151
|
Glumac PM, Forster CL, Zhou H, Murugan P, Gupta S, LeBeau AM. The identification of a novel antibody for CD133 using human antibody phage display. Prostate 2018; 78:981-991. [PMID: 29790189 PMCID: PMC6378884 DOI: 10.1002/pros.23656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/07/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND The transmembrane glycoprotein CD133 is believed to be a marker of adult prostate stem cells and cancer stem/initiating cells. Investigating the role of CD133 in the normal biology of the prostate and in cancer is complicated by the lack of a sensitive and accurate antibody for its detection. Here, we describe the characterization of a unique antibody identified using human antibody phage display that can recognize CD133 in both formalin-fixed tissues and cell lines. METHODS A human single-chain variable fragment (scFv) antibody phage display library possessing a diversity of 8 × 109 was screened against fully glycosylated recombinant CD133. A counter screen was performed against deglycosylated CD133 to select for clones that preferentially recognized a glycosylation-independent epitope. The lead scFv was analyzed by flow cytometry and cloned into a rabbit immunoglobulin scaffold for immunohistochemistry (IHC). RESULTS The antibody designated HA10 was found to bind a glycosylation-independent epitope on the peptide backbone of CD133 with high affinity. As a reagent for flow cytometry, HA10 detected CD133 more accurately than a commonly used commercially available antibody. IHC analysis with HA10 documented the staining of basal cells and luminal cells in healthy prostate sections. Weak staining of luminal cells was observed in adenocarcinoma sections at a very low frequency. Examination of a LuCaP patient-derived xenograft tissue microarray found that only three of the LuCaP models were positive for CD133. The three CD133pos LuCaP models all originated from non-AR driven metastatic prostate cancer with neuroendocrine differentiation. Subsequent interrogation of liver biopsies from a patient who failed second-generation anti-androgen therapy found high levels of CD133 staining. The original transurethral resection of the prostate from that patient was, however, absent of CD133. CONCLUSIONS We have developed a novel antibody that was able to detect CD133 by both IHC and flow cytometry. Using HA10 as an IHC reagent, we found that CD133 is a marker for a very rare cell type in both healthy prostate and adenocarcinoma sections. Our preliminary investigation also suggests that there may be an association between CD133 and non-AR driven prostate cancer with neuroendocrine differentiation.
Collapse
Affiliation(s)
- Paige M. Glumac
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Colleen L. Forster
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Hong Zhou
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Paari Murugan
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Shilpa Gupta
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Aaron M. LeBeau
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
152
|
Zhao R, Kaakati R, Lee AK, Liu X, Li F, Li CY. Novel roles of apoptotic caspases in tumor repopulation, epigenetic reprogramming, carcinogenesis, and beyond. Cancer Metastasis Rev 2018; 37:227-236. [PMID: 29858742 PMCID: PMC6204284 DOI: 10.1007/s10555-018-9736-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apoptotic caspases have long been studied for their roles in programmed cell death and tumor suppression. With recent discoveries, however, it is becoming apparent these cell death executioners are involved in additional biological pathways beyond killing cells. In some cases, apoptotic cells secrete growth signals to stimulate proliferation of neighboring cells. This pathway functions to regenerate tissues in multiple organisms, but it also poses problems in tumor resistance to chemo- and radiotherapy. Additionally, it was found that activation of caspases does not irreversibly lead to cell death, contrary to the established paradigm. Sub-lethal activation of caspases is evident in cell differentiation and epigenetic reprogramming. Furthermore, evidence indicates spontaneous, unprovoked activation of caspases in many cancer cells, which plays pivotal roles in maintaining their tumorigenicity and metastasis. These unexpected findings challenge current cancer therapy approaches aimed at activation of the apoptotic pathway. At the same time, the newly discovered functions of caspases suggest new treatment approaches for cancer and other pathological conditions in the future.
Collapse
Affiliation(s)
- Ruya Zhao
- Duke University School of Medicine, Durham, NC, USA
| | | | - Andrew K Lee
- Duke University School of Medicine, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3135, Med Ctr, Durham, NC, 27710, USA
| | - Xinjian Liu
- Department of Dermatology, Duke University Medical Center, Box 3135, Med Ctr, Durham, NC, 27710, USA
| | - Fang Li
- Department of Dermatology, Duke University Medical Center, Box 3135, Med Ctr, Durham, NC, 27710, USA
| | - Chuan-Yuan Li
- Duke University School of Medicine, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3135, Med Ctr, Durham, NC, 27710, USA.
- Department of Dermatology, Duke University Medical Center, Box 3135, Med Ctr, Durham, NC, 27710, USA.
| |
Collapse
|
153
|
Abel AM, Yang C, Thakar MS, Malarkannan S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front Immunol 2018; 9:1869. [PMID: 30150991 PMCID: PMC6099181 DOI: 10.3389/fimmu.2018.01869] [Citation(s) in RCA: 702] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells are the predominant innate lymphocyte subsets that mediate anti-tumor and anti-viral responses, and therefore possess promising clinical utilization. NK cells do not express polymorphic clonotypic receptors and utilize inhibitory receptors (killer immunoglobulin-like receptor and Ly49) to develop, mature, and recognize “self” from “non-self.” The essential roles of common gamma cytokines such as interleukin (IL)-2, IL-7, and IL-15 in the commitment and development of NK cells are well established. However, the critical functions of pro-inflammatory cytokines IL-12, IL-18, IL-27, and IL-35 in the transcriptional-priming of NK cells are only starting to emerge. Recent studies have highlighted multiple shared characteristics between NK cells the adaptive immune lymphocytes. NK cells utilize unique signaling pathways that offer exclusive ways to genetically manipulate to improve their effector functions. Here, we summarize the recent advances made in the understanding of how NK cells develop, mature, and their potential translational use in the clinic.
Collapse
Affiliation(s)
- Alex M Abel
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Center of Excellence in Prostate Cancer, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
154
|
Howard R, Al Diffalha S, Pimiento J, Mejia J, Enderling H, Giuliano A, Coppola D. CD133 Expression as a Helicobacter pylori-independent Biomarker of Gastric Cancer Progression. Anticancer Res 2018; 38:4443-4448. [PMID: 30061208 PMCID: PMC7771274 DOI: 10.21873/anticanres.12746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIM Gastric adenocarcinoma is the fourth most common cancer worldwide. While gastric cancer prevalence varies globally and incidence rates are decreasing in the West, many cases continue to be diagnosed at an advanced stage and the 5-year survival rate still falls below 30%. Early treatment of gastric cancer by endoscopic and/or surgical therapy may decrease mortality; yet reliable, universally applicable biomarkers for early detection of gastric cancer have still not been established. MATERIALS AND METHODS The present work compares the expression of CD133 (prominin-1), a potential biomarker of disease progression in gastric cancer, between independent cohorts of H. pylori (+) and H. pylori (-) patients at each respective stage of carcinogenesis. H. pylori (-) patients (N=45) who underwent gastric biopsy at the Moffitt Cancer Center (MCC) in Tampa, Florida, and H. pylori (+) patients (N=59) who underwent gastric biopsy at the Instituto de Patologia Mejia Jimenez (IPMJ) in Cali, Colombia were evaluated and immunostained for CD133. RESULTS A statistically significant increase in CD133 expression (in terms of the Allred score) was observed between all stages of progression (normal mucosa, inflammation/metaplasia, low-grade dysplasia and gastric adenocarcinoma) for each respective patient cohort. No statistically significant difference in CD133 expression at each respective stage of disease was observed between the H. pylori-positive and negative-cohorts. CONCLUSION The observation of distinct stepwise increases in CD133 expression in both patient cohorts, and the lack of any significant difference between groups, suggests that CD133 expression may serve as a biomarker for early detection of gastric cancer independent of bacterial status and strain, and corresponding differences in disease histomorphology and classification. This warrants further validation on larger independent cohorts across multiple geographic regions and incorporating multiple bacterial strain types.
Collapse
Affiliation(s)
- Rachel Howard
- Department of Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, U.S.A
| | - Sameer Al Diffalha
- Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, U.S.A
| | - Jose Pimiento
- Surgical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, U.S.A
| | - Jaime Mejia
- Department of Pathology, Instituto de Patología Mejía Jiménez in Cali, Pathology, Valle del Cauca, Colombia
| | - Heiko Enderling
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, U.S.A
| | - Anna Giuliano
- Center for Infection Research in Cancer, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, U.S.A
| | - Domenico Coppola
- Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, U.S.A.
| |
Collapse
|
155
|
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Amir Syahir
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Syahida Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
156
|
Kholodenko IV, Kalinovsky DV, Doronin II, Deyev SM, Kholodenko RV. Neuroblastoma Origin and Therapeutic Targets for Immunotherapy. J Immunol Res 2018; 2018:7394268. [PMID: 30116755 PMCID: PMC6079467 DOI: 10.1155/2018/7394268] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/27/2018] [Indexed: 01/30/2023] Open
Abstract
Neuroblastoma is a pediatric solid cancer of heterogeneous clinical behavior. The unique features of this type of cancer frequently hamper the process of determining clinical presentation and predicting therapy effectiveness. The tumor can spontaneously regress without treatment or actively develop and give rise to metastases despite aggressive multimodal therapy. In recent years, immunotherapy has become one of the most promising approaches to the treatment of neuroblastoma. Still, only one drug for targeted immunotherapy of neuroblastoma, chimeric monoclonal GD2-specific antibodies, is used in the clinic today, and its application has significant limitations. In this regard, the development of effective and safe GD2-targeted immunotherapies and analysis of other potential molecular targets for the treatment of neuroblastoma represents an important and topical task. The review summarizes biological characteristics of the origin and development of neuroblastoma and outlines molecular markers of neuroblastoma and modern immunotherapy approaches directed towards these markers.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Orekhovich Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow 119121, Russia
| | - Daniel V. Kalinovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| | - Igor I. Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Real Target LLC, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University “MEPhI”, Moscow 115409, Russia
| | - Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Real Target LLC, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| |
Collapse
|
157
|
Snyder V, Reed-Newman TC, Arnold L, Thomas SM, Anant S. Cancer Stem Cell Metabolism and Potential Therapeutic Targets. Front Oncol 2018; 8:203. [PMID: 29922594 PMCID: PMC5996058 DOI: 10.3389/fonc.2018.00203] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/21/2018] [Indexed: 12/13/2022] Open
Abstract
Malignant tumors contain heterogeneous populations of cells in various states of proliferation and differentiation. The presence of cancer stem or initiating cells is a well-established concept wherein quiescent and poorly differentiated cells within a tumor mass contribute to drug resistance, and under permissive conditions, are responsible for tumor recurrence and metastasis. A number of studies have identified molecular markers that are characteristic of tissue-specific cancer stem cells (CSCs). Isolation of CSCs has enabled studies on the metabolic status of CSCs. As metabolic plasticity is a hallmark of cancer cell adaptation, the intricacies of CSC metabolism and their phenotypic behavior are critical areas of research. Unlike normal stem cells, which rely heavily on oxidative phosphorylation (OXPHOS) as their primary source of energy, or cancer cells, which are primarily glycolytic, CSCs demonstrate a unique metabolic flexibility. CSCs can switch between OXPHOS and glycolysis in the presence of oxygen to maintain homeostasis and, thereby, promote tumor growth. Here, we review key factors that impact CSC metabolic phenotype including heterogeneity of CSCs across different histologic tumor types, tissue-specific variations, tumor microenvironment, and CSC niche. Furthermore, we discuss how targeting key players of glycolytic and mitochondrial pathways has shown promising results in cancer eradication and attenuation of disease recurrence in preclinical models. In addition, we highlight studies on other potential therapeutic targets including complex interactions within the microenvironment and cellular communications in the CSC niche to interfere with CSC growth, resistance, and metastasis.
Collapse
Affiliation(s)
- Vusala Snyder
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Tamika C Reed-Newman
- Department of General Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Levi Arnold
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, United States.,Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States.,Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Shrikant Anant
- Department of General Surgery, University of Kansas Medical Center, Kansas City, KS, United States.,Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
158
|
Rong L, Gu X, Xie J, Zeng Y, Li Q, Chen S, Zou T, Xue L, Xu H, Yin ZQ. Bone Marrow CD133 + Stem Cells Ameliorate Visual Dysfunction in Streptozotocin-induced Diabetic Mice with Early Diabetic Retinopathy. Cell Transplant 2018; 27:916-936. [PMID: 29717657 PMCID: PMC6050916 DOI: 10.1177/0963689718759463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetic retinopathy (DR), one of the leading causes of vision loss worldwide, is characterized by neurovascular disorders. Emerging evidence has demonstrated retinal neurodegeneration in the early pathogenesis of DR, and no treatment has been developed to prevent the early neurodegenerative changes that precede detectable microvascular disorders. Bone marrow CD133+ stem cells with revascularization properties exhibit neuroregenerative potential. However, whether CD133+ cells can ameliorate the neurodegeneration at the early stage of DR remains unclear. In this study, mouse bone marrow CD133+ stem cells were immunomagnetically isolated and analyzed for the phenotypic characteristics, capacity for neural differentiation, and gene expression of neurotrophic factors. After being labeled with enhanced green fluorescent protein, CD133+ cells were intravitreally transplanted into streptozotocin (STZ)-induced diabetic mice to assess the outcomes of visual function and retina structure and the mechanism underlying the therapeutic effect. We found that CD133+ cells co-expressed typical hematopoietic/endothelial stem/progenitor phenotypes, could differentiate to neural lineage cells, and expressed genes of robust neurotrophic factors in vitro. Functional analysis demonstrated that the transplantation of CD133+ cells prevented visual dysfunction for 56 days. Histological analysis confirmed such a functional improvement and showed that transplanted CD133+ cells survived, migrated into the inner retina (IR) over time and preserved IR degeneration, including retina ganglion cells (RGCs) and rod-on bipolar cells. In addition, a subset of transplanted CD133+ cells in the ganglion cell layer differentiated to express RGC markers in STZ-induced diabetic retina. Moreover, transplanted CD133+ cells expressed brain-derived neurotrophic factors (BDNFs) in vivo and increased the BDNF level in STZ-induced diabetic retina to support the survival of retinal cells. Based on these findings, we suggest that transplantation of bone marrow CD133+ stem cells represents a novel approach to ameliorate visual dysfunction and the underlying IR neurodegeneration at the early stage of DR.
Collapse
Affiliation(s)
- Liyuan Rong
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical
University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing,
Chongqing, China
| | - Xianliang Gu
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical
University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing,
Chongqing, China
| | - Jing Xie
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical
University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing,
Chongqing, China
| | - Yuxiao Zeng
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical
University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing,
Chongqing, China
| | - Qiyou Li
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical
University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing,
Chongqing, China
| | - Siyu Chen
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical
University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing,
Chongqing, China
| | - Ting Zou
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical
University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing,
Chongqing, China
| | - Langyue Xue
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical
University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing,
Chongqing, China
| | - Haiwei Xu
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical
University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing,
Chongqing, China
| | - Zheng Qin Yin
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical
University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing,
Chongqing, China
| |
Collapse
|
159
|
Alamir H, Alomari M, Salwati AAA, Saka M, Bangash M, Baeesa S, Alghamdi F, Carracedo A, Schulten HJ, Chaudhary A, Abuzenadah A, Hussein D. In situ characterization of stem cells-like biomarkers in meningiomas. Cancer Cell Int 2018; 18:77. [PMID: 29849507 PMCID: PMC5970464 DOI: 10.1186/s12935-018-0571-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/15/2018] [Indexed: 12/16/2022] Open
Abstract
Background Meningioma cancer stem cells (MCSCs) contribute to tumor aggressiveness and drug resistance. Successful therapies developed for inoperable, recurrent, or metastatic tumors must target these cells and restrict their contribution to tumor progression. Unfortunately, the identity of MCSCs remains elusive, and MSCSs’ in situ spatial distribution, heterogeneity, and relationship with tumor grade, remain unclear. Methods Seven tumors classified as grade II or grade III, including one case of metastatic grade III, and eight grade I meningioma tumors, were analyzed for combinations of ten stem cell (SC)-related markers using immunofluorescence of consecutive sections. The correlation of expression for all markers were investigated. Three dimensional spatial distribution of markers were qualitatively analyzed using a grid, designed as a repository of information for positive staining. All statistical analyses were completed using Statistical Analysis Software Package. Results The patterns of expression for SC-related markers were determined in the context of two dimensional distribution and cellular features. All markers could be detected in all tumors, however, Frizzled 9 and GFAP had differential expression in grade II/III compared with grade I meningioma tissues. Correlation analysis showed significant relationships between the expression of GFAP and CD133 as well as SSEA4 and Vimentin. Data from three dimensional analysis showed a complex distribution of SC markers, with increased gene hetero-expression being associated with grade II/III tumors. Sub regions that showed multiple co-staining of markers including CD133, Frizzled 9, GFAP, Vimentin, and SSEA4, but not necessarily the proliferation marker Ki67, were highly associated with grade II/III meningiomas. Conclusion The distribution and level of expression of CSCs markers in meningiomas are variable and show hetero-expression patterns that have a complex spatial nature, particularly in grade II/III meningiomas. Thus, results strongly support the notion of heterogeneous populations of CSCs, even in grade I meningiomas, and call for the use of multiple markers for the accurate identification of individual CSC subgroups. Such identification will lead to practical clinical diagnostic protocols that can quantitate CSCs, predict tumor recurrence, assist in guiding treatment selection for inoperable tumors, and improve follow up of therapy. Electronic supplementary material The online version of this article (10.1186/s12935-018-0571-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hanin Alamir
- 1Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mona Alomari
- 2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| | - Abdulla Ahmed A Salwati
- 2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| | - Mohamad Saka
- 2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| | - Mohammed Bangash
- 3Division of Neurosurgery, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Saleh Baeesa
- 3Division of Neurosurgery, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Fahad Alghamdi
- 4Pathology Department, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Angel Carracedo
- 5Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain.,6Center of Excellence in Genomic Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Hans-Juergen Schulten
- 6Center of Excellence in Genomic Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Adeel Chaudhary
- 1Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,6Center of Excellence in Genomic Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,7Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Adel Abuzenadah
- 1Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia.,7Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Deema Hussein
- 2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
160
|
Aderetti DA, Hira VVV, Molenaar RJ, van Noorden CJF. The hypoxic peri-arteriolar glioma stem cell niche, an integrated concept of five types of niches in human glioblastoma. Biochim Biophys Acta Rev Cancer 2018; 1869:346-354. [PMID: 29684521 DOI: 10.1016/j.bbcan.2018.04.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
Glioblastoma is the most lethal primary brain tumor and poor survival of glioblastoma patients is attributed to the presence of glioma stem cells (GSCs). These therapy-resistant, quiescent and pluripotent cells reside in GSC niches, which are specific microenvironments that protect GSCs against radiotherapy and chemotherapy. We previously showed the existence of hypoxic peri-arteriolar GSC niches in glioblastoma tumor samples. However, other studies have described peri-vascular niches, peri-hypoxic niches, peri-immune niches and extracellular matrix niches of GSCs. The aim of this review was to critically evaluate the literature on these five different types of GSC niches. In the present review, we describe that the five niche types are not distinct from one another, but should be considered to be parts of one integral GSC niche model, the hypoxic peri-arteriolar GSC niche. Moreover, hypoxic peri-arteriolar GSC niches are structural and functional look-alikes of hematopoietic stem cell (HSC) niches in the bone marrow. GSCs are maintained in peri-arteriolar niches by the same receptor-ligand interactions as HSCs in bone marrow. Our concept should be rigidly tested in the near future and applied to develop therapies to expel and keep GSCs out of their protective niches to render them more vulnerable to standard therapies.
Collapse
Affiliation(s)
- Diana A Aderetti
- Department of Medical Biology, Cancer Center Amsterdam at the Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Vashendriya V V Hira
- Department of Medical Biology, Cancer Center Amsterdam at the Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Remco J Molenaar
- Department of Medical Biology, Cancer Center Amsterdam at the Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; Department of Medical Oncology, Cancer Center Amsterdam at the Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Department of Medical Biology, Cancer Center Amsterdam at the Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
161
|
Wuebben EL, Rizzino A. The dark side of SOX2: cancer - a comprehensive overview. Oncotarget 2018; 8:44917-44943. [PMID: 28388544 PMCID: PMC5546531 DOI: 10.18632/oncotarget.16570] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/16/2017] [Indexed: 12/14/2022] Open
Abstract
The pluripotency-associated transcription factor SOX2 is essential during mammalian embryogenesis and later in life, but SOX2 expression can also be highly detrimental. Over the past 10 years, SOX2 has been shown to be expressed in at least 25 different cancers. This review provides a comprehensive overview of the roles of SOX2 in cancer and focuses on two broad topics. The first delves into the expression and function of SOX2 in cancer focusing on the connection between SOX2 levels and tumor grade as well as patient survival. As part of this discussion, we address the developing connection between SOX2 expression and tumor drug resistance. We also call attention to an under-appreciated property of SOX2, its levels in actively proliferating tumor cells appear to be optimized to maximize tumor growth - too little or too much SOX2 dramatically alters tumor growth. The second topic of this review focuses on the exquisite array of molecular mechanisms that control the expression and transcriptional activity of SOX2. In addition to its complex regulation at the transcriptional level, SOX2 expression and activity are controlled carefully by microRNAs, long non-coding RNAs, and post-translational modifications. In the Conclusion and Future Perspectives section, we point out that there are still important unanswered questions. Addressing these questions is expected to lead to new insights into the functions of SOX2 in cancer, which will help design novels strategies for more effectively treating some of the most deadly cancers.
Collapse
Affiliation(s)
- Erin L Wuebben
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
162
|
Stat3-positive tumor cells contribute to vessels neoformation in primary central nervous system lymphoma. Oncotarget 2018; 8:31254-31269. [PMID: 28415725 PMCID: PMC5458205 DOI: 10.18632/oncotarget.16115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/01/2017] [Indexed: 12/31/2022] Open
Abstract
With the aim of elucidating the relationship between Stat3 expression and tumor vessels abnormalities in the PCNLs, in this study we evaluated Stat3 and pStat3 expression by Real-time PCR and by immunohistochemistry in biopsy sections from PCNSL patients. Correlations of the expression levels with the presence of aberrant vessels were analyzed by confocal laser microscopy analysis, using FVIII as endothelial cell marker, CD133 and nestin as cancer stem cell (CSC) marker, CD20 as tumor cell marker, and Stat3. In addition, we investigated Stat3 mutations in lymphoma cells to clarify the role of the constitutive expression of Stat3 and of its phosphorylated forms. Results showed that in PCNSL, putative endothelial cells lining the vessels are heterogeneous, expressing FVIII/ pStat3/CD133 (presumably originally they are vascular progenitor cells), as well as FVIII/CD20/CD133 (presumably originally they are tumor cells). Finally, we detected a fraction of the FVIII+ endothelial cell that co-expressed Stat3 bearing a tetraploid karyotype, while no amplification signal for the Stat3 gene was detected.
Collapse
|
163
|
Expression of Bona Fide Epithelial Stem Cell Marker in Postmitotic Olfactory Bulb Neurons Suggest Novel Roles for Wnt Signaling in the Brain. J Neurosci 2018; 38:2920-2922. [PMID: 29563240 DOI: 10.1523/jneurosci.3295-17.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/27/2018] [Accepted: 02/09/2018] [Indexed: 11/21/2022] Open
|
164
|
Shear stress: An essential driver of endothelial progenitor cells. J Mol Cell Cardiol 2018; 118:46-69. [PMID: 29549046 DOI: 10.1016/j.yjmcc.2018.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
The blood flow through vessels produces a tangential, or shear, stress sensed by their innermost layer (i.e., endothelium) and representing a major hemodynamic force. In humans, endothelial repair and blood vessel formation are mainly performed by circulating endothelial progenitor cells (EPCs) characterized by a considerable expression of vascular endothelial growth factor receptor 2 (VEGFR2), CD34, and CD133, pronounced tube formation activity in vitro, and strong reendothelialization or neovascularization capacity in vivo. EPCs have been proposed as a promising agent to induce reendothelialization of injured arteries, neovascularization of ischemic tissues, and endothelialization or vascularization of bioartificial constructs. A number of preconditioning approaches have been suggested to improve the regenerative potential of EPCs, including the use of biophysical stimuli such as shear stress. However, in spite of well-defined influence of shear stress on mature endothelial cells (ECs), articles summarizing how it affects EPCs are lacking. Here we discuss the impact of shear stress on homing, paracrine effects, and differentiation of EPCs. Unidirectional laminar shear stress significantly promotes homing of circulating EPCs to endothelial injury sites, induces anti-thrombotic and anti-atherosclerotic phenotype of EPCs, increases their capability to form capillary-like tubes in vitro, and enhances differentiation of EPCs into mature ECs in a dose-dependent manner. These effects are mediated by VEGFR2, Tie2, Notch, and β1/3 integrin signaling and can be abrogated by means of complementary siRNA/shRNA or selective pharmacological inhibitors of the respective proteins. Although the testing of sheared EPCs for vascular tissue engineering or regenerative medicine applications is still an unaccomplished task, favorable effects of unidirectional laminar shear stress on EPCs suggest its usefulness for their preconditioning.
Collapse
|
165
|
Liu F, Ni L, Zhe J. Lab-on-a-chip electrical multiplexing techniques for cellular and molecular biomarker detection. BIOMICROFLUIDICS 2018; 12:021501. [PMID: 29682143 PMCID: PMC5893332 DOI: 10.1063/1.5022168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Signal multiplexing is vital to develop lab-on-a-chip devices that can detect and quantify multiple cellular and molecular biomarkers with high throughput, short analysis time, and low cost. Electrical detection of biomarkers has been widely used in lab-on-a-chip devices because it requires less external equipment and simple signal processing and provides higher scalability. Various electrical multiplexing for lab-on-a-chip devices have been developed for comprehensive, high throughput, and rapid analysis of biomarkers. In this paper, we first briefly introduce the widely used electrochemical and electrical impedance sensing methods. Next, we focus on reviewing various electrical multiplexing techniques that had achieved certain successes on rapid cellular and molecular biomarker detection, including direct methods (spatial and time multiplexing), and emerging technologies (frequency, codes, particle-based multiplexing). Lastly, the future opportunities and challenges on electrical multiplexing techniques are also discussed.
Collapse
Affiliation(s)
- Fan Liu
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Liwei Ni
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Jiang Zhe
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
166
|
Pindiprolu SKSS, Krishnamurthy PT, Chintamaneni PK. Pharmacological targets of breast cancer stem cells: a review. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:463-479. [PMID: 29476201 DOI: 10.1007/s00210-018-1479-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
Breast cancers contain small population of tumor-initiating cells called breast cancer stem cells (BCSCs), which are spared even after chemotherapy. Recently, BCSCs are implicated to be a cause of metastasis, tumor relapse, and therapy resistance in breast cancer. BCSCs have unique molecular mechanisms, which can be targeted to eliminate them. These include surface biomarkers, proteins involved in self-renewal pathways, drug efflux transporters, apoptotic/antiapoptotic proteins, autophagy, metabolism, and microenvironment regulation. The complex molecular mechanisms behind the survival of BCSCs and pharmacological targets for elimination of BCSCs are described in this review.
Collapse
Affiliation(s)
- Sai Kiran S S Pindiprolu
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India.
| | - Pavan Kumar Chintamaneni
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India
| |
Collapse
|
167
|
Vargová J, Mikeš J, Jendželovský R, Mikešová L, Kuchárová B, Čulka Ľ, Fedr R, Remšík J, Souček K, Kozubík A, Fedoročko P. Hypericin affects cancer side populations via competitive inhibition of BCRP. Biomed Pharmacother 2018; 99:511-522. [PMID: 29665654 DOI: 10.1016/j.biopha.2018.01.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/22/2017] [Accepted: 01/12/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Cancer stem-like cells (CSLCs) are considered a root of tumorigenicity and resistance. However, their identification remains challenging. The use of the side population (SP) assay as a credible marker of CSLCs remains controversial. The SP assay relies on the elevated activity of ABC transporters that, in turn, can be modulated by hypericin (HYP), a photosensitizer and bioactive compound of St. John's Wort (Hypericum perforatum), a popular over-the-counter antidepressant. Here we aimed to comprehensively characterize the SP phenotype of cancer cells and to determine the impact of HYP on these cells. METHODS Flow cytometry and sorting-based assays were employed, including CD24-, CD44-, CD133-, and ALDH-positivity, clonogenicity, 3D-forming ability, ABC transporter expression and activity, and intracellular accumulation of HYP/Hoechst 33342. The tumorigenic ability of SP, nonSP, and HYP-treated cells was verified by xenotransplantation into immunodeficient mice. RESULTS The SP phenotype was associated with elevated expression of several investigated transporters and more intensive growth in non-adherent conditions but not with higher clonogenicity, tumorigenicity or ALDH-positivity. Despite stimulated BCRP level and MRP1 activity, HYP reversibly decreased the SP proportion, presumably via competitive inhibition of BCRP. HYP-selected SP cells acquired additional traits of resistance and extensively eliminated HYP. CONCLUSIONS Our results suggest that SP is not an unequivocal CSLC-marker. However, SP could play an important role in modulating HYP-treatment and serve as a negative predictive tool for HYP-based therapies. Moreover, the use of supplements containing HYP by cancer patients should be carefully considered, due to its proposed effect on drug efflux and complex impact on tumor cells, which have not yet been sufficiently characterized.
Collapse
Affiliation(s)
- Jana Vargová
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Jaromír Mikeš
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Rastislav Jendželovský
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Lucia Mikešová
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Barbora Kuchárová
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Ľubomír Čulka
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Radek Fedr
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Královopolská 135, 612 65, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Ján Remšík
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Královopolská 135, 612 65, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Karel Souček
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Královopolská 135, 612 65, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Alois Kozubík
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Královopolská 135, 612 65, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Peter Fedoročko
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic.
| |
Collapse
|
168
|
Jiang MY, Lee TL, Hao SS, Mahooti S, Baird SM, Donoghue DJ, Haas M. Visualization of early prostatic adenocarcinoma as a stem cell disease. Oncotarget 2018; 7:76159-76168. [PMID: 27764770 PMCID: PMC5342804 DOI: 10.18632/oncotarget.12709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/07/2016] [Indexed: 12/25/2022] Open
Abstract
Prostate Cancer represents the second leading cause of cancer death among men in the United States, and the third leading cause of cancer death among men in Europe. We have previously shown that cells possessing Cancer Stem Cell (CSC) characteristics can be grown from human PrCa tissue harvested at the time of prostatectomy. However, the cellular origin of these CSCs was not previously known. In most cases, simple hematoxylin and eosin (H&E) stained sections are sufficient to make a definitive diagnosis of prostatic adenocarcinoma (PrCa) in needle biopsy samples. We utilized six different antibodies specific for stem cell antigens to examine paraffin sections of PrCa taken at the time of needle-biopsy diagnosis. These antisera were specific for CD44, CD133, ALDH7A1, LGR-5, Oct-4 and NANOG. We demonstrate specific staining of tumor cells with all six antisera specific for stem cell antigens. Some of these antibodies also react with cells of hyperplastic glands, but the patterns of reactivity differ from those of malignant glands. These findings demonstrate that at the time of diagnosis, PrCa consists of cells exhibiting properties of CSCs and consistent with the possibility that PrCa is a stem cell disease.
Collapse
Affiliation(s)
- Maggie Y Jiang
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.,Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tammy L Lee
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Su-Shin Hao
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Sepi Mahooti
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Stephen M Baird
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel J Donoghue
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.,Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Martin Haas
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.,Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
169
|
Panelo LC, Machado MS, Rubio MF, Jaworski F, Alvarado CV, Paz LA, Urtreger AJ, Vazquez E, Costas MA. High RAC3 expression levels are required for induction and maintaining of cancer cell stemness. Oncotarget 2018; 9:5848-5860. [PMID: 29464039 PMCID: PMC5814179 DOI: 10.18632/oncotarget.23635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/04/2017] [Indexed: 01/10/2023] Open
Abstract
RAC3 is a transcription coactivator, usually overexpressed in several tumors and required to maintain the pluripotency in normal stem cells. In this work we studied the association between RAC3 overexpression on cancer cell stemness and the capacity of this protein to induce cancer stem properties in non tumoral cells. We performed in vitro and in vivo experiments using two strategies: by overexpressing RAC3 in the non tumoral cell line HEK293 and by silencing RAC3 in the human colorectal epithelial cell line HCT116 by transfection. Furthermore, we analysed public repository microarrays data from human colorectal tumors in different developmental stages. We found that RAC3 overexpression was mainly associated to CD133+ side-population of colon cancer cells and also to early and advanced stages of colon cancer, involving increased expression of mesenchymal and stem markers. In turn, RAC3 silencing induced diminished tumoral properties and cancer stem cells as determined by Hoechst efflux, tumorspheres and clonogenic growth, which correlated with decreased Nanog and OCT4 expression. In non tumoral cells, RAC3 overexpression induced tumoral transformation; mesenchymal phenotype and stem markers expression. Moreover, these transformed cells generated tumors in vivo. Our results demonstrate that RAC3 is required for maintaining and induction of cancer cell stemness.
Collapse
Affiliation(s)
- Laura C Panelo
- Laboratorio de Biología Moleculary Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, C1427ARO Buenos Aires, Argentina
| | - Mileni Soares Machado
- Laboratorio de Biología Moleculary Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, C1427ARO Buenos Aires, Argentina
| | - María F Rubio
- Laboratorio de Biología Moleculary Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, C1427ARO Buenos Aires, Argentina.,Laboratorio de Inflamación y Cancer, IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina.,Argentine National Research Council (CONICET), C1425FQB Godoy Cruz (CABA), República Argentina
| | - Felipe Jaworski
- Laboratorio de Inflamación y Cancer, IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Cecilia V Alvarado
- Laboratorio de Biología Moleculary Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, C1427ARO Buenos Aires, Argentina
| | - Leonardo A Paz
- Laboratorio de Anatomía Patológica, Instituto de Investigaciones Médicas Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires, C1427ARO Buenos Aires, Argentina
| | - Alejandro J Urtreger
- Laboratorio de Anatomía Patológica, Instituto de Investigaciones Médicas Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires, C1427ARO Buenos Aires, Argentina.,Universidad de Buenos Aires, Instituto de Oncología "Angel H Roffo", Area de Investigación, C1417DTB Buenos Aires, Argentina.,Argentine National Research Council (CONICET), C1425FQB Godoy Cruz (CABA), República Argentina
| | - Elba Vazquez
- Laboratorio de Inflamación y Cancer, IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina.,Argentine National Research Council (CONICET), C1425FQB Godoy Cruz (CABA), República Argentina
| | - Mónica A Costas
- Laboratorio de Biología Moleculary Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, C1427ARO Buenos Aires, Argentina.,Argentine National Research Council (CONICET), C1425FQB Godoy Cruz (CABA), República Argentina
| |
Collapse
|
170
|
Lara-Martínez LA, Gutiérrez-Villegas I, Arenas-Luna VM, Hernández-Gutierrez S. [Stem cells: searching predisposition to cardiac commitment by surface markers expression]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2018; 88:483-495. [PMID: 29311024 DOI: 10.1016/j.acmx.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 11/19/2022] Open
Abstract
It is well-known that cardiovascular diseases are the leading cause of death worldwide, and represent an important economic burden to health systems. In an attempt to solve this problem, stem cell therapy has emerged as a therapeutic option. Within the last 20 years, a great variety of stem cells have been used in different myocardial infarction models. Up until now, the use of cardiac stem cells (CSCs) has seemed to be the best option, but the inaccessibility and scarcity of these cells make their use unreliable. Additionally, there is a high risk as they have to be obtained directly from the heart of the patient. Unlike CSCs, adult stem cells originating from bone marrow or adipose tissue, among others, appear to be an attractive option due to their easier accessibility and abundance, but particularly due to the probable existence of cardiac progenitors among their different sub-populations. In this review an analysis is made of the surface markers present in CSCs compared with other adult stem cells. This suggested the pre-existence of cells sharing specific surface markers with CSCs, a predictable immunophenotype present in some cells, although in low proportions, and with a potential of cardiac differentiation that could be similar to CSCs, thus increasing their therapeutic value. This study highlights new perspectives regarding MSCs that would enable some of these sub-populations to be differentiated at cardiac tissue level.
Collapse
Affiliation(s)
- Luis A Lara-Martínez
- Laboratorio de Biología Molecular, Escuela de Medicina, Universidad Panamericana, Ciudad de México, México
| | - Ingrid Gutiérrez-Villegas
- Laboratorio de Biología Molecular, Escuela de Medicina, Universidad Panamericana, Ciudad de México, México
| | - Victor M Arenas-Luna
- Laboratorio de Biología Molecular, Escuela de Medicina, Universidad Panamericana, Ciudad de México, México
| | | |
Collapse
|
171
|
Chen Y, Cang S, Han L, Liu C, Yang P, Solangi Z, Lu Q, Liu D, Chiao JW. Establishment of prostate cancer spheres from a prostate cancer cell line after phenethyl isothiocyanate treatment and discovery of androgen-dependent reversible differentiation between sphere and neuroendocrine cells. Oncotarget 2018; 7:26567-79. [PMID: 27034170 PMCID: PMC5041999 DOI: 10.18632/oncotarget.8440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/06/2016] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer can transform from androgen-responsive to an androgen-independent phenotype. The mechanism responsible for the transformation remains unclear. We studied the effects of an epigenetic modulator, phenethyl isothiocyanate (PEITC), on the androgen-responsive LNCaP cells. After treatment with PEITC, floating spheres were formed with characteristics of prostate cancer stem cells (PCSC). These spheres were capable of self-renewal in media with and without androgen. They have been maintained in both types of media as long term cultures. Upon androgen deprivation, the adherent spheres differentiated to neuroendocrine cells (NEC) with decreased proliferation, expression of androgen receptor, and PSA. NEC reverse differentiated to spheres when androgen was replenished. The sphere cells expressed surface marker CD44 and had enhanced histone H3K4 acetylation, DNMT1 down-regulation and GSTP1 activation. We hypothesize that PEITC-mediated alteration in epigenomics of LNCaP cells may give rise to sphere cells, whereas reversible androgenomic alterations govern the shuttling between sphere PCSC and progeny NEC. Our findings identify unrecognized properties of prostate cancer sphere cells with multi-potential plasticity. This system will facilitate development of novel therapeutic agents and allow further exploration into epigenomics and androgenomics governing the transformation to hormone refractory prostate cancer.
Collapse
Affiliation(s)
- Yamei Chen
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA.,Department of Hematology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Shundong Cang
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA.,Department of Oncology, Henan Province People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Liying Han
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA
| | - Christina Liu
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Patrick Yang
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Zeeshan Solangi
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Quanyi Lu
- Department of Hematology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Delong Liu
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA.,Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - J W Chiao
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
172
|
Hira VVV, Wormer JR, Kakar H, Breznik B, van der Swaan B, Hulsbos R, Tigchelaar W, Tonar Z, Khurshed M, Molenaar RJ, Van Noorden CJF. Periarteriolar Glioblastoma Stem Cell Niches Express Bone Marrow Hematopoietic Stem Cell Niche Proteins. J Histochem Cytochem 2018; 66:155-173. [PMID: 29297738 DOI: 10.1369/0022155417749174] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In glioblastoma, a fraction of malignant cells consists of therapy-resistant glioblastoma stem cells (GSCs) residing in protective niches that recapitulate hematopoietic stem cell (HSC) niches in bone marrow. We have previously shown that HSC niche proteins stromal cell-derived factor-1α (SDF-1α), C-X-C chemokine receptor type 4 (CXCR4), osteopontin (OPN), and cathepsin K (CatK) are expressed in hypoxic GSC niches around arterioles in five human glioblastoma samples. In HSC niches, HSCs are retained by binding of SDF-1α and OPN to their receptors CXCR4 and CD44, respectively. Protease CatK cleaves SDF-1α to release HSCs out of niches. The aim of the present study was to reproduce the immunohistochemical localization of these GSC markers in 16 human glioblastoma samples with the addition of three novel markers. Furthermore, we assessed the type of blood vessels associated with GSC niches. In total, we found seven GSC niches containing CD133-positive and nestin-positive GSCs as a single-cell layer exclusively around the tunica adventitia of 2% of the CD31-positive and SMA-positive arterioles and not around capillaries and venules. Niches expressed SDF-1α, CXCR4, CatK, OPN, CD44, hypoxia-inducible factor-1α, and vascular endothelial growth factor. In conclusion, we show that GSC niches are present around arterioles and express bone marrow HSC niche proteins.
Collapse
Affiliation(s)
- Vashendriya V V Hira
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Jill R Wormer
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Hala Kakar
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Britt van der Swaan
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Renske Hulsbos
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Wikky Tigchelaar
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Zbynek Tonar
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Mohammed Khurshed
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Remco J Molenaar
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Cornelis J F Van Noorden
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
173
|
Corrò C, Moch H. Biomarker discovery for renal cancer stem cells. J Pathol Clin Res 2018; 4:3-18. [PMID: 29416873 PMCID: PMC5783955 DOI: 10.1002/cjp2.91] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/27/2017] [Accepted: 12/13/2017] [Indexed: 12/17/2022]
Abstract
Characterised by high intra- and inter-tumor heterogeneity, metastatic renal cell carcinoma (RCC) is resistant to chemo- and radiotherapy. Therefore, the development of new prognostic and diagnostic markers for RCC patients is needed. Cancer stem cells (CSCs) are a small population of neoplastic cells within a tumor which present characteristics reminiscent of normal stem cells. CSCs are characterised by unlimited cell division, maintenance of the stem cell pool (self-renewal), and capability to give rise to all cell types within a tumor; and contribute to metastasis in vivo (tumourigenicity), treatment resistance and recurrence. So far, many studies have tried to establish unique biomarkers to identify CSC populations in RCC. At the same time, different approaches have been developed with the aim to isolate CSCs. Consequently, several markers were found to be specifically expressed in CSCs and cancer stem-like cells derived from RCC such as CD105, ALDH1, OCT4, CD133, and CXCR4. However, the contribution of genetic and epigenetic mechanisms, and tumor microenvironment, to cellular plasticity have made the discovery of unique biomarkers a very difficult task. In fact, contrasting results regarding the applicability of such markers to the isolation of renal CSCs have been reported in the literature. Therefore, a better understanding of the mechanism underlying CSC may help dissecting tumor heterogeneity and drug treatment efficiency.
Collapse
Affiliation(s)
- Claudia Corrò
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichSwitzerland
| | - Holger Moch
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichSwitzerland
| |
Collapse
|
174
|
Zhang X, Guo W, Wang X, Liu X, Huang M, Gan L, Cheng Y, Li J. Antitumor activity and inhibitory effects on cancer stem cell-like properties of Adeno-associated virus (AAV) -mediated Bmi-1 interference driven by Bmi-1 promoter for gastric cancer. Oncotarget 2017; 7:22733-45. [PMID: 27009837 PMCID: PMC5008396 DOI: 10.18632/oncotarget.8174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 02/15/2016] [Indexed: 12/17/2022] Open
Abstract
Bmi-1 is aberrantly activated in various cancers and plays a vital role in maintaining the self-renewal of stem cells. Our previous research revealed that Bmi-1 was overexpressed in gastric cancer (GC) and it's overexpression was an independent negative prognostic factor, suggesting it can be a therapeutic target. The main purpose of this investigation was to explore the antitumor activity of Bmi-1 interference driven by its own promoter (Ad-Bmi-1i) for GC. In this study, we used adenoviral vector to deliver Bmi-1 shRNA driven by its own promoter to treat GC. Our results revealed that Ad-Bmi-1i could selectively silence Bmi-1 in GC cells which overexpress Bmi-1 and suppress the malignant phenotypes and stem-like properties of GC cells in vitro and in vivo. Moreover, direct injection of Ad-Bmi-1i into xenografts suppressed tumor growth and destroyed cancer cells in vivo. Ad-Bmi-1i inhibited the proliferation of GC cells mainly via inducing senescence in vitro, but it suppressed tumor through inducing senescence and apoptosis, and inhibiting angiogenesis in vivo. Bmi-1 knockdown by Ad-Bmi-1i downregulated VEGF via inhibiting AKT activity. These results suggest that Ad-Bmi-1i not only inhibits tumor growth and stem cell-like phenotype by inducing cellular senescence directly, but also has an indirect anti-tumor activity by anti-angiogenesis effects via regulating PTEN/AKT/VEGF pathway. Transfer of gene interference guided by its own promoter by an adeno-associated virus (AAV) vector might be a potent antitumor approach for cancer therapy.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weijian Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaofeng Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyang Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingzhu Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Gan
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yufan Cheng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Tianyou Hospital of Tongji University, Shanghai, China
| |
Collapse
|
175
|
Olejniczak A, Szaryńska M, Kmieć Z. In vitro characterization of spheres derived from colorectal cancer cell lines. Int J Oncol 2017; 52:599-612. [PMID: 29207035 DOI: 10.3892/ijo.2017.4206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/08/2017] [Indexed: 11/06/2022] Open
Abstract
Spherical cultures (SCs) can be regarded in cancer research as a link between in vitro investigations on cancer lines and in vivo studies of tumor development. SCs are believed to mimic tumor architecture and to be enriched in cancer stem cell-like cells (CSC-like cells). In the present study we characterized colonospheres derived from colorectal cancer (CRC) cell lines, and we confirmed the ability of HCT116 and HT29 cell lines to form spheres within serum-free medium, however, the detailed analysis presented the major differences concerning their characteristics including morphology, phenotype, proliferative potential, distribution in the cell cycle phases and spherogenicity. Moreover, after we magnetically separated CD133+ and CD133- cells we could conduct the analogical analysis as we performed for the original cells. We observed that all cellular fractions unveiled sphere formation capacity, even when cultured in limited number of cells per well and only SCs originated from CD133+ fraction resembled morphologically the parental spheres. Both CD133+ and CD133- subsets derived from HCT116 line were more enriched in cells in G0/G1 phase of the cell cycle in comparison to their HT29 analogues. Additionally, proliferative potential also varied amongst all studied fractions. Surprisingly, 3-D invasion assay revealed that only HCT116-derived populations were able to migrate into extended regions of Matrigel Matrix confirming their higher aggressiveness. Our results provided comprehensive characterization of CRC cell lines culture in adherent and spherical forms and, what seems to be the most advantageous, the comparison of two distinct fractions after magnetic separation. As we found the specific features of cells presented line- and expansion mode-dependency, thus, such complete description might appear crucial before CRC lines would be involved into sophisticated assays, especially focused on potentially novel therapeutic agents targeting CSC-like cells.
Collapse
Affiliation(s)
- Agata Olejniczak
- Department of Histology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Szaryńska
- Department of Histology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
176
|
Saeednejad Zanjani L, Madjd Z, Abolhasani M, Andersson Y, Rasti A, Shariftabrizi A, Asgari M. Cytoplasmic expression of CD133 stemness marker is associated with tumor aggressiveness in clear cell renal cell carcinoma. Exp Mol Pathol 2017; 103:218-228. [PMID: 29050853 DOI: 10.1016/j.yexmp.2017.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/10/2017] [Accepted: 10/15/2017] [Indexed: 12/13/2022]
Abstract
Prominin-1 (CD133) is one of the most commonly used markers for cancer stem cells (CSCs), which are characterized by their ability for self-renewal and tumorigenicity. However, the clinical and prognostic significance of CSCs in renal cell carcinoma (RCC) remains unclear. The aim of this study was to investigate the expression patterns and prognostic significance of the cancer stem cell marker CD133 in different histological subtypes of RCC. CD133 expression was evaluated using immunohistochemistry in 193 well-defined renal tumor samples on tissue microarrays, including 136 (70.5%) clear cell renal cell carcinomas (CCRCCs), 26 (13.5%) papillary RCCs, and 31 (16.1%) chromophobe RCCs. The association between CD133 expression and clinicopathological features as well as the survival outcomes was determined. There was a statistically significant difference between CD133 expression among the different RCC subtypes. In CCRCC, higher cytoplasmic expression of CD133 was significantly associated with increase in grade, stage, microvascular invasion (MVI) and lymph node invasion (LNI), while no association was found with the membranous expression. Moreover, on multivariate analysis, TNM stage and nuclear grade were independent prognostic factors for overall survival (OS) in cytoplasmic expression. We showed that higher cytoplasmic CD133 expression was associated with more aggressive tumor behavior and more advanced disease in CCRCC but not in the other examined subtypes. Our results demonstrated that higher cytoplasmic CD133 expression is clinically significant in CCRCC and is associated with increased tumor aggressiveness and is useful for predicting cancer progression.
Collapse
Affiliation(s)
| | - Zahra Madjd
- Oncopathology Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maryam Abolhasani
- Oncopathology Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran; Hasheminejad Kidney Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Yvonne Andersson
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Arezoo Rasti
- Oncopathology Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ahmad Shariftabrizi
- Department of Nuclear Medicine and Molecular Imaging, State University of New York at Buffalo, Buffalo, NY 14223, USA
| | - Mojgan Asgari
- Oncopathology Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran; Hasheminejad Kidney Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
177
|
Munro MJ, Wickremesekera SK, Peng L, Tan ST, Itinteang T. Cancer stem cells in colorectal cancer: a review. J Clin Pathol 2017; 71:110-116. [PMID: 28942428 DOI: 10.1136/jclinpath-2017-204739] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/01/2017] [Indexed: 12/26/2022]
Abstract
Colorectal cancer (CRC) is the second most common cancer in women and the third most common in men. Adenocarcinoma accounts for 90% of CRC cases. There has been accumulating evidence in support of the cancer stem cell (CSC) concept of cancer which proposes that CSCs are central in the initiation of cancer. CSCs have been the focus of study in a range of cancers, including CRC. This has led to the identification and understanding of genes involved in the induction and maintenance of pluripotency of stem cells, and markers for CSCs, including those investigated specifically in CRC. Knowledge of the expression pattern of CSCs in CRC has been increasing in recent years, revealing a heterogeneous population of cells within CRC ranging from pluripotent to differentiated cells, with overlapping and sometimes unique combinations of markers. This review summarises current literature on the understanding of CSCs in CRC, including evidence of the presence of CSC subpopulations, and the stem cell markers currently used to identify and localise these CSC subpopulations. Future research into this field may lead to improved methods for early detection of CRC, novel therapy and monitoring of treatment for CRC and other cancer types.
Collapse
Affiliation(s)
- Matthew J Munro
- Gillies McIndoe Research Institute, Wellington, New Zealand
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Susrutha K Wickremesekera
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Department of General Surgery, Upper Gastrointestinal, Hepatobiliary & Pancreatic Section, Wellington Regional Hospital, Wellington, New Zealand
| | - Lifeng Peng
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand
| | | |
Collapse
|
178
|
Michler JK, Hillmann A, Savkovic V, Mülling CKW. Horse hair follicles: A novel dermal stem cell source for equine regenerative medicine. Cytometry A 2017; 93:104-114. [DOI: 10.1002/cyto.a.23198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/07/2017] [Accepted: 08/05/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Jule K. Michler
- Faculty of Veterinary Medicine; Institute of Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany
| | - Aline Hillmann
- Saxon Incubator for Clinical Translation; Leipzig University, Leipzig, Germany
| | - Vuk Savkovic
- Saxon Incubator for Clinical Translation; Leipzig University, Leipzig, Germany
| | - Christoph K. W. Mülling
- Faculty of Veterinary Medicine; Institute of Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany
| |
Collapse
|
179
|
Liu QF, Zhang ZF, Hou GJ, Yang GY, He Y. Polymorphisms of the stem cell marker gene CD133 are associated the clinical outcome in a cohort of Chinese non-small cell lung cancer patients. BMJ Open 2017; 7:e016913. [PMID: 28827262 PMCID: PMC5724226 DOI: 10.1136/bmjopen-2017-016913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To evaluate the prognostic relevance of four functional single nucleotide polymorphisms (SNPs) in CD133 (rs2240688A>C, rs10022537T>A, rs7686732C>G, and rs3130C>T) on overall survival (OS) of non-small cell lung cancer (NSCLC) patients. DESIGN Retrospective cohort study. SETTING Department of General Surgery, in a general hospital, Henan Province, China. PARTICIPANTS NSCLC patients aged ≥18 years, who were not receiving preoperative neoadjuvant therapies and had a blood sample available for genotyping, were eligible for inclusion. Those participants who were pregnant or breastfeeding, had a previous history of cancer, had other primary tumours, or who had had primary tumours of the skin and nasopharynx, were excluded from the study. OUTCOME MEASURES The primary endpoint was OS, which was calculated from the date of enrolment until the date of death or date of last follow-up. RESULTS There was a total of 1383 participants, with a median age of 63 years; 726 (52.5%) were male. Compared with thers2240688 AA genotype, the variant AC/CC genotypes were independently associated with OS (HR 1.27, 95% CI 1.12 to 1.45 for AC genotype; HR 2.32, 95% CI 1.91 to 2.80 for CC genotype). Higher hazard ratios for associations between CD133 rs2240688 polymorphism and OS were observed in patients with adjuvant chemotherapy (HR 1.86, 95% CI 1.52 to 2.26) and radiotherapy for curative intent (HR 1.90, 95% CI 1.55 to 2.33). CONCLUSIONS The study confirmed the significant association between the SNP rs2240688 A>C of CD133 and OS of NSCLC patients. Larger population-based studies in different ethnic groups are necessary to further validate the role and mechanisms of CD133 in NSCLC.
Collapse
Affiliation(s)
- Qing-Feng Liu
- Department of Thoracic Surgery, Henan Provincial People’s Hospital (Zhengzhou University People’s Hospital), Zhengzhou, China
| | - Zhi-Fei Zhang
- Department of Thoracic Surgery, Henan Provincial People’s Hospital (Zhengzhou University People’s Hospital), Zhengzhou, China
| | - Guang-Jie Hou
- Department of Thoracic Surgery, Henan Provincial People’s Hospital (Zhengzhou University People’s Hospital), Zhengzhou, China
| | - Guang-Yu Yang
- Department of Thoracic Surgery, Henan Provincial People’s Hospital (Zhengzhou University People’s Hospital), Zhengzhou, China
| | - Yi He
- Department of Thoracic Surgery, Henan Provincial People’s Hospital (Zhengzhou University People’s Hospital), Zhengzhou, China
| |
Collapse
|
180
|
Moghaddam SA, Yousefi B, Sanooghi D, Faghihi F, Hayati Roodbari N, Bana N, Joghataei MT, Pooyan P, Arjmand B. Differentiation potential of human CD133 positive hematopoietic stem cells into motor neuron- like cells, in vitro. J Chem Neuroanat 2017; 86:35-40. [PMID: 28754612 DOI: 10.1016/j.jchemneu.2017.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/12/2017] [Accepted: 07/19/2017] [Indexed: 01/15/2023]
Abstract
Spinal cord injuries and motor neuron-related disorders impact on life of many patients around the world. Since pharmacotherapy and surgical approaches were not efficient to regenerate these types of defects; stem cell therapy as a good strategy to restore the lost cells has become the focus of interest among the scientists. Umbilical cord blood CD133+ hematopoietic stem cells (UCB- CD133+ HSCs) with self- renewal property and neural lineage differentiation capacity are ethically approved cell candidate for use in regenerative medicine. In this regard the aim of this study was to quantitatively evaluate the capability of these cells to differentiate into motor neuron-like cells (MNL), in vitro. CD133+ HSCs were isolated from human UCB using MACS system. After cell characterization using flow cytometry, the cells were treated with a combination of Retinoic acid, Sonic hedgehog, Brain derived neurotrophic factor, and B27 through a 2- step procedure for two weeks. The expression of MN-specific markers was examined using qRT- PCR, flow cytometry and immunocytochemistry. By the end of the two-week differentiation protocol, CD133+ cells acquired unipolar MNL morphology with thin and long neurites. The expression of Isl-1(62.15%), AChE (41.83%), SMI-32 (21.55%) and Nestin (17.46%) was detected using flow cytometry and immunocytochemistry. The analysis of the expression of PAX6, ISL-1, ACHE, CHAT and SMI-32 revealed that MNLs present these neural markers at levels comparable with undifferentiated cells. In Conclusion Human UCB- CD133+ HSCs are remarkably potent cell candidates to transdifferentiate into motor neuron-like cells, in vitro.
Collapse
Affiliation(s)
| | - Behnam Yousefi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Sanooghi
- Department of Genetics, Faculty of Biological Sciences, Shahid Beheshti University, Tehran, Iran
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nikoo Bana
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Paria Pooyan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Babak Arjmand
- Department of Neurosurgery and Iranian Tissue Bank, Tehran University of Medical Sciences/Tehran University, Tehran, Iran
| |
Collapse
|
181
|
Multifaceted Interpretation of Colon Cancer Stem Cells. Int J Mol Sci 2017; 18:ijms18071446. [PMID: 28678194 PMCID: PMC5535937 DOI: 10.3390/ijms18071446] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
Colon cancer is one of the leading causes of cancer-related deaths worldwide, despite recent advances in clinical oncology. Accumulating evidence sheds light on the existence of cancer stem cells and their role in conferring therapeutic resistance. Cancer stem cells are a minor fraction of cancer cells, which enable tumor heterogeneity and initiate tumor formation. In addition, these cells are resistant to various cytotoxic factors. Therefore, elimination of cancer stem cells is difficult but essential to cure the malignant foci completely. Herein, we review the recent evidence for intestinal stem cells and colon cancer stem cells, methods to detect the tumor-initiating cells, and clinical significance of cancer stem cell markers. We also describe the emerging problems of cancer stem cell theory, including bidirectional conversion and intertumoral heterogeneity of stem cell phenotype.
Collapse
|
182
|
Vincent PH, Benedikz E, Uhlén P, Hovatta O, Sundström E. Expression of Pluripotency Markers in Nonpluripotent Human Neural Stem and Progenitor Cells. Stem Cells Dev 2017; 26:876-887. [DOI: 10.1089/scd.2016.0346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Per Henrik Vincent
- Division of Neurodegeneration, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Eirikur Benedikz
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Per Uhlén
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Outi Hovatta
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Erik Sundström
- Division of Neurodegeneration, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Stockholms Sjukhem, Stockholm, Sweden
| |
Collapse
|
183
|
Abstract
Cancer stem cells (CSCs), with their self-renewal ability and multilineage differentiation potential, are a critical subpopulation of tumor cells that can drive tumor initiation, growth, and resistance to therapy. Like embryonic and adult stem cells, CSCs express markers that are not expressed in normal somatic cells and are thus thought to contribute towards a 'stemness' phenotype. This review summarizes the current knowledge of stemness-related markers in human cancers, with a particular focus on important transcription factors, protein surface markers and signaling pathways.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Yvonne Li
- Dana Farber cancer Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
184
|
Expression and Clinical Significance of Cancer Stem Cell Markers CD24, CD44, and CD133 in Pancreatic Ductal Adenocarcinoma and Chronic Pancreatitis. DISEASE MARKERS 2017; 2017:3276806. [PMID: 28659655 PMCID: PMC5474271 DOI: 10.1155/2017/3276806] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022]
Abstract
Cancer stem cells (CSC) play an important role in pancreatic carcinogenesis and prognosis. The study aimed at examining the expression of CD24, CD44, and CD133 in human PDAC and CP in order to evaluate its clinicopathological correlations and the clinical significance. Surgical specimens from 23 patients with PDAC and 15 patients with chronic pancreatitis after pancreatic resection were stained with CD24, CD44, and CD133 antibodies. The intensity of staining was scored from 0 (negative) to 3 (strongly positive). Results. Mean CD24 staining score in PDAC was 1.38 ± 0.76 and was significantly higher than that in CP: 0.70 ± 0.53 (p < 0.01); CD44 score in PDAC was 2.23 ± 0.42 and was significantly higher than that in CP: 1.87 ± 0.55 (p < 0.05); CD133 score 0.93 ± 0.58 was not different from CP: 0.71 ± 0.43 (p > 0.05). CD44 immunoreactivity was significantly higher (p < 0.05) in pT1 and pT2 patients together as regards pT3: 2.45 ± 0.37 versus 2.06 ± 0.38 as well as in N0 patients compared to N1 patients: 2.5 ± 0.38 versus 2.04 ± 0.34. Conclusions. CD24 and CD44 are upregulated in human pancreatic cancer compared to chronic pancreatitis. CD44 immunoreactivity decreases with the tumor advancement and may represent the negative PDAC prognostic factor. Each CSC marker was differently related to PDAC advancement. CD133 may lack clinical significance in PDAC.
Collapse
|
185
|
Chao OS, Chang TC, Di Bella MA, Alessandro R, Anzanello F, Rappa G, Goodman OB, Lorico A. The HDAC6 Inhibitor Tubacin Induces Release of CD133 + Extracellular Vesicles From Cancer Cells. J Cell Biochem 2017; 118:4414-4424. [PMID: 28452069 DOI: 10.1002/jcb.26095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/24/2017] [Indexed: 01/02/2023]
Abstract
Tumor-derived extracellular vesicles (EVs) are emerging as an important mode of intercellular communication, capable of transferring biologically active molecules that facilitate the malignant growth and metastatic process. CD133 (Prominin-1), a stem cell marker implicated in tumor initiation, differentiation and resistance to anti-cancer therapy, is reportedly associated with EVs in various types of cancer. However, little is known about the factors that regulate the release of these CD133+ EVs. Here, we report that the HDAC6 inhibitor tubacin promoted the extracellular release of CD133+ EVs from human FEMX-I metastatic melanoma and Caco-2 colorectal carcinoma cells, with a concomitant downregulation of intracellular CD133. This effect was specific for tubacin, as inhibition of HDAC6 deacetylase activity by another selective HDAC6 inhibitor, ACY-1215 or the pan-HDAC inhibitor trichostatin A (TSA), and knockdown of HDAC6 did not enhance the release of CD133+ EVs. The tubacin-induced EV release was associated with changes in cellular lipid composition, loss of clonogenic capacity and decrease in the ability to form multicellular aggregates. These findings indicate a novel potential anti-tumor mechanism for tubacin in CD133-expressing malignancies. J. Cell. Biochem. 118: 4414-4424, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Olivia S Chao
- College of Medicine, Roseman University, Las Vegas, Nevada, 89135
| | - Tim C Chang
- Amnis, Part of MilliporeSigma, Seattle, Washington, 98119
| | - Maria A Di Bella
- Department of Biopathology and Medical Biotechnology, University of Palermo, Via Divisi 83, Palermo, Italy
| | - Riccardo Alessandro
- Department of Biopathology and Medical Biotechnology, University of Palermo, Via Divisi 83, Palermo, Italy
| | - Fabio Anzanello
- College of Medicine, Roseman University, Las Vegas, Nevada, 89135.,Roseman Cancer Center, Las Vegas, Nevada, 89135
| | - Germana Rappa
- College of Medicine, Roseman University, Las Vegas, Nevada, 89135.,Roseman Cancer Center, Las Vegas, Nevada, 89135
| | - Oscar B Goodman
- College of Medicine, Roseman University, Las Vegas, Nevada, 89135
| | - Aurelio Lorico
- College of Medicine, Roseman University, Las Vegas, Nevada, 89135.,Roseman Cancer Center, Las Vegas, Nevada, 89135
| |
Collapse
|
186
|
The different expression of TRPM7 and MagT1 impacts on the proliferation of colon carcinoma cells sensitive or resistant to doxorubicin. Sci Rep 2017; 7:40538. [PMID: 28094304 PMCID: PMC5240092 DOI: 10.1038/srep40538] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/07/2016] [Indexed: 01/16/2023] Open
Abstract
The processes leading to anticancer drug resistance are not completely unraveled. To get insights into the underlying mechanisms, we compared colon carcinoma cells sensitive to doxorubicin with their resistant counterpart. We found that resistant cells are growth retarded, and show staminal and ultrastructural features profoundly different from sensitive cells. The resistant phenotype is accompanied by the upregulation of the magnesium transporter MagT1 and the downregulation of the ion channel kinase TRPM7. We demonstrate that the different amounts of TRPM7 and MagT1 account for the different proliferation rate of sensitive and resistant colon carcinoma cells. It remains to be verified whether they are also involved in the control of other “staminal” traits.
Collapse
|
187
|
Oxidative stress induces the acquisition of cancer stem-like phenotype in breast cancer detectable by using a Sox2 regulatory region-2 (SRR2) reporter. Oncotarget 2016; 7:3111-27. [PMID: 26683522 PMCID: PMC4823094 DOI: 10.18632/oncotarget.6630] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/14/2015] [Indexed: 12/20/2022] Open
Abstract
We have previously identified a novel intra-tumoral dichotomy in breast cancer based on the differential responsiveness to a Sox2 reporter (SRR2), with cells responsive to SRR2 (RR) being more stem-like than unresponsive cells (RU). Here, we report that RR cells derived from MCF7 and ZR751 displayed a higher tolerance to oxidative stress than their RU counterparts, supporting the concept that the RR phenotype correlates with cancer stemness. Sox2 is directly implicated in this differential H2O2 tolerance, since siRNA knockdown of Sox2 in RR cells leveled this difference. Interestingly, H2O2 converted a proportion of RU cells into RR cells, as evidenced by their expression of luciferase and GFP, markers of SRR2 activity. Compared to RU cells, converted RR cells showed a significant increase in mammosphere formation and tolerance to H2O2. Converted RR cells also adopted the biochemical features of RR cells, as evidenced by their substantial increase in Sox2-SRR2 binding and the expression of 3 signature genes of RR cells (CD133, GPR49 and MUC15). Lastly, the H2O2-induced RU/RR conversion was detectable in a SCID mouse xenograft model and primary tumor cells. To conclude, the H2O2-induced RU/RR conversion has provided a novel model to study the acquisition of cancer stemness and plasticity.
Collapse
|
188
|
Roy S, Lu K, Nayak MK, Bhuniya A, Ghosh T, Kundu S, Ghosh S, Baral R, Dasgupta PS, Basu S. Activation of D2 Dopamine Receptors in CD133+ve Cancer Stem Cells in Non-small Cell Lung Carcinoma Inhibits Proliferation, Clonogenic Ability, and Invasiveness of These Cells. J Biol Chem 2016; 292:435-445. [PMID: 27920206 DOI: 10.1074/jbc.m116.748970] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/03/2016] [Indexed: 12/22/2022] Open
Abstract
Lung carcinoma is the leading cause of cancer-related death worldwide, and among this cancer, non-small cell lung carcinoma (NSCLC) comprises the majority of cases. Furthermore, recurrence and metastasis of NSCLC correlate well with CD133+ve tumor cells, a small population of tumor cells that have been designated as cancer stem cells (CSC). We have demonstrated for the first time high expression of D2 dopamine (DA) receptors in CD133+ve adenocarcinoma NSCLC cells. Also, activation of D2 DA receptors in these cells significantly inhibited their proliferation, clonogenic ability, and invasiveness by suppressing extracellular signal-regulated kinases 1/2 (ERK1/2) and AKT, as well as down-regulation of octamer-binding transcription factor 4 (Oct-4) expression and matrix metalloproteinase-9 (MMP-9) secretion by these cells. These results are of significance as D2 DA agonists that are already in clinical use for treatment of other diseases may be useful in combination with conventional chemotherapy and radiotherapy for better management of NSCLC patients by targeting both tumor cells and stem cell compartments in the tumor mass.
Collapse
Affiliation(s)
- Soumyabrata Roy
- From the Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | - Kai Lu
- the Department of Pathology, Ohio State University, Columbus, Ohio 43210
| | - Mukti Kant Nayak
- the Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Avishek Bhuniya
- From the Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | - Tithi Ghosh
- From the Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | - Suman Kundu
- the Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata 700032, India, and
| | - Sarbari Ghosh
- From the Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | - Rathindranath Baral
- From the Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | - Partha Sarathi Dasgupta
- From the Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata 700026, India,
| | - Sujit Basu
- the Department of Pathology, Ohio State University, Columbus, Ohio 43210, .,the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
189
|
Verneuil L, Leboeuf C, Bousquet G, Brugiere C, Elbouchtaoui M, Plassa LF, Peraldi MN, Lebbé C, Ratajczak P, Janin A. Donor-derived stem-cells and epithelial mesenchymal transition in squamous cell carcinoma in transplant recipients. Oncotarget 2016; 6:41497-507. [PMID: 26594799 PMCID: PMC4747169 DOI: 10.18632/oncotarget.6359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 11/16/2015] [Indexed: 12/18/2022] Open
Abstract
Background Skin squamous-cell-carcinoma (SCC), is the main complication in long-term kidney-transplant recipients, and it can include donor-derived cells. Preclinical models demonstrated the involvement of epithelial mesenchymal transition (EMT) in the progression of skin SCC, and the role of Snail, an EMT transcription factor, in cancer stem-cell survival and expansion. Here, we studied stem-cells and EMT expression in SCCs and concomitant actinic keratoses (AK) in kidney-transplant recipients. Methods In SCC and AK in 3 female recipients of male kidney-transplants, donor-derived Y chromosome in epidermal stem cells was assessed using combined XY-FISH/CD133 immunostaining, and digital-droplet-PCR on laser-microdissected CD133 expressing epidermal cells. For EMT study, double immunostainings of CD133 with vimentin or snail and slug, electron microscopy and immunostainings of keratinocytes junctions were performed. Digital droplet PCR was used to check CDH1 (E-cadherin) expression level in laser-microdissected cells co-expressing CD133 and vimentin or snail and slug. The numbers of Y-chromosome were assessed using digital droplet PCR in laser-microdissected cells co-expressing CD133 and vimentin, or snail and slug, and in CD133 positive cells not expressing any EMT maker. Results We identified donor-derived stem-cells in basal layers and invasive areas in all skin SCCs and in concomitant AKs, but not in surrounding normal skin. The donor-derived stem-cells expressed the EMT markers, vimentin, snail and slug in SCCs but not in AKs. The expression of the EMT transcription factor, SNAI1, was higher in stem-cells when they expressed vimentin. They were located in invasive areas of SCCs. In these areas, the expressions of claudin-1 and desmoglein 1 were reduced or absent, and within the basal layer there were features of basal membrane disappearance. Donor-derived stem cells were in larger numbers in stem cells co-expressing vimentin or snail and slug than in stem cells not expressing any EMT marker. Conclusion We identified here donor-derived stem cells within skin SCC in kidney-transplant recipients. They were located in invasive areas of SCC and had EMT characteristics.
Collapse
Affiliation(s)
- Laurence Verneuil
- INSERM, UMR_S1165, Paris, F-75010, France.,Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France.,Department of Dermatology, CHU Caen, Caen, F-14033, France.,Université de Caen Normandie, Medical School, Caen, F-14000, France
| | - Christophe Leboeuf
- INSERM, UMR_S1165, Paris, F-75010, France.,Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France
| | - Guilhem Bousquet
- INSERM, UMR_S1165, Paris, F-75010, France.,Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France
| | - Charlotte Brugiere
- INSERM, UMR_S1165, Paris, F-75010, France.,Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France.,Department of Dermatology, CHU Caen, Caen, F-14033, France.,Université de Caen Normandie, Medical School, Caen, F-14000, France
| | - Morad Elbouchtaoui
- INSERM, UMR_S1165, Paris, F-75010, France.,Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France.,Department of Pathology, AP-HP, Hôpital Saint-Louis, Paris, F-75010, France
| | | | - Marie-Noelle Peraldi
- Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France.,Department of Dermatology, AP-HP, Hôpital Saint-Louis, Paris, F-75010, France
| | - Celeste Lebbé
- Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France.,Department of Dermatology, AP-HP, Hôpital Saint-Louis, Paris, F-75010, France
| | - Philippe Ratajczak
- INSERM, UMR_S1165, Paris, F-75010, France.,Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France
| | - Anne Janin
- INSERM, UMR_S1165, Paris, F-75010, France.,Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France.,Department of Pathology, AP-HP, Hôpital Saint-Louis, Paris, F-75010, France
| |
Collapse
|
190
|
Nerve growth factor regulates CD133 function to promote tumor cell migration and invasion via activating ERK1/2 signaling in pancreatic cancer. Pancreatology 2016; 16:1005-1014. [PMID: 27654574 DOI: 10.1016/j.pan.2016.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 08/07/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Perineural invasion (PNI) is extremely high frequency among the various metastatic routes in pancreatic cancer. Nerve growth factor, secreted by astroglial cells, exerts effects on tumor invasion in some cancer cells, but its function on migration and invasion in pancreatic cancer is still unclear. In the present study, we determined the effects of NGF on modulating tumor cell metastatic potential and invasion activity and explored its mechanisms in pancreatic cancer. METHODS NGF and CD133 expression were detected in tumor tissues using immunohistochemical analysis and Western blotting analysis. The effects of NGF on the regulation of CD133 expression and the promotion of cancer migration and invasion were investigated using wound healing and matrigel transwell assay. A related mechanism that NGF regulates CD133's function via activating ERK1/2 signaling also was observed. RESULTS NGF/CD133 is overexpressed in human pancreatic cancer and promotes the migration and invasion of human pancreatic cancer cells through the activation of the ERK/CD133 signaling cascade. NGF/ERK signaling modulates the cancer cell EMT process, migration and invasion through the regulation of CD133 expression and its subcellular localization. CONCLUSIONS NGF/CD133 signaling initiated the migration and invasion of pancreatic cancer cells. NGF/CD133 might be an effective and potent therapeutic target for pancreatic cancer metastasis, particularly in PNI.
Collapse
|
191
|
Ginn KF, Fangman B, Terai K, Wise A, Ziazadeh D, Shah K, Gartrell R, Ricke B, Kimura K, Mathur S, Borrego-Diaz E, Farassati F. RalA is overactivated in medulloblastoma. J Neurooncol 2016; 130:99-110. [PMID: 27566179 DOI: 10.1007/s11060-016-2236-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/21/2016] [Indexed: 12/18/2022]
Abstract
Medulloblastoma (MDB) represents a major form of malignant brain tumors in the pediatric population. A vast spectrum of research on MDB has advanced our understanding of the underlying mechanism, however, a significant need still exists to develop novel therapeutics on the basis of gaining new knowledge about the characteristics of cell signaling networks involved. The Ras signaling pathway, one of the most important proto-oncogenic pathways involved in human cancers, has been shown to be involved in the development of neurological malignancies. We have studied an important effector down-stream of Ras, namely RalA (Ras-Like), for the first time and revealed overactivation of RalA in MDB. Affinity precipitation analysis of active RalA (RalA-GTP) in eight MDB cell lines (DAOY, RES256, RES262, UW228-1, UW426, UW473, D283 and D425) revealed that the majority contained elevated levels of active RalA (RalA-GTP) as compared with fetal cerebellar tissue as a normal control. Additionally, total RalA levels were shown to be elevated in 20 MDB patient samples as compared to normal brain tissue. The overall expression of RalA, however, was comparable in cancerous and normal samples. Other important effectors of RalA pathway including RalA binding protein-1 (RalBP1) and protein phosphatase A (PP2A) down-stream of Ral and Aurora kinase A (AKA) as an upstream RalA activator were also investigated in MDB. Considering the lack of specific inhibitors for RalA, we used gene specific silencing in order to inhibit RalA expression. Using a lentivirus expressing anti-RalA shRNA we successfully inhibited RalA expression in MDB and observed a significant reduction in proliferation and invasiveness. Similar results were observed using inhibitors of AKA and geranyl-geranyl transferase (non-specific inhibitors of RalA signaling) in terms of loss of in vivo tumorigenicity in heterotopic nude mouse model. Finally, once tested in cells expressing CD133 (a marker for MDB cancer stem cells), higher levels of RalA activation was observed. These data not only bring RalA to light as an important contributor to the malignant phenotype of MDB but introduces this pathway as a novel target in the treatment of this malignancy.
Collapse
Affiliation(s)
- Kevin F Ginn
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA.,Division of Hematology and Oncology, Children's Mercy Hospital and Clinics, Kansas City, MO, USA
| | - Ben Fangman
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Kaoru Terai
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Amanda Wise
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Daniel Ziazadeh
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Kushal Shah
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Robyn Gartrell
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Brandon Ricke
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Kyle Kimura
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Sharad Mathur
- Research Service (151), Kansas City Veteran Affairs Medical Center & Midwest Biomedical Research Foundation-Saint Luke's Marion Bloch Brain Tumor Research Program, 4801 E Linwood Blvd, F5-123, Kansas City, MO, 64128, USA
| | - Emma Borrego-Diaz
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Faris Farassati
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA. .,Research Service (151), Kansas City Veteran Affairs Medical Center & Midwest Biomedical Research Foundation-Saint Luke's Marion Bloch Brain Tumor Research Program, 4801 E Linwood Blvd, F5-123, Kansas City, MO, 64128, USA.
| |
Collapse
|
192
|
Banerjee J, Papu John AM, Al-Wadei MH, Schuller HM. Prevention of pancreatic cancer in a hamster model by cAMP decrease. Oncotarget 2016; 7:44430-44441. [PMID: 27281617 PMCID: PMC5190108 DOI: 10.18632/oncotarget.9790] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/22/2016] [Indexed: 02/06/2023] Open
Abstract
Smoking and alcoholism are risk factors for the development of pancreatitis-associated pancreatic ductal adenocarcinoma (PDAC). We have previously shown that these cancers overexpressed stress neurotransmitters and cyclic adenosine monophosphate (cAMP) while the inhibitory neurotransmitter γ-aminobutyric acid (GABA) was suppressed. Using a hamster model, the current study has tested the hypothesis that cAMP decrease by GABA supplementation in the drinking water prevents the development of pancreatitis-associated PDAC. Our data reveal strong preventive effects of GABA supplementation on the development of PDAC and pancreatic intraductal neoplasia (PanIN). ELISA assays and immunohistochemistry revealed significant decreases in the levels of cAMP and interleukin 6 accompanied by reductions in the expression of several cancer stem cell markers and phosphorylated signaling proteins, which stimulate cell proliferation, and migration in pancreatic exocrine cells of GABA treated animals. We conclude that cAMP decrease by GABA supplementation inhibits multiple cancer stimulating pathways in cancer stem cells, differentiated cancer cells and the immune system, identifying this approach as promising novel tool for the prevention of PDAC in individuals with a history of smoking and alcoholism.
Collapse
Affiliation(s)
- Jheelam Banerjee
- Experimental Oncology Laboratory, Department of Biomedical & Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Arokya M.S. Papu John
- Experimental Oncology Laboratory, Department of Biomedical & Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Mohammed H. Al-Wadei
- Experimental Oncology Laboratory, Department of Biomedical & Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Hildegard M. Schuller
- Experimental Oncology Laboratory, Department of Biomedical & Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
193
|
Pavon LF, Sibov TT, de Oliveira DM, Marti LC, Cabral FR, de Souza JG, Boufleur P, Malheiros SM, de Paiva Neto MA, da Cruz EF, Chudzinski-Tavassi AM, Cavalheiro S. Mesenchymal stem cell-like properties of CD133+ glioblastoma initiating cells. Oncotarget 2016; 7:40546-40557. [PMID: 27244897 PMCID: PMC5130027 DOI: 10.18632/oncotarget.9658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/16/2016] [Indexed: 01/22/2023] Open
Abstract
Glioblastoma is composed of dividing tumor cells, stromal cells and tumor initiating CD133+ cells. Recent reports have discussed the origin of the glioblastoma CD133+ cells and their function in the tumor microenvironment. The present work sought to investigate the multipotent and mesenchymal properties of primary highly purified human CD133+ glioblastoma-initiating cells. To accomplish this aim, we used the following approaches: i) generation of tumor subspheres of CD133+ selected cells from primary cell cultures of glioblastoma; ii) analysis of the expression of pluripotency stem cell markers and mesenchymal stem cell (MSC) markers in the CD133+ glioblastoma-initiating cells; iii) side-by-side ultrastructural characterization of the CD133+ glioblastoma cells, MSC and CD133+ hematopoietic stem cells isolated from human umbilical cord blood (UCB); iv) assessment of adipogenic differentiation of CD133+ glioblastoma cells to test their MSC-like in vitro differentiation ability; and v) use of an orthotopic glioblastoma xenograft model in the absence of immune suppression. We found that the CD133+ glioblastoma cells expressed both the pluripotency stem cell markers (Nanog, Mush-1 and SSEA-3) and MSC markers. In addition, the CD133+ cells were able to differentiate into adipocyte-like cells. Transmission electron microscopy (TEM) demonstrated that the CD133+ glioblastoma-initiating cells had ultrastructural features similar to those of undifferentiated MSCs. In addition, when administered in vivo to non-immunocompromised animals, the CD133+ cells were also able to mimic the phenotype of the original patient's tumor. In summary, we showed that the CD133+ glioblastoma cells express molecular signatures of MSCs, neural stem cells and pluripotent stem cells, thus possibly enabling differentiation into both neural and mesodermal cell types.
Collapse
Affiliation(s)
- Lorena Favaro Pavon
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
- Hospital Israelita Albert Einstein (HIAE), Experimental Research, São Paulo, Brazil
| | - Tatiana Tais Sibov
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | | | - Luciana C. Marti
- Hospital Israelita Albert Einstein (HIAE), Experimental Research, São Paulo, Brazil
- Allergy and Immunopathology Graduate Program, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Francisco Romero Cabral
- Hospital Israelita Albert Einstein (HIAE), Experimental Research, São Paulo, Brazil
- Faculdade de Ciências Médicas da São Casa de São Paulo, São Paulo, Brazil
| | - Jean Gabriel de Souza
- Biochemistry and Biophysics Laboratory, Butantan Institute, Neuro-Oncology Program, São Paulo, Brazil
| | - Pamela Boufleur
- Biochemistry and Biophysics Laboratory, Butantan Institute, Neuro-Oncology Program, São Paulo, Brazil
| | - Suzana M.F. Malheiros
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
- Hospital Israelita Albert Einstein (HIAE), Neuro-Oncology Program, São Paulo, Brazil
| | - Manuel A. de Paiva Neto
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | - Edgard Ferreira da Cruz
- Discipline of Nephrology, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | | | - Sérgio Cavalheiro
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
| |
Collapse
|
194
|
Functional Characteristics of Multipotent Mesenchymal Stromal Cells from Pituitary Adenomas. Stem Cells Int 2016; 2016:7103720. [PMID: 27340409 PMCID: PMC4909910 DOI: 10.1155/2016/7103720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/11/2016] [Indexed: 01/09/2023] Open
Abstract
Pituitary adenomas are one of the most common endocrine and intracranial neoplasms. Although they are theoretically monoclonal in origin, several studies have shown that they contain different multipotent cell types that are thought to play an important role in tumor initiation, maintenance, and recurrence after therapy. In the present study, we isolated and characterized cell populations from seven pituitary somatotroph, nonhormonal, and lactotroph adenomas. The obtained cells showed characteristics of multipotent mesenchymal stromal cells as observed by cell morphology, cell surface marker CD90, CD105, CD44, and vimentin expression, as well as differentiation to osteogenic and adipogenic lineages. They are capable of growth and passaging under standard laboratory cell culture conditions and do not manifest any hormonal cell characteristics. Multipotent mesenchymal stromal cells are present in pituitary adenomas regardless of their clinical manifestation and show no considerable expression of somatostatin 1–5 and dopamine 2 receptors. Most likely obtained cells are a part of tissue-supportive cells in pituitary adenoma microenvironment.
Collapse
|
195
|
Polymorphisms of the Stem Cell Marker Gene CD133 and the Risk of Lung Cancer in Chinese Population. Lung 2016; 194:393-400. [PMID: 27130457 DOI: 10.1007/s00408-016-9876-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 04/04/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To explore the association of functional single-nucleotide polymorphisms (SNPs) of CD133 with the risk of lung cancer. METHODS We conducted a hospital-based, case-control study of 1017 lung cancer patients and 1035 cancer-free controls frequency-matched by age and sex. Four functional CD133 SNPs (rs2240688 A > C, rs10022537 T > A, rs7686732 C > G, and rs3130 C > T) were selected and genotyped. Unconditional univariate and multivariate logistic regression analyses were carried out to evaluate the associations of genotypes of CD133 SNPs with lung cancer risk. RESULTS Compared with rs2240688 AA genotype, the variant AC/CC genotypes were associated with a statistically increased risk of lung cancer under a recessive model (adjusted odds ratio 1.19; 95 % confidence interval 1.01-1.42). The risk remained in patients with other histology types, but not with adenocarcinoma and squamous cell cancers. CONCLUSIONS These findings suggest that SNP rs2240688 A > C of CD133 may be a potential biomarker for genetic susceptibility to lung cancer, but require further research with larger populations.
Collapse
|
196
|
Miao X, Zhao Y. ST6GalNAcII mediates tumor invasion through PI3K/Akt/NF-κB signaling pathway in follicular thyroid carcinoma. Oncol Rep 2016; 35:2131-40. [PMID: 26820593 DOI: 10.3892/or.2016.4590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/17/2015] [Indexed: 11/05/2022] Open
Abstract
Altered sialylation, closely associated with tumor progression and metastasis, has been implicated in human thyroid carcinoma. The present study investigated the alteration in expression of ST6GalNAcII involved in invasion and to clarify the possible mechanism of ST6GalNAcII in the metastasis process in human follicular thyroid carcinoma cell lines. Using real-time PCR, western blot and IHC analysis, ST6GalNAcII differed in three follicular thyroid cancer cell lines (FTC133, primary and FTC238, lung metastasis). It also showed differential expression in follicular thyroid carcinoma and tissue specimens. In addition, we analyzed the PI3K/Akt signaling pathway. The altered expression of ST6GalNAcII corresponded to changed invasive phenotype of FTC-238 and FTC-133 cells in vitro and in vivo. Further studies showed that regulating ST6GalNAcII expression markedly modulated the activity of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Targeting the PI3K/Akt pathway by its specific inhibitor LY294002, or by Akt small interfering RNA (siRNA) resulted in reduced capacity in invasion of FTC-238. In conclusion, taken together, our results imply that ST6GalNAcII activated the invasion in follicular thyroid cancer cells through regulating the activity of PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xiaolong Miao
- Department of General Surgery, Dalian Medical University, Liaoning, P.R. China
| | - Yongfu Zhao
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Liaoning, P.R. China
| |
Collapse
|
197
|
Brugnoli F, Grassilli S, Al-Qassab Y, Capitani S, Bertagnolo V. PLC-β2 is modulated by low oxygen availability in breast tumor cells and plays a phenotype dependent role in their hypoxia-related malignant potential. Mol Carcinog 2016; 55:2210-2221. [DOI: 10.1002/mc.22462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/23/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Federica Brugnoli
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine; University of Ferrara; Ferrara Italy
| | - Silvia Grassilli
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine; University of Ferrara; Ferrara Italy
| | - Yasamin Al-Qassab
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine; University of Ferrara; Ferrara Italy
- Department of Anatomy, College of Medicine; University of Baghdad; Baghdad Iraq
| | - Silvano Capitani
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine; University of Ferrara; Ferrara Italy
- LTTA Centre; University of Ferrara; Ferrara Italy
| | - Valeria Bertagnolo
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine; University of Ferrara; Ferrara Italy
| |
Collapse
|
198
|
Shojaie N, Ghaffari SM. Simultaneous Analysis of Wnt and NF-κB Signaling Pathways in Doxorubicin Sensitive and Methotrexate Resistant PLC/ PRF/5 Cells. CELL JOURNAL 2016; 17:730-9. [PMID: 26862532 PMCID: PMC4746423 DOI: 10.22074/cellj.2016.3845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/21/2014] [Indexed: 11/07/2022]
Abstract
Objective Multi-drug resistance (MDR) is a controversial issue in traditional chemo-
therapy of aggressive cancers, including hepatocellular carcinoma. The major cause
of MDR is suggested to be the aberrant activation of the main signaling pathways
such as Wnt and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-
κB) which have key roles in the maintenance of cancer stem cells (CSCs). Therefore,
the evaluation of their alterations could be essential in chemo-resistant cancers such
as Hepatocellular carcinoma. The main purpose of this study was to investigate the
alteration of the mentioned pathways in the chemotherapy resistant cancer cells by
assessing their major molecular parameters.
Materials and Methods In this experimental study, methylthiazol tetrazolium (MTT)
assay, acridine orange/ethidium bromide (AO/EtBr) and Hoechst 33342 staining,
DNA fragmentation and colony formation methods were employed to investigate the
cytotoxic effects of methotrexate (MTX) and doxorubicin (DOX) on PLC/PRF/5 cells.
Moreover, the expression of 11 important genes involved in MDR was performed by
semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR).
Results PLC/PRF/5 cells (Alexander) were sensitive to DOX and normally resist-
ant to MTX. In addition, the results obtained from RT-PCR analysis revealed that
β-catenin expression was significantly reduced and ABCG2 significantly overex-
pressed 4.85 and 3.34 times (P value<0.05) in DOX and MTX treated cells, respec-
tively. Furthermore, a considerable expression of HIF-1α and p65 were detected only
in MTX-resistant cells.
Conclusion Anti-cancer drugs may have more than one target in tumor cells. They
not only participate in deregulation of Wnt but also alter NF-κB activation. Moreover,
HIF-1α was the only anti-apoptotic protein that was significantly induced in the chem-
oresistant cells.
Collapse
Affiliation(s)
- Nasrin Shojaie
- Biochemistry Group, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Seyed Mahmood Ghaffari
- Biochemistry Group, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
199
|
Progenitor cells may aid successful islet compensation in metabolically healthy obese individuals. Med Hypotheses 2016; 86:97-9. [DOI: 10.1016/j.mehy.2015.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/26/2015] [Indexed: 12/29/2022]
|
200
|
Kiratipaiboon C, Tengamnuay P, Chanvorachote P. Glycyrrhizic acid attenuates stem cell-like phenotypes of human dermal papilla cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:1269-1278. [PMID: 26626191 DOI: 10.1016/j.phymed.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Although the growth of unwanted hair or hirsutism is a harmless condition, many people find it bothersome and embarrassing. Maintaining stem cell features of dermal papilla cells is a critical biological process that keeps the high rate of hair growth. Glycyrrhizic acid has been reported to impair hair growth in some studies; however, its underlying mechanism has not yet been investigated. PURPOSE This study aimed to explore the effect and underlying mechanism of glycyrrhizic acid on stemness of human dermal papilla cells. STUDY DESIGN/METHODS The stem cell molecular markers, epithelial to mesenchymal markers and Wnt/β-catenin-associated proteins of human dermal papilla cell line and primary human dermal papilla cells were analysed by western blot analysis and immunocytochemistry. RESULTS The present study demonstrated that glycyrrhizic acid significantly depressed the stemness of dermal papilla cells in dose- and time-dependent manners. Clonogenicity and stem cell markers in the glycyrrhizic acid-treated cells were found to gradually decrease in the culture in a time-dependent manner. Our results demonstrated that glycyrrhizic acid exerted the stem cell suppressing effects through the interruption of ATP-dependent tyrosine kinase/glycogen synthase kinase3β-dependent mechanism which in turn down-regulated the β-catenin signalling pathway, coupled with decreased its down-stream epithelial-mesenchymal transition and self-renewal transcription factors, namely, Oct-4, Nanog, Sox2, ZEB1 and Snail. The effect of glycyrrhizic acid on the reduction of stem cell features was also observed in the primary dermal papilla cells directly obtained from human hair follicles. CONCLUSION These results revealed a novel molecular mechanism of glycyrrhizic acid in regulation of dermal papilla cells and provided the evidence supporting the use of this compound in suppressing the growth of unwanted hair.
Collapse
Affiliation(s)
- Chayanin Kiratipaiboon
- Pharmaceutical Technology (International) Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Parkpoom Tengamnuay
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand ; Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|