151
|
Ni JZ, Kalinava N, Chen E, Huang A, Trinh T, Gu SG. A transgenerational role of the germline nuclear RNAi pathway in repressing heat stress-induced transcriptional activation in C. elegans. Epigenetics Chromatin 2016; 9:3. [PMID: 26779286 PMCID: PMC4714518 DOI: 10.1186/s13072-016-0052-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023] Open
Abstract
Background Environmental stress-induced transgenerational epigenetic effects have been observed in various model organisms and human. The capacity and mechanism of such phenomena are poorly understood. In C. elegans, siRNA mediates transgenerational gene
silencing through the germline nuclear RNAi pathway. This pathway is also required to maintain the germline immortality when C. elegans is under heat stress. However, the underlying molecular mechanism is unknown. In this study, we investigated the impact of heat stress on chromatin, transcription, and siRNAs at the whole-genome level, and whether any of the heat-induced effects is transgenerationally heritable in either the wild-type or the germline nuclear RNAi mutant animals. Results We performed 12-generation temperature-shift experiments using the wild-type C. elegans and a mutant strain that lacks the germline-specific nuclear Argonaute protein HRDE-1/WAGO-9. By examining the mRNA, small RNA, RNA polymerase II, and H3K9 trimethylation profiles at the whole-genome level, we revealed an epigenetic role of HRDE-1 in repressing heat stress-induced transcriptional activation of over 280 genes. Many of these genes are in or near LTR (long-terminal repeat) retrotransposons. Strikingly, for some of these genes, the heat stress-induced transcriptional activation in the hrde-1 mutant intensifies in the late generations under the heat stress and is heritable for at least two generations after the mutant animals are shifted back to lower temperature. hrde-1 mutation also leads to siRNA expression changes of many genes. This effect on siRNA is dependent on both the temperature and generation. Conclusions Our study demonstrated that a large number of the endogenous targets of the germline nuclear RNAi pathway in C. elegans are sensitive to heat-induced transcriptional activation. This effect at certain genomic loci including LTR retrotransposons is transgenerational. Germline nuclear RNAi antagonizes this temperature effect at the transcriptional level and therefore may play a key role in heat stress response in C. elegans. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0052-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julie Zhouli Ni
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Natallia Kalinava
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Esteban Chen
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Alex Huang
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Thi Trinh
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Sam Guoping Gu
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA ; Nelson Labs A125, 604 Allison Road, Piscataway, NJ 08854 USA
| |
Collapse
|
152
|
Wilson MJ, Wilson DJ, Aalders LT, Tourna M. Testing a new low-labour method for detecting the presence of Phasmarhabditis spp. in slugs in New Zealand. NEMATOLOGY 2016. [DOI: 10.1163/15685411-00003005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most studies on distribution ofPhasmarhabditisspp. in slugs use dissection of individual slugs, which is time-consuming. Here we use a technique modified from that used to collectPristionchusspp. nematodes from their beetle hosts. Slugs are decapitated and cadavers incubated for 1 week prior to examining for presence of adult nematodes. We compared the new technique with traditional dissection using field-collected untreated slugs, and slugs infected withPhasmarhabditis hermaphroditain the laboratory. There was no difference in the efficacy of the two techniques. We also used the new technique to study prevalence ofP. hermaphroditaat 22 New Zealand sites. We foundP. hermaphroditapresent at three sites andP. californicaat two other sites suggestingPhasmarhabditisspp. are relatively common in New Zealand.
Collapse
Affiliation(s)
- Michael J. Wilson
- AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand
| | - Derrick J. Wilson
- AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand
| | - Lee T. Aalders
- AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand
| | - Maria Tourna
- AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand
| |
Collapse
|
153
|
Ragavapuram V, Hill EE, Baird SE. Suppression of F1 Male-Specific Lethality in Caenorhabditis Hybrids by cbr-him-8. G3 (BETHESDA, MD.) 2015; 6:623-9. [PMID: 26721896 PMCID: PMC4777125 DOI: 10.1534/g3.115.025320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/29/2015] [Indexed: 01/26/2023]
Abstract
Haldane's Rule and Darwin's Corollary to Haldane's Rule are the observations that heterogametic F1 hybrids are frequently less fit than their homogametic siblings, and that asymmetric results are often obtained from reciprocal hybrid crosses. In Caenorhabditis, Haldane's Rule and Darwin's Corollary have been observed in several hybrid crosses, including crosses of Caenorhabditis briggsae and C. nigoni. Fertile F1 females are obtained from reciprocal crosses. However, F1 males obtained from C. nigoni mothers are sterile and F1 males obtained from C. briggsae die during embryogenesis. We have identified cbr-him-8 as a recessive maternal-effect suppressor of F1 hybrid male-specific lethality in this combination of species. This result implicates epigenetic meiotic silencing in the suppression of F1 male-specific lethality. It is also shown that F1 males bearing a C. briggsae X chromosome are fertile. When crossed to C. briggsae hermaphrodites or F1 females derived from C. briggsae hermaphrodites, viable F2 and backcross (B2) progeny were obtained. Sibling males that possessed a C. nigoni X chromosome were sterile. Therefore, the sterility of F1 males bearing a C. nigoni X chromosome must result from dysgenic interactions between the X chromosome of C. nigoni and the autosomes of C. briggsae. The fertility of F1 males bearing a C. briggsae X chromosome provides an opportunity to identify C. nigoni loci that prevent spermatogenesis, and hence hermaphroditic reproduction, in diplo-X hybrids.
Collapse
Affiliation(s)
| | - Emily Elaine Hill
- Department of Biological Sciences, Wright State University, Dayton, Ohio 45435
| | - Scott Everet Baird
- Department of Biological Sciences, Wright State University, Dayton, Ohio 45435
| |
Collapse
|
154
|
Gouvêa DY, Aprison EZ, Ruvinsky I. Experience Modulates the Reproductive Response to Heat Stress in C. elegans via Multiple Physiological Processes. PLoS One 2015; 10:e0145925. [PMID: 26713620 PMCID: PMC4699941 DOI: 10.1371/journal.pone.0145925] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/10/2015] [Indexed: 11/29/2022] Open
Abstract
Natural environments are considerably more variable than laboratory settings and often involve transient exposure to stressful conditions. To fully understand how organisms have evolved to respond to any given stress, prior experience must therefore be considered. We investigated the effects of individual and ancestral experience on C. elegans reproduction. We documented ways in which cultivation at 15°C or 25°C affects developmental time, lifetime fecundity, and reproductive performance after severe heat stress that exceeds the fertile range of the organism but is compatible with survival and future fecundity. We found that experience modulates multiple aspects of reproductive physiology, including the male and female germ lines and the interaction between them. These responses vary in their environmental sensitivity, suggesting the existence of complex mechanisms for coping with unpredictable and stressful environments.
Collapse
Affiliation(s)
- Devin Y. Gouvêa
- Committee on Conceptual and Historical Studies of Science, The University of Chicago, Chicago, Illinois, United States of America
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Erin Z. Aprison
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Ilya Ruvinsky
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
155
|
Aprison EZ, Ruvinsky I. Sex Pheromones of C. elegans Males Prime the Female Reproductive System and Ameliorate the Effects of Heat Stress. PLoS Genet 2015; 11:e1005729. [PMID: 26645097 PMCID: PMC4672928 DOI: 10.1371/journal.pgen.1005729] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/16/2015] [Indexed: 12/26/2022] Open
Abstract
Pheromones are secreted molecules that mediate animal communications. These olfactory signals can have substantial effects on physiology and likely play important roles in organismal survival in natural habitats. Here we show that a blend of two ascaroside pheromones produced by C. elegans males primes the female reproductive system in part by improving sperm guidance toward oocytes. Worms have different physiological responses to different ratios of the same two molecules, revealing an efficient mechanism for increasing coding potential of a limited repertoire of molecular signals. The endogenous function of the male sex pheromones has an important side benefit. It substantially ameliorates the detrimental effects of prolonged heat stress on hermaphrodite reproduction because it increases the effectiveness with which surviving gametes are used following stress. Hermaphroditic species are expected to lose female-specific traits in the course of evolution. Our results suggest that some of these traits could have serendipitous utility due to their ability to counter the effects of stress. We propose that this is a general mechanism by which some mating-related functions could be retained in hermaphroditic species, despite their expected decay. The Caenorhabditis elegans metabolome contains over a hundred ascaroside molecules. Most of them have no known function, or no function at all, but some act as pheromones. Two of these molecules, ascr#10 and ascr#3, are produced in different proportions by males and hermaphrodites. We report that when a hermaphrodite senses a male-specific mixture of these molecules, it changes several aspects of its reproductive physiology, including signaling that guides sperm toward oocytes. During evolution from an ancestor that had both males and females, C. elegans hermaphrodites lost several female-specific traits, but their reproductive system retained the ability to respond to male pheromones. This greatly aids them during recovery from heat stress. We suggest that serendipitous side benefits of female-specific traits could be a general cause of their retention during evolution.
Collapse
Affiliation(s)
- Erin Z. Aprison
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Ilya Ruvinsky
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
156
|
Mating dynamics in a nematode with three sexes and its evolutionary implications. Sci Rep 2015; 5:17676. [PMID: 26631423 PMCID: PMC4668576 DOI: 10.1038/srep17676] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/02/2015] [Indexed: 12/15/2022] Open
Abstract
Nematodes have diverse reproductive strategies, which make them ideal subjects for comparative studies to address how mating systems evolve. Here we present the sex ratios and mating dynamics of the free-living nematode Rhabditis sp. SB347, in which males, females and hermaphrodites co-exist. The three sexes are produced by both selfing and outcrossing, and females tend to appear early in a mother’s progeny. Males prefer mating with females over hermaphrodites, which our results suggest is related to the female-specific production of the sex pheromones ascr#1 and ascr#9. We discuss the parallels between this system and that of parasitic nematodes that exhibit alternation between uniparental and biparental reproduction.
Collapse
|
157
|
Holovachov O, Camp L, Nadler SA. Sensitivity of Ribosomal RNA Character Sampling in the Phylogeny of Rhabditida. J Nematol 2015; 47:337-355. [PMID: 26941463 PMCID: PMC4755709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Indexed: 06/05/2023] Open
Abstract
Near-full-length 18S and 28S rRNA gene sequences were obtained for 33 nematode species. Datasets were constructed based on secondary structure and progressive multiple alignments, and clades were compared for phylogenies inferred by Bayesian and maximum likelihood methods. Clade comparisons were also made following removal of ambiguously aligned sites as determined using the program ProAlign. Different alignments of these data produced tree topologies that differed, sometimes markedly, when analyzed by the same inference method. With one exception, the same alignment produced an identical tree topology when analyzed by different methods. Removal of ambiguously aligned sites altered the tree topology and also reduced resolution. Nematode clades were sensitive to differences in multiple alignments, and more than doubling the amount of sequence data by addition of 28S rRNA did not fully mitigate this result. Although some individual clades showed substantially higher support when 28S data were combined with 18S data, the combined analysis yielded no statistically significant increases in the number of clades receiving higher support when compared to the 18S data alone. Secondary structure alignment increased accuracy in positional homology assignment and, when used in combination with paired-site substitution models, these structural hypotheses of characters and improved models of character state change yielded high levels of phylogenetic resolution. Phylogenetic results included strong support for inclusion of Daubaylia potomaca within Cephalobidae, whereas the position of Fescia grossa within Tylenchina varied depending on the alignment, and the relationships among Rhabditidae, Diplogastridae, and Bunonematidae were not resolved.
Collapse
Affiliation(s)
- Oleksandr Holovachov
- Department of Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05, Stockholm, Sweden
| | - Lauren Camp
- Department of Entomology and Nematology, University of California, One Shields Avenue, Davis, CA 95616
| | - Steven A Nadler
- Department of Entomology and Nematology, University of California, One Shields Avenue, Davis, CA 95616
| |
Collapse
|
158
|
Poullet N, Vielle A, Gimond C, Ferrari C, Braendle C. Evolutionarily divergent thermal sensitivity of germline development and fertility in hermaphroditicCaenorhabditisnematodes. Evol Dev 2015; 17:380-97. [DOI: 10.1111/ede.12170] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nausicaa Poullet
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Anne Vielle
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Clotilde Gimond
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Céline Ferrari
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Christian Braendle
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| |
Collapse
|
159
|
Subirana JA, Albà MM, Messeguer X. High evolutionary turnover of satellite families in Caenorhabditis. BMC Evol Biol 2015; 15:218. [PMID: 26438045 PMCID: PMC4595182 DOI: 10.1186/s12862-015-0495-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023] Open
Abstract
Background The high density of tandem repeat sequences (satellites) in nematode genomes and the availability of genome sequences from several species in the group offer a unique opportunity to better understand the evolutionary dynamics and the functional role of these sequences. We take advantage of the previously developed SATFIND program to study the satellites in four Caenorhabditis species and investigate these questions. Methods The identification and comparison of satellites is carried out in three steps. First we find all the satellites present in each species with the SATFIND program. Each satellite is defined by its length, number of repeats, and repeat sequence. Only satellites with at least ten repeats are considered. In the second step we build satellite families with a newly developed alignment program. Satellite families are defined by a consensus sequence and the number of satellites in the family. Finally we compare the consensus sequence of satellite families in different species. Results We give a catalog of individual satellites in each species. We have also identified satellite families with a related sequence and compare them in different species. We analyze the turnover of satellites: they increased in size through duplications of fragments of 100-300 bases. It appears that in many cases they have undergone an explosive expansion. In C. elegans we have identified a subset of large satellites that have strong affinity for the centromere protein CENP-A. We have also compared our results with those obtained from other species, including one nematode and three mammals. Conclusions Most satellite families found in Caenorhabditis are species-specific; in particular those with long repeats. A subset of these satellites may facilitate the formation of kinetochores in mitosis. Other satellite families in C. elegans are either related to Helitron transposons or to meiotic pairing centers. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0495-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan A Subirana
- Department of Computer Science, Universitat Politècnica de Catalunya, Jordi Girona 31, Barcelona, 08034, Spain. .,Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB) - Hospital del Mar Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Dr. Aiguader 86, Barcelona, 08003, Spain.
| | - M Mar Albà
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB) - Hospital del Mar Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Dr. Aiguader 86, Barcelona, 08003, Spain.
| | - Xavier Messeguer
- Department of Computer Science, Universitat Politècnica de Catalunya, Jordi Girona 31, Barcelona, 08034, Spain.
| |
Collapse
|
160
|
Maduro MF. Developmental robustness in the Caenorhabditis elegans embryo. Mol Reprod Dev 2015; 82:918-31. [PMID: 26382067 DOI: 10.1002/mrd.22582] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/03/2015] [Indexed: 12/25/2022]
Abstract
Developmental robustness is the ability of an embryo to develop normally despite many sources of variation, from differences in the environment to stochastic cell-to-cell differences in gene expression. The nematode Caenorhabditis elegans exhibits an additional level of robustness: Unlike most other animals, the embryonic pattern of cell divisions is nearly identical from animal to animal. The endoderm (gut) lineage is an ideal model for studying such robustness as the juvenile gut has a simple anatomy, consisting of 20 cells that are derived from a single cell, E, and the gene regulatory network that controls E specification shares features with developmental regulatory networks in many other systems, including genetic redundancy, parallel pathways, and feed-forward loops. Early studies were initially concerned with identifying the genes in the network, whereas recent work has focused on understanding how the endoderm produces a robust developmental output in the face of many sources of variation. Genetic control exists at three levels of endoderm development: Progenitor specification, cell divisions within the developing gut, and maintenance of gut differentiation. Recent findings show that specification genes regulate all three of these aspects of gut development, and that mutant embryos can experience a "partial" specification state in which some, but not all, E descendants adopt a gut fate. Ongoing studies using newer quantitative and genome-wide methods promise further insights into how developmental gene-regulatory networks buffer variation.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of Biology, University of California, Riverside, California
| |
Collapse
|
161
|
Shinya R, Chen A, Sternberg PW. Sex Attraction and Mating in Bursaphelenchus okinawaensis and B. xylophilus. J Nematol 2015; 47:176-83. [PMID: 26527838 PMCID: PMC4612187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Indexed: 06/05/2023] Open
Abstract
The fungal feeding, hermaphroditic Bursaphelenchus okinawaensis is a laboratory model to understand the biology of Bursaphelenchus. The extent to which B. okinawaensis can be used to model Bursaphelenchus xylophilus mating was investigated. A chemotaxis assay was conducted to examine whether B. xylophilus and B. okinawaensis produce and respond to volatile sex attractants. Unmated B. xylophilus females were found to attract B. xylophilus males. Similarly, old (sperm depleted) but not young (sperm repleted) B. okinawaensis hermaphrodites attract B. okinawaensis males. Thus, in both species, sperm status corresponds to its ability to attract males. B. xylophilus males also produce a volatile pheromone that attracts both mated and unmated females. A second assay, in which the behavior of males on petri plates in the presence of different females or hermaphrodites of Bursaphelenchus was observed, revealed that B. xylophilus unmated females attract B. okinawaensis males, and B. okinawaensis old hermaphrodites attract B. xylophilus males. These observations suggested that the pheromones of Bursaphelenchus work to some extent across species. Mating behavior through spicule insertion occurs across species, suggesting that postcopulatory mechanisms prevent production of interspecific progeny. The hermaphroditic B. okinawaensis will be a useful model to conduct genetic studies for the understanding of the molecular mechanisms underlying mating behavior in Bursaphelenchus nematodes.
Collapse
Affiliation(s)
- Ryoji Shinya
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Anthony Chen
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Paul W Sternberg
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
162
|
Ellsworth C. Dougherty: A Pioneer in the Selection of Caenorhabditis elegans as a Model Organism. Genetics 2015; 200:991-1002. [PMID: 26272995 DOI: 10.1534/genetics.115.178913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ellsworth Dougherty (1921-1965) was a man of impressive intellectual dimensions and interests; in a relatively short career he contributed enormously as researcher and scholar to the biological knowledge base for selection of Caenorhabditis elegans as a model organism in neurobiology, genetics, and molecular biology. He helped guide the choice of strains that were eventually used, and, in particular, he developed the methodology and understanding for the nutrition and axenic culture of nematodes and other organisms. Dougherty insisted upon a concise terminology for culture techniques and coined descriptive neologisms that were justified by their linguistic roots. Among other contributions, he refined the classification system for the Protista.
Collapse
|
163
|
Choi JI, Yoon KH, Subbammal Kalichamy S, Yoon SS, Il Lee J. A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans. ISME JOURNAL 2015; 10:558-67. [PMID: 26241504 DOI: 10.1038/ismej.2015.134] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/29/2015] [Accepted: 06/09/2015] [Indexed: 11/09/2022]
Abstract
Animal predators can track prey using their keen sense of smell. The bacteriovorous nematode Caenorhabditis elegans employs sensitive olfactory sensory neurons that express vertebrate-like odor receptors to locate bacteria. C. elegans displays odor-related behaviors such as attraction, aversion and adaptation, but the ecological significance of these behaviors is not known. Using a combination of food microbiology and genetics, we elucidate a possible predator-prey relationship between C. elegans and lactic acid bacteria (LAB) in rotting citrus fruit. LAB produces the volatile odor diacetyl as an oxidized by-product of fermentation in the presence of citrate. We show that C. elegans is attracted to LAB when grown on citrate media or Citrus medica L, commonly known as yuzu, a citrus fruit native to East Asia, and this attraction is mediated by the diacetyl odor receptor, ODR-10. We isolated a wild LAB strain and a wild C. elegans-related nematode from rotten yuzu, and demonstrate that the wild nematode was attracted to the diacetyl produced by LAB. These results not only identify an ecological function for a C. elegans olfactory behavior, but contribute to the growing understanding of ecological relationships between the microbial and metazoan worlds.
Collapse
Affiliation(s)
- Jae Im Choi
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju, Korea
| | - Kyoung-Hye Yoon
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju, Korea
| | | | - Sung-Sik Yoon
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju, Korea
| | - Jin Il Lee
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju, Korea
| |
Collapse
|
164
|
Abstract
Recent research has filled many gaps about Caenorhabditis natural history, simultaneously exposing how much remains to be discovered. This awareness now provides means of connecting ecological and evolutionary theory with diverse biological patterns within and among species in terms of adaptation, sexual selection, breeding systems, speciation, and other phenomena. Moreover, the heralded laboratory tractability of C. elegans, and Caenorhabditis species generally, provides a powerful case study for experimental hypothesis testing about evolutionary and ecological processes to levels of detail unparalleled by most study systems. Here, I synthesize pertinent theory with what we know and suspect about Caenorhabditis natural history for salient features of biodiversity, phenotypes, population dynamics, and interactions within and between species. I identify topics of pressing concern to advance Caenorhabditis biology and to study general evolutionary processes, including the key opportunities to tackle problems in dispersal dynamics, competition, and the dimensionality of niche space.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
165
|
Fierst JL, Willis JH, Thomas CG, Wang W, Reynolds RM, Ahearne TE, Cutter AD, Phillips PC. Reproductive Mode and the Evolution of Genome Size and Structure in Caenorhabditis Nematodes. PLoS Genet 2015; 11:e1005323. [PMID: 26114425 PMCID: PMC4482642 DOI: 10.1371/journal.pgen.1005323] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 05/31/2015] [Indexed: 11/18/2022] Open
Abstract
The self-fertile nematode worms Caenorhabditis elegans, C. briggsae, and C. tropicalis evolved independently from outcrossing male-female ancestors and have genomes 20-40% smaller than closely related outcrossing relatives. This pattern of smaller genomes for selfing species and larger genomes for closely related outcrossing species is also seen in plants. We use comparative genomics, including the first high quality genome assembly for an outcrossing member of the genus (C. remanei) to test several hypotheses for the evolution of genome reduction under a change in mating system. Unlike plants, it does not appear that reductions in the number of repetitive elements, such as transposable elements, are an important contributor to the change in genome size. Instead, all functional genomic categories are lost in approximately equal proportions. Theory predicts that self-fertilization should equalize the effective population size, as well as the resulting effects of genetic drift, between the X chromosome and autosomes. Contrary to this, we find that the self-fertile C. briggsae and C. elegans have larger intergenic spaces and larger protein-coding genes on the X chromosome when compared to autosomes, while C. remanei actually has smaller introns on the X chromosome than either self-reproducing species. Rather than being driven by mutational biases and/or genetic drift caused by a reduction in effective population size under self reproduction, changes in genome size in this group of nematodes appear to be caused by genome-wide patterns of gene loss, most likely generated by genomic adaptation to self reproduction per se.
Collapse
Affiliation(s)
- Janna L. Fierst
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - John H. Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Cristel G. Thomas
- Department of Ecology and Evolutionary Biology and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario, Canada
| | - Wei Wang
- Department of Ecology and Evolutionary Biology and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario, Canada
| | - Rose M. Reynolds
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Timothy E. Ahearne
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario, Canada
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
166
|
Starvation-induced collective behavior in C. elegans. Sci Rep 2015; 5:10647. [PMID: 26013573 PMCID: PMC4445038 DOI: 10.1038/srep10647] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/24/2015] [Indexed: 12/24/2022] Open
Abstract
We describe a new type of collective behavior in C. elegans nematodes, aggregation of starved L1 larvae. Shortly after hatching in the absence of food, L1 larvae arrest their development and disperse in search for food. In contrast, after two or more days without food, the worms change their behavior—they start to aggregate. The aggregation requires a small amount of ethanol or acetate in the environment. In the case of ethanol, it has to be metabolized, which requires functional alcohol dehydrogenase sodh-1. The resulting acetate is used in de novo fatty acid synthesis, and some of the newly made fatty acids are then derivatized to glycerophosphoethanolamides and released into the surrounding medium. We examined several other Caenorhabditis species and found an apparent correlation between propensity of starved L1s to aggregate and density dependence of their survival in starvation. Aggregation locally concentrates worms and may help the larvae to survive long starvation. This work demonstrates how presence of ethanol or acetate, relatively abundant small molecules in the environment, induces collective behavior in C. elegans associated with different survival strategies.
Collapse
|
167
|
Integrating -Omics: Systems Biology as Explored Through C. elegans Research. J Mol Biol 2015; 427:3441-51. [PMID: 25839106 DOI: 10.1016/j.jmb.2015.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
-Omics data have become indispensable to systems biology, which aims to describe the full complexity of functional cells, tissues, organs and organisms. Generating vast amounts of data via such methods, researchers have invested in ways of handling and interpreting these. From the large volumes of -omics data that have been gathered over the years, it is clear that the information derived from one -ome is usually far from complete. Now, individual techniques and methods for integration are maturing to the point that researchers can focus on network-based integration rather than simply interpreting single -ome studies. This review evaluates the application of integrated -omics approaches with a focus on Caenorhabditis elegans studies, intending to direct researchers in this field to useful databases and inspiring examples.
Collapse
|
168
|
Abstract
The roundworm Caenorhabditis elegans has risen to the status of a top model organism for biological research in the last fifty years. Among laboratory animals, this tiny nematode is one of the simplest and easiest organisms to handle. And its life outside the laboratory is beginning to be unveiled. Like other model organisms, C. elegans has a boom-and-bust lifestyle. It feasts on ephemeral bacterial blooms in decomposing fruits and stems. After resource depletion, its young larvae enter a migratory diapause stage, called the dauer. Organisms known to be associated with C. elegans include migration vectors (such as snails, slugs and isopods) and pathogens (such as microsporidia, fungi, bacteria and viruses). By deepening our understanding of the natural history of C. elegans, we establish a broader context and improved tools for studying its biology.
Collapse
Affiliation(s)
- Lise Frézal
- Institute of Biology of Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Paris, France
| | - Marie-Anne Félix
- Institute of Biology of Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
169
|
The laboratory domestication of Caenorhabditis elegans. Trends Genet 2015; 31:224-31. [PMID: 25804345 DOI: 10.1016/j.tig.2015.02.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 12/17/2022]
Abstract
Model organisms are of great importance to our understanding of basic biology and to making advances in biomedical research. However, the influence of laboratory cultivation on these organisms is underappreciated, and especially how that environment can affect research outcomes. Recent experiments led to insights into how the widely used laboratory reference strain of the nematode Caenorhabditis elegans compares with natural strains. Here we describe potential selective pressures that led to the fixation of laboratory-derived alleles for the genes npr-1, glb-5, and nath-10. These alleles influence a large number of traits, resulting in behaviors that affect experimental interpretations. Furthermore, strong phenotypic effects caused by these laboratory-derived alleles hinder the discovery of natural alleles. We highlight strategies to reduce the influence of laboratory-derived alleles and to harness the full power of C. elegans.
Collapse
|
170
|
GLOBIN-5-dependent O2 responses are regulated by PDL-1/PrBP that targets prenylated soluble guanylate cyclases to dendritic endings. J Neurosci 2015; 34:16726-38. [PMID: 25505325 DOI: 10.1523/jneurosci.5368-13.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aerobic animals constantly monitor and adapt to changes in O2 levels. The molecular mechanisms involved in sensing O2 are, however, incompletely understood. Previous studies showed that a hexacoordinated globin called GLB-5 tunes the dynamic range of O2-sensing neurons in natural C. elegans isolates, but is defective in the N2 lab reference strain (McGrath et al., 2009; Persson et al., 2009). GLB-5 enables a sharp behavioral switch when O2 changes between 21 and 17%. Here, we show that GLB-5 also confers rapid behavioral and cellular recovery from exposure to hypoxia. Hypoxia reconfigures O2-evoked Ca(2+) responses in the URX O2 sensors, and GLB-5 enables rapid recovery of these responses upon re-oxygenation. Forward genetic screens indicate that GLB-5's effects on O2 sensing require PDL-1, the C. elegans ortholog of mammalian PrBP/PDE6δ protein. In mammals, PDE6δ regulates the traffic and activity of prenylated proteins (Zhang et al., 2004; Norton et al., 2005). PDL-1 promotes localization of GCY-33 and GCY-35, atypical soluble guanylate cyclases that act as O2 sensors, to the dendritic endings of URX and BAG neurons, where they colocalize with GLB-5. Both GCY-33 and GCY-35 are predicted to be prenylated. Dendritic localization is not essential for GCY-35 to function as an O2 sensor, but disrupting pdl-1 alters the URX neuron's O2 response properties. Functional GLB-5 can restore dendritic localization of GCY-33 in pdl-1 mutants, suggesting GCY-33 and GLB-5 are in a complex. Our data suggest GLB-5 and the soluble guanylate cyclases operate in close proximity to sculpt O2 responses.
Collapse
|
171
|
Thomas CG, Wang W, Jovelin R, Ghosh R, Lomasko T, Trinh Q, Kruglyak L, Stein LD, Cutter AD. Full-genome evolutionary histories of selfing, splitting, and selection in Caenorhabditis. Genome Res 2015; 25:667-78. [PMID: 25783854 PMCID: PMC4417115 DOI: 10.1101/gr.187237.114] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/12/2015] [Indexed: 12/19/2022]
Abstract
The nematode Caenorhabditis briggsae is a model for comparative developmental evolution with C. elegans. Worldwide collections of C. briggsae have implicated an intriguing history of divergence among genetic groups separated by latitude, or by restricted geography, that is being exploited to dissect the genetic basis to adaptive evolution and reproductive incompatibility; yet, the genomic scope and timing of population divergence is unclear. We performed high-coverage whole-genome sequencing of 37 wild isolates of the nematode C. briggsae and applied a pairwise sequentially Markovian coalescent (PSMC) model to 703 combinations of genomic haplotypes to draw inferences about population history, the genomic scope of natural selection, and to compare with 40 wild isolates of C. elegans. We estimate that a diaspora of at least six distinct C. briggsae lineages separated from one another approximately 200,000 generations ago, including the “Temperate” and “Tropical” phylogeographic groups that dominate most samples worldwide. Moreover, an ancient population split in its history approximately 2 million generations ago, coupled with only rare gene flow among lineage groups, validates this system as a model for incipient speciation. Low versus high recombination regions of the genome give distinct signatures of population size change through time, indicative of widespread effects of selection on highly linked portions of the genome owing to extreme inbreeding by self-fertilization. Analysis of functional mutations indicates that genomic context, owing to selection that acts on long linkage blocks, is a more important driver of population variation than are the functional attributes of the individually encoded genes.
Collapse
Affiliation(s)
- Cristel G Thomas
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Wei Wang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Rajarshi Ghosh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA; Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Tatiana Lomasko
- Informatics and Bio-Computing, Ontario Institute for Cancer Research, Toronto, Ontario, Canada, M5G 0A3
| | - Quang Trinh
- Informatics and Bio-Computing, Ontario Institute for Cancer Research, Toronto, Ontario, Canada, M5G 0A3
| | - Leonid Kruglyak
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA; Departments of Human Genetics and Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA; Howard Hughes Medical Institute, UCLA, Los Angeles, California 90095, USA
| | - Lincoln D Stein
- Informatics and Bio-Computing, Ontario Institute for Cancer Research, Toronto, Ontario, Canada, M5G 0A3; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, M5S 3B2; Bioinformatics and Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2; Center for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| |
Collapse
|
172
|
Farhadifar R, Baer CF, Valfort AC, Andersen EC, Müller-Reichert T, Delattre M, Needleman DJ. Scaling, selection, and evolutionary dynamics of the mitotic spindle. Curr Biol 2015; 25:732-740. [PMID: 25683802 PMCID: PMC10504684 DOI: 10.1016/j.cub.2014.12.060] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/24/2014] [Accepted: 12/24/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cellular structures such as the nucleus, Golgi, centrioles, and spindle show remarkable diversity between species, but the mechanisms that produce these variations in cell biology are not known. RESULTS Here we investigate the mechanisms that contribute to variations in morphology and dynamics of the mitotic spindle, which orchestrates chromosome segregation in all Eukaryotes and positions the division plane in many organisms. We use high-throughput imaging of the first division in nematodes to demonstrate that the measured effects of spontaneous mutations, combined with stabilizing selection on cell size, are sufficient to quantitatively explain both the levels of within-species variation in the spindle and its diversity over ∼100 million years of evolution. Furthermore, our finding of extensive within-species variation for the spindle demonstrates that there is not just one "wild-type" form, rather that cellular structures can exhibit a surprisingly broad diversity of naturally occurring behaviors. CONCLUSIONS Our results argue that natural selection acts predominantly on cell size and indirectly influences the spindle through the scaling of the spindle with cell size. Previous studies have shown that the spindle also scales with cell size during early development. Thus, the scaling of the spindle with cell size controls its variation over both ontogeny and phylogeny.
Collapse
Affiliation(s)
- Reza Farhadifar
- School of Engineering and Applied Sciences, Department of Molecular and Cellular Biology, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Charles F Baer
- Department of Biology and University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Aurore-Cécile Valfort
- Laboratory of Molecular Biology of the Cell, UMR 5239, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, 69007 Lyon, France
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - Marie Delattre
- Laboratory of Molecular Biology of the Cell, UMR 5239, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, 69007 Lyon, France
| | - Daniel J Needleman
- School of Engineering and Applied Sciences, Department of Molecular and Cellular Biology, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
173
|
Braendle C, Teotonio H. Workshop report: Caenorhabditis nematodes as model organisms to study trait variation and its evolution. WORM 2015; 4:e1021109. [PMID: 26430562 PMCID: PMC4588542 DOI: 10.1080/21624054.2015.1021109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/11/2015] [Indexed: 11/28/2022]
Abstract
A fundamental problem in biology is to understand how genome expression translates into variation in molecular, cellular, developmental, physiological, behavioral, or life-history traits. During the summer of 2014, worm biologists with a keen interest in evolutionary biology and natural ecology met in Les Treilles (France) to define the problems of trait variation better and to discuss empirical approaches using Caenorhabditis species to address these problems. Compared with other model organisms, Caenorhabditis has several advantages, such as well-defined traits that can be subjected to highly controlled environmental and genetic manipulation and the possibility for long-term experimental evolution that can be coupled with genome-wide mapping of trait variation. The Les Treilles workshop brought together researchers studying the evolution of phenotypic plasticity, gene-networks, genome structure and population genetics, sex-determination and development in the laboratory, behavior and the life-history of natural Caenorhabditis populations. Here, we outline the key aims of this workshop and summarize the contributions of each participant.
Collapse
Affiliation(s)
- Christian Braendle
- Institut de Biologie Valrose ; CNRS UMR7277 ; Parc Valrose; Nice, France ; INSERM U1091 ; Nice, France ; Université Nice Sophia Antipolis; UFR Sciences ; Nice, France
| | - Henrique Teotonio
- Institut de Biologie de l ´École Normale Supérieure (IBENS) ; CNRS UMR8197 ; Paris, France
| |
Collapse
|
174
|
Schwarz EM, Hu Y, Antoshechkin I, Miller MM, Sternberg PW, Aroian RV. The genome and transcriptome of the zoonotic hookworm Ancylostoma ceylanicum identify infection-specific gene families. Nat Genet 2015; 47:416-22. [PMID: 25730766 PMCID: PMC4617383 DOI: 10.1038/ng.3237] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 02/05/2015] [Indexed: 12/19/2022]
Abstract
Hookworms infect over 400 million people, stunting and impoverishing them. Sequencing hookworm genomes and finding which genes they express during infection should help in devising new drugs or vaccines against hookworms. Unlike other hookworms, Ancylostoma ceylanicum infects both humans and other mammals, providing a laboratory model for hookworm disease. We determined an A. ceylanicum genome sequence of 313 Mb, with transcriptomic data throughout infection showing expression of 30,738 genes. Approximately 900 genes were upregulated during early infection in vivo, including ASPRs, a cryptic subfamily of activation-associated secreted proteins (ASPs). Genes downregulated during early infection included ion channels and G protein-coupled receptors; this downregulation was observed in both parasitic and free-living nematodes. Later, at the onset of heavy blood feeding, C-lectin genes were upregulated along with genes for secreted clade V proteins (SCVPs), encoding a previously undescribed protein family. These findings provide new drug and vaccine targets and should help elucidate hookworm pathogenesis.
Collapse
Affiliation(s)
- Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Yan Hu
- 1] Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA. [2] Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Melanie M Miller
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA
| | - Paul W Sternberg
- 1] Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA. [2] Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, USA
| | - Raffi V Aroian
- 1] Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA. [2] Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
175
|
A Genome-wide hybrid incompatibility landscape between Caenorhabditis briggsae and C. nigoni. PLoS Genet 2015; 11:e1004993. [PMID: 25692300 PMCID: PMC4334894 DOI: 10.1371/journal.pgen.1004993] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/08/2015] [Indexed: 11/19/2022] Open
Abstract
Systematic characterization of ẖybrid incompatibility (HI) between related species remains the key to understanding speciation. The genetic basis of HI has been intensively studied in Drosophila species, but remains largely unknown in other species, including nematodes, which is mainly due to the lack of a sister species with which C. elegans can mate and produce viable progeny. The recent discovery of a C. briggsae sister species, C. nigoni, has opened up the possibility of dissecting the genetic basis of HI in nematode species. However, the paucity of dominant and visible marker prevents the efficient mapping of HI loci between the two species. To elucidate the genetic basis of speciation in nematode species, we first generated 96 chromosomally integrated GFP markers in the C. briggsae genome and mapped them into the defined locations by PCR and Next-Generation Sequencing (NGS). Aided by the marker, we backcrossed the GFP-associated C. briggsae genomic fragments into C. nigoni for at least 15 generations and produced 111 independent introgressions. The introgression fragments cover most of the C. briggsae genome. We finally dissected the patterns of HI by scoring the embryonic lethality, larval arrest, sex ratio and male sterility for each introgression line, through which we identified pervasive HI loci and produced a genome-wide landscape of HI between the two nematode species, the first of its type for any non-Drosophila species. The HI data not only provided insights into the genetic basis of speciation, but also established a framework for the possible cloning of HI loci between the two nematode species. Furthermore, the data on hybrids confirmed Haldane’s rule and suggested the presence of a large X effect in terms of fertility between the two species. Importantly, this work opens a new avenue for studying speciation genetics between nematode species and allows parallel comparison of the HI with that in Drosophila and other species. Hybrid incompatibility (HI) has been intensively studied among Drosophila species, but remains largely unknown in other species. Model organism is a species of choice for the HI study because these species provide sophisticated molecular and genetic tools for illustrating mechanism underlying a given HI. C. elegans as a model organism contributed little to the field due to the lack of a sister species with which it can mate and produce viable progeny. The recent discovery of a C. briggsae sister species, C. nigoni, has made it possible to study the HI between nematode species. However, the paucity of molecular and genetic tools in both species inhibits their use in such studies. To empower the use of this species pair in HI studies, we first created a collection of fluorescent markers over the C. briggsae genome to facilitate the directional introduction of the marker-associated C. briggsae genomic fragments into the C. nigoni background. We next mapped the marker insertion sites and introduced the markers into C. nigoni by repeated crossings. Finally, we generated a genome-wide HI landscape between the two species by scoring the HI phenotypes of their hybrid progeny. The study not only provides an invaluable resource for the molecular cloning of HI loci between C. briggsae and C. nigoni, but also permits comparative analysis of speciation genetics between nematode and other species.
Collapse
|
176
|
Susoy V, Ragsdale EJ, Kanzaki N, Sommer RJ. Rapid diversification associated with a macroevolutionary pulse of developmental plasticity. eLife 2015; 4:e05463. [PMID: 25650739 PMCID: PMC4357287 DOI: 10.7554/elife.05463] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/03/2015] [Indexed: 11/13/2022] Open
Abstract
Developmental plasticity has been proposed to facilitate phenotypic diversification in plants and animals, but the macroevolutionary potential of plastic traits remains to be objectively tested. We studied the evolution of feeding structures in a group of 90 nematodes, including Caenorhabditis elegans, some species of which have evolved a mouthpart polyphenism, moveable teeth, and predatory feeding. Comparative analyses of shape and form, using geometric morphometrics, and of structural complexity revealed a rapid process of diversification associated with developmental plasticity. First, dimorphism was associated with a sharp increase in complexity and elevated evolutionary rates, represented by a radiation of feeding-forms with structural novelties. Second, the subsequent assimilation of a single phenotype coincided with a decrease in mouthpart complexity but an even stronger increase in evolutionary rates. Our results suggest that a macroevolutionary 'pulse' of plasticity promotes novelties and, even after the secondary fixation of phenotypes, permits sustained rapid exploration of morphospace.
Collapse
Affiliation(s)
- Vladislav Susoy
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Erik J Ragsdale
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Department of Biology, Indiana University, Bloomington, United States
| | - Natsumi Kanzaki
- Forest Pathology Laboratory, Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Ralf J Sommer
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
177
|
Petersen C, Dirksen P, Schulenburg H. Why we need more ecology for genetic models such as C. elegans. Trends Genet 2015; 31:120-7. [PMID: 25577479 DOI: 10.1016/j.tig.2014.12.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/28/2022]
Abstract
Functional information about the large majority of the genes is still lacking in the classical eukaryotic model species Drosophila melanogaster, Caenorhabditis elegans, and Mus musculus. Because many of these genes are likely to be important in natural settings, considering explicit ecological information should increase our knowledge of gene function. Using C. elegans as an example, we discuss the importance of biotic factors as a driving force in shaping the composition and structure of the nematode genome. We highlight examples for which consideration of ecological information and natural variation have been key to the identification of novel, unexpected gene functions, and use these examples to define future research avenues for the classical genetic model taxa.
Collapse
Affiliation(s)
- Carola Petersen
- Evolutionary Ecology and Genetics, University of Kiel, 24098 Kiel, Germany
| | - Philipp Dirksen
- Evolutionary Ecology and Genetics, University of Kiel, 24098 Kiel, Germany
| | | |
Collapse
|
178
|
Kanzaki N, Giblin-Davis RM. Rhabditidoides humicolus n. sp. associated with arthropods from rotting palm tissue in Florida, USA. NEMATOLOGY 2015. [DOI: 10.1163/15685411-00002883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rhabditidoides humicolus n. sp. is described and illustrated from arthropods associated with decaying tissue from the crown shaft of a living spindle palm, Hyophorbe verschaffeltii, in southern Florida, USA. In addition to its generic character, i.e., the arrangement of male genital papillae, ⟨v1, v2, v3d, CO, v4, (ad, v5, ph, v6), (pd, v7)⟩, the new species is characterised by its small stomatal flaps, a secretory pore-like opening, a pair of deirids, two pairs of post-deirids and small subventral vulval papillae located just anterior to the vulva. Besides those newly found characters, there are only a few typological differences between R. humicolus n. sp. and several previously described species in the genus. However, based on the biological characters, e.g., gonochoristic reproduction, association as dauers with the crane fly, Limonia (Rhipidia) schwarzi (Diptera: Limoniidae), millipedes, an immature cockroach, and staphylinid beetle adults, and distribution in southern Florida, the new species was considered to be different from others in the genus.
Collapse
Affiliation(s)
- Natsumi Kanzaki
- Fort Lauderdale Research and Education Center, University of Florida/IFAS 3205 College Avenue, Davie, FL 33314, USA
| | - Robin M. Giblin-Davis
- Fort Lauderdale Research and Education Center, University of Florida/IFAS 3205 College Avenue, Davie, FL 33314, USA
| |
Collapse
|
179
|
Etges WJ, Trotter MV, de Oliveira CC, Rajpurohit S, Gibbs AG, Tuljapurkar S. Deciphering life history transcriptomes in different environments. Mol Ecol 2014; 24:151-79. [PMID: 25442828 DOI: 10.1111/mec.13017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 10/27/2014] [Accepted: 11/22/2014] [Indexed: 12/25/2022]
Abstract
We compared whole transcriptome variation in six pre-adult stages and seven adult female ages in two populations of cactophilic Drosophila mojavensis reared on two host plants to understand how differences in gene expression influence standing life history variation. We used singular value decomposition (SVD) to identify dominant trajectories of life cycle gene expression variation, performed pairwise comparisons of stage and age differences in gene expression across the life cycle, identified when genes exhibited maximum levels of life cycle gene expression, and assessed population and host cactus effects on gene expression. Life cycle SVD analysis returned four significant components of transcriptional variation, revealing functional enrichment of genes responsible for growth, metabolic function, sensory perception, neural function, translation and ageing. Host cactus effects on female gene expression revealed population- and stage-specific differences, including significant host plant effects on larval metabolism and development, as well as adult neurotransmitter binding and courtship behaviour gene expression levels. In 3- to 6-day-old virgin females, significant upregulation of genes associated with meiosis and oogenesis was accompanied by downregulation of genes associated with somatic maintenance, evidence for a life history trade-off. The transcriptome of D. mojavensis reared in natural environments throughout its life cycle revealed core developmental transitions and genome-wide influences on life history variation in natural populations.
Collapse
Affiliation(s)
- William J Etges
- Program in Ecology and Evolutionary Biology, Dept. of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | | | | | | | | | | |
Collapse
|
180
|
Co-option of alternate sperm activation programs in the evolution of self-fertile nematodes. Nat Commun 2014; 5:5888. [PMID: 25523309 DOI: 10.1038/ncomms6888] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/18/2014] [Indexed: 12/19/2022] Open
Abstract
Self-fertility evolved independently in three species of Caenorhabditis, yet the underlying genetic changes remain unclear. This transition required that XX animals acquire the ability to produce sperm and then signal those sperm to activate and fertilise oocytes. Here, we show that all genes that regulate sperm activation in C. elegans are conserved throughout the genus, even in male/female species. By using gene editing, we show that C. elegans and C. briggsae hermaphrodites use the SPE-8 tyrosine kinase pathway to activate sperm, whereas C. tropicalis hermaphrodites use a TRY-5 serine protease pathway. Finally, our analysis of double mutants shows that these pathways were redundant in ancestral males. Thus, newly evolving hermaphrodites became self-fertile by co-opting either of the two redundant male programs. The existence of these alternatives helps explain the frequent origin of self-fertility in nematode lineages. This work also demonstrates that the new genome-editing techniques allow unprecedented power and precision in evolutionary studies.
Collapse
|
181
|
Gibson AK, Fuentes JA. A phylogenetic test of the Red Queen Hypothesis: outcrossing and parasitism in the Nematode phylum. Evolution 2014; 69:530-40. [PMID: 25403727 DOI: 10.1111/evo.12565] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 11/06/2014] [Indexed: 01/04/2023]
Abstract
Sexual outcrossing is costly relative to selfing and asexuality, yet it is ubiquitous in nature, a paradox that has long puzzled evolutionary biologists. The Red Queen Hypothesis argues that outcrossing is maintained by antagonistic interactions between host and parasites. Most tests of this hypothesis focus on the maintenance of outcrossing in hosts. The Red Queen makes an additional prediction that parasitic taxa are more likely to be outcrossing than their free-living relatives. We test this prediction in the diverse Nematode phylum using phylogenetic comparative methods to evaluate trait correlations. In support of the Red Queen, we demonstrate a significant correlation between parasitism and outcrossing in this clade. We find that this correlation is driven by animal parasites, for which outcrossing is significantly enriched relative to both free-living and plant parasitic taxa. Finally, we test hypotheses for the evolutionary history underlying the correlation of outcrossing and animal parasitism. Our results demonstrate that selfing and asexuality are significantly less likely to arise on parasitic lineages than on free-living ones. The findings of this study are consistent with the Red Queen Hypothesis. Moreover, they suggest that the maintenance of genetic variation is an important factor in the persistence of parasitic lineages.
Collapse
|
182
|
Green JWM, Stastna JJ, Orbidans HE, Harvey SC. Highly polygenic variation in environmental perception determines dauer larvae formation in growing populations of Caenorhabditis elegans. PLoS One 2014; 9:e112830. [PMID: 25393108 PMCID: PMC4231163 DOI: 10.1371/journal.pone.0112830] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/16/2014] [Indexed: 11/25/2022] Open
Abstract
Background Determining how complex traits are genetically controlled is a requirement if we are to predict how they evolve and how they might respond to selection. This requires understanding how distinct, and often more simple, life history traits interact and change in response to environmental conditions. In order to begin addressing such issues, we have been analyzing the formation of the developmentally arrested dauer larvae of Caenorhabditis elegans under different conditions. Results We find that 18 of 22 previously identified quantitative trait loci (QTLs) affecting dauer larvae formation in growing populations, assayed by determining the number of dauer larvae present at food patch exhaustion, can be recovered under various environmental conditions. We also show that food patch size affects both the ability to detect QTLs and estimates of effect size, and demonstrate that an allele of nath-10 affects dauer larvae formation in growing populations. To investigate the component traits that affect dauer larvae formation in growing populations we map, using the same introgression lines, QTLs that affect dauer larvae formation in response to defined amounts of pheromone. This identifies 36 QTLs, again demonstrating the highly polygenic nature of the genetic variation underlying dauer larvae formation. Conclusions These data indicate that QTLs affecting the number of dauer larvae at food exhaustion in growing populations of C. elegans are highly reproducible, and that nearly all can be explained by variation affecting dauer larvae formation in response to defined amounts of pheromone. This suggests that most variation in dauer larvae formation in growing populations is a consequence of variation in the perception of the food and pheromone environment (i.e. chemosensory variation) and in the integration of these cues.
Collapse
Affiliation(s)
- James W. M. Green
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Jana J. Stastna
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Helen E. Orbidans
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Simon C. Harvey
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
- * E-mail:
| |
Collapse
|
183
|
Petrella LN. Natural variants of C. elegans demonstrate defects in both sperm function and oogenesis at elevated temperatures. PLoS One 2014; 9:e112377. [PMID: 25380048 PMCID: PMC4224435 DOI: 10.1371/journal.pone.0112377] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/14/2014] [Indexed: 01/07/2023] Open
Abstract
The temperature sensitivity of the germ line is conserved from nematodes to mammals. Previous studies in C. briggsae and Drosophila showed that isolates originating from temperate latitudes lose fertility at a lower temperature than strains originating from tropical latitudes. In order to investigate these relationships in C. elegans, analysis of the fertility of 22 different wild-type isolates of C. elegans isolated from equatorial, tropical and temperate regions was undertaken. It was found that there are significant temperature, genotype and temperature × genotype effects on fertility but region of isolation showed no significant effect on differences in fertility. For most isolates 100% of the population maintained fertility from 20°C to 26°C, but there was a precipitous drop in the percentage of fertile hermaphrodites at 27°C. In contrast, all isolates show a progressive decrease in brood size as temperature increases from 20°C to 26°C, followed by a brood size near zero at 27°C. Temperature shift experiments were performed to better understand the causes of high temperature loss of fertility. Males up-shifted to high temperature maintained fertility, while males raised at high temperature lost fertility. Down-shifting males raised at high temperature generally did not restore fertility. This result differs from that observed in Drosophila and suggested that in C. elegans spermatogenesis or sperm function is irreversibly impaired in males that develop at high temperature. Mating and down-shifting experiments with hermaphrodites were performed to investigate the relative contributions of spermatogenic and oogenic defects to high temperature loss of fertility. It was found that the hermaphrodites of all isolates demonstrated loss in both spermatogenic and oogenic germ lines that differed in their relative contribution by isolate. These studies uncovered unexpectedly high variation in both the loss of fertility and problems with oocyte function in natural variants of C. elegans at high temperature.
Collapse
Affiliation(s)
- Lisa N. Petrella
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
184
|
Huang RE, Ren X, Qiu Y, Zhao Z. Description of Caenorhabditis sinica sp. n. (Nematoda: Rhabditidae), a nematode species used in comparative biology for C. elegans. PLoS One 2014; 9:e110957. [PMID: 25375770 PMCID: PMC4222906 DOI: 10.1371/journal.pone.0110957] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 07/20/2014] [Indexed: 02/06/2023] Open
Abstract
We re-isolated in China a relative of the nematode model Caenorhabditis elegans that was previously referred to informally as C. sp. 5. In spite of its importance for comparative biology, C. sp. 5 has remained morphologically uncharacterized. Therefore, we now provide detailed description of morphology and anatomy, assigning the name of Caenorhabditis sinica sp. n. to this nematode that is found frequently in China. C. sinica sp. n. belongs to the Elegans group in the genus Caenorhabditis, being phylogenetically close to C. briggsae although differing in reproductive mode. The gonochoristic C. sinica sp. n. displays two significantly larger distal parts of uteri filled with sperms in the female/hermaphroditic gonad than does the androdioecious C. briggsae. The new species can be differentiated morphologically from all known Caenorhabditis species within the Elegans group by presenting a uniquely shaped, three-pointed hook structure on the male precloacal lip. The lateral field of C. sinica sp. n. is marked by three ridges that are flanked by two additional incisures, sometimes appearing as five ridges in total. This study ends the prolonged period of the 'undescribed' anonymity for C. sinica sp. n. since its discovery and use in comparative biological research. Significant and crossing-direction dependent hybrid incompatibilities in F1 and F2 crossing progeny make C. sinica sp. n. an excellent model for studies of population and speciation genetics. The abundance of nematode species lacking detailed taxonomic characterization deserves renewed attention to address the species description gap for this important yet morphologically 'difficult' group of animals.
Collapse
Affiliation(s)
- Ren-E Huang
- School of Life Sciences, Tsinghua University, Beijing, China
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Ren
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Yifei Qiu
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Zhongying Zhao
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
185
|
Theologidis I, Chelo IM, Goy C, Teotónio H. Reproductive assurance drives transitions to self-fertilization in experimental Caenorhabditis elegans. BMC Biol 2014; 12:93. [PMID: 25369737 PMCID: PMC4234830 DOI: 10.1186/s12915-014-0093-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolutionary transitions from outcrossing between individuals to selfing are partly responsible for the great diversity of animal and plant reproduction systems. The hypothesis of 'reproductive assurance' suggests that transitions to selfing occur because selfers that are able to reproduce on their own ensure the persistence of populations in environments where mates or pollination agents are unavailable. Here we test this hypothesis by performing experimental evolution in Caenorhabditis elegans. RESULTS We show that self-compatible hermaphrodites provide reproductive assurance to a male-female population facing a novel environment where outcrossing is limiting. Invasions of hermaphrodites in male-female populations, and subsequent experimental evolution in the novel environment, led to successful transitions to selfing and adaptation. Adaptation was not due to the loss of males during transitions, as shown by evolution experiments in exclusively hermaphroditic populations and in male-hermaphrodite populations. Instead, adaptation was due to the displacement of females by hermaphrodites. Genotyping of single-nucleotide polymorphisms further indicated that the observed evolution of selfing rates was not due to selection of standing genetic diversity. Finally, numerical modelling and evolution experiments in male-female populations demonstrate that the improvement of male fitness components may diminish the opportunity for reproductive assurance. CONCLUSIONS Our findings support the hypothesis that reproductive assurance can drive the transition from outcrossing to selfing, and further suggest that the success of transitions to selfing hinges on adaptation of obligate outcrossing populations to the environment where outcrossing was once a limiting factor.
Collapse
|
186
|
Markov GV, Baskaran P, Sommer RJ. The Same or Not the Same: Lineage-Specific Gene Expansions and Homology Relationships in Multigene Families in Nematodes. J Mol Evol 2014; 80:18-36. [DOI: 10.1007/s00239-014-9651-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/06/2014] [Indexed: 11/30/2022]
|
187
|
Zaleśny G, Hildebrand J, Paziewska-Harris A, Behnke JM, Harris PD. Heligmosomoides neopolygyrus Asakawa & Ohbayashi, 1986, a cryptic Asian nematode infecting the striped field mouse Apodemus agrarius in Central Europe. Parasit Vectors 2014; 7:457. [PMID: 25303901 PMCID: PMC4198666 DOI: 10.1186/s13071-014-0457-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 09/20/2014] [Indexed: 12/31/2022] Open
Abstract
Background Heligmosomoides polygyrus is a widespread gastro-intestinal nematode infecting wild Apodemus (wood mice) throughout Europe. Using molecular and morphological evidence, we review the status of Heligmosomoides from Apodemus agrarius in Poland previously considered to be an outlying clade of H. polygyrus, to further resolve the status of the laboratory model species, H. bakeri. Methods Morphological analysis of the male bursa and the synlophe, and molecular analyses of concatenated nuclear (28S rDNA, ITS1 and ITS2) and mitochondrial (CO1 and cytb) genes, of Heligmosomoides collected from Apodemus agrarius from two sites in Poland and comparison with related heligmosomids from voles and mice in Eurasia. Results Heligmosomoides neopolygyrus, a heligmosomid nematode from Apodemus species from China and Japan, is recognised for the first time in western Europe infecting Apodemus agrarius in Poland. It can be distinguished from H. polygyrus by the filiform externo-dorsal rays of the male copulatory bursa and the small, equally distributed longitudinal crêtes on the body. Specimens from A. agrarius are 20% different at ribosomal (ITS1 and ITS2) nuclear loci, and 10% different at the mitochondrial cytb locus from H. polygyrus, and in phylogenetic analyses group with the vole-infecting genus Heligmosomum. Conclusions Despite morphological similarity, H. neopolygyrus is only distantly related to H. polygyrus from western European Apodemus, and may be more closely related to vole-infecting taxa. It was brought into Europe by the recent rapid migration of the host mice. Inclusion of H. neopolygyrus in phylogenies makes it clear that Heligmosomoides is paraphyletic, with the pika-infecting Ohbayashinema and the vole-infecting Heligmosomum nesting within it. Clarification of the European status of H. neopolygyrus also allows H. bakeri, the laboratory model species, to be seen as a terminal sister clade to H. polygyrus, rather than as an internal clade of the latter taxon. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0457-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Grzegorz Zaleśny
- Department of Invertebrate Systematics and Ecology, Institute of Biology, Wrocław University of Environmental and Life Sciences, ul. Kożuchowska 5b, 51-631, Wrocław, Poland.
| | - Joanna Hildebrand
- Department of Parasitology, Institute of Genetics and Microbiology, University of Wrocław, ul. Przybyszewskiego 63, 51-148, Wrocław, Poland.
| | - Anna Paziewska-Harris
- KIT Biomedical Research, Royal Tropical Institute, Meibergdreef 39, 1105 AZ, Amsterdam, the Netherlands.
| | - Jerzy M Behnke
- School of Life Sciences, University of Nottingham, NG2 7RD, Nottingham, UK.
| | - Philip D Harris
- Natural History Museum, University of Oslo, P.O. Box 1172, N-0562, Oslo, Norway.
| |
Collapse
|
188
|
Hodgkin J, Clark LC, Gravato-Nobre MJ. Worm-stars and half-worms: Novel dangers and novel defense. WORM 2014; 3:e27939. [PMID: 25254146 PMCID: PMC4165538 DOI: 10.4161/worm.27939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/21/2014] [Indexed: 11/19/2022]
Abstract
In a recent paper, we reported the isolation and surprising effects of two new bacterial pathogens for Caenorhabditis and related nematodes. These two pathogens belong to the genus Leucobacter and were discovered co-infecting a wild isolate of Caenorhabditis that had been collected in Cape Verde. The interactions of these bacteria with C. elegans revealed both unusual mechanisms of pathogenic attack, and an unexpected defense mechanism on the part of the worm. One pathogen, known as Verde1, is able to trap swimming nematodes by sticking their tails together, resulting in the formation of “worm-star” aggregates, within which worms are killed and degraded. Trapped larval worms, but not adults, can sometimes escape by undergoing whole-body autotomy into half-worms. The other pathogen, Verde2, kills worms by a different mechanism associated with rectal infection. Many C. elegans mutants with alterations in surface glycosylation are resistant to Verde2 infection, but hypersensitive to Verde1, being rapidly killed without worm-star formation. Conversely, surface infection of wild-type worms with Verde1 is mildly protective against Verde2. Thus, there are trade-offs in susceptibility to the two bacteria. The Leucobacter pathogens reveal novel nematode biology and provide powerful tools for exploring nematode surface properties and bacterial susceptibility.
Collapse
Affiliation(s)
| | - Laura C Clark
- Department of Biochemistry; University of Oxford; Oxford, UK
| | | |
Collapse
|
189
|
Dey A, Jin Q, Chen YC, Cutter AD. Gonad morphogenesis defects drive hybrid male sterility in asymmetric hybrid breakdown of Caenorhabditis nematodes. Evol Dev 2014; 16:362-72. [PMID: 25196892 DOI: 10.1111/ede.12097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Determining the causes and evolution of reproductive barriers to gene flow between populations, speciation, is the key to understanding the origin of diversity in nature. Many species manifest hybrid breakdown when they intercross, characterized by increasingly exacerbated problems in later generations of hybrids. Recently, Caenorhabditis nematodes have emerged as a genetic model for studying speciation, and here we investigate the nature and causes of hybrid breakdown between Caenorhabditis remanei and C. latens. We quantify partial F1 hybrid inviability and extensive F2 hybrid inviability; the ~75% F2 embryonic arrest occurs primarily during gastrulation or embryonic elongation. Moreover, F1 hybrid males exhibit Haldane's rule asymmetrically for both sterility and inviability, being strongest when C. remanei serves as maternal parent. We show that the mechanism by which sterile hybrid males are incapable of transferring sperm or a copulatory plug involves defective gonad morphogenesis, which we hypothesize results from linker cell defects in migration and/or cell death during development. This first documented case of partial hybrid male sterility in Caenorhabditis follows expectations of Darwin's corollary to Haldane's rule for asymmetric male fitness, providing a powerful foundation for molecular dissection of intrinsic reproductive barriers and divergence of genetic pathways controlling organ morphogenesis.
Collapse
Affiliation(s)
- Alivia Dey
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada, M5S 3B2
| | | | | | | |
Collapse
|
190
|
Aprison EZ, Ruvinsky I. Balanced trade-offs between alternative strategies shape the response of C. elegans reproduction to chronic heat stress. PLoS One 2014; 9:e105513. [PMID: 25165831 PMCID: PMC4148340 DOI: 10.1371/journal.pone.0105513] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/24/2014] [Indexed: 11/18/2022] Open
Abstract
To ensure long-term reproductive success organisms have to cope with harsh environmental extremes. A reproductive strategy that simply maximizes offspring production is likely to be disadvantageous because it could lead to a catastrophic loss of fecundity under unfavorable conditions. To understand how an appropriate balance is achieved, we investigated reproductive performance of C. elegans under conditions of chronic heat stress. We found that following even prolonged exposure to temperatures at which none of the offspring survive, worms could recover and resume reproduction. The likelihood of producing viable offspring falls precipitously after exposure to temperatures greater than 28°C primarily due to sperm damage. Surprisingly, we found that worms that experienced higher temperatures can recover considerably better, provided they did not initiate ovulation. Therefore mechanisms controlling this process must play a crucial role in determining the probability of recovery. We show, however, that suppressing ovulation is only beneficial under relatively long stresses, whereas it is a disadvantageous strategy under shorter stresses of the same intensity. This is because the benefit of shutting down egg laying, and thus protecting the reproductive system, is negated by the cost associated with implementing this strategy--it takes considerable time to recover and produce offspring. We interpret these balanced trade-offs as a dynamic response of the C. elegans reproductive system to stress and an adaptation to life in variable and unpredictable conditions.
Collapse
Affiliation(s)
- Erin Z. Aprison
- Department of Ecology and Evolution and Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Ilya Ruvinsky
- Department of Ecology and Evolution and Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
191
|
Grimbert S, Braendle C. Cryptic genetic variation uncovers evolution of environmentally sensitive parameters inCaenorhabditisvulval development. Evol Dev 2014; 16:278-91. [DOI: 10.1111/ede.12091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Stéphanie Grimbert
- Institut de Biologie Valrose; CNRS UMR7277, Parc Valrose; 06108 Nice cedex 02 France
- INSERM U1091; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Christian Braendle
- Institut de Biologie Valrose; CNRS UMR7277, Parc Valrose; 06108 Nice cedex 02 France
- INSERM U1091; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| |
Collapse
|
192
|
Woodruff GC, Knauss CM, Maugel TK, Haag ES. Mating damages the cuticle of C. elegans hermaphrodites. PLoS One 2014; 9:e104456. [PMID: 25105881 PMCID: PMC4126722 DOI: 10.1371/journal.pone.0104456] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/13/2014] [Indexed: 01/26/2023] Open
Abstract
Lifespan costs to reproduction are common across multiple species, and such costs could potentially arise through a number of mechanisms. In the nematode Caenorhabditis elegans, it has been suggested that part of the lifespan cost to hermaphrodites from mating results from physical damage owing to the act of copulation itself. Here, we examine whether mating damages the surface of the hermaphrodite cuticle via scanning electron microscopy. It is found that mated hermaphrodites suffered delamination of cuticle layers surrounding the vulva, and that the incidence of such damage depends on genetic background. Unmated hermaphrodites demonstrated almost no such damage, even when cultured in soil with potentially abrasive particles. Thus, a consequence of mating for C. elegans hermaphrodites is physical cuticle damage. These experiments did not assess the consequences of cuticle damage for lifespan, and the biological significance of this damage remains unclear. We further discuss our results within the context of recent studies linking the lifespan cost to mating in C. elegans hermaphrodites to male secretions.
Collapse
Affiliation(s)
- Gavin C. Woodruff
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- Forest Pathology Laboratory, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Christine M. Knauss
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Timothy K. Maugel
- Laboratory for Biological Ultrastructure, University of Maryland, College Park, Maryland, United States of America
| | - Eric S. Haag
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
193
|
Ellis RE, Lin SY. The evolutionary origins and consequences of self-fertility in nematodes. F1000PRIME REPORTS 2014; 6:62. [PMID: 25165561 PMCID: PMC4126538 DOI: 10.12703/p6-62] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Self-fertile hermaphrodites have evolved from male/female ancestors in many nematode species, and this transition occurred on three independent occasions in the genus Caenorhabditis. Genetic analyses in Caenorhabditis show that the origin of hermaphrodites required two types of changes: alterations to the sex-determination pathway that allowed otherwise female animals to make sperm during larval development, and the production of signals from the gonad that caused these sperm to activate and fertilize oocytes. Comparisons of C. elegans and C. briggsae hermaphrodites show that the ancestral sex-determination pathway has been altered in multiple unique ways. Some of these changes must have precipitated the production of sperm in XX animals, and others were modifying mutations that increased the efficiency of hermaphroditic reproduction. Reverse genetic experiments show that XX animals acquired the ability to activate sperm by co-opting one of the two redundant pathways that normally work in males. Finally, the adoption of a hermaphroditic lifestyle had profound effects on ecological and sexual interactions and genomic organization. Thus, nematode mating systems are ideal for elucidating the origin of novel traits, and studying the influence of developmental processes on evolutionary change.
Collapse
|
194
|
Ting JJ, Woodruff GC, Leung G, Shin NR, Cutter AD, Haag ES. Intense sperm-mediated sexual conflict promotes reproductive isolation in Caenorhabditis nematodes. PLoS Biol 2014; 12:e1001915. [PMID: 25072732 PMCID: PMC4114750 DOI: 10.1371/journal.pbio.1001915] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 06/19/2014] [Indexed: 01/08/2023] Open
Abstract
Sperm from other species invade female tissues to cause sterility and death, helping to keep nematode species boundaries intact. Conflict between the sexes over reproductive interests can drive rapid evolution of reproductive traits and promote speciation. Here we show that inter-species mating between Caenorhabditis nematodes sterilizes maternal individuals. The principal effectors of male-induced harm are sperm cells, which induce sterility and shorten lifespan by displacing conspecific sperm, invading the ovary, and sometimes breaching the gonad to infiltrate other tissues. This sperm-mediated harm is pervasive across species, but idiosyncrasies in its magnitude implicate both independent histories of sexually antagonistic coevolution within species and differences in reproductive mode (self-fertilizing hermaphrodites versus females) in determining its severity. Consistent with this conclusion, in androdioecious species the hermaphrodites are more vulnerable, the males more benign, or both. Patterns of assortative mating and a low incidence of invasive sperm occurring with conspecific mating are indicative of ongoing intra-specific sexual conflict that results in inter-species reproductive incompatibility. The sexes have divergent reproductive interests, and conflict arising from this disparity can drive the rapid evolution of reproductive traits and promote speciation. Here we describe a unique reproductive barrier in Caenorhabditis nematodes that is induced by sperm. We found that mating between species can sterilize maternal worms and even cause premature death, and we were able to attribute this phenomenon directly to the sperm themselves. Sperm from other species can displace sperm from the same species and, in some cases, can invade inappropriate parts of the maternal reproductive system and even their non-reproductive tissues. We find that mating to males of another species harms females far more than does within-species mating. Overall, our observations are consistent with ongoing sexual conflict between the sexes within species, arising as a byproduct of sperm competition among the gametes of different males. Finally, patterns of assortative mating indicate that mating behaviours that reduce the likelihood of costly inter-species mating have evolved in this group of animals. These findings support an important role of sexual selection and gametic interactions contributing to reproductive boundaries between species, as predicted by evolutionary theory.
Collapse
Affiliation(s)
- Janice J. Ting
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Gavin C. Woodruff
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Gemma Leung
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Na-Ra Shin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (ADC); (ESH)
| | - Eric S. Haag
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (ADC); (ESH)
| |
Collapse
|
195
|
Emmons SW. The development of sexual dimorphism: studies of the Caenorhabditis elegans male. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2014; 3:239-62. [PMID: 25262817 PMCID: PMC4181595 DOI: 10.1002/wdev.136] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/02/2014] [Indexed: 01/09/2023]
Abstract
Studies of the development of the Caenorhabditis elegans male have been carried out with the aim of understanding the basis of sexual dimorphism. Postembryonic development of the two C. elegans sexes differs extensively. Development along either the hermaphrodite or male pathway is specified initially by the X to autosome ratio. The regulatory events initiated by this ratio include a male-determining paracrine intercellular signal. Expression of this signal leads to different consequences in three regions of the body: the nongonadal soma, the somatic parts of the gonad, and the germ line. In the nongonadal soma, activity of the key Zn-finger transcription factor TRA-1 determines hermaphrodite development; in its absence, the male pathway is followed. Only a few genes directly regulated by TRA-1 are currently known, including members of the evolutionarily conserved, male-determining DM domain Zn-finger transcription factors. In the somatic parts of the gonad and germ line, absence of TRA-1 activity is not sufficient for full expression of the male pathway. Several additional transcription factors involved have been identified. In the germ line, regulatory genes for sperm development that act at the level of RNA in the cytoplasm play a prominent role.
Collapse
Affiliation(s)
- Scott W. Emmons
- Albert Einstein College of Medicine 1300 Morris Park Ave. Bronx, New York 10461
| |
Collapse
|
196
|
Chen X, Shen Y, Ellis RE. Dependence of the sperm/oocyte decision on the nucleosome remodeling factor complex was acquired during recent Caenorhabditis briggsae evolution. Mol Biol Evol 2014; 31:2573-85. [PMID: 24987105 PMCID: PMC4166919 DOI: 10.1093/molbev/msu198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The major families of chromatin remodelers have been conserved throughout eukaryotic evolution. Because they play broad, pleiotropic roles in gene regulation, it was not known if their functions could change rapidly. Here, we show that major alterations in the use of chromatin remodelers are possible, because the nucleosome remodeling factor (NURF) complex has acquired a unique role in the sperm/oocyte decision of the nematode Caenorhabditis briggsae. First, lowering the activity of C. briggsae NURF-1 or ISW-1, the core components of the NURF complex, causes germ cells to become oocytes rather than sperm. This observation is based on the analysis of weak alleles and null mutations that were induced with TALENs and on RNA interference. Second, qRT-polymerase chain reaction data show that the C. briggsae NURF complex promotes the expression of Cbr-fog-1 and Cbr-fog-3, two genes that control the sperm/oocyte decision. This regulation occurs in the third larval stage and affects the expression of later spermatogenesis genes. Third, double mutants reveal that the NURF complex and the transcription factor TRA-1 act independently on Cbr-fog-1 and Cbr-fog-3. TRA-1 binds both promoters, and computer analyses predict that these binding sites are buried in nucleosomes, so we suggest that the NURF complex alters chromatin structure to allow TRA-1 access to Cbr-fog-1 and Cbr-fog-3. Finally, lowering NURF activity by mutation or RNA interference does not affect this trait in other nematodes, including the sister species C. nigoni, so it must have evolved recently. We conclude that altered chromatin remodeling could play an important role in evolutionary change.
Collapse
Affiliation(s)
- Xiangmei Chen
- Department of Molecular Biology, Rowan University-SOM Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey
| | - Yongquan Shen
- Department of Molecular Biology, Rowan University-SOM
| | | |
Collapse
|
197
|
Abstract
Intense reproductive competition often continues long after animals finish mating. In many species, sperm from one male compete with those from others to find and fertilize oocytes. Since this competition occurs inside the female reproductive tract, she often influences the outcome through physical or chemical factors, leading to cryptic female choice. Finally, traits that help males compete with each other are sometimes harmful to females, and female countermeasures may thwart the interests of males, which can lead to an arms race between the sexes known as sexually antagonistic coevolution. New studies from Caenorhabditis nematodes suggest that males compete with each other by producing sperm that migrate aggressively and that these sperm may be more likely to win access to oocytes. However, one byproduct of this competition appears to be an increased probability that these sperm will go astray, invading the ovary, prematurely activating oocytes, and sometimes crossing basement membranes and leaving the gonad altogether. These harmful effects are sometimes observed in crosses between animals of the same species but are most easily detected in interspecies crosses, leading to dramatically lowered fitness, presumably because the competitiveness of the sperm and the associated female countermeasures are not precisely matched. This mismatch is most obvious in crosses involving individuals from androdioecious species (which have both hermaphrodites and males), as predicted by the lower levels of sperm competition these species experience. These results suggest a striking example of sexually antagonistic coevolution and dramatically expand the value of nematodes as a laboratory system for studying postcopulatory interactions.
Collapse
Affiliation(s)
- Ronald E. Ellis
- Department of Molecular Biology, Rowan University SOM, Stratford, New Jersey, United States of America
| | - Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
198
|
Barrière A, Ruvinsky I. Pervasive divergence of transcriptional gene regulation in Caenorhabditis nematodes. PLoS Genet 2014; 10:e1004435. [PMID: 24968346 PMCID: PMC4072541 DOI: 10.1371/journal.pgen.1004435] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/28/2014] [Indexed: 12/18/2022] Open
Abstract
Because there is considerable variation in gene expression even between closely related species, it is clear that gene regulatory mechanisms evolve relatively rapidly. Because primary sequence conservation is an unreliable proxy for functional conservation of cis-regulatory elements, their assessment must be carried out in vivo. We conducted a survey of cis-regulatory conservation between C. elegans and closely related species C. briggsae, C. remanei, C. brenneri, and C. japonica. We tested enhancers of eight genes from these species by introducing them into C. elegans and analyzing the expression patterns they drove. Our results support several notable conclusions. Most exogenous cis elements direct expression in the same cells as their C. elegans orthologs, confirming gross conservation of regulatory mechanisms. However, the majority of exogenous elements, when placed in C. elegans, also directed expression in cells outside endogenous patterns, suggesting functional divergence. Recurrent ectopic expression of different promoters in the same C. elegans cells may reflect biases in the directions in which expression patterns can evolve due to shared regulatory logic of coexpressed genes. The fact that, despite differences between individual genes, several patterns repeatedly emerged from our survey, encourages us to think that general rules governing regulatory evolution may exist and be discoverable.
Collapse
Affiliation(s)
- Antoine Barrière
- Department of Ecology and Evolution and Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AB); (IR)
| | - Ilya Ruvinsky
- Department of Ecology and Evolution and Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AB); (IR)
| |
Collapse
|
199
|
Matus DQ, Chang E, Makohon-Moore SC, Hagedorn MA, Chi Q, Sherwood DR. Cell division and targeted cell cycle arrest opens and stabilizes basement membrane gaps. Nat Commun 2014; 5:4184. [PMID: 24924309 PMCID: PMC4138880 DOI: 10.1038/ncomms5184] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 05/21/2014] [Indexed: 12/13/2022] Open
Abstract
Large gaps in basement membrane (BM) occur during organ remodelling and cancer cell invasion. Whether dividing cells, which temporarily reduce their attachment to BM, influence these breaches is unknown. Here we analyse uterine-vulval attachment during development across 21 species of rhabditid nematodes and find that the BM gap that forms between these organs is always bounded by a non-dividing vulval cell. Through cell cycle manipulation and live cell imaging in Caenorhabditis elegans, we show that actively dividing vulval cells facilitate enlargement of this breach by promoting BM movement. In contrast, targeted cell cycle arrest halts BM movement and limits gap opening. Further, we demonstrate that the BM component laminin accumulates at the BM gap edge and promotes increased integrin levels in non-dividing vulval cells, stabilizing gap position. Together, these studies reveal that cell division can be used as a mechanism to regulate BM breaches, thus controlling the exchange of cells between tissues.
Collapse
Affiliation(s)
- David Q Matus
- 1] Department of Biology, Duke University, Durham, North Carolina 27705, USA [2]
| | - Emily Chang
- 1] Department of Biology, Duke University, Durham, North Carolina 27705, USA [2]
| | | | - Mary A Hagedorn
- Department of Biology, Duke University, Durham, North Carolina 27705, USA
| | - Qiuyi Chi
- Department of Biology, Duke University, Durham, North Carolina 27705, USA
| | - David R Sherwood
- Department of Biology, Duke University, Durham, North Carolina 27705, USA
| |
Collapse
|
200
|
Abstract
Studies of X chromosome evolution in various organisms have indicated that sex-biased genes are nonrandomly distributed between the X and autosomes. Here, to extend these studies to nematodes, we annotated and analyzed X chromosome gene content in four Caenorhabditis species and in Pristionchus pacificus. Our gene expression analyses comparing young adult male and female mRNA-seq data indicate that, in general, nematode X chromosomes are enriched for genes with high female-biased expression and depleted of genes with high male-biased expression. Genes with low sex-biased expression do not show the same trend of X chromosome enrichment and depletion. Combined with the observation that highly sex-biased genes are primarily expressed in the gonad, differential distribution of sex-biased genes reflects differences in evolutionary pressures linked to tissue-specific regulation of X chromosome transcription. Our data also indicate that X dosage imbalance between males (XO) and females (XX) is influential in shaping both expression and gene content of the X chromosome. Predicted upregulation of the single male X to match autosomal transcription (Ohno's hypothesis) is supported by our observation that overall transcript levels from the X and autosomes are similar for highly expressed genes. However, comparison of differentially located one-to-one orthologs between C. elegans and P. pacificus indicates lower expression of X-linked orthologs, arguing against X upregulation. These contradicting observations may be reconciled if X upregulation is not a global mechanism but instead acts locally on a subset of tissues and X-linked genes that are dosage sensitive.
Collapse
|