151
|
You Y, Niu Y, Sun F, Huang S, Ding P, Wang X, Zhang X, Zhang J. Three-dimensional printing and 3D slicer powerful tools in understanding and treating neurosurgical diseases. Front Surg 2022; 9:1030081. [PMCID: PMC9614074 DOI: 10.3389/fsurg.2022.1030081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
With the development of the 3D printing industry, clinicians can research 3D printing in preoperative planning, individualized implantable materials manufacturing, and biomedical tissue modeling. Although the increased applications of 3D printing in many surgical disciplines, numerous doctors do not have the specialized range of abilities to utilize this exciting and valuable innovation. Additionally, as the applications of 3D printing technology have increased within the medical field, so have the number of printable materials and 3D printers. Therefore, clinicians need to stay up-to-date on this emerging technology for benefit. However, 3D printing technology relies heavily on 3D design. 3D Slicer can transform medical images into digital models to prepare for 3D printing. Due to most doctors lacking the technical skills to use 3D design and modeling software, we introduced the 3D Slicer to solve this problem. Our goal is to review the history of 3D printing and medical applications in this review. In addition, we summarized 3D Slicer technologies in neurosurgery. We hope this article will enable many clinicians to leverage the power of 3D printing and 3D Slicer.
Collapse
Affiliation(s)
- Yijie You
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Yunlian Niu
- Department of Neurology, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Fengbing Sun
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Sheng Huang
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Peiyuan Ding
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Xuhui Wang
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China,Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, The Cranial Nerve Disease Center of Shanghai JiaoTong University, Shanghai, China
| | - Xin Zhang
- Educational Administrative Department, Shanghai Chongming Health School, Shanghai, China,Correspondence: Xin Zhang Jian Zhang
| | - Jian Zhang
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China,Correspondence: Xin Zhang Jian Zhang
| |
Collapse
|
152
|
Yoon MS, Jang HM, Kwon KT. Influence of Parameters and Performance Evaluation of 3D-Printed Tungsten Mixed Filament Shields. Polymers (Basel) 2022; 14:polym14204301. [PMID: 36297879 PMCID: PMC9609353 DOI: 10.3390/polym14204301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Currently, protective clothing used in clinical field is the most representative example of efforts to reduce radiation exposure to radiation workers. However, lead is classified as a substance harmful to the human body that can cause lead poisoning. Therefore, research on the development of lead-free radiation shielding bodies is being conducted. In this study, the shielding body was manufactured by changing the size, layer, and height of the nozzle, using a 90.7% pure tungsten filament, a 3D printer material, and we compared its performance with existing protection tools. Our findings revealed that the shielding rate of the mixed tungsten filament was higher than that of the existing protective tools, confirming its potency to replace lead as the most protective material in clinical field.
Collapse
Affiliation(s)
- Myeong Seong Yoon
- Department of Emergency Medicine, College of Medicine, Hanyang University, 222-1, Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Hui Min Jang
- Department of Radiological Science, Graduate School, Eulji University, 553, Sanseong-daero, Sujeong-gu, Seongnam 13135, Korea
| | - Kyung Tae Kwon
- Department of Radiological Science, Dongnam Health University, 50, Cheoncheon-ro 74beon-gil, Jangan-gu, Suwon 16328, Korea
| |
Collapse
|
153
|
Simultaneous PSI-Based Orthognathic and PEEK Bone Augmentation Surgery Leads to Improved Symmetric Facial Appearance in Craniofacial Malformations. J Pers Med 2022; 12:jpm12101653. [PMID: 36294792 PMCID: PMC9605459 DOI: 10.3390/jpm12101653] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
(1) The aim of the present study was to compare the outcome of facial symmetry after simultaneous digitally planned patient-specific implant (PSI-) based orthognathic surgery and polyether ether ketone (PEEK) bone augmentation in patients with craniofacial malformations. (2) To evaluate the outcome of the two different surgical approaches (conventional PSI-based orthognathic surgery versus simultaneous PSI-based orthognathic surgery with PEEK bone augmentation), a comparison of five different groups with a combination of the parameters (A) with vs. without laterognathia, (B) syndromic vs. non-syndromic, and (C) surgery with vs. without PEEK bone augmentation was conducted. The digital workflow comprised cone beam CT (CBCT) scans and virtual surgery planning for all patients in order to produce patient specific cutting guides and osteosynthesis plates. Additionally, deformed skulls were superimposed by a non-deformed skull and/or the healthy side was mirrored to produce PSI PEEK implants for augmentation. Retrospective analyses included posterior-anterior conventional radiographs as well as en face photographs taken before and nine months after surgery. (3) Simultaneous orthognathic surgery with PEEK bone augmentation significantly improves facial symmetry compared to conventional orthognathic surgery (6.5%P (3.2-9.8%P) (p = 0.001). (4) PSI-based orthognathic surgery led to improved horizontal bone alignment in all patients. Simultaneous PEEK bone augmentation enhanced facial symmetry even in patients with syndrome-related underdevelopment of both soft and hard tissues.
Collapse
|
154
|
Abstract
Microrobots have attracted the attention of scientists owing to their unique features to accomplish tasks in hard-to-reach sites in the human body. Microrobots can be precisely actuated and maneuvered individually or in a swarm for cargo delivery, sampling, surgery, and imaging applications. In addition, microrobots have found applications in the environmental sector (e.g., water treatment). Besides, recent advancements of three-dimensional (3D) printers have enabled the high-resolution fabrication of microrobots with a faster design-production turnaround time for users with limited micromanufacturing skills. Here, the latest end applications of 3D printed microrobots are reviewed (ranging from environmental to biomedical applications) along with a brief discussion over the feasible actuation methods (e.g., on- and off-board), and practical 3D printing technologies for microrobot fabrication. In addition, as a future perspective, we discussed the potential advantages of integration of microrobots with smart materials, and conceivable benefits of implementation of artificial intelligence (AI), as well as physical intelligence (PI). Moreover, in order to facilitate bench-to-bedside translation of microrobots, current challenges impeding clinical translation of microrobots are elaborated, including entry obstacles (e.g., immune system attacks) and cumbersome standard test procedures to ensure biocompatibility. Microbots have attracted attention due to an ability to reach places and perform tasks which are not possible with conventional techniques in a wide range of applications. Here, the authors review the recent work in the field on the fabrication, application and actuation of 3D printed microbots offering a view of the direction of future microbot research.
Collapse
|
155
|
George MJ, Dias-Neto M, Ramos Tenorio E, Skibber MA, Morris JM, Oderich GS. 3D printing in aortic endovascular therapies. THE JOURNAL OF CARDIOVASCULAR SURGERY 2022; 63:597-605. [PMID: 35822744 DOI: 10.23736/s0021-9509.22.12407-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endovascular treatment of aortic disease, including aneurysm or dissection, is expanding at a rapid pace. Often, the specific patient anatomy in these cases is complex. Additive manufacturing, also known as three-dimensional (3D) printing, is especially useful in the treatment of aortic disease, due to its ability to manufacture physical models of complex patient anatomy. Compared to other surgical procedures, endovascular aortic repair can readily exploit the advantages of 3D printing with regard to operative planning and preoperative training. To date, there have been numerous uses of 3D printing in the treatment of aortic pathology as an adjunct in presurgical planning and as a basis for training modules for fellows and residents. In this review, we summarize the current uses of 3D printing in the endovascular management of aortic disease. We also review the process of producing these models, the limitations of their applications, and future directions of 3D printing in this field.
Collapse
Affiliation(s)
- Mitchell J George
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA -
| | - Marina Dias-Neto
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Emanuel Ramos Tenorio
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Max A Skibber
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jonathan M Morris
- Unit of Anatomic Modeling, Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Gustavo S Oderich
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
156
|
Kermavnar T, Guttridge C, Mulcahy NJ, Duffy E, Twomey F, O'Sullivan L. 3D printing in palliative medicine: systematic review. BMJ Support Palliat Care 2022. [DOI: 10.1136/bmjspcare-2021-003196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BackgroundThree-dimensional printing (3DP) enables the production of highly customised, cost-efficient devices in a relatively short time, which can be particularly valuable to clinicians treating patients with palliative care intent who are in need of timely and effective solutions in the management of their patients’ specific needs, including the relief of distressing symptoms.MethodFour online databases were searched for articles published by December 2020 that described studies using 3DP in palliative care. The fields of application, and the relevant clinical and technological data were extracted and analysed.ResultsThirty studies were reviewed, describing 36 medical devices, including anatomical models, endoluminal stents, navigation guides, obturators, epitheses, endoprostheses and others. Two-thirds of the studies were published after the year 2017. The main reason for using 3DP was the difficulty of producing customised devices with traditional methods. Eleven papers described proof-of-concept studies that did not involve human testing. For those devices that were tested on patients, favourable clinical outcomes were reported in general, and treatment with the use of 3DP was deemed superior to conventional clinical approaches. The most commonly employed 3DP technologies were fused filament fabrication with acrylonitrile butadiene styrene and stereolithography or material jetting with various types of photopolymer resin.ConclusionRecently, there has been a considerable increase in the application of 3DP to produce medical devices and bespoke solutions in the delivery of treatments with palliative care intent. 3DP was found successful in overcoming difficulties with conventional approaches and in treating medical conditions requiring highly customised solutions.
Collapse
|
157
|
A Two-Step Approach for 3D-Guided Patient-Specific Corrective Limb Osteotomies. J Pers Med 2022; 12:jpm12091458. [PMID: 36143242 PMCID: PMC9503424 DOI: 10.3390/jpm12091458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Corrective osteotomy surgery for long bone anomalies can be very challenging since deformation of the bone is often present in three dimensions. We developed a two-step approach for 3D-planned corrective osteotomies which consists of a cutting and reposition guide in combination with a conventional osteosynthesis plate. This study aimed to assess accuracy of the achieved corrections using this two-step technique. Methods: All patients (≥12 years) treated for post-traumatic malunion with a two-step 3D-planned corrective osteotomy within our center in 2021 were prospectively included. Three-dimensional virtual models of the planned outcome and the clinically achieved outcome were obtained and aligned. Postoperative evaluation of the accuracy of performed corrections was assessed by measuring the preoperative and postoperative alignment error in terms of angulation, rotation and translation. Results: A total of 10 patients were included. All corrective osteotomies were performed according to the predetermined surgical plan without any complications. The preoperative deformities ranged from 7.1 to 27.5° in terms of angulation and 5.3 to 26.1° in terms of rotation. The achieved alignment deviated on average 2.1 ± 1.0 and 3.4 ± 1.6 degrees from the planning for the angulation and rotation, respectively. Conclusions: A two-step approach for 3D-guided patient-specific corrective limb osteotomies is reliable, feasible and accurate.
Collapse
|
158
|
Wang S, Zhao S, Yu J, Gu Z, Zhang Y. Advances in Translational 3D Printing for Cartilage, Bone, and Osteochondral Tissue Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201869. [PMID: 35713246 DOI: 10.1002/smll.202201869] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The regeneration of 3D tissue constructs with clinically relevant sizes, structures, and hierarchical organizations for translational tissue engineering remains challenging. 3D printing, an additive manufacturing technique, has revolutionized the field of tissue engineering by fabricating biomimetic tissue constructs with precisely controlled composition, spatial distribution, and architecture that can replicate both biological and functional native tissues. Therefore, 3D printing is gaining increasing attention as a viable option to advance personalized therapy for various diseases by regenerating the desired tissues. This review outlines the recently developed 3D printing techniques for clinical translation and specifically summarizes the applications of these approaches for the regeneration of cartilage, bone, and osteochondral tissues. The current challenges and future perspectives of 3D printing technology are also discussed.
Collapse
Affiliation(s)
- Shenqiang Wang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng Zhao
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jicheng Yu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Zhen Gu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Yuqi Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
159
|
Byrd CT, Lui NS, Guo HH. Applications of Three-Dimensional Printing in Surgical Oncology. Surg Oncol Clin N Am 2022; 31:673-684. [DOI: 10.1016/j.soc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
160
|
Ronca A, Abbate V, Redaelli DF, Storm FA, Cesaro G, De Capitani C, Sorrentino A, Colombo G, Fraschini P, Ambrosio L. A Comparative Study for Material Selection in 3D Printing of Scoliosis Back Brace. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5724. [PMID: 36013868 PMCID: PMC9413111 DOI: 10.3390/ma15165724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 05/27/2023]
Abstract
In recent years, many research studies have focused on the application of 3D printing in the production of orthopaedic back braces. Several advantages, such as the ability to customise complex shapes, improved therapeutic effect and reduced production costs place this technology at the forefront in the ongoing evolution of the orthopaedic sector. In this work, four different materials, two of them poly(lactic acid) (PLA) and two of them poly(ethylene terephthalate glycol) (PETG), were characterised from a thermal, mechanical, rheological and morphological point of view. Our aim was to understand the effects of the material properties on the quality and functionality of a 3D-printed device. The specimens were cut from 3D-printed hemi-cylinders in two different orientation angles. Our results show that PETG-based samples have the best mechanical properties in terms of elastic modulus and elongation at break. The PLA-based samples demonstrated typical brittle behaviour, with elongation at break one order of magnitude lower. Impact tests demonstrated that the PETG-based samples had better properties in terms of energy absorption. Moreover, 3D-printed PETG samples demonstrated a better surface finishing with a more homogenous fibre-fibre interface. In summary, we demonstrate that the right choice of material and printing conditions are fundamental to satisfy the quality and functionality required for a scoliosis back brace.
Collapse
Affiliation(s)
- Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Via Previati 1/C, 23900 Lecco, Italy
| | - Valentina Abbate
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Via Previati 1/C, 23900 Lecco, Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Napoli, Italy
| | - Davide Felice Redaelli
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA) National Research Council of Italy, Via Previati 1/C, 23900 Lecco, Italy
- Scientific Institute IRCCS E. Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini, Italy
| | - Fabio Alexander Storm
- Scientific Institute IRCCS E. Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini, Italy
| | - Giacomo Cesaro
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Cristina De Capitani
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Via Previati 1/C, 23900 Lecco, Italy
| | - Andrea Sorrentino
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Via Previati 1/C, 23900 Lecco, Italy
| | - Giorgio Colombo
- Department of Mechanical Engineering, Politecnico di Milano, Via G. La Masa, 1, 20156 Milano, Italy
| | - Paolo Fraschini
- Scientific Institute IRCCS E. Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| |
Collapse
|
161
|
Ganapathy A, Chen D, Elumalai A, Albers B, Tappa K, Jammalamadaka U, Hoegger MJ, Ballard DH. Guide for starting or optimizing a 3D printing clinical service. Methods 2022; 206:41-52. [PMID: 35964862 DOI: 10.1016/j.ymeth.2022.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022] Open
Abstract
Three-dimensional (3D) printing has applications in many fields and has gained substantial traction in medicine as a modality to transform two-dimensional scans into three-dimensional renderings. Patient-specific 3D printed models have direct patient care uses in surgical and procedural specialties, allowing for increased precision and accuracy in developing treatment plans and guiding surgeries. Medical applications include surgical planning, surgical guides, patient and trainee education, and implant fabrication. 3D printing workflow for a laboratory or clinical service that produces anatomic models and guides includes optimizing imaging acquisition and post-processing, segmenting the imaging, and printing the model. Quality assurance considerations include supervising medical imaging expert radiologists' guidance and self-implementing in-house quality control programs. The purpose of this review is to provide a workflow and guide for starting or optimizing laboratories and clinical services that 3D-print anatomic models or guides for clinical use.
Collapse
Affiliation(s)
- Aravinda Ganapathy
- School of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - David Chen
- School of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Anusha Elumalai
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Brian Albers
- 3D Printing Center, Barnes Jewish Hospital, St. Louis, MO, USA.
| | - Karthik Tappa
- Anatomic 3D Printing and Visualization Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | - Mark J Hoegger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - David H Ballard
- School of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
162
|
Tsiklin IL, Shabunin AV, Kolsanov AV, Volova LT. In Vivo Bone Tissue Engineering Strategies: Advances and Prospects. Polymers (Basel) 2022; 14:polym14153222. [PMID: 35956735 PMCID: PMC9370883 DOI: 10.3390/polym14153222] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 12/12/2022] Open
Abstract
Reconstruction of critical-sized bone defects remains a tremendous challenge for surgeons worldwide. Despite the variety of surgical techniques, current clinical strategies for bone defect repair demonstrate significant limitations and drawbacks, including donor-site morbidity, poor anatomical match, insufficient bone volume, bone graft resorption, and rejection. Bone tissue engineering (BTE) has emerged as a novel approach to guided bone tissue regeneration. BTE focuses on in vitro manipulations with seed cells, growth factors and bioactive scaffolds using bioreactors. The successful clinical translation of BTE requires overcoming a number of significant challenges. Currently, insufficient vascularization is the critical limitation for viability of the bone tissue-engineered construct. Furthermore, efficacy and safety of the scaffolds cell-seeding and exogenous growth factors administration are still controversial. The in vivo bioreactor principle (IVB) is an exceptionally promising concept for the in vivo bone tissue regeneration in a predictable patient-specific manner. This concept is based on the self-regenerative capacity of the human body, and combines flap prefabrication and axial vascularization strategies. Multiple experimental studies on in vivo BTE strategies presented in this review demonstrate the efficacy of this approach. Routine clinical application of the in vivo bioreactor principle is the future direction of BTE; however, it requires further investigation for overcoming some significant limitations.
Collapse
Affiliation(s)
- Ilya L. Tsiklin
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
- Correspondence: ; Tel.: +7-903-621-81-88
| | - Aleksey V. Shabunin
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
| | - Alexandr V. Kolsanov
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| | - Larisa T. Volova
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| |
Collapse
|
163
|
Vidakis N, Petousis M, Mountakis N, Korlos A, Papadakis V, Moutsopoulou A. Trilateral Multi-Functional Polyamide 12 Nanocomposites with Binary Inclusions for Medical Grade Material Extrusion 3D Printing: The Effect of Titanium Nitride in Mechanical Reinforcement and Copper/Cuprous Oxide as Antibacterial Agents. J Funct Biomater 2022; 13:115. [PMID: 35997453 PMCID: PMC9397053 DOI: 10.3390/jfb13030115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
In this work, for the first time, polyamide 12 (PA12) nanocomposites with binary inclusions in material extrusion (MEX) 3D printing were developed. The aim was to achieve an enhanced mechanical response with the addition of titanium nitride (TiN) and antibacterial performance with the addition of copper (Cu) or cuprous oxide (Cu2O), towards the development of multi-functional nanocomposite materials, exploiting the 3D printing process benefits. The prepared nanocomposites were fully characterized for their mechanical properties. The thermal properties were also investigated. Morphological characterization was performed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). The antibacterial performance was investigated with an agar-well diffusion screening process. Overall, the introduction of these nanofillers induced antibacterial performance in the PA12 matrix materials, while at the same time, the mechanical performance was significantly increased. The results of the study show high potential for expanding the areas in which 3D printing can be used.
Collapse
Affiliation(s)
- Nectarios Vidakis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
| | - Markos Petousis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
| | - Nikolaos Mountakis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
| | - Apostolos Korlos
- Department of Industrial Engineering and Management, International Hellenic University, 14th km, Thessaloniki-N. Moudania, Thermi, 57001 Thessaloniki, Greece
| | - Vassilis Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, 71110 Heraklion, Greece
| | - Amalia Moutsopoulou
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
| |
Collapse
|
164
|
Three-dimensional modeling in complex liver surgery and liver transplantation. Hepatobiliary Pancreat Dis Int 2022; 21:318-324. [PMID: 35701284 DOI: 10.1016/j.hbpd.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/24/2022] [Indexed: 02/05/2023]
Abstract
Liver resection and transplantation are the most effective therapies for many hepatobiliary tumors and diseases. However, these surgical procedures are challenging due to the anatomic complexity and many anatomical variations of the vascular and biliary structures. Three-dimensional (3D) printing models can clearly locate and describe blood vessels, bile ducts and tumors, calculate both liver and residual liver volumes, and finally predict the functional status of the liver after resection surgery. The 3D printing models may be particularly helpful in the preoperative evaluation and surgical planning of especially complex liver resection and transplantation, allowing to possibly increase resectability rates and reduce postoperative complications. With the continuous developments of imaging techniques, such models are expected to become widely applied in clinical practice.
Collapse
|
165
|
Dadhich A, Nilesh K, Shah S, Saluja H. Three-dimensional printing in maxillofacial surgery: A quantum leap in future. Natl J Maxillofac Surg 2022; 13:S203-S211. [PMID: 36393959 PMCID: PMC9651252 DOI: 10.4103/njms.njms_65_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 12/02/2022] Open
Abstract
Although application of three-dimensional (3D) printing in oral and maxillofacial surgery (OMFS) was first reported almost 30 years back, reduction in its manufacturing cost and availability of affordable 3D printing devices have popularized its use over the past few years. The 3D-printed objects include anatomical models, occlusal splints, drilling, or cutting guides and patient-specific implants (custom made plates and reconstruction devices). The anatomical model not only assists the surgeon in better understanding of the deformity or pathology but also aids in explaining the same to the patient and relatives. Mock surgery carried out on these models improve precision and thereby reduce the operating time. The guiding splints provide an exact design and fit for the graft, thus replicating form and function of the jawbone. The patient specific implants manufactured through computer-assisted designing help in superior replication of original anatomical form. This paper intends to highlight the current applications of 3D printing in field of maxillofacial surgery in the management of facial deformity, esthetic disturbances, and jaw pathologies. Cases of condylar hyperplasia, jaw tumor, facial asymmetry secondary to joint deformity, apertognathia, and chin augmentation managed with the application of 3D printing have been described in this paper. It also discusses the history, techniques, advantages, limitations, and future scope of 3D printing technology in OMFS.
Collapse
Affiliation(s)
- Anuj Dadhich
- Department of Oral and Maxillofacial Surgery, Rural Dental College, Loni, Maharashtra, India
| | - Kumar Nilesh
- Department of Oral and Maxillofacial Surgery, SDS, Krishna Institute of Medical Sciences Deemed to be University, Karad, Maharashtra, India,Address for correspondence: Dr. Kumar Nilesh, Department of Oral and Maxillofacial Surgery, SDS, Krishna Institute of Medical Sciences Deemed to be University, Karad, Maharashtra, India. E-mail:
| | - Seemit Shah
- Department of Oral and Maxillofacial Surgery, Rural Dental College, Loni, Maharashtra, India
| | - Harish Saluja
- Department of Oral and Maxillofacial Surgery, Rural Dental College, Loni, Maharashtra, India
| |
Collapse
|
166
|
Vasiliadis AV, Koukoulias N, Katakalos K. From Three-Dimensional (3D)- to 6D-Printing Technology in Orthopedics: Science Fiction or Scientific Reality? J Funct Biomater 2022; 13:jfb13030101. [PMID: 35893469 PMCID: PMC9326671 DOI: 10.3390/jfb13030101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past three decades, additive manufacturing has changed from an innovative technology to an increasingly accessible tool in all aspects of different medical practices, including orthopedics. Although 3D-printing technology offers a relatively inexpensive, rapid and less risky route of manufacturing, it is still quite limited for the fabrication of more complex objects. Over the last few years, stable 3D-printed objects have been converted to smart objects or implants using novel 4D-printing systems. Four-dimensional printing is an advanced process that creates the final object by adding smart materials. Human bones are curved along their axes, a morphological characteristic that augments the mechanical strain caused by external forces. Instead of the three axes used in 4D printing, 5D-printing technology uses five axes, creating curved and more complex objects. Nowadays, 6D-printing technology marries the concepts of 4D- and 5D-printing technology to produce objects that change shape over time in response to external stimuli. In future research, it is obvious that printing technology will include a combination of multi-dimensional printing technology and smart materials. Multi-dimensional additive manufacturing technology will drive the printing dimension to higher levels of structural freedom and printing efficacy, offering promising properties for various orthopedic applications.
Collapse
Affiliation(s)
- Angelo V. Vasiliadis
- 2nd Orthopedic Department, General Hospital of Thessaloniki “Papageorgiou”, 56403 Thessaloniki, Greece
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence:
| | - Nikolaos Koukoulias
- Orthopedic Department, Sports Injuries Unit, Saint Luke’s Hospital, 55236 Thessaloniki, Greece;
| | - Konstantinos Katakalos
- Laboratory for Strength of Materials and Structures, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
167
|
MEX 3D Printed HDPE/TiO2 Nanocomposites Physical and Mechanical Properties Investigation. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6070209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aiming to develop more robust, mechanically advanced, Fused Filament Fabrication (FFF) materials, High-Density Polyethylene (HDPE) nanocomposites were developed in the current research work. Titanium Dioxide (TiO2) was selected as filler to be incorporated into the HDPE matrix in concentration steps of 0.5, 2.5, 5, and 10 wt.%. 3D printing nanocomposite filaments were extruded in ~1.75 mm diameter and used to 3D print and test tensile and flexion specimens according to international standards. Reported results indicate that the filler contributes to increasing the mechanical strength of the virgin HDPE at certain filler and filler type concentrations; with the highest values reported to be 37.8% higher in tensile strength with HDPE/TiO2 10 wt.%. Morphological and thermal characterization was performed utilizing Scanning Electron Microscopy (SEM), Raman, Thermogravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC), while the results were correlated with the available literature.
Collapse
|
168
|
Xu G, Jia J, Xiong X, Peng L, Bu LL, Wang X. Mandibular Reconstruction With the Contralateral Vascularized Iliac Flap Using Individual Design: Iliac Crest Used to Reconstruct the Ramus and the Anterior Border of the Iliac Wing Used to Reconstruct the Inferior Border: A Case Report. Front Surg 2022; 9:924241. [PMID: 35898581 PMCID: PMC9309430 DOI: 10.3389/fsurg.2022.924241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022] Open
Abstract
Mandible defects resulting from resection of benign or malignant lesions, trauma, or radionecrosis are commonly encountered in the oral and maxillofacial department. Vascularized bone flaps, in general, provide the best functional and aesthetic outcome. The iliac crest provides a large piece of curved cortico-cancellous bone, measuring 6–16 cm in length. It has a natural curvature that complements the curve of the lateral and sometimes anterior mandible and can be placed accordingly to fill defects. In the paper, we report a mandibular reconstruction with a vascularized iliac flap using individual virtual preoperative planning and 3D printing technology. We want to offer a new design idea for mandibular defect reconstruction.
Collapse
Affiliation(s)
- Guangcai Xu
- School of Stomatology, Henan University, Kaifeng, China
- Department of Oral and Maxillofacial Surgery, Henan Provincial People's Hospital; Zhengzhou University People's Hospital; Henan University People's Hospital, Zhengzhou, China
| | - Ju Jia
- Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xuepeng Xiong
- Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Liwei Peng
- Department of Oral and Maxillofacial Surgery, Henan Provincial People's Hospital; Zhengzhou University People's Hospital; Henan University People's Hospital, Zhengzhou, China
| | - Lin-lin Bu
- Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiqian Wang
- Department of Oral and Maxillofacial Surgery, Henan Provincial People's Hospital; Zhengzhou University People's Hospital; Henan University People's Hospital, Zhengzhou, China
- Correspondence: Xiqian Wang
| |
Collapse
|
169
|
Murray-Douglass A, Snoswell C, Winter C, Harris R. Three-dimensional (3D) printing for post-traumatic orbital reconstruction, a systematic review and meta-analysis. Br J Oral Maxillofac Surg 2022; 60:1176-1183. [DOI: 10.1016/j.bjoms.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
|
170
|
Assink N, Reininga IHF, Ten Duis K, Doornberg JN, Hoekstra H, Kraeima J, Witjes MJH, de Vries JPPM, IJpma FFA. Does 3D-assisted surgery of tibial plateau fractures improve surgical and patient outcome? A systematic review of 1074 patients. Eur J Trauma Emerg Surg 2022; 48:1737-1749. [PMID: 34463771 PMCID: PMC9192447 DOI: 10.1007/s00068-021-01773-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/15/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE The aim of this systematic review was to provide an overview of current applications of 3D technologies in surgical management of tibial plateau fractures and to assess whether 3D-assisted surgery results in improved clinical outcome as compared to surgery based on conventional imaging modalities. METHODS A literature search was performed in Pubmed and Embase for articles reporting on the use of 3D techniques in operative management of tibial plateau fractures. This systematic review was performed in concordance with the PRISMA-guidelines. Methodological quality and risk of bias was assessed according to the guidelines of the McMaster Critical Appraisal. Differences in terms of operation time, blood loss, fluoroscopy frequency, intra-operative revision rates and patient-reported outcomes between 3D-assisted and conventional surgery were assessed. Data were pooled using the inverse variance weighting method in RevMan. RESULTS Twenty articles evaluating 948 patients treated with 3D-assisted surgery and 126 patients with conventional surgery were included. Five different concepts of 3D-assisted surgery were identified: '3D virtual visualization', '3D printed hand-held fracture models', 'Pre-contouring of osteosynthesis plates', '3D printed surgical guides', and 'Intra-operative 3D imaging'. 3D-assisted surgery resulted in reduced operation time (104.7 vs. 126.4 min; P < 0.01), less blood loss (241 ml vs. 306 ml; P < 0.01), decreased frequency of fluoroscopy (5.8 vs. 9.1 times; P < 0.01). No differences in functional outcome was found (Hospital for Special Surgery Knee-Rating Scale: 88.6 vs. 82.8; P = 0.23). CONCLUSIONS Five concepts of 3D-assisted surgical management of tibial plateau fractures emerged over the last decade. These include 3D virtual fracture visualization, 3D-printed hand-held fracture models for surgical planning, 3D-printed models for pre-contouring of osteosynthesis plates, 3D-printed surgical guides, and intra-operative 3D imaging. 3D-assisted surgery may have a positive effect on operation time, blood loss, and fluoroscopy frequency.
Collapse
Affiliation(s)
- Nick Assink
- Department of Trauma Surgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
- Department of Oral and Maxillofacial Surgery, 3D Lab, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Inge H F Reininga
- Department of Trauma Surgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Kaj Ten Duis
- Department of Trauma Surgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Job N Doornberg
- Department of Trauma Surgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Harm Hoekstra
- Department of Traumatology, KU Leuven University Hospitals Leuven Gasthuisberg Campus, Leuven, Belgium
| | - Joep Kraeima
- Department of Oral and Maxillofacial Surgery, 3D Lab, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Max J H Witjes
- Department of Oral and Maxillofacial Surgery, 3D Lab, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Frank F A IJpma
- Department of Trauma Surgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
171
|
Manufacturing Polymer Model of Anatomical Structures with Increased Accuracy Using CAx and AM Systems for Planning Orthopedic Procedures. Polymers (Basel) 2022; 14:polym14112236. [PMID: 35683908 PMCID: PMC9182597 DOI: 10.3390/polym14112236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Currently, medicine uses typical industrial structure techniques, including reverse engineering, data processing, 3D-CAD modeling, 3D printing, and coordinate measurement techniques. Taking this into account, one can notice the applications of procedures used in the aviation or automotive industries based on the structure of Industry 4.0 in the planning of operations and the production of medical models with high geometric accuracy. The procedure presented in the publication shortens the processing time of tomographic data and increases the reconstruction accuracy within the hip and knee joints. The procedure allows for the partial removal of metallic artifacts from the diagnostic image. Additionally, numerical models of anatomical structures, implants, and bone cement were developed in more detail by averaging the values of local segmentation thresholds. Before the model manufacturing process, additional tests of the PLA material were conducted in terms of its strength and thermal properties. Their goal was to select the appropriate type of PLA material for manufacturing models of anatomical structures. The numerical models were divided into parts before being manufactured using the Fused Filament Fabrication technique. The use of the modifier made it possible to change the density, type of filling, number of counters, and the type of supporting structure. These treatments allowed us to reduce costs and production time and increase the accuracy of the printout. The accuracy of the manufactured model geometry was verified using the MCA-II measuring arm with the MMDx100 laser head and surface roughness using a 3D Talyscan 150 profilometer. Using the procedure, a decrease in geometric deviations and amplitude parameters of the surface roughness were noticed. The models based on the presented approach allowed for detailed and meticulous treatment planning.
Collapse
|
172
|
Vidakis N, Petousis M, Mountakis N, Maravelakis E, Zaoutsos S, Kechagias JD. Mechanical response assessment of antibacterial PA12/TiO 2 3D printed parts: parameters optimization through artificial neural networks modeling. THE INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY 2022; 121:785-803. [PMID: 35645447 PMCID: PMC9124053 DOI: 10.1007/s00170-022-09376-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/12/2022] [Indexed: 05/06/2023]
Abstract
This study investigates the mechanical response of antibacterial PA12/TiO2 nanocomposite 3D printed specimens by varying the TiO2 loading in the filament, raster deposition angle, and nozzle temperature. The prediction of the antibacterial and mechanical performance of such nanocomposites is a challenging field, especially nowadays with the covid-19 pandemic dilemma. The experimental work in this study utilizes a fully factorial design approach to analyze the effect of three parameters on the mechanical response of 3D printed components. Therefore, all combinations of these three parameters were tested, resulting in twenty-seven independent experiments, in which each combination was repeated three times (a total of eighty-one experiments). The antibacterial performance of the fabricated PA12/TiO2 nanocomposite materials was confirmed, and regression and arithmetic artificial neural network (ANN) models were developed and validated for mechanical response prediction. The analysis of the results showed that an increase in the TiO2% loading decreased the mechanical responses but increased the antibacterial performance of the nanocomposites. In addition, higher nozzle temperatures and zero deposition angles optimize the mechanical performance of all TiO2% nanocomposites. Independent experiments evaluated the proposed models with mean absolute percentage errors (MAPE) similar to the ANN models. These findings and the interaction charts show a strong interaction between the studied parameters. Therefore, the authors propose the improvement of predictions by utilizing artificial neural network models and genetic algorithms as future work and the spreading of the experimental area with extra variable parameters and levels.
Collapse
Affiliation(s)
- Nectarios Vidakis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Crete, Greece
| | - Markos Petousis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Crete, Greece
| | - Nikolaos Mountakis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Crete, Greece
| | - Emmanuel Maravelakis
- Department of Electronic Engineering, Hellenic Mediterranean University, Chania, Greece
| | - Stefanos Zaoutsos
- Department of Energy Systems, University of Thessaly, 41500 Larissa, Greece
| | - John D. Kechagias
- Department of Forestry Wood Science and Design, University of Thessaly, 43100 Karditsa, Greece
| |
Collapse
|
173
|
Novak JI, Maclachlan LR, Desselle MR, Haskell N, Fitzgerald K, Redmond M. What Qualities are Important for 3D Printed Neurosurgical Training Models? A Survey of Clinicians and Other Health Professionals Following an Interactive Exhibition. ANNALS OF 3D PRINTED MEDICINE 2022. [DOI: 10.1016/j.stlm.2022.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
174
|
Pouhaër M, Picart G, Baya D, Michelutti P, Dautel A, Pérard M, Le Clerc J. Design of 3D-printed macro-models for undergraduates' preclinical practice of endodontic access cavities. EUROPEAN JOURNAL OF DENTAL EDUCATION : OFFICIAL JOURNAL OF THE ASSOCIATION FOR DENTAL EDUCATION IN EUROPE 2022; 26:347-353. [PMID: 34358393 DOI: 10.1111/eje.12709] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 05/28/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Endodontic access cavity is one of the steps most feared by dental students. The objective of the present work was to show the design phases of different realistic macro-models of a lower first molar, showing root canal anatomy and the ideal access cavity. MATERIALS AND METHODS Virtual models were designed with MeshMixer, MeshLab and Blender from the data collected (X-rays, CBCT and optical impression) and then printed. Two types of printers-FDM (fused deposition modelling) and SLA (stereolithography) printers-were used to obtain different prototypes which led to final models. A satisfaction questionnaire was then sent to students, after manipulation, to assess the relevance of these models. RESULTS Two final models of a lower first molar with an extended size (×9) were finally printed with an SLA laser printer with a transparent liquid resin. The first model represented the tooth with its optimal endodontic access cavity. The second one was designed to be divided into two parts according to a mesio-distal axis in order to visualise the root canal system. Most students found these macro-models to be effective tools for endodontic training. DISCUSSION 3D printing is a proven technology which is no exception in dentistry. Some authors have already proposed 3D-printed replicas of teeth for endodontic education. Macro-models have been designed, printed and made available to students during preclinical courses before and during training. CONCLUSION These educational macro-models should strengthen the knowledge and skills of students to improve their clinical and future practice within the dental office.
Collapse
Affiliation(s)
- Matéo Pouhaër
- UFR Odontologie, Université de Rennes 1, Rennes, France
| | | | - David Baya
- Service Universitaire de Pédagogie et des TICE (SUPTICE), Université de Rennes 1, Rennes, France
| | - Pierre Michelutti
- Département Génie Mécanique et Productique, IUT Rennes, Université de Rennes 1, Rennes, France
| | - Anne Dautel
- UFR Odontologie, Université de Rennes 1, Rennes, France
- CHU Rennes (Pôle Odontologie), Rennes, France
| | - Matthieu Pérard
- UFR Odontologie, Université de Rennes 1, Rennes, France
- CHU Rennes (Pôle Odontologie), Rennes, France
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, CNRS, Rennes, France
| | - Justine Le Clerc
- UFR Odontologie, Université de Rennes 1, Rennes, France
- CHU Rennes (Pôle Odontologie), Rennes, France
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, CNRS, Rennes, France
| |
Collapse
|
175
|
Shannon A, O'Sullivan KJ, Clifford S, O'Sullivan L. Assessment and selection of filler compounds for radiopaque PolyJet multi-material 3D printing for use in clinical settings. Proc Inst Mech Eng H 2022; 236:740-747. [PMID: 35296167 DOI: 10.1177/09544119221084819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of this research was to assess a selection of radiopaque filler compounds for increasing radiopacity in a resin suitable for Polyjet multi-material 3D printing. A radiopaque resin has potential applications in medicine to produce patient-specific anatomical models with realistic radiological properties, training aids, and skin contacting components such as surgical or procedural guides that require visibility under fluoroscopy. The desirable filler would have a high level of radiopacity under ionising imaging modalities, such as X-ray, CT, fluoroscopy or angiography. Nine potential filler compounds were selected based on atomic number and handling risk: barium sulphate, bismuth oxide, zirconium oxide, strontium oxide, strontium fluoride, strontium carbonate, iodine, niobium oxide and tantalum oxide. The fillers were evaluated using selected criteria. A weighted material selection matrix was developed to prioritise and select a filler for future 3D printing on a multi-material 3D printer. Zirconium oxide was the highest scoring filler compound in the material selection matrix, scoring 4.4 out of a maximum of 5. MED610TM resin doped with zirconium oxide was shown to be UV curable, and when cured is non-toxic, environmentally friendly, and has the ability to display antimicrobial properties. In terms of radiopacity, a sample with thickness 1.5 mm of MED610™ resin doped with 20 wt.% zirconium oxide produced X-ray radiopacity equivalent to 3 mm of aluminium. Zirconium oxide was selected using the material selection matrix. This radiopaque resin can be used to produce anatomical models with accurate radiological properties, training aids or skin contacting devices that require visibility under ionising imaging modalities. The 3D printing validation run successfully demonstrated that the material selection matrix prioritised a filler suitable for radiopaque multi-material 3D printing.
Collapse
Affiliation(s)
- Alice Shannon
- Design Factors Research Group, School of Design, University of Limerick, Limerick, Ireland.,National Children's Research Centre, Gate 5, Our Lady's Children's Hospital, Crumlin, Dublin 12.,Health Research Institute, University of Limerick, Ireland
| | - Kevin J O'Sullivan
- Design Factors Research Group, School of Design, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Ireland.,Confirm Smart Manufacturing Centre, University of Limerick, University of Limerick, Ireland
| | - Seamus Clifford
- School of Engineering, University of Limerick, Limerick, Ireland
| | - Leonard O'Sullivan
- Design Factors Research Group, School of Design, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Ireland.,Confirm Smart Manufacturing Centre, University of Limerick, University of Limerick, Ireland
| |
Collapse
|
176
|
Hoffmann L, Sabbagh H, Wichelhaus A, Kessler A. Bracket transfer accuracy with two different three-dimensional printed transfer trays vs silicone transfer trays. Angle Orthod 2022; 92:364-371. [PMID: 34982114 PMCID: PMC9020396 DOI: 10.2319/040821-283.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/01/2021] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVES To compare the transfer accuracy of two different three-dimensional printed trays (Dreve FotoDent ITB [Dreve Dentamid, Unna, Germany] and NextDent Ortho ITB [NextDent, Soesterberg, the Netherlands]) to polyvinyl siloxane (PVS) trays for indirect bonding. MATERIALS AND METHODS A total of 10 dental models were constructed for each investigated material. Virtual bracket placement was performed on a scanned dental model using OnyxCeph (OnyxCeph 3D Lab, Chemnitz, Germany). Three-dimensional printed transfer trays using a digital light processing system three-dimensional printer and silicone transfer trays were produced. Bracket positions were scanned after the indirect bonding procedure. Linear and angular transfer errors were measured. Significant differences between mean transfer errors and frequency of clinically acceptable errors (<0.25 mm/1°) were analyzed using the Kruskal-Wallis and χ2 tests, respectively. RESULTS All trays showed comparable accuracy of bracket placement. NextDent exhibited a significantly higher frequency of rotational error within the limit of 1° (P = .01) compared with the PVS tray. Although PVS showed significant differences between the tooth groups in all linear dimensions, Dreve exhibited a significant difference in the buccolingual direction only. All groups showed a similar distribution of directional bias. CONCLUSIONS Three-dimensional printed trays achieved comparable results with the PVS trays in terms of bracket positioning accuracy. NextDent appears to be inferior compared with PVS regarding the frequency of clinically acceptable errors, whereas Dreve was found to be equal. The influence of tooth groups on the accuracy of bracket positioning may be reduced by using an appropriate three-dimensional printed transfer tray (Dreve).
Collapse
|
177
|
Grivet-Brancot A, Boffito M, Ciardelli G. Use of Polyesters in Fused Deposition Modeling for Biomedical Applications. Macromol Biosci 2022; 22:e2200039. [PMID: 35488769 DOI: 10.1002/mabi.202200039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Indexed: 11/09/2022]
Abstract
In recent years, 3D printing techniques experienced a growing interest in several sectors, including the biomedical one. Their main advantage resides in the possibility to obtain complex and personalized structures in a cost-effective way impossible to achieve with traditional production methods. This is especially true for Fused Deposition Modeling (FDM), one of the most diffused 3D printing methods. The easy customization of the final products' geometry, composition and physico-chemical properties is particularly interesting for the increasingly personalized approach adopted in modern medicine. Thermoplastic polymers are the preferred choice for FDM applications, and a wide selection of biocompatible and biodegradable materials is available to this aim. Moreover, these polymers can also be easily modified before and after printing to better suit the body environment and the mechanical properties of biological tissues. This review focuses on the use of thermoplastic aliphatic polyesters for FDM applications in the biomedical field. In detail, the use of poly(ε-caprolactone), poly(lactic acid), poly(lactic-co-glycolic acid), poly(hydroxyalkanoate)s, thermo-plastic poly(ester urethane)s and their blends has been thoroughly surveyed, with particular attention to their main features, applicability and workability. The state-of-the-art is presented and current challenges in integrating the additive manufacturing technology in the medical practice are discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Arianna Grivet-Brancot
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy.,Department of Surgical Sciences, Università di Torino, Corso Dogliotti 14, Torino, 10126, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| |
Collapse
|
178
|
Zhang J, Tao J, Cheng H, Liu H, Wu W, Dong Y, Liu X, Gou M, Yang S, Xu J. Nerve transfer with 3D-printed branch nerve conduits. BURNS & TRAUMA 2022; 10:tkac010. [PMID: 35441080 PMCID: PMC9012979 DOI: 10.1093/burnst/tkac010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023]
Abstract
Background Nerve transfer is an important clinical surgical procedure for nerve repair by the coaptation of a healthy donor nerve to an injured nerve. Usually, nerve transfer is performed in an end-to-end manner, which will lead to functional loss of the donor nerve. In this study, we aimed to evaluate the efficacy of 3D-printed branch nerve conduits in nerve transfer. Methods Customized branch conduits were constructed using gelatine-methacryloyl by 3D printing. The nerve conduits were characterized both in vitro and in vivo. The efficacy of 3D-printed branch nerve conduits in nerve transfer was evaluated in rats through electrophysiology testing and histological evaluation. Results The results obtained showed that a single nerve stump could form a complex nerve network in the 3D-printed multibranch conduit. A two-branch conduit was 3D printed for transferring the tibial nerve to the peroneal nerve in rats. In this process, the two branches were connected to the distal tibial nerve and peroneal nerve. It was found that the two nerves were successfully repaired with functional recovery. Conclusions It is implied that the two-branch conduit could not only repair the peroneal nerve but also preserve partial function of the donor tibial nerve. This work demonstrated that 3D-printed branch nerve conduits provide a potential method for nerve transfer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurosurgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jie Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Hao Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Haofan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Wenbi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Yinchu Dong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Xuesong Liu
- Department of Neurosurgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Siming Yang
- Key Laboratory of Wound Repair and Regeneration of PLA, Chinese PLA General Hospital, Medical College of PLA, Beijing 100853, P.R. China
| | - Jianguo Xu
- Department of Neurosurgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
179
|
Christou CD, Tsoulfas G. Role of three-dimensional printing and artificial intelligence in the management of hepatocellular carcinoma: Challenges and opportunities. World J Gastrointest Oncol 2022; 14:765-793. [PMID: 35582107 PMCID: PMC9048537 DOI: 10.4251/wjgo.v14.i4.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/24/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes the fifth most frequent malignancy worldwide and the third most frequent cause of cancer-related deaths. Currently, treatment selection is based on the stage of the disease. Emerging fields such as three-dimensional (3D) printing, 3D bioprinting, artificial intelligence (AI), and machine learning (ML) could lead to evidence-based, individualized management of HCC. In this review, we comprehensively report the current applications of 3D printing, 3D bioprinting, and AI/ML-based models in HCC management; we outline the significant challenges to the broad use of these novel technologies in the clinical setting with the goal of identifying means to overcome them, and finally, we discuss the opportunities that arise from these applications. Notably, regarding 3D printing and bioprinting-related challenges, we elaborate on cost and cost-effectiveness, cell sourcing, cell viability, safety, accessibility, regulation, and legal and ethical concerns. Similarly, regarding AI/ML-related challenges, we elaborate on intellectual property, liability, intrinsic biases, data protection, cybersecurity, ethical challenges, and transparency. Our findings show that AI and 3D printing applications in HCC management and healthcare, in general, are steadily expanding; thus, these technologies will be integrated into the clinical setting sooner or later. Therefore, we believe that physicians need to become familiar with these technologies and prepare to engage with them constructively.
Collapse
Affiliation(s)
- Chrysanthos D Christou
- Department of Transplantation Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| |
Collapse
|
180
|
McFarland AW, Elumalai A, Miller CC, Humayun A, Mills DK. Effectiveness and Applications of a Metal-Coated HNT/Polylactic Acid Antimicrobial Filtration System. Polymers (Basel) 2022; 14:1603. [PMID: 35458351 PMCID: PMC9030812 DOI: 10.3390/polym14081603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
A broad-spectrum antimicrobial respiration apparatus designed to fight bacteria, viruses, fungi, and other biological agents is critical in halting the current pandemic's trajectory and containing future outbreaks. We applied a simple and effective electrodeposition method for metal (copper, silver, and zinc) coating the surface of halloysite nanotubes (HNTs). These nanoparticles are known to possess potent antiviral and antimicrobial properties. Metal-coated HNTs (mHNTs) were then added to polylactic acid (PLA) and extruded to form an mHNT/PLA 3D composite printer filament. Our composite 3D printer filament was then used to fabricate an N95-style mask with an interchangeable/replaceable filter with surfaces designed to inactivate a virus and kill bacteria on contact, thus reducing deadly infections. The filter, made of a multilayered antimicrobial/mHNT blow spun polymer and fabric, is disposable, while the mask can be sanitized and reused. We used several in vitro means of assessing critical clinical features and assessed the bacterial growth inhibition against commonly encountered bacterial strains. These tests demonstrated the capability of our antimicrobial filament to fabricate N95 masks and filters that possessed antibacterial capabilities against both Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Antwine W. McFarland
- Molecular Science and Nanotechnology, Louisiana Tech University, Ruston, LA 71270, USA; (A.W.M.J.); (A.E.); (C.C.M.); (A.H.)
| | - Anusha Elumalai
- Molecular Science and Nanotechnology, Louisiana Tech University, Ruston, LA 71270, USA; (A.W.M.J.); (A.E.); (C.C.M.); (A.H.)
| | - Christopher C. Miller
- Molecular Science and Nanotechnology, Louisiana Tech University, Ruston, LA 71270, USA; (A.W.M.J.); (A.E.); (C.C.M.); (A.H.)
| | - Ahmed Humayun
- Molecular Science and Nanotechnology, Louisiana Tech University, Ruston, LA 71270, USA; (A.W.M.J.); (A.E.); (C.C.M.); (A.H.)
| | - David K. Mills
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA 71270, USA
- School of Biological Sciences, Louisiana Tech University, Ruston, LA 71270, USA
| |
Collapse
|
181
|
Application of the Digital Workflow in Orofacial Orthopedics and Orthodontics: Printed Appliances with Skeletal Anchorage. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As digital workflows are gaining popularity, novel treatment options have also arisen in orthodontics. By using selective laser melting (SLM), highly customized 3D-printed appliances can be manufactured and combined with preformed components. When combined with temporary anchorage devices (TADs), the advantages of the two approaches can be merged, which might improve treatment efficacy, versatility, and patient comfort. This article summarizes state-of-the-art technologies and digital workflows to design and install 3D-printed skeletally anchored orthodontic appliances. The advantages and disadvantages of digital workflows are critically discussed, and examples for the clinical application of mini-implant and mini-plate borne appliances are demonstrated.
Collapse
|
182
|
Hung TF, Kuo PJ, Tsai FS, Yu PH, Nai YS. A Novel Application of 3D Printing Technology Facilitating Shell Wound Healing of Freshwater Turtle. Animals (Basel) 2022; 12:ani12080966. [PMID: 35454213 PMCID: PMC9031446 DOI: 10.3390/ani12080966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023] Open
Abstract
Numerous cases and a shortage of resources usually limit wild animal rescue. New technology might save these severely injured wild animals from euthanasia by easing the requirement of intensive medication. Three-dimensional (3D) technologies provide precise and accurate results that improve the quality of medical applications. These 3D tools have become relatively low-cost and accessible in recent years. In the medical field of exotic animals, turtle shell defects are highly challenging because of inevitable water immersion. This report is the first attempt to apply the combination of 3D scanning, computer-aided design (CAD), and 3D printing to make a device that protects the wound from exposure to water or infection sources. The presented techniques successfully extricate a wild freshwater turtle from an extensive shell defect within a short period. Integration of multiple sciences to 3D technology can provide a facile model for veterinary medical applications.
Collapse
Affiliation(s)
- Tsung-Fu Hung
- WeCare Animal Medical Center, 1F., No. 270, Daxing Rd., Taoyuan Dist., Taoyuan City 334, Taiwan
- Correspondence: (T.-F.H.); (P.-J.K.); (Y.-S.N.)
| | - Po-Jan Kuo
- Tri-Service General Hospital, School of Dentistry, National Defense Medical Center, Taipei City 114, Taiwan
- Correspondence: (T.-F.H.); (P.-J.K.); (Y.-S.N.)
| | - Fung-Shi Tsai
- Momonga Exotic Animal Hospital, No. 20, Section 4, Chongxin Rd., Sanchong District, New Taipei City 241, Taiwan;
| | - Pin-Huan Yu
- Institute of Veterinary Clinical Science, National Taiwan University, Taipei City 106, Taiwan;
| | - Yu-Shin Nai
- Department of Entomology, National Chung Hsing University, Taichung City 402, Taiwan
- Correspondence: (T.-F.H.); (P.-J.K.); (Y.-S.N.)
| |
Collapse
|
183
|
The Modern Surgical Approach to Pulmonary Atresia with Ventricular Septal Defect and Major Aortopulmonary Collateral Arteries. CHILDREN 2022; 9:children9040515. [PMID: 35455558 PMCID: PMC9030555 DOI: 10.3390/children9040515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/19/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
Pulmonary atresia with ventricular septal defect and major aortopulmonary collaterals is a complex congenital heart defect that includes a heterogeneous subgroup of patients. Variation in the sources of pulmonary blood flow contributes to the complexity of the lesion and the diversity of approaches to its management. Unifocalization and rehabilitation focus on mobilization of collateral arteries and growth of native pulmonary arteries, respectively, with the ultimate surgical goal of achieving separated systemic and pulmonary circulations with the lowest possible right ventricular pressure. Regardless of the strategy, outcomes have altered the natural history of the disease, with a complete repair rate of approximately 80% and low early and late mortality rates. Given this heterogeneity of pulmonary vasculature, a tailored approach should be adopted for each patient, using all diagnostic methods currently offered by technical developments.
Collapse
|
184
|
Medical 3D Printing with a focus on Point-of-Care in Cranio- and Maxillofacial Surgery. A systematic review of literature. ANNALS OF 3D PRINTED MEDICINE 2022. [DOI: 10.1016/j.stlm.2022.100059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
185
|
Costanzo R, Ferini G, Brunasso L, Bonosi L, Porzio M, Benigno UE, Musso S, Gerardi RM, Giammalva GR, Paolini F, Palmisciano P, Umana GE, Sturiale CL, Di Bonaventura R, Iacopino DG, Maugeri R. The Role of 3D-Printed Custom-Made Vertebral Body Implants in the Treatment of Spinal Tumors: A Systematic Review. Life (Basel) 2022; 12:life12040489. [PMID: 35454979 PMCID: PMC9030237 DOI: 10.3390/life12040489] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
In spinal surgery, 3D prothesis represents a useful instrument for spinal reconstruction after the removal of spinal tumors that require an “en bloc” resection. This represents a complex and demanding procedure, aiming to restore spinal length, alignment and weight-bearing capacity and to provide immediate stability. Thus, in this systematic review the authors searched the literature to investigate and discuss the advantages and limitations of using 3D-printed custom-made vertebral bodies in the treatment of spinal tumors. A systematic literature review was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement, with no limits in terms of date of publication. The collected studies were exported to Mendeley. The articles were selected according to the following inclusion criteria: availability of full articles, full articles in English, studies regarding the implant of 3D custom-made prothesis after total or partial vertebral resection, studies regarding patients with a histologically confirmed diagnosis of primary spinal tumor or solitary bone metastasis; studies evaluating the implant of 3d custom-made prothesis in the cervical, thoracic, and lumbar spine. Nineteen published studies were included in this literature review, and include a total of 87 patients, 49 males (56.3%) and 38 females (43.7%). The main tumoral location and primary tumor diagnosis were evaluated. The 3D custom-made prothesis represents a feasible tool after tumor en-bloc resection in spinal reconstruction. This procedure is still evolving, and long-term follow-ups are mandatory to assess its safeness and usefulness.
Collapse
Affiliation(s)
- Roberta Costanzo
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
- Correspondence: ; Tel.: +39-0916554656
| | - Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia s.r.l., 95125 Catania, Italy;
| | - Lara Brunasso
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Lapo Bonosi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Massimiliano Porzio
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Umberto Emanuele Benigno
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Sofia Musso
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Rosa Maria Gerardi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Giuseppe Roberto Giammalva
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Federica Paolini
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Paolo Palmisciano
- Trauma Center, Gamma Knife Center, Department of Neurosurgery, Cannizzaro Hospital, 95100 Catania, Italy; (P.P.); (G.E.U.)
| | - Giuseppe Emmanuele Umana
- Trauma Center, Gamma Knife Center, Department of Neurosurgery, Cannizzaro Hospital, 95100 Catania, Italy; (P.P.); (G.E.U.)
| | - Carmelo Lucio Sturiale
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00100 Rome, Italy; (C.L.S.); (R.D.B.)
| | - Rina Di Bonaventura
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00100 Rome, Italy; (C.L.S.); (R.D.B.)
| | - Domenico Gerardo Iacopino
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Rosario Maugeri
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| |
Collapse
|
186
|
Willemsen K, Magré J, Mol J, Noordmans HJ, Weinans H, Hekman EEG, Kruyt MC. Vital Role of In-House 3D Lab to Create Unprecedented Solutions for Challenges in Spinal Surgery, Practical Guidelines and Clinical Case Series. J Pers Med 2022; 12:395. [PMID: 35330395 PMCID: PMC8951204 DOI: 10.3390/jpm12030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
For decades, the advantages of rapid prototyping for clinical use have been recognized. However, demonstrations of potential solutions to treat spinal problems that cannot be solved otherwise are scarce. In this paper, we describe the development, regulatory process, and clinical application of two types of patient specific 3D-printed devices that were developed at an in-house 3D point-of-care facility. This 3D lab made it possible to elegantly treat patients with spinal problems that could not have been treated in a conventional manner. The first device, applied in three patients, is a printed nylon drill guide, with such accuracy that it can be used for insertion of cervical pedicle screws in very young children, which has been applied even in semi-acute settings. The other is a 3D-printed titanium spinal column prosthesis that was used to treat progressive and severe deformities due to lysis of the anterior column in three patients. The unique opportunity to control size, shape, and material characteristics allowed a relatively easy solution for these patients, who were developing paraplegia. In this paper, we discuss the pathway toward the design and final application, including technical file creation for dossier building and challenges within a point-of-care lab.
Collapse
Affiliation(s)
- Koen Willemsen
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.M.); (J.M.); (H.W.); (M.C.K.)
- 3D Lab, Division of Surgical Specialties, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Joëll Magré
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.M.); (J.M.); (H.W.); (M.C.K.)
- 3D Lab, Division of Surgical Specialties, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jeroen Mol
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.M.); (J.M.); (H.W.); (M.C.K.)
| | - Herke Jan Noordmans
- Department of Medical Technology and Clinical Physics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Harrie Weinans
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.M.); (J.M.); (H.W.); (M.C.K.)
- Department Biomechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Edsko E. G. Hekman
- Department of Biomechanical Engineering, Twente University, 7522 NB Enschede, The Netherlands;
| | - Moyo C. Kruyt
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.M.); (J.M.); (H.W.); (M.C.K.)
- Department of Biomechanical Engineering, Twente University, 7522 NB Enschede, The Netherlands;
| |
Collapse
|
187
|
Tsegay F, Elsherif M, Butt H. Smart 3D Printed Hydrogel Skin Wound Bandages: A Review. Polymers (Basel) 2022; 14:polym14051012. [PMID: 35267835 PMCID: PMC8912626 DOI: 10.3390/polym14051012] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
Wounds are a major health concern affecting the lives of millions of people. Some wounds may pass a threshold diameter to become unrecoverable by themselves. These wounds become chronic and may even lead to mortality. Recently, 3D printing technology, in association with biocompatible hydrogels, has emerged as a promising platform for developing smart wound dressings, overcoming several challenges. 3D printed wound dressings can be loaded with a variety of items, such as antibiotics, antibacterial nanoparticles, and other drugs that can accelerate wound healing rate. 3D printing is computerized, allowing each level of the printed part to be fully controlled in situ to produce the dressings desired. In this review, recent developments in hydrogel-based wound dressings made using 3D printing are covered. The most common biosensors integrated with 3D printed hydrogels for wound dressing applications are comprehensively discussed. Fundamental challenges for 3D printing and future prospects are highlighted. Additionally, some related nanomaterial-based hydrogels are recommended for future consideration.
Collapse
|
188
|
Guttridge C, Shannon A, O'Sullivan A, O'Sullivan KJ, O'Sullivan LW. Biocompatible 3D printing resins for medical applications: A review of marketed intended use, biocompatibility certification, and post-processing guidance. ANNALS OF 3D PRINTED MEDICINE 2022. [DOI: 10.1016/j.stlm.2021.100044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
189
|
Wiseman J, Rawther T, Langbart M, Kernohan M, Ngo Q. Sterilization of bedside 3D-printed devices for use in the operating room. ANNALS OF 3D PRINTED MEDICINE 2022. [DOI: 10.1016/j.stlm.2022.100045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
190
|
Soltanmohammadi P, Tavakoli A, Langohr GDG, Athwal GS, Willing R. Structural analysis of hollow versus solid-stemmed shoulder implants of proximal humeri with different bone qualities. J Orthop Res 2022; 40:674-684. [PMID: 33969537 DOI: 10.1002/jor.25076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 02/04/2023]
Abstract
Stress shielding of the proximal humerus following total shoulder arthroplasty (TSA) can promote unfavorable bone remodeling, especially for osteoporotic patients. The objective of this finite element (FE) study was to determine if a hollow, rather than solid, titanium stem can mitigate this effect for healthy, osteopenic, and osteoporotic bone. Using a population-based model of the humerus, representative average healthy, osteopenic, and osteoporotic humerus FE models were created. For each model, changes in bone and implant stresses following TSA were evaluated for different loading scenarios and compared between solid versus hollow-stemmed implants. For cortical bone, using an implant decreased von Mises stress with respect to intact values up to 34.4%, with a more pronounced effect at more proximal slices. In the most proximal slice, based on changes in strain energy density, hollow-stemmed implants outperformed solid-stemmed ones through reducing cortical bone volume with resorption potential by 11.7% ± 2.1% (p = .01). For cortical bone in this slice, the percentage of bone with resorption potential for the osteoporotic bone was greater than the healthy bone by 8.0% ± 1.4% using the hollow-stemmed implant (p = .04). These results suggest a small improvement in bone-implant mechanics using hollow-stemmed humeral implants and indicate osteoporosis could exacerbate stress shielding to some extent. The hollow stems maintained adequate strength and using even thinner walls may further reduce stress shielding. After further developing these models, future studies could yield optimized implant designs tuned for varying bone qualities.
Collapse
Affiliation(s)
| | - Amir Tavakoli
- Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada
| | - G Daniel G Langohr
- School of Biomedical Engineering, Western University, London, Ontario, Canada.,Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada.,Roth, McFarlane Hand & Upper Limb Centre, St. Joseph's Health Care, London, Ontario, Canada
| | - George S Athwal
- Roth, McFarlane Hand & Upper Limb Centre, St. Joseph's Health Care, London, Ontario, Canada
| | - Ryan Willing
- School of Biomedical Engineering, Western University, London, Ontario, Canada.,Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada
| |
Collapse
|
191
|
Jeon S, Jo YH, Yoon HI, Han JS. Antifungal effect, surface roughness, and cytotoxicity of three-dimensionally printed denture base with phytoncide-filled microcapsules: an in-vitro study. J Dent 2022; 120:104098. [DOI: 10.1016/j.jdent.2022.104098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/16/2022] [Accepted: 03/19/2022] [Indexed: 12/20/2022] Open
|
192
|
|
193
|
Efficacy of utilizing 3D printed models for preoperative surgical planning of open reduction, internal fixation of distal humerus fractures. ANNALS OF 3D PRINTED MEDICINE 2022. [DOI: 10.1016/j.stlm.2022.100047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
194
|
Main Applications and Recent Research Progresses of Additive Manufacturing in Dentistry. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5530188. [PMID: 35252451 PMCID: PMC8894006 DOI: 10.1155/2022/5530188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022]
Abstract
In recent ten years, with the fast development of digital and engineering manufacturing technology, additive manufacturing has already been more and more widely used in the field of dentistry, from the first personalized surgical guides to the latest personalized restoration crowns and root implants. In particular, the bioprinting of teeth and tissue is of great potential to realize organ regeneration and finally improve the life quality. In this review paper, we firstly presented the workflow of additive manufacturing technology. Then, we summarized the main applications and recent research progresses of additive manufacturing in dentistry. Lastly, we sketched out some challenges and future directions of additive manufacturing technology in dentistry.
Collapse
|
195
|
Opportunities for the Application of 3D Printing in the Critical Infrastructure System. ENERGIES 2022. [DOI: 10.3390/en15051656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present article presents an analysis of the potential application of 3D printing in the critical infrastructure system. An attempt has been made to develop case studies for selected critical infrastructure areas, particularly with reference to the area of energy supply. The need for 3D printing applications is identified based on expert research in the energy industry. It identifies the application schemes determined by the technical and logistical possibilities associated with 3D printing in its broadest sense. A review of additive technologies with a view to their application in selected phases of critical infrastructure operation, including in crisis situations, is also carried out. Furthermore, a methodology for incorporating 3D printing into the existing critical infrastructure system is proposed. As a result, the following research hypothesis is adopted: the use of 3D printing can be an important part of measures to ensure the full functionality and efficiency of critical infrastructures, particularly in crisis situations.
Collapse
|
196
|
Abstract
The technique of 3D printing offers a high potential for further optimization of spinal surgery. This new technology has been published for different areas in the field of spinal surgery, e.g. in preoperative planning, intraoperative use as well as to create patient-specific implants. For example, it has been demonstrated that preoperative 3‑dimensional visualization of spinal deformities is helpful in planning procedures. Moreover, insertion of pedicle screws seems to be more accurate when using individualized templates to guide the drill compared to freehand techniques. This review summarizes the current literature dealing with 3D printing in spinal surgery with special consideration of the current applications, the limitations and the future potential.
Collapse
|
197
|
Guo J, Li Q, Zhang R, Li B, Zhang J, Yao L, Lin Z, Zhang L, Cao X, Duan B. Loose Pre-Cross-Linking Mediating Cellulose Self-Assembly for 3D Printing Strong and Tough Biomimetic Scaffolds. Biomacromolecules 2022; 23:877-888. [PMID: 35142493 DOI: 10.1021/acs.biomac.1c01330] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The lack of an effective printable ink preparation method and the usual mechanically weak performance obstruct the functional 3D printing hydrogel exploitation and application. Herein, we propose a gentle pre-cross-linking strategy to enable a loosely cross-linked cellulose network for simultaneously achieving favorable printability and a strong hydrogel network via mediating the cellulose self-assembly. A small amount of epichlorohydrin is applied to (i) slightly pre-cross-link the cellulose chains for forming the percolating network to regulate the rheological properties and (ii) form the loosely cross-linked points to mediate the cellulose chains' self-assembly for achieving superior mechanical properties. The fabrication of the complex 3D structures verifies the design flexibility. The printed cellulose hydrogels exhibit a biomimetic nanofibrous topology, remarkable tensile and compressive strength (5.22 and 11.80 MPa), as well as toughness (1.81 and 2.16 MJ/m3). As a demonstration, a bilayer scaffold (mimicking the osteochondral structure) consisting of a top pristine cellulose and a bottom cellulose/bioactive glass hydrogel is printed and exhibits superior osteochondral defect repair performance, showing a potential in tissue engineering. We anticipate that our loose pre-cross-linking 3D printing ink preparation concept can inspire the development of other polymeric inks and strong 3D printing functional hydrogels, eventually spreading the applications in diverse fields.
Collapse
Affiliation(s)
- Jinhua Guo
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Qingtao Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Rongrong Zhang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Bing Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jie Zhang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Longtao Yao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zefeng Lin
- Department of Orthopedics, General Hospital of Southern Theater Command of PLA, Guangdong Key Laboratory of Orthopedic Technology and Implant Materials, Guangzhou 510010, China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xiaodong Cao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
198
|
Hegedus T, Kreuter P, Kismarczi-Antalffy AA, Demeter T, Banyai D, Vegh A, Geczi Z, Hermann P, Payer M, Zsembery A, Al-Hassiny A, Mukaddam K, Herber V, Jakse N, Vegh D. User Experience and Sustainability of 3D Printing in Dentistry. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19041921. [PMID: 35206116 PMCID: PMC8872260 DOI: 10.3390/ijerph19041921] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND 3D printing is a rapidly developing technology in the healthcare industry and in dentistry. Its application clearly shows that this area of digital dentistry has potential for everyday usage across all fields, including prosthodontics, orthodontics, maxillofacial surgery, and oral implantology. However, despite gaining ground, there is a lack of information about how specialists (dentists and dental technicians) use additive technology. Our research group aimed to investigate the impact of social media on additive manufacturing technology among dental specialists and their everyday usage of 3D printing. METHODS This paper investigated specialists' everyday usage of 3D printers via an online survey (Google Forms). The survey questions aimed to discover the number of 3D printers used, the accessibility of the devices, the annual cost, and the design programs. Since specialists tend to build online communities on social media, we circulated our study questionnaire using our profiles on LinkedIn, Facebook, and Instagram platforms during our research. RESULTS A total of 120 responses were received from 20 countries, with the most significant numbers being from Hungary 23.7% (n = 27), the United States 18.4% (n = 21), and the United Kingdom 7.9% (n = 9). Most of the participants were dentists (n = 68) or dental technicians (n = 29), but some CAD/CAM specialists (n = 23) also completed our survey. The participants had an average of 3.8 years (±0.7) of experience in the 3D printing field, and owned a total of 405 printing devices (3.6 on average/person). CONCLUSIONS The impact of social media on this research field is growing increasingly. Hence, we support specialists in joining virtual communities on professional platforms. This article intended to provide a practical overview, feedback, and direction for dentists interested in 3D printing technology. From our survey, we can conclude that additive technology is broadening dental applications and the services that we can provide for our patients.
Collapse
Affiliation(s)
- Tamas Hegedus
- Department of Prosthodontics, Semmelweis University, Szentkiralyi utca 47., 1088 Budapest, Hungary; (T.H.); (Z.G.); (P.H.)
| | - Patrik Kreuter
- Faculty of Dentistry, Semmelweis University, Szentkiralyi utca 47., 1088 Budapest, Hungary; (P.K.); (A.A.K.-A.)
| | | | - Tamas Demeter
- Department of General Dental Preclinical Practice, Semmelweis University, Szentkiralyi utca 47., 1088 Budapest, Hungary;
| | - Dorottya Banyai
- Department of Pediatric Dentistry and Orthodontics, Semmelweis University, Szentkiralyi utca 47., 1088 Budapest, Hungary;
| | - Adam Vegh
- Department of Maxillofacial Surgery and Dentistry, Semmelweis University, Maria utca 52., 1088 Budapest, Hungary;
| | - Zoltan Geczi
- Department of Prosthodontics, Semmelweis University, Szentkiralyi utca 47., 1088 Budapest, Hungary; (T.H.); (Z.G.); (P.H.)
| | - Peter Hermann
- Department of Prosthodontics, Semmelweis University, Szentkiralyi utca 47., 1088 Budapest, Hungary; (T.H.); (Z.G.); (P.H.)
| | - Michael Payer
- Division of Oral Surgery and Orthodontics, Department of Dental Medicine and Oral Health, School of Dentistry, Medical University Graz, Billrothgasse 4, 8010 Graz, Austria; (M.P.); (V.H.); (N.J.)
| | - Akos Zsembery
- Department of Oral Biology, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary;
| | - Ahmad Al-Hassiny
- Institute of Digital Dentistry, 9 Hillary Court, Lower Hutt, Wellington 5010, New Zealand;
| | - Khaled Mukaddam
- Department of Oral Surgery, University Center for Dental Medicine Basel (UZB), University of Basel, Mattenstrasse 40, 4058 Basel, Switzerland;
| | - Valentin Herber
- Division of Oral Surgery and Orthodontics, Department of Dental Medicine and Oral Health, School of Dentistry, Medical University Graz, Billrothgasse 4, 8010 Graz, Austria; (M.P.); (V.H.); (N.J.)
| | - Norbert Jakse
- Division of Oral Surgery and Orthodontics, Department of Dental Medicine and Oral Health, School of Dentistry, Medical University Graz, Billrothgasse 4, 8010 Graz, Austria; (M.P.); (V.H.); (N.J.)
| | - Daniel Vegh
- Department of Prosthodontics, Semmelweis University, Szentkiralyi utca 47., 1088 Budapest, Hungary; (T.H.); (Z.G.); (P.H.)
- Division of Oral Surgery and Orthodontics, Department of Dental Medicine and Oral Health, School of Dentistry, Medical University Graz, Billrothgasse 4, 8010 Graz, Austria; (M.P.); (V.H.); (N.J.)
- Correspondence: ; Tel.: +36-30-7405164
| |
Collapse
|
199
|
Rynio P, Wojtuń M, Wójcik Ł, Kawa M, Falkowski A, Gutowski P, Kazimierczak A. The accuracy and reliability of 3D printed aortic templates: a comprehensive three-dimensional analysis. Quant Imaging Med Surg 2022; 12:1385-1396. [PMID: 35111632 DOI: 10.21037/qims-21-529] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022]
Abstract
Background Advances in 3D printing technology allow us to continually find new medical applications. One of them is 3D printing of aortic templates to guide vascular surgeons or interventional radiologists to create fenestrations in the stent-graft surface for the implantation procedure called fenestrated endovascular aortic aneurysm repair. It is believed that the use of 3D printing significantly improves the quality of modified fenestrated stent-grafts. However, the accuracy and reliability of personalized 3D printed models of aortic templates are not well established. Methods Thirteen 3D printed templates of the visceral aorta and sixteen of the aortic arch and their corresponding computer tomography of angiography images were included in this accuracy study. The 3D models were scanned in the same conditions on computed tomography (CT) and evaluated by three physicians experienced in vascular CT assessment. Model and patient CT measurements were performed at key landmarks to maintain quality for stent-graft modification, including side branches and aortic diameters. CT-scanned aortic templates were segmented, aligned with sourced patient data, and evaluated for the Hausdorff matrix. Next, Bland-Altman plots determined the degree of agreement. Results The Intraclass Correlation Coefficients values were more than 0.9 for all measurements of aortic diameters and aortic branches diameter in all landmark locations. Therefore, the reliability of the aortic templates was considered excellent. The Bland-Altman plots analysis indicated measurement biases of 0.05 to 0.47 for aortic arch templates and 0.06 to 0.38 for reno-visceral aortic templates. The arithmetic mean of Hausdorff's mean distances of the aortic arch templates was 0.47 mm (SD =0.06) and ranged from 0.34 to 0.58. The mean metrics for abdominal models was 0.24 mm (SD =0.03) and ranged from 0.21 to 0.31. Conclusions The printed models of 3D aortic templates are accurate and reliable, thus can be widely used in endovascular surgery and interventional radiology departments as aortic templates to guide the physician-modified fenestrated stent-graft fabrication.
Collapse
Affiliation(s)
- Pawel Rynio
- Department of Vascular Surgery, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Maciej Wojtuń
- Department of Radiology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Łukasz Wójcik
- Department of Radiology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Miłosz Kawa
- Department of Radiology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Aleksander Falkowski
- Department of Radiology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Piotr Gutowski
- Department of Vascular Surgery, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Arkadiusz Kazimierczak
- Department of Vascular Surgery, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
200
|
Hashimoto K, Omura K, Ichinose J, Matsuura Y, Nakao M, Mun M. A Three-Dimensional Airway Model for Tracheobronchial Surgery. JTCVS Tech 2022; 13:247-249. [PMID: 35711185 PMCID: PMC9196135 DOI: 10.1016/j.xjtc.2022.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/12/2022] [Indexed: 10/26/2022] Open
|