111/bjh.18709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 03/04/2023]
Affiliation(s)
- Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, P.R. China.,Zhejiang University Cancer Center, Hangzhou, P.R. China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, P.R. China
| | - Yiyi Yao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, P.R. China
| | - Liping Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, P.R. China
| | - Yinjun Lou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, P.R. China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, P.R. China
| | - Yanling Ren
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, P.R. China
| | - Xingnong Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, P.R. China
| | - Min Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, P.R. China
| | - Liya Ma
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, P.R. China
| | - Yi Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, P.R. China
| | - Yile Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, P.R. China
| | - Jiaying Wu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, P.R. China.,Zhejiang University Cancer Center, Hangzhou, P.R. China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, P.R. China
| | - Yungui Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, P.R. China.,Zhejiang University Cancer Center, Hangzhou, P.R. China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, P.R. China
| | - Huan Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, P.R. China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, P.R. China.,Zhejiang University Cancer Center, Hangzhou, P.R. China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, P.R. China
| | - Hong-Hu Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, P.R. China.,Zhejiang University Cancer Center, Hangzhou, P.R. China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, P.R. China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, P.R. China.,Zhejiang University Cancer Center, Hangzhou, P.R. China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, P.R. China
| |
Collapse
|
174
|
Peris I, Romero-Murillo S, Martínez-Balsalobre E, Farrington CC, Arriazu E, Marcotegui N, Jiménez-Muñoz M, Alburquerque-Prieto C, Torres-López A, Fresquet V, Martínez-Climent JA, Mateos MC, Cayuela ML, Narla G, Odero MD, Vicente C. Activation of the PP2A-B56α heterocomplex synergizes with venetoclax therapies in AML through BCL2 and MCL1 modulation. Blood 2023; 141:1047-1059. [PMID: 36455198 PMCID: PMC10023731 DOI: 10.1182/blood.2022016466] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
Venetoclax combination therapies are becoming the standard of care in acute myeloid leukemia (AML). However, the therapeutic benefit of these drugs in older/unfit patients is limited to only a few months, highlighting the need for more effective therapies. Protein phosphatase 2A (PP2A) is a tumor suppressor phosphatase with pleiotropic functions that becomes inactivated in ∼70% of AML cases. PP2A promotes cancer cell death by modulating the phosphorylation state in a variety of proteins along the mitochondrial apoptotic pathway. We therefore hypothesized that pharmacological PP2A reactivation could increase BCL2 dependency in AML cells and, thus, potentiate venetoclax-induced cell death. Here, by using 3 structurally distinct PP2A-activating drugs, we show that PP2A reactivation synergistically enhances venetoclax activity in AML cell lines, primary cells, and xenograft models. Through the use of gene editing tools and pharmacological approaches, we demonstrate that the observed therapeutic synergy relies on PP2A complexes containing the B56α regulatory subunit, of which expression dictates response to the combination therapy. Mechanistically, PP2A reactivation enhances venetoclax-driven apoptosis through simultaneous inhibition of antiapoptotic BCL2 and extracellular signal-regulated kinase signaling, with the latter decreasing MCL1 protein stability. Finally, PP2A targeting increases the efficacy of the clinically approved venetoclax and azacitidine combination in vitro, in primary cells, and in an AML patient-derived xenograft model. These preclinical results provide a scientific rationale for testing PP2A-activating drugs with venetoclax combinations in AML.
Collapse
Affiliation(s)
- Irene Peris
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Silvia Romero-Murillo
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Elena Martínez-Balsalobre
- Cancer and Aging Group, Hospital Universitario Virgen de la Arrixaca, and Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Caroline C. Farrington
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI
| | - Elena Arriazu
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III, Madrid, Spain
| | - Nerea Marcotegui
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
| | - Marta Jiménez-Muñoz
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
| | | | | | - Vicente Fresquet
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III, Madrid, Spain
| | - Jose A. Martínez-Climent
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria C. Mateos
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Hematology Service, Hospital Universitario de Navarra, Pamplona, Spain
| | - Maria L. Cayuela
- Cancer and Aging Group, Hospital Universitario Virgen de la Arrixaca, and Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI
| | - Maria D. Odero
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Vicente
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
175
|
Tiong IS, Loo S. Targeting Measurable Residual Disease (MRD) in Acute Myeloid Leukemia (AML): Moving beyond Prognostication. Int J Mol Sci 2023; 24:4790. [PMID: 36902217 PMCID: PMC10003715 DOI: 10.3390/ijms24054790] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Measurable residual disease (MRD) assessment in acute myeloid leukemia (AML) has an established role in disease prognostication, particularly in guiding decisions for hematopoietic cell transplantation in first remission. Serial MRD assessment is now routinely recommended in the evaluation of treatment response and monitoring in AML by the European LeukemiaNet. The key question remains, however, if MRD in AML is clinically actionable or "does MRD merely portend fate"? With a series of new drug approvals since 2017, we now have more targeted and less toxic therapeutic options for the potential application of MRD-directed therapy. Recent approval of NPM1 MRD as a regulatory endpoint is also foreseen to drastically transform the clinical trial landscape such as biomarker-driven adaptive design. In this article, we will review (1) the emerging molecular MRD markers (such as non-DTA mutations, IDH1/2, and FLT3-ITD); (2) the impact of novel therapeutics on MRD endpoints; and (3) how MRD might be used as a predictive biomarker to guide therapy in AML beyond its prognostic role, which is the focus of two large collaborative trials: AMLM26 INTERCEPT (ACTRN12621000439842) and MyeloMATCH (NCT05564390).
Collapse
Affiliation(s)
- Ing S. Tiong
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- The Alfred Hospital, Melbourne, VIC 3004, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Sun Loo
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- The Northern Hospital, Epping, VIC 3076, Australia
| |
Collapse
|
176
|
Mussai F, De Santo C, Cheng P, Thomas IF, Ariti C, Upton L, Scarpa U, Stavrou V, Sydenham M, Burnett AK, Knapper SK, Mehta P, McMullin MF, Copland M, Russell NH, Dennis M. A randomised evaluation of low-dose Ara-C plus pegylated recombinant arginase BCT-100 versus low dose Ara-C in older unfit patients with acute myeloid leukaemia: Results from the LI-1 trial. Br J Haematol 2023; 200:573-578. [PMID: 36413792 DOI: 10.1111/bjh.18560] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
The survival of acute myeloid leukaemia (AML) patients aged over 60 has been suboptimal historically, whether they are treated using hypomethylating agents, low-dose cytarabine (LDAC) or venetoclax-based regimens. Progress is being made, however, for subgroups with favourable molecular or cytogenetic findings. Arginine metabolism plays a key role in AML pathophysiology. We report the only randomised study of LDAC with recombinant arginase BCT-100 versus LDAC alone in older AML patients unsuitable for intensive therapy. Eighty-three patients were randomised to the study. An overall response rate was seen in 19.5% (all complete remission [CR]) and 15% (7.5% each in CR and CR without evidence of adequate count recovery [CRi]) of patients in the LDAC+BCT-100 and LDAC arms respectively (odds ratio 0.73, confidence interval 0.23-2.33; p = 0.592). No significant difference in overall or median survival between treatment arms was seen. The addition of BCT-100 to LDAC was well tolerated.
Collapse
Affiliation(s)
- Francis Mussai
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Carmela De Santo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Paul Cheng
- Bio-Cancer Treatment International, Hong Kong City, Hong Kong
| | - Ian F Thomas
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Cono Ariti
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Laura Upton
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Ugo Scarpa
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Victoria Stavrou
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Mia Sydenham
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Alan K Burnett
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | - Mhairi Copland
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | | | | |
Collapse
|
177
|
Xu H, Yu H, Xu J, Zhou F, Tang S, Feng X, Luo Q, Zhang B, Wu X, Jin R, Chen H. Refractory pediatric acute myeloid leukemia expressing NUP98-NSD1 fusion gene responsive to chemotherapy combined with venetoclax and decitabine. Pediatr Blood Cancer 2023; 70:e30021. [PMID: 36184746 DOI: 10.1002/pbc.30021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Huan Xu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Yu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Xu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fen Zhou
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Tang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingxing Feng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Luo
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingyu Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
178
|
Shimony S, Stahl M, Stone RM. Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol 2023; 98:502-526. [PMID: 36594187 DOI: 10.1002/ajh.26822] [Citation(s) in RCA: 115] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023]
Abstract
DISEASE OVERVIEW Acute myeloid leukemia (AML) is a frequently fatal bone marrow stem cell cancer characterized by unbridled proliferation of malignant marrow stem cells with associated infection, anemia, and bleeding. An improved understanding of pathophysiology, improvements in measurement technology and at least 10 recently approved therapies have led to revamping the diagnostic, prognostic, and therapeutic landscape of AML. DIAGNOSIS One updated and one new classification system were published in 2022, both emphasizing the integration of molecular analysis into daily practice. Differences between the International Consensus Classification and major revisions from the previous 2016 WHO system provide both challenges and opportunities for care and clinical research. RISK ASSESSMENT AND MONITORING The European Leukemia Net 2022 risk classification integrates knowledge from novel molecular findings and recent trial results, as well as emphasizing dynamic risk based on serial measurable residual disease assessment. However, how to leverage our burgeoning ability to measure a small number of potentially malignant myeloid cells into therapeutic decision making is controversial. RISK ADAPTED THERAPY The diagnostic and therapeutic complexity plus the availability of newly approved agents requires a nuanced therapeutic algorithm which should integrate patient goals of care, comorbidities, and disease characteristics including the specific mutational profile of the patient's AML. The framework we suggest only represents the beginning of the discussion.
Collapse
Affiliation(s)
- Shai Shimony
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Rabin Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
179
|
Kamachi K, Ureshino H, Watanabe T, Yoshida-Sakai N, Fukuda-Kurahashi Y, Kawasoe K, Hoshiko T, Yamamoto Y, Kurahashi Y, Kimura S. Combination of a New Oral Demethylating Agent, OR2100, and Venetoclax for Treatment of Acute Myeloid Leukemia. CANCER RESEARCH COMMUNICATIONS 2023; 3:297-308. [PMID: 36860654 PMCID: PMC9973401 DOI: 10.1158/2767-9764.crc-22-0259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/18/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
The standard treatment for elderly patients with acute myeloid leukemia (AML) is venetoclax (Ven), a BCL-2-selective inhibitor, combined with hypomethylating agents (HMA) such as azacitidine or decitabine. This regimen results in low toxicity, high response rates, and potentially durable remission; however, because of low oral bioavailability, these conventional HMAs must be administered intravenously or subcutaneously. A combination of oral HMAs and Ven would provide a therapeutic advantage over parenteral administration of drugs and improve quality of life by reducing the number of hospital visits. Previously, we showed the promising oral bioavailability and antileukemia effects of a new HMA, OR2100 (OR21). Here, we investigated the efficacy and underlying mechanism of OR21 when used in combination with Ven to treat AML. OR21/Ven showed synergistic antileukemia effects in vitro, and significantly prolonged survival without increasing toxicity in a human leukemia xenograft mice model. RNA sequencing following combination therapy revealed downregulation of VAMP7, which is involved in autophagic maintenance of mitochondrial homeostasis. Combination therapy led to accumulation of reactive oxygen species, leading to increased apoptosis. The data suggest that the combination of OR21 plus Ven is a promising candidate oral therapy for AML. Significance The standard treatment for elderly patients with AML is Ven combined with HMAs. OR21, a new oral HMA plus Ven showed synergistic antileukemia effects in vitro and vivo, suggesting that the combination of OR2100 plus Ven is a promising candidate oral therapy for AML.
Collapse
Affiliation(s)
- Kazuharu Kamachi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Hiroshi Ureshino
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan.,Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.,Corresponding Author: Hiroshi Ureshino, Saga University School of Medicine, 5-1-1 Nabeshima, Saga 849-8501, Japan. Phone: 819-5234-2366; Fax: 819-5234-2017; E-mail:
| | - Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Nao Yoshida-Sakai
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Fukuda-Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,OHARA Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Kazunori Kawasoe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshimi Hoshiko
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuta Yamamoto
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,OHARA Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Shinya Kimura
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
180
|
Rodriguez-Sevilla JJ, Adema V, Garcia-Manero G, Colla S. Emerging treatments for myelodysplastic syndromes: Biological rationales and clinical translation. Cell Rep Med 2023; 4:100940. [PMID: 36787738 PMCID: PMC9975331 DOI: 10.1016/j.xcrm.2023.100940] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 02/16/2023]
Abstract
Myelodysplastic syndromes (MDSs) are a heterogeneous group of clonal hematopoietic stem cell disorders characterized by myeloid dysplasia, peripheral blood cytopenias, and increased risk of progression to acute myeloid leukemia (AML). The standard of care for patients with MDS is hypomethylating agent (HMA)-based therapy; however, nearly 50% of patients have no response to the treatment. Patients with MDS in whom HMA therapy has failed have a dismal prognosis and no approved second-line therapy options, so enrollment in clinical trials of experimental agents represents these patients' only chance for improved outcomes. A better understanding of the molecular and biological mechanisms underpinning MDS pathogenesis has enabled the development of new agents that target molecular alterations, cell death regulators, signaling pathways, and immune regulatory proteins in MDS. Here, we review novel therapies for patients with MDS in whom HMA therapy has failed, with an emphasis on the biological rationale for these therapies' development.
Collapse
Affiliation(s)
| | - Vera Adema
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
181
|
Totiger TM, Ghoshal A, Zabroski J, Sondhi A, Bucha S, Jahn J, Feng Y, Taylor J. Targeted Therapy Development in Acute Myeloid Leukemia. Biomedicines 2023; 11:641. [PMID: 36831175 PMCID: PMC9953553 DOI: 10.3390/biomedicines11020641] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Therapeutic developments targeting acute myeloid leukemia (AML) have been in the pipeline for five decades and have recently resulted in the approval of multiple targeted therapies. However, there remains an unmet need for molecular treatments that can deliver long-term remissions and cure for this heterogeneous disease. Previously, a wide range of small molecule drugs were developed to target sub-types of AML, mainly in the relapsed and refractory setting; however, drug resistance has derailed the long-term efficacy of these as monotherapies. Recently, the small molecule venetoclax was introduced in combination with azacitidine, which has improved the response rates and the overall survival in older adults with AML compared to those of chemotherapy. However, this regimen is still limited by cytotoxicity and is not curative. Therefore, there is high demand for therapies that target specific abnormalities in AML while sparing normal cells and eliminating leukemia-initiating cells. Despite this, the urgent need to develop these therapies has been hampered by the complexities of this heterogeneous disease, spurring the development of innovative therapies that target different mechanisms of leukemogenesis. This review comprehensively addresses the development of novel targeted therapies and the translational perspective for acute myeloid leukemia, including the development of selective and non-selective drugs.
Collapse
Affiliation(s)
- Tulasigeri M. Totiger
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Anirban Ghoshal
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jenna Zabroski
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Anya Sondhi
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Saanvi Bucha
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jacob Jahn
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yangbo Feng
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
182
|
Moujalled DM, Brown FC, Chua CC, Dengler MA, Pomilio G, Anstee NS, Litalien V, Thompson E, Morley T, MacRaild S, Tiong IS, Morris R, Dun K, Zordan A, Shah J, Banquet S, Halilovic E, Morris E, Herold MJ, Lessene G, Adams JM, Huang DCS, Roberts AW, Blombery P, Wei AH. Acquired mutations in BAX confer resistance to BH3-mimetic therapy in acute myeloid leukemia. Blood 2023; 141:634-644. [PMID: 36219880 PMCID: PMC10651776 DOI: 10.1182/blood.2022016090] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/18/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Randomized trials in acute myeloid leukemia (AML) have demonstrated improved survival by the BCL-2 inhibitor venetoclax combined with azacitidine in older patients, and clinical trials are actively exploring the role of venetoclax in combination with intensive chemotherapy in fitter patients with AML. As most patients still develop recurrent disease, improved understanding of relapse mechanisms is needed. We find that 17% of patients relapsing after venetoclax-based therapy for AML have acquired inactivating missense or frameshift/nonsense mutations in the apoptosis effector gene BAX. In contrast, such variants were rare after genotoxic chemotherapy. BAX variants arose within either leukemic or preleukemic compartments, with multiple mutations observed in some patients. In vitro, AML cells with mutated BAX were competitively selected during prolonged exposure to BCL-2 antagonists. In model systems, AML cells rendered deficient for BAX, but not its close relative BAK, displayed resistance to BCL-2 targeting, whereas sensitivity to conventional chemotherapy was variable. Acquired mutations in BAX during venetoclax-based therapy represent a novel mechanism of resistance to BH3-mimetics and a potential barrier to the long-term efficacy of drugs targeting BCL-2 in AML.
Collapse
Affiliation(s)
- Donia M. Moujalled
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Clinical Haematology, The Alfred, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Fiona C. Brown
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Clinical Haematology, The Alfred, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Chong Chyn Chua
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Clinical Haematology, The Alfred, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Michael A. Dengler
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia
| | - Giovanna Pomilio
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Clinical Haematology, The Alfred, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Natasha S. Anstee
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Clinical Haematology, The Alfred, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Veronique Litalien
- Department of Clinical Haematology, The Alfred, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | | - Thomas Morley
- Department of Clinical Haematology, The Alfred, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Sarah MacRaild
- Department of Clinical Haematology, The Alfred, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Ing S. Tiong
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Clinical Haematology, The Alfred, Melbourne, Australia
- Department of Pathology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Rhiannon Morris
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Karen Dun
- Victorian Cancer and Cytogenetics Service, St. Vincent’s Hospital, Melbourne, Fitzroy, Australia
| | - Adrian Zordan
- Victorian Cancer and Cytogenetics Service, St. Vincent’s Hospital, Melbourne, Fitzroy, Australia
| | - Jaynish Shah
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Sebastien Banquet
- Oncology Research and Development Unit, Institut de Recherches International Servier, Paris, France
| | - Ensar Halilovic
- Novartis Institutes for BioMedical Research, Novartis, Cambridge, MA
| | - Erick Morris
- Novartis Institutes for BioMedical Research, Novartis, Cambridge, MA
| | - Marco J. Herold
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Guillaume Lessene
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Jerry M. Adams
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - David C. S. Huang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Andrew W. Roberts
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- The University of Melbourne, Melbourne, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | | | - Andrew H. Wei
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Clinical Haematology, The Alfred, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- The University of Melbourne, Melbourne, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
183
|
Kim WJ, Abdel-Wahab O. Acquired BAX mutations in AML. Blood 2023; 141:562-564. [PMID: 36757728 PMCID: PMC9936327 DOI: 10.1182/blood.2022018508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
184
|
Fan S, Pan TZ, Dou LP, Zhao YM, Zhang XH, Xu LP, Wang Y, Huang XJ, Mo XD. Preemptive interferon-α therapy could prevent relapse of acute myeloid leukemia following allogeneic hematopoietic stem cell transplantation: A real-world analysis. Front Immunol 2023; 14:1091014. [PMID: 36817493 PMCID: PMC9932895 DOI: 10.3389/fimmu.2023.1091014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Measurable residual disease (MRD)-directed interferon-a treatment (i.e. preemptive IFN-α treatment) can eliminate the MRD in patients with acute myeloid leukemia (AML) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Therefore, this study aimed to further assess its efficacy in a multicenter retrospective study in a real-world setting. Methods A total of 247 patientswho received preemptive IFN-α treatment were recruited from 4 hospitals in China. The protocols for MRD monitoring mainly based on quantitative polymerase chain reaction [qPCR] and multiparameter flow cytometry [MFC]. Results The median duration of IFN-α treatment was 56 days (range, 1-1211 days). The cumulative incidences of all grades acute graft-versus-host disease (aGVHD), all grades chronic graft-versus-host disease (cGVHD), and severe cGVHD at 3 years after IFN-α therapy were 2.0% (95% confidence interval [CI], 0.3-3.8%), 53.2% (95% CI, 46.8-59.7%), and 6.2% (95% CI, 3.1-9.2%), respectively. The cumulative incidence of achieving MRD negative state at 2 years after IFN-α treatment was 78.2% (95% CI, 72.6-83.7%). The 3-year cumulative incidences of relapse and non-relapse mortality following IFN-α therapy were 20.9% (95% CI, 15.5-26.3%) and 4.9% (95%CI, 2.0-7.7%), respectively. The probabilities of leukemia-free survival and overall survival at 3 years following IFN-α therapy were 76.9% (95% CI, 71.5-82.7%) and 84.2% (95% CI, 78.7-90.1%), respectively. Multivariable analysis showed that MRD positive state by qPCR and MFC before IFN-α treatment, high-risk disease risk index before allo-HSCT, and receiving identical sibling donor HSCT were associated with a higher risk of relapse and a poorer leukemia-free survival. Severe cGVHD was associated with an increased risk of non-relapse mortality. Discussion Thus, real-world data suggest that preemptive IFN-α is effective for treating patients with AML with MRD after allo-HSCT.
Collapse
Affiliation(s)
- Shuang Fan
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
| | - Tian-Zhong Pan
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Li-Ping Dou
- Department of Hematology, The First Medical Center of People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Yan-Min Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Hui Zhang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
| | - Lan-Ping Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yu Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiao-Jun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Dong Mo
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
185
|
Venugopal S, Xie Z, Zeidan AM. An overview of novel therapies in advanced clinical testing for acute myeloid leukemia. Expert Rev Hematol 2023; 16:109-119. [PMID: 36718500 DOI: 10.1080/17474086.2023.2174521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION The past decade has seen a sea change in the AML landscape with vastly improved cognizance of molecular pathogenesis, clonal evolution, and importance of measurable residual disease. Since 2017, the therapeutic armamentarium of AML has considerably expanded with the approval of midostaurin, enasidenib, ivosidenib, gilteritinib, and venetoclax in combination with hypomethylating agents and others. Nevertheless, relapse and treatment refractoriness remain the insurmountable challenges in AML therapy. This has galvanized the leukemic research community leading to the discovery and development of agents that specifically target gene mutations, molecularly agnostic therapies that exploit immune environment, apoptotic pathways, leukemic cell surface antigens and so forth. AREAS COVERED This article provides an overview of the pathophysiology of AML in the context of non-cellular immune and molecularly targeted and agnostic therapies that are in clinical trial development in AML. EXPERT OPINION Ever growing understanding of the molecular pathogenesis and metabolomics in AML has allowed the researchers to identify targets directed at specific genes and metabolic pathways. As a result, AML therapy is constantly evolving and so are the escape mechanisms leading to disease relapse. Therefore, it is of paramount importance to sequentially evaluate the patient during AML treatment and intervene at the right time.
Collapse
Affiliation(s)
- Sangeetha Venugopal
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, FL, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
186
|
Zou L, Qi Y, Jiang Y, Tang L, Du Y, Zhao B, Sun Y, Xiang M, Ma J, Yang Z. Criteria and regulatory considerations for the conditional approval of innovative antitumor drugs in China: from the perspective of clinical reviewers. Cancer Commun (Lond) 2023; 43:171-176. [PMID: 36683350 PMCID: PMC9926957 DOI: 10.1002/cac2.12400] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/24/2022] [Accepted: 12/18/2022] [Indexed: 01/24/2023] Open
Affiliation(s)
- Limin Zou
- Office of Clinical Evaluation 1, Center for Drug EvaluationNational Medical Products AdministrationBeijing 100022P. R. China
| | - Yueli Qi
- Office of Clinical Evaluation 1, Center for Drug EvaluationNational Medical Products AdministrationBeijing 100022P. R. China
| | - Yongling Jiang
- Office of Management and Communication, Center for Drug EvaluationNational Medical Products AdministrationBeijing 100022P. R. China
| | - Ling Tang
- Office of Clinical Evaluation 1, Center for Drug EvaluationNational Medical Products AdministrationBeijing 100022P. R. China
| | - Yu Du
- Office of Clinical Evaluation 1, Center for Drug EvaluationNational Medical Products AdministrationBeijing 100022P. R. China
| | - Boyuan Zhao
- Office of Clinical Evaluation 1, Center for Drug EvaluationNational Medical Products AdministrationBeijing 100022P. R. China
| | - Yanzhe Sun
- Office of Clinical Evaluation 1, Center for Drug EvaluationNational Medical Products AdministrationBeijing 100022P. R. China
| | - Meiyi Xiang
- Office of Clinical Evaluation 1, Center for Drug EvaluationNational Medical Products AdministrationBeijing 100022P. R. China
| | - Jun Ma
- Harbin Institute of Hematology and OncologyHarbin 150010HeilongjiangP. R. China
| | - Zhimin Yang
- Office of Clinical Evaluation 1, Center for Drug EvaluationNational Medical Products AdministrationBeijing 100022P. R. China
| |
Collapse
|
187
|
Kayser S, Levis MJ. The clinical impact of the molecular landscape of acute myeloid leukemia. Haematologica 2023; 108:308-320. [PMID: 36722402 PMCID: PMC9890016 DOI: 10.3324/haematol.2022.280801] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 02/02/2023] Open
Abstract
Research into the underlying pathogenic mechanisms of acute myeloid leukemia (AML) has led to remarkable advances in our understanding of the disease. Mutations now allow us to explore the enormous diversity among cytogenetically defined subsets of AML, particularly the large subset of cytogenetically normal AML. Despite the progress in unraveling the tumor genome, only a small number of recurrent mutations have been incorporated into risk-stratification schemes and have been proven to be clinically relevant, targetable lesions. The current World Health Organization Classification of myeloid neoplasms and leukemia includes eight AML categories defined by recurrent genetic abnormalities as well as three categories defined by gene mutations. We here discuss the utility of molecular markers in AML in prognostication and treatment decision-making. New therapies based on targetable markers include IDH inhibitors (ivosidenib, enasidenib), venetoclax-based therapy, FLT3 inhibitors (midostaurin, gilteritinib, and quizartinib), gemtuzumab ozogamicin, magrolimab and menin inhibitors.
Collapse
Affiliation(s)
- Sabine Kayser
- NCT Trial Center, National Center of Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg.
| | - Mark J. Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
188
|
Cooperrider JH, Shukla N, Nawas MT, Patel AA. The Cup Runneth Over: Treatment Strategies for Newly Diagnosed Acute Myeloid Leukemia. JCO Oncol Pract 2023; 19:74-85. [PMID: 36223559 PMCID: PMC10476749 DOI: 10.1200/op.22.00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 11/06/2022] Open
Abstract
Since 2017, the number of agents for acute myeloid leukemia (AML) has rapidly expanded. Given the increased therapeutic options, better identification of high-risk subsets of AML and more refined approaches to patient fitness assessment, the decisions surrounding selection of intensive chemotherapy versus lower-intensity treatment have grown increasingly more nuanced. In this review, we present available data for both standard and investigational approaches in the initial treatment of AML using an intensive chemotherapy backbone or a lower-intensity approach. We summarize management strategies in newly diagnosed secondary AML, considerations around allogeneic stem-cell transplantation, and the role of maintenance therapy. Finally, we highlight important areas of future investigation and novel agents that may hold promise in combination with standard therapies.
Collapse
Affiliation(s)
| | - Navika Shukla
- Department of Medicine, University of Chicago, Chicago, IL
| | - Mariam T. Nawas
- Section of Hematology-Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Anand Ashwin Patel
- Section of Hematology-Oncology, Department of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|
189
|
Advances in antibody-based therapy in oncology. NATURE CANCER 2023; 4:165-180. [PMID: 36806801 DOI: 10.1038/s43018-023-00516-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 01/10/2023] [Indexed: 02/22/2023]
Abstract
Monoclonal antibodies are a growing class of targeted cancer therapeutics, characterized by exquisite specificity, long serum half-life, high affinity and immune effector functions. In this review, we outline key advances in the field with a particular focus on recent and emerging classes of engineered antibody therapeutic candidates, discuss molecular structure and mechanisms of action and provide updates on clinical development and practice.
Collapse
|
190
|
Mohty R, El Hamed R, Brissot E, Bazarbachi A, Mohty M. New drugs before, during, and after hematopoietic stem cell transplantation for patients with acute myeloid leukemia. Haematologica 2023; 108:321-341. [PMID: 36722403 PMCID: PMC9890036 DOI: 10.3324/haematol.2022.280798] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/02/2022] [Indexed: 02/02/2023] Open
Abstract
The treatment of acute myeloid leukemia (AML) has evolved over the past few years with the advent of next-generation sequencing. Targeted therapies alone or in combination with low-dose or high-intensity chemotherapy have improved the outcome of patients with AML treated in the frontline and relapsed/refractory settings. Despite these advances, allogeneic stem cell transplantation (allo-HCT) remains essential as consolidation therapy following frontline treatment in intermediate-and adverse-risk and relapsed/refractory disease. However, many patients relapse, with limited treatment options, hence the need for post-transplant strategies to mitigate relapse risk. Maintenance therapy following allo-HCT was developed for this specific purpose and can exploit either a direct anti-leukemia effect and/or enhance the bona fide graft-versus-leukemia effect without increasing the risk of graft-versus-host disease. In this paper, we summarize novel therapies for AML before, during, and after allo-HCT and review ongoing studies.
Collapse
Affiliation(s)
- Razan Mohty
- Division of Hematology-Oncology and Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, FL
| | - Rama El Hamed
- Department of Internal Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Eolia Brissot
- Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, AP-HP, Sorbonne University, Paris, France; INSERM, Saint-Antoine Research Center, Paris
| | - Ali Bazarbachi
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamad Mohty
- Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, AP-HP, Sorbonne University, Paris, France; INSERM, Saint-Antoine Research Center, Paris.
| |
Collapse
|
191
|
An 8-year pragmatic observation evaluation of the benefits of allogeneic HCT in older and medically infirm patients with AML. Blood 2023; 141:295-308. [PMID: 36260765 DOI: 10.1182/blood.2022016916] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 01/24/2023] Open
Abstract
We designed a prospective, observational study enrolling patients presenting for treatment of acute myeloid leukemia (AML) at 13 institutions to analyze associations between hematopoietic cell transplantation (HCT) and survival, quality of life (QOL), and function in: the entire cohort, those aged ≥65 years, those with high comorbidity burden, intermediate cytogenetic risk, adverse cytogenetic risk, and first complete remission with or without measurable residual disease. Patient were assessed 8 times over 2 years. Time-dependent regression models were used. Among 692 patients that were evaluable, 46% received HCT with a 2-year survival of 58%. In unadjusted models, HCT was associated with reduced risks of mortality most of the subgroups. However, after accounting for covariates associated with increased mortality (age, comorbidity burden, disease risks, frailty, impaired QOL, depression, and impaired function), the associations between HCT and longer survival disappeared in most subgroups. Although function, social life, performance status, and depressive symptoms were better for those selected for HCT, these health advantages were lost after receiving HCT. Recipients and nonrecipients of HCT similarly ranked and expected cure as main goal of therapy, whereas physicians had greater expectations for cure than the former. Accounting for health impairments negates survival benefits from HCT for AML, suggesting that the unadjusted observed benefit is mostly owing to selection of the healthier candidates. Considering patients' overall expectations of cure but also the QOL burdens of HCT motivate the need for randomized trials to identify the best candidates for HCT. This trial was registered at www.clinicaltrials.gov as #NCT01929408.
Collapse
|
192
|
Mannelli F, Guglielmelli P, Fazi P, Crea E, Piciocchi A, Vignetti M, Amadori S, Pane F, Venditti A, Vannucchi AM. ENABLE: treatment combination including decitabine and venetoclax in acute myeloid leukemia secondary to myeloproliferative neoplasms. Future Oncol 2023; 19:103-111. [PMID: 36651780 DOI: 10.2217/fon-2022-0512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The management of patients with acute myeloid leukemia (blast phase) secondary to myeloproliferative neoplasms (MPNs) is extremely challenging and the outcome dismal, with a median overall survival of about 3-6 months. Effective therapeutic approaches are lacking, especially when intensive strategies followed by allogeneic transplantation are not feasible. The combination of venetoclax and hypomethylating agents has recently been established as standard for newly diagnosed, unfit patients with de novo acute myeloid leukemia, but the application of this therapeutic modality has not been tested prospectively in the specific context of blast-phase MPNs. ENABLE is an open, phase II clinical trial aimed at verifying the efficacy and safety of the combination of venetoclax and decitabine in patients with post-MPN blast phase.
Collapse
Affiliation(s)
- Francesco Mannelli
- SOD Ematologia, AOU Careggi, Firenze, Italy.,Centro Ricerca e Innovazione Malattie Mieloproliferative (CRIMM), AOU Careggi, 50134, Firenze, Italy
| | - Paola Guglielmelli
- SOD Ematologia, AOU Careggi, Firenze, Italy.,Centro Ricerca e Innovazione Malattie Mieloproliferative (CRIMM), AOU Careggi, 50134, Firenze, Italy
| | | | | | | | | | | | - Fabrizio Pane
- UO di Ematologia e Trapianto di Cellule Staminali Emopoietiche, AOU 'Federico II', 80131, Napoli, Italy
| | - Adriano Venditti
- Ematologia, Dipartimento di Biomedicina e Prevenzione, Università di Tor Vergata, 00133, Roma, Italy.,Fondazione Policlinico Tor Vergata, 00133, Roma, Italy
| | - Alessandro M Vannucchi
- SOD Ematologia, AOU Careggi, Firenze, Italy.,Centro Ricerca e Innovazione Malattie Mieloproliferative (CRIMM), AOU Careggi, 50134, Firenze, Italy
| |
Collapse
|
193
|
Tan KR, Chan YN, Iadonisi K, Poor E, Betancur S, Jung A, Sagester K, Coppola S, Pergolotti M, Kent EE, Schwartz T, Richardson D, Bryant AL. Perspectives of caregivers of older adults with acute myeloid leukemia during initial hypomethylating agents and venetoclax chemotherapy. Support Care Cancer 2023; 31:95. [PMID: 36598590 PMCID: PMC9811045 DOI: 10.1007/s00520-022-07565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Older adults with AML commonly receive a hypomethylating agent (HMA) as first-line therapy. The addition of venetoclax (VEN) to HMAs has been shown to improve remission rates and overall survival. The use of combination therapy (HMA + VEN) requires frequent follow-up, results in longer infusion times, and likely increases caregiver responsibility at home. We describe experiences of informal caregivers (family/friends) providing care to older adults with AML receiving HMA + VEN. METHODS Fourteen caregivers of older adults with AML receiving HMA + VEN (September 2020 to September 2021) were recruited as part of a control group of an ongoing NIH-funded clinical trial. Semi-structured interviews were conducted to gain initial insight into caregiver experiences at the start of HMA + VEN treatment. Two researchers analyzed the data using thematic content analysis. Data saturation occurred when no new themes were found in subsequent interviews, but all interviews were coded and synthesized. RESULTS Of the 14 caregivers interviewed, the majority were spouses (n = 10), female (n = 13), and aged 45 to 83 (median age 65). We identified five themes: (1) the impact of an AML diagnosis in older adulthood, (2) care recipient condition changes, (3) perspectives of caregiving roles and tasks, (4) factors influencing caregiving experiences, and (5) support system roles. CONCLUSIONS AND IMPLICATIONS Caregivers for older adults with AML report a range of experiences navigating health systems, caregiving responsibilities, and resource needs. The risk for caregiver burden and unmet needs should be addressed to improve caregivers' abilities to provide care.
Collapse
Affiliation(s)
- Kelly R Tan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Ya-Ning Chan
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katie Iadonisi
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elissa Poor
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie Betancur
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ahrang Jung
- School of Nursing, University of North Carolina at Greensboro, Greensboro, NC, USA
| | | | - Susan Coppola
- Division of Occupational Science and Occupational Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mackenzi Pergolotti
- Select Medical, ReVital Cancer Rehabilitation Program, Mechanicsburg, PA, USA
| | - Erin E Kent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Health Policy and Management, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Cecil G. Sheps Health Services Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Todd Schwartz
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel Richardson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ashley Leak Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
194
|
Ling VY, Straube J, Godfrey W, Haldar R, Janardhanan Y, Cooper L, Bruedigam C, Cooper E, Tavakoli Shirazi P, Jacquelin S, Tey SK, Baell J, Huang F, Jin J, Zhao Y, Bullinger L, Bywater MJ, Lane SW. Targeting cell cycle and apoptosis to overcome chemotherapy resistance in acute myeloid leukemia. Leukemia 2023; 37:143-153. [PMID: 36400926 DOI: 10.1038/s41375-022-01755-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022]
Abstract
Chemotherapy-resistant acute myeloid leukemia (AML), frequently driven by clonal evolution, has a dismal prognosis. A genome-wide CRISPR knockout screen investigating resistance to doxorubicin and cytarabine (Dox/AraC) in human AML cell lines identified gene knockouts involving AraC metabolism and genes that regulate cell cycle arrest (cyclin dependent kinase inhibitor 2A (CDKN2A), checkpoint kinase 2 (CHEK2) and TP53) as contributing to resistance. In human AML cohorts, reduced expression of CDKN2A conferred inferior overall survival and CDKN2A downregulation occurred at relapse in paired diagnosis-relapse samples, validating its clinical relevance. Therapeutically targeting the G1S cell cycle restriction point (with CDK4/6 inhibitor, palbociclib and KAT6A inhibitor, WM-1119, to upregulate CDKN2A) synergized with chemotherapy. Additionally, direct promotion of apoptosis with venetoclax, showed substantial synergy with chemotherapy, overcoming resistance mediated by impaired cell cycle arrest. Altogether, we identify defective cell cycle arrest as a clinically relevant contributor to chemoresistance and identify rationally designed therapeutic combinations that enhance response in AML, potentially circumventing chemoresistance.
Collapse
Affiliation(s)
- Victoria Y Ling
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Jasmin Straube
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - William Godfrey
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Rohit Haldar
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Leanne Cooper
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Claudia Bruedigam
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Emily Cooper
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | | | - Siok-Keen Tey
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Jonathan Baell
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Fei Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jianwen Jin
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Yichao Zhao
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Lars Bullinger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Megan J Bywater
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Steven W Lane
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.
| |
Collapse
|
195
|
Berdel AF, Koch R, Gerss J, Hentrich M, Peceny R, Bartscht T, Steffen B, Bischoff M, Spiekermann K, Angenendt L, Mikesch JH, Kewitz T, Butterfass-Bahloul T, Serve H, Lenz G, Berdel WE, Krug U, Schliemann C. A randomized phase 2 trial of nintedanib and low-dose cytarabine in elderly patients with acute myeloid leukemia ineligible for intensive chemotherapy. Ann Hematol 2023; 102:63-72. [PMID: 36399194 PMCID: PMC9807538 DOI: 10.1007/s00277-022-05025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
We investigated the safety and efficacy of nintedanib added to low-dose cytarabine (LDAC) in a phase 1/2 study in patients 60 years or older with newly diagnosed or relapsed/refractory (r/r) AML ineligible for intensive chemotherapy. The results of the dose-finding phase 1 part have been previously published. Patients were randomized 1:1 to LDAC plus nintedanib or LDAC plus placebo stratified by AML status (newly diagnosed vs r/r). LDAC was applied subcutaneously at 20 mg twice daily on days 1 to 10. Nintedanib/placebo was orally administered twice daily on days 1 to 28 in 28-day cycles. The primary endpoint was overall survival (OS). Between 05/2017 and 09/2019, 31 patients were randomized and 30 were treated, before the study was terminated prematurely due to slow recruitment. Median (range) age of patients was 76 (60-84) years. Twenty-two patients (73%) had r/r AML. Median OS in patients treated with LDAC and nintedanib was 3.4 months, compared with 3.6 months in those treated in the placebo arm, with a HR adjusted for AML status of 1.19 (corresponding confirmatory adjusted 95% CI, 0.55-2.56; univariate log-rank P = 0.96). In the 22 patients with r/r AML, median OS was 3.0 months in the nintedanib and 3.6 months in the placebo arm (P = 0.36). One patient in the nintedanib and two patients in the placebo arm achieved a CR and entered maintenance treatment. Nintedanib showed no superior therapeutic activity over placebo when added to LDAC in elderly AML patients considered unfit for intensive chemotherapy. The trial was registered at clinicaltrials.gov NCT01488344.
Collapse
Affiliation(s)
- Andrew F Berdel
- Department of Medicine A, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Raphael Koch
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Joachim Gerss
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Marcus Hentrich
- Department of Hematology and Oncology, Red Cross Hospital, Munich, Germany
| | - Rudolf Peceny
- Department of Oncology, Hematology and Stem Cell Transplantation, Klinikum Osnabrück, Osnabrück, Germany
| | - Tobias Bartscht
- Department of Medicine I, University Hospital Lübeck, Lübeck, Germany
| | - Björn Steffen
- Department of Medicine II, University Hospital Frankfurt, Frankfurt, Germany
| | - Marina Bischoff
- Department of Hematology and Oncology, Klinikum Idar-Oberstein, Idar-Oberstein, Germany
| | - Karsten Spiekermann
- Department of Medicine III, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Linus Angenendt
- Department of Medicine A, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Jan-Henrik Mikesch
- Department of Medicine A, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Tobias Kewitz
- Centre for Clinical Trials, University of Münster, Münster, Germany
| | | | - Hubert Serve
- Department of Medicine II, University Hospital Frankfurt, Frankfurt, Germany
| | - Georg Lenz
- Department of Medicine A, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Utz Krug
- Department of Medicine A, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- Department of Medicine, III, Hospital Leverkusen, Leverkusen, Germany
| | - Christoph Schliemann
- Department of Medicine A, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
196
|
Ahmed M, Pollyea DA. Lower intensity regimens for acute myeloid leukemia: opportunities and challenges. Leuk Lymphoma 2023; 64:66-70. [PMID: 36323295 DOI: 10.1080/10428194.2022.2136960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy for whom most patients a hematopoietic stem cell transplant (HSCT) is the only curative treatment modality. Intensive chemotherapy has been the first-line treatment for AML for many years but has significant morbidity and mortality in elderly patients and those with comorbidities, who constitute the majority of patients with this disease. Since 2017, multiple new lower intensity therapies have been approved for the treatment of AML. Their advantages include decreased hematological and non-hematological side effects, lower rates of infections and the ability to be given in an outpatient setting. For HSCT, reduced intensity conditioning (RIC) regimens have improved for older and comorbid patients, allowing potent graft vs. tumor effects with lower toxicity profiles, resulting in the expansion of this therapy to more patients. More studies are required to improve and refine lower intensity regimens as well as RIC, as they are increasingly utilized in AML treatment.
Collapse
Affiliation(s)
- Mamoon Ahmed
- Department of Internal Medicine, University of South Dakota, Sanford School of Medicine, Sioux Falls, SD, USA
| | - Daniel A Pollyea
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
197
|
Madanat YF, Xie Z, Zeidan AM. Advances in myelodysplastic syndromes: promising novel agents and combination strategies. Expert Rev Hematol 2023; 16:51-63. [PMID: 36620919 DOI: 10.1080/17474086.2023.2166923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) are heterogeneous group of clonal hematopoietic stem cell neoplasms that have limited approved treatment options. Multiple novel agents are currently being tested in a clinical trial setting. From a therapeutic perspective, MDS is generally divided into lower-risk and higher-risk disease. In this review, we summarize some of the most prominent novel agents currently in development. AREAS COVERED This review focuses on select clinical trials in both lower- and higher-risk MDS, elucidating the mechanisms of action and rationale for drug combinations and summarizing early safety and efficacy data using novel agents in MDS. EXPERT OPINION Advances in understanding the innate immune system, telomere biology, as well as genomic drivers of the disease have led to the development of multiple novel agents that are currently in late stages of clinical development in MDS. Imetelstat is being tested in lower-risk disease and the phase III clinical trial recently completed accrual. Magrolimab, sabatolimab, and venetoclax in addition to novel oral hypomethylating agents (HMA) are being investigated in higher-risk MDS. These advances will hopefully bring better treatment options to patients and lead to a shift in the treatment paradigm. Post HMA therapy remains an area of dire unmet need.
Collapse
Affiliation(s)
- Yazan F Madanat
- Simmons Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, New Haven, Connecticut, USA
| |
Collapse
|
198
|
Wei AH, Panayiotidis P, Montesinos P, Laribi K, Ivanov V, Kim I, Novak J, Champion R, Fiedler W, Pagoni M, Bergeron J, Ting SB, Hou JZ, Anagnostopoulos A, McDonald A, Murthy V, Yamauchi T, Wang J, Jiang Q, Sun Y, Chyla B, Mendes W, DiNardo CD. Long-term follow-up of VIALE-C in patients with untreated AML ineligible for intensive chemotherapy. Blood 2022; 140:2754-2756. [PMID: 36112968 DOI: 10.1182/blood.2022016963] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/30/2022] Open
Affiliation(s)
- Andrew H Wei
- The Peter MacCallum Cancer Centre, Royal Melbourne Hospital and Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Panayiotis Panayiotidis
- National and Kapodistrian University of Athens Medical School, Laiko General Hospital, Athens, Greece
| | - Pau Montesinos
- Hospital Universitario y Politécnico La Fe, Valencia, Spain and CIBERONC, Instituto Carlos III, Madrid, Spain
| | | | - Vladimir Ivanov
- Almazov National Medical Research Center, Saint Petersburg, Russia
| | - Inho Kim
- Seoul National University Hospital, Seoul, Republic of Korea
| | - Jan Novak
- Department of Internal Medicine and Hematology, University Hospital Královské Vinohrady and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Walter Fiedler
- Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Julie Bergeron
- CIUSSS-EMTL, Installation Maisonneuve-Rosemont, Montreal, Quebec City, Canada
| | - Stephen B Ting
- Eastern Health and Monash University, Melbourne, Victoria, Australia
| | - Jing-Zhou Hou
- University of Pittsburgh Medical Center (UPMC) Cancer Center, Pittsburgh, PA
| | | | - Andrew McDonald
- Netcare Pretoria East Hospital, Moreletapark, Pretoria, South Africa
| | | | | | | | | | - Yan Sun
- AbbVie Inc., North Chicago, IL
| | | | | | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
199
|
Fathi AT. A New Dancing Partner for Venetoclax: Gilteritinib. J Clin Oncol 2022; 40:4033-4036. [PMID: 36054870 DOI: 10.1200/jco.22.01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Amir T Fathi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| |
Collapse
|
200
|
Daver N, Perl AE, Maly J, Levis M, Ritchie E, Litzow M, McCloskey J, Smith CC, Schiller G, Bradley T, Tiu RV, Naqvi K, Dail M, Brackman D, Siddani S, Wang J, Chyla B, Lee P, Altman JK. Venetoclax Plus Gilteritinib for FLT3-Mutated Relapsed/Refractory Acute Myeloid Leukemia. J Clin Oncol 2022; 40:4048-4059. [PMID: 35849791 PMCID: PMC9746764 DOI: 10.1200/jco.22.00602] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The FMS-related tyrosine kinase 3 (FLT3) inhibitor gilteritinib is standard therapy for relapsed/refractory FLT3-mutated (FLT3mut) acute myeloid leukemia (AML) but seldom reduces FLT3mut burden or induces sustained efficacy. Gilteritinib combines synergistically with the BCL-2 inhibitor venetoclax in preclinical models of FLT3mut AML. METHODS This phase Ib open-label, dose-escalation/dose-expansion study (ClinicalTrials.gov identifier: NCT03625505) enrolled patients with FLT3 wild-type and FLT3mut (escalation) or FLT3mut (expansion) relapsed/refractory AML. Patients received 400 mg oral venetoclax once daily and 80 mg or 120 mg oral gilteritinib once daily. The primary objectives were safety, identification of the recommended phase II dose, and the modified composite complete response (mCRc) rate (complete response [CR] + CR with incomplete blood count recovery + CR with incomplete platelet recovery + morphologic leukemia-free state) using ADMIRAL phase III-defined response criteria. RESULTS Sixty-one patients were enrolled (n = 56 FLT3mut); 64% (n = 36 of 56) of FLT3mut patients had received prior FLT3 inhibitor therapy. The recommended phase II dose was 400 mg venetoclax once daily and 120 mg gilteritinib once daily. The most common grade 3/4 adverse events were cytopenias (n = 49; 80%). Adverse events prompted venetoclax and gilteritinib dose interruptions in 51% and 48%, respectively. The mCRc rate for FLT3mut patients was 75% (CR, 18%; CR with incomplete blood count recovery, 4%; CR with incomplete platelet recovery, 18%; and morphologic leukemia-free state, 36%) and was similar among patients with or without prior FLT3 inhibitor therapy (80% v 67%, respectively). The median follow-up was 17.5 months. The median time to response was 0.9 months, and the median remission duration was 4.9 months (95% CI, 3.4 to 6.6). FLT3 molecular response (< 10-2) was achieved in 60% of evaluable mCRc patients (n = 15 of 25). The median overall survival for FLT3mut patients was 10.0 months. CONCLUSION The combination of venetoclax and gilteritinib was associated with high mCRc and FLT3 molecular response rates regardless of prior FLT3 inhibitor exposure. Dose interruptions were needed to mitigate myelosuppression.
Collapse
Affiliation(s)
- Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alexander E. Perl
- Division of Hematology/Oncology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Joseph Maly
- Department of Hematologic Malignancies and Cellular Therapy, Norton Cancer Institute, Louisville, KY
| | - Mark Levis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Ellen Ritchie
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY
| | - Mark Litzow
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - James McCloskey
- Department of Leukemia, John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ
| | - Catherine C. Smith
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Gary Schiller
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Terrence Bradley
- Department of Medicine, University of Miami, Miami, FL,Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | | | | | | | | | | | | | | | | | - Jessica K. Altman
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL,Jessica K. Altman, MD, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Lurie Research Building 3-119, 303 E. Superior St, Chicago, IL 60611; e-mail:
| |
Collapse
|