151
|
Phase I Study of Ficlatuzumab and Cetuximab in Cetuximab-Resistant, Recurrent/Metastatic Head and Neck Cancer. Cancers (Basel) 2020; 12:cancers12061537. [PMID: 32545260 PMCID: PMC7352434 DOI: 10.3390/cancers12061537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Cetuximab, an anti-EGFR monoclonal antibody (mAb), is approved for advanced head and neck squamous cell carcinoma (HNSCC) but benefits a minority. An established tumor-intrinsic resistance mechanism is cross-talk between the EGFR and hepatocyte growth factor (HGF)/cMet pathways. Dual pathway inhibition may overcome cetuximab resistance. This Phase I study evaluated the combination of cetuximab and ficlatuzumab, an anti-HGF mAb, in patients with recurrent/metastatic HNSCC. The primary objective was to establish the recommended Phase II dose (RP2D). Secondary objectives included overall response rate (ORR), progression-free survival (PFS), and overall survival (OS). Mechanistic tumor-intrinsic and immune biomarkers were explored. Thirteen patients enrolled with no dose-limiting toxicities observed at any dose tier. Three evaluable patients were treated at Tier 1 and nine at Tier 2, which was determined to be the RP2D (cetuximab 500 mg/m2 and ficlatuzumab 20 mg/kg every 2 weeks). Median PFS and OS were 5.4 (90% CI = 1.9–11.4) and 8.9 (90% CI = 2.7–15.2) months, respectively, with a confirmed ORR of 2 of 12 (17%; 90% CI = 6–40%). High circulating soluble cMet levels correlated with poor survival. An increase in peripheral T cells, particularly the CD8+ subset, was associated with treatment response whereas progression was associated with expansion of a distinct myeloid population. This well-tolerated combination demonstrated promising activity in cetuximab-resistant, advanced HNSCC.
Collapse
|
152
|
Al-Quteimat OM, Amer AM. A review of Osimertinib in NSCLC and pharmacist role in NSCLC patient care. J Oncol Pharm Pract 2020; 26:1452-1460. [PMID: 32525442 DOI: 10.1177/1078155220930285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung cancer is a complex, genetically heterogeneous disease. It is the most common cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) represents the majority of the diagnosed lung cancer cases. Osimertinib is a new treatment option that demonstrated a superior efficacy over standard epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) or platinum-based chemotherapy. The safety and efficacy of osimertinib (a third generation EGFR-TKIs) were confirmed by well-designed clinical trials. Consequently, osimertinib was considered a first-line treatment option, particularly in patients with EGFR mutant NSCLC. It has been approved by FDA for the treatment of advance or metastatic NSCLC patients with specific EGFR-mutant NSCLC. As an active member of the multidisciplinary team, pharmacist has a promising role in assuring safe, effective and cost-effective treatment in patient with NSCLC. This review article aims to highlight the latest evidence about osimertinib use as a new treatment option in the clinical practice and to review the potential pharmacist key roles in NSCLC patient care.
Collapse
|
153
|
Progress on treatment of MET signaling pathway in non-small cell lung cancer. Int J Clin Oncol 2020; 25:1450-1458. [PMID: 32440811 DOI: 10.1007/s10147-020-01702-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/30/2020] [Indexed: 01/13/2023]
Abstract
MET activation includes gene mutation, amplification, and protein overexpression. Clinical evidence suggests that MET activation is both a primary oncogenic driver in lung cancer, and a secondary driver after acquired resistance to EGFR tyrosine kinase inhibitors (TKIs). Several small molecule TKIs have already shown to be effective in the MET pathway. However, the activation form and the diagnostic criteria of MET oncogene are still controversial, especially in patients resistant to EGFR TKIs or ALK TKIs. With the development of new MET inhibitors, a quantity of emerging trials has focused on the mechanism of acquired resistance to MET TKIs and therapeutic strategies after resistance.
Collapse
|
154
|
Guo X, Zhou Q, Su D, Luo Y, Fu Z, Huang L, Li Z, Jiang D, Kong Y, Li Z, Chen R, Chen C. Circular RNA circBFAR promotes the progression of pancreatic ductal adenocarcinoma via the miR-34b-5p/MET/Akt axis. Mol Cancer 2020; 19:83. [PMID: 32375768 PMCID: PMC7201986 DOI: 10.1186/s12943-020-01196-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/30/2020] [Indexed: 01/01/2023] Open
Abstract
Background Accumulating evidence suggests that circular RNAs (circRNAs) are important participants in cancer progression. However, the biological processes and underlying mechanisms of circRNAs in pancreatic ductal adenocarcinoma (PDAC) are unclear. Method CircRNAs were verified by Sanger sequencing. Colony formation, 5-Ethynyl-2′-deoxyuridine (EdU), and Transwell assays were performed to investigate the effect of circBFAR on the proliferation, invasion, and migration of PDAC cells in vitro. RNA pull-down assays were conducted to verify the binding of circBFAR with microRNA miR-34b-5p. Results In the present study, we identified a novel circRNA (termed as circBFAR, hsa_circ_0009065) that was upregulated in a 208-case cohort of patients with PDAC. The ectopic expression of circBFAR correlated positively with the tumor-node-metastasis (TNM) stage and was related to poorer prognosis of patients with PDAC. Moreover, circBFAR knockdown dramatically inhibited the proliferation and motility of PDAC cells in vitro and their tumor-promoting and metastasis properties in in vivo models. Mechanistically, circBFAR upregulated mesenchymal-epithelial transition factor (MET) expression via sponging miR-34b-5p. Additionally, circBFAR overexpression increased the expression of MET and activated downstream phosphorylation of Akt (Ser 473) and further activated the MET/PI3K/Akt signaling pathway, which ultimately promoted the progression of PDAC cells. Importantly, application of MET inhibitors could significantly attenuate circBFAR-mediated tumorigenesis in vivo. Conclusions Our findings showed that circBFAR plays an important role in the proliferation and metastasis of PDAC, which might be explored as a potential prognostic marker and therapeutic target for PDAC.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Quanbo Zhou
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Dan Su
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Yuming Luo
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Zhiqiang Fu
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Leyi Huang
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Zhiguo Li
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Decan Jiang
- Affiliated Huadu Hospital, Southern Medical University, 48 Xinhua Road, Huadu District, Guangzhou, Guangdong, 510800, P. R. China
| | - Yao Kong
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Zhihua Li
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China.
| | - Rufu Chen
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Yuexiu District, Guangzhou, Guangdong, 510080, P.R. China.
| | - Changhao Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China. .,Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China.
| |
Collapse
|
155
|
Gini B, Thomas N, Blakely CM. Impact of concurrent genomic alterations in epidermal growth factor receptor ( EGFR)-mutated lung cancer. J Thorac Dis 2020; 12:2883-2895. [PMID: 32642201 PMCID: PMC7330397 DOI: 10.21037/jtd.2020.03.78] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Comprehensive characterization of the genomic landscape of epidermal growth factor receptor (EGFR)-mutated lung cancers have identified patterns of secondary mutations beyond the primary oncogenic EGFR mutation. These include concurrent pathogenic alterations affecting p53 (60–65%), RTKs (5–10%), PIK3CA/KRAS (3–23%), Wnt (5–10%), and cell cycle (7–25%) pathways as well as transcription factors such as MYC and NKX2-1 (10–15%). The majority of these co-occurring alterations were detected or enriched in samples collected from patients at resistance to tyrosine kinase inhibitor (TKI) treatment, indicating a potential functional role in driving resistance to therapy. Of note, these co-occurring tumor genomic alterations are not necessarily mutually exclusive, and evidence suggests that multiple clonal and sub-clonal cancer cell populations can co-exist and contribute to EGFR TKI resistance. Computational tools aimed to classify, track and predict the evolution of cancer clonal populations during therapy are being investigated in pre-clinical models to guide the selection of combination therapy switching strategies that may delay the development of treatment resistance. Here we review the most frequently identified tumor genomic alterations that co-occur with mutated EGFR and the evidence that these alterations effect responsiveness to EGFR TKI treatment.
Collapse
Affiliation(s)
- Beatrice Gini
- Department of Medicine, University of California, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Nicholas Thomas
- Department of Medicine, University of California, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Collin M Blakely
- Department of Medicine, University of California, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| |
Collapse
|
156
|
Non-Coding RNAs in Lung Tumor Initiation and Progression. Int J Mol Sci 2020; 21:ijms21082774. [PMID: 32316322 PMCID: PMC7215285 DOI: 10.3390/ijms21082774] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is one of the deadliest forms of cancer affecting society today. Non-coding RNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), through the transcriptional, post-transcriptional, and epigenetic changes they impose, have been found to be dysregulated to affect lung cancer tumorigenesis and metastasis. This review will briefly summarize hallmarks involved in lung cancer initiation and progression. For initiation, these hallmarks include tumor initiating cells, immortalization, activation of oncogenes and inactivation of tumor suppressors. Hallmarks involved in lung cancer progression include metastasis and drug tolerance and resistance. The targeting of these hallmarks with non-coding RNAs can affect vital metabolic and cell signaling pathways, which as a result can potentially have a role in cancerous and pathological processes. By further understanding non-coding RNAs, researchers can work towards diagnoses and treatments to improve early detection and clinical response.
Collapse
|
157
|
Effect of Ephedra Herb on Erlotinib Resistance in c-Met-Overexpressing Non-Small-Cell Lung Cancer Cell Line, H1993, through Promotion of Endocytosis and Degradation of c-Met. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020. [DOI: 10.1155/2020/7184129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs) are used to treat non-small-cell lung cancer (NSCLC), harboring an EGFR-activating mutation. However, acquired resistance to these treatments emerges after a few years. One of causes of resistance to EGFR-TKIs is a high level of c-Met amplification or c-Met protein overexpression/hyperactivation. Therefore, combination therapy with EGFR-TKIs and a c-Met inhibitor is thought to be effective treatment for patients with NSCLC resistance carrying c-Met amplification and/or protein hyperactivation. Ephedra Herb is a crude drug and is used in Japan as a component in many Kampo formulae. We previously reported that Ephedra Herb extract (EHE) inhibits HGF-induced phosphorylation of c-Met by preventing c-Met tyrosine kinase activity. Thus, we investigated the combination effect of EHE and erlotinib, an EGFR-TKI, on growth of H1993 cells, an erlotinib-resistant NSCLC cell line with overexpression of c-Met. The EHE and erlotinib combination proved to be effective in suppression of the growth of H1993 xenograft tumors and on inhibition of proliferation of H1993 cells, suggesting that EHE is effective in rescuing NSCLC cells from erlotinib resistance. Moreover, EHE not only inhibited the phosphorylation of c-Met, but also downregulated the expression of c-Met by facilitating clathrin-mediated endocytosis and lysosomal degradation of c-Met. EHE also promoted downregulation of the expression of EGFR and phosphorylation of EGFR. Ephedrine alkaloids-free Ephedra Herb extract (EFE) had the same effects as EHE, and the 40% MeOH fraction from EFE, which mainly contained the high-molecular mass condensed tannins, decreased the expression levels of c-Met, pMet, EGFR, and pEGFR to almost the same level as EFE. These results suggest that recovery from resistance to erlotinib by EHE is derived from the high-molecular mass condensed tannins and that EHE may be suitable for treatment of c-Met-overexpressing NSCLC with resistance to EGFR-TKIs.
Collapse
|
158
|
Brisudova A, Skarda J. Gene rearrangement detection by next-generation sequencing in patients with non-small cell lung carcinoma. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:127-132. [PMID: 32284620 DOI: 10.5507/bp.2020.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/19/2020] [Indexed: 11/23/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is the leading cause of cancer-related deaths worldwide. Various molecular markers in NSCLC patients have been developed, including gene rearrangements, currently used in therapeutic strategies. With increasing number of these molecular biomarkers of NSCLC, there is a demand for highly efficient methods for detecting mutations and translocations in treatable targets. Those currently available U.S. Food and Drug Administration (FDA) approved approaches, for example imunohistochemisty (IHC) and fluorescence in situ hybridization (FISH), are inadequate, due to sufficient quantity of material and long time duration. Next-generation massive parallel sequencing (NGS), with the ability to perform and capture data from millions of sequencing reactions simultaneously could resolve the problem. Thanks to gradual NGS introduction into clinical laboratories, screening time should be considerably shorter, which is very important for patients with advanced NSCLC. Moreover, only a minimum sample input is needed for achieving adequate results. NGS was compared to the current detection methods of ALK, ROS1, c-RET and c-MET rearrangements in NSCLC and a significant match, between IHC, FISH and NGS results, was found. Recent available researches have been carried out on a small numbers of patients. Verifying these results on larger patients cohort is important. This review sumarizes the literature on this subject and compares current possibilities of predictive gene rearrangements detection in patients with NSCLC.
Collapse
Affiliation(s)
- Aneta Brisudova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Jozef Skarda
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| |
Collapse
|
159
|
Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 2020; 5:22. [PMID: 32296018 PMCID: PMC7082344 DOI: 10.1038/s41392-020-0116-z] [Citation(s) in RCA: 922] [Impact Index Per Article: 184.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is among the most lethal and prevalent malignancies in the world and was responsible for nearly 881,000 cancer-related deaths in 2018. Surgery and chemotherapy have long been the first choices for cancer patients. However, the prognosis of CRC has never been satisfying, especially for patients with metastatic lesions. Targeted therapy is a new optional approach that has successfully prolonged overall survival for CRC patients. Following successes with the anti-EGFR (epidermal growth factor receptor) agent cetuximab and the anti-angiogenesis agent bevacizumab, new agents blocking different critical pathways as well as immune checkpoints are emerging at an unprecedented rate. Guidelines worldwide are currently updating the recommended targeted drugs on the basis of the increasing number of high-quality clinical trials. This review provides an overview of existing CRC-targeted agents and their underlying mechanisms, as well as a discussion of their limitations and future trends.
Collapse
Affiliation(s)
- Yuan-Hong Xie
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China.
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China.
| |
Collapse
|
160
|
Li W, Li X, Gao LN, You CG. Integrated Analysis of the Functions and Prognostic Values of RNA Binding Proteins in Lung Squamous Cell Carcinoma. Front Genet 2020; 11:185. [PMID: 32194639 PMCID: PMC7066120 DOI: 10.3389/fgene.2020.00185] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Dysregulation of RNA binding proteins (RBPs) has been found in a variety of cancers and is related to oncogenesis and progression. However, the functions of RBPs in lung squamous cell carcinoma (LUSC) remain unclear. In this study, we obtained gene expression data and corresponding clinical information for LUSC from The Cancer Genome Atlas (TCGA) database, identified aberrantly expressed RBPs between tumors and normal tissue, and conducted a series of bioinformatics analyses to explore the expression and prognostic value of these RBPs. A total of 300 aberrantly expressed RBPs were obtained, comprising 59 downregulated and 241 upregulated RBPs. Functional enrichment analysis indicated that the differentially expressed RBPs were mainly associated with mRNA metabolic processes, RNA processing, RNA modification, regulation of translation, the TGF-beta signaling pathway, and the Toll-like receptor signaling pathway. Nine RBP genes (A1CF, EIF2B5, LSM1, LSM7, MBNL2, RSRC1, TRMU, TTF2, and ZCCHC5) were identified as prognosis-associated hub genes by univariate, least absolute shrinkage and selection operator (LASSO), Kaplan–Meier survival, and multivariate Cox regression analyses, and were used to construct the prognostic model. Further analysis demonstrated that high risk scores for patients were significantly related to poor overall survival according to the model. The area under the time-dependent receiver operator characteristic curve of the prognostic model was 0.712 at 3 years and 0.696 at 5 years. We also developed a nomogram based on nine RBP genes, with internal validation in the TCGA cohort, which showed a favorable predictive efficacy for prognosis in LUSC. Our results provide novel insights into the pathogenesis of LUSC. The nine-RBP gene signature showed predictive value for LUSC prognosis, with potential applications in clinical decision-making and individualized treatment.
Collapse
Affiliation(s)
- Wei Li
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Xue Li
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Li-Na Gao
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Chong-Ge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
161
|
Detection of MET Alterations Using Cell Free DNA and Circulating Tumor Cells from Cancer Patients. Cells 2020; 9:cells9020522. [PMID: 32102486 PMCID: PMC7072825 DOI: 10.3390/cells9020522] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/05/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
MET alterations may provide a potential biomarker to evaluate patients who will benefit from treatment with MET inhibitors. Therefore, the purpose of the present study is to investigate the utility of a liquid biopsy-based strategy to assess MET alterations in cancer patients. We analyzed MET amplification in circulating free DNA (cfDNA) from 174 patients with cancer and 49 healthy controls and demonstrated the accuracy of the analysis to detect its alteration in patients. Importantly, a significant correlation between cfDNA concentration and MET copy number (CN) in cancer patients (r = 0.57, p <10−10) was determined. Furthermore, we evaluated two approaches to detect the presence of MET on circulating tumor cells (CTCs), using the CellSearch® and Parsortix systems and monitored patients under anti-EGFR treatment (n = 30) combining both cfDNA and CTCs analyses. This follow-up provides evidence for the potential of MET CN assessment when patients develop resistance to anti-EGFR therapy and a significant association between the presence of CTCs MET+ and the Overall Survival (OS) in head and neck cancer patients (P = 0.05; HR = 6.66). In conclusion, we develop specific and noninvasive assays to monitor MET status in cfDNA/CTCs and demonstrate the utility of plasma MET CN determination as a biomarker for monitoring the appearance of resistance to anti-EGFR therapy.
Collapse
|
162
|
Ma G, Deng Y, Chen W, Liu Z, Ai C, Li X, Zhou Q. The Prognostic Role of MET Protein Expression Among Surgically Resected Non-small Cell Lung Cancer Patients: A Meta-Analysis. Front Oncol 2020; 9:1441. [PMID: 31921688 PMCID: PMC6933606 DOI: 10.3389/fonc.2019.01441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/03/2019] [Indexed: 02/05/2023] Open
Abstract
Objectives: MET protein expression has been reported to be in relevance with the survival of NSCLC patients in various studies, yet the results were inconsistent. The purpose of our study set out to determine the prognostic role of both c-MET and p-MET expression among NSCLC that underwent surgical resection. Methods: Data were obtained from retrospective cohort studies by searching on PubMed, Cochrane Library, EMBASE and Web of Science, and a meta-analysis was performed to assess the prognostic role of MET expression among NSCLC. Results: Totally 18 literatures including 5,572 surgically resected NSCLC cases staged I-IV were included for data synthesis. The positive rate of c-MET and p-MET was 1,753/4,315 and 135/1,257. The pooled hazard ratios (HRs) regarding c-MET and p-MET expression for overall survival (OS) was 1.623 (95% CI: 1.176–2.240, p = 0.003) and 1.710 (95% CI: 0.823–3.533, p = 0.15), respectively. Subgroup analysis results on Asian (HR = 2.115, p < 0.001), adenocarcinoma (HR = 2.220, p < 0.001) and rabbit polyclonal antibodies (HR = 2.107, p < 0.001) etc. were also indicative. Conclusion: C-MET over-expression among NSCLC patients that underwent surgical resection is a prognostic factor that indicated adverse survival on OS. Whereas, p-met didn't appear to have an impact on the prognosis of NSCLC. The studies are need and the topic could be re-valued by then.
Collapse
Affiliation(s)
- Guangzhi Ma
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yunfu Deng
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjie Chen
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenkun Liu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Ai
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
163
|
Liu D. CAR-T "the living drugs", immune checkpoint inhibitors, and precision medicine: a new era of cancer therapy. J Hematol Oncol 2019; 12:113. [PMID: 31703740 PMCID: PMC6842223 DOI: 10.1186/s13045-019-0819-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
New advances in the design and manufacture of monoclonal antibodies, bispecific T cell engagers, and antibody-drug conjugates make the antibody-directed agents more powerful with less toxicities. Small molecule inhibitors are routinely used now as oral targeted agents for multiple cancers. The discoveries of PD1 and PD-L1 as negative immune checkpoints for T cells have led to the revolution of modern cancer immunotherapy. Multiple agents targeting PD1, PD-L1, or CTLA-4 are widely applied as immune checkpoint inhibitors (ICIs) which alleviate the suppression of immune regulatory machineries and lead to immunoablation of once highly refractory cancers such as stage IV lung cancer. Tisagenlecleucel and axicabtagene ciloleucel are the two approved CD19-targeted chimeric antigen receptor (CAR) T cell products. Several CAR-T cell platforms targeting B cell maturation antigen (BCMA) are under active clinical trials for refractory and/or relapsed multiple myeloma. Still more targets such as CLL-1, EGFR, NKG2D and mesothelin are being directed in CAR-T cell trials for leukemia and solid tumors. Increasing numbers of novel agents are being studied to target cancer-intrinsic oncogenic pathways as well as immune checkpoints. One such an example is targeting CD47 on macrophages which represents a "do-not-eat-me" immune checkpoint. Fueling the current excitement of cancer medicine includes also TCR- T cells, TCR-like antibodies, cancer vaccines and oncolytic viruses.
Collapse
Affiliation(s)
- Delong Liu
- New York Medical College, Valhalla, NY, 10595, USA.
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
164
|
Hwang JW, Desterke C, Féraud O, Richard S, Ferlicot S, Verkarre V, Patard JJ, Loisel-Duwattez J, Foudi A, Griscelli F, Bennaceur-Griscelli A, Turhan AG. iPSC-Derived Embryoid Bodies as Models of c- Met-Mutated Hereditary Papillary Renal Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20194867. [PMID: 31575031 PMCID: PMC6801716 DOI: 10.3390/ijms20194867] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
Hereditary cancers with cancer-predisposing mutations represent unique models of human oncogenesis, as a driving oncogenic event is present in germline. Currently, there are no satisfactory models to study these malignancies. We report the generation of IPSC from the somatic cells of a patient with hereditary c-met-mutated papillary renal cell carcinoma (PRCC). From these cells we have generated spontaneous aggregates organizing in structures which expressed kidney markers such as PODXL and Six2. These structures expressed PRCC markers both in vitro and in vivo in NSG mice. Gene-expression profiling showed striking molecular similarities with signatures found in a large cohort of PRCC tumor samples. This analysis, applied to primary cancers with and without c-met mutation, showed overexpression of the BHLHE40 and KDM4C only in the c-met-mutated PRCC tumors, as predicted by c-met-mutated embryoid bodies transcriptome. These data therefore represent the first proof of concept of “hereditary renal cancer in a dish” model using c-met-mutated iPSC-derived embryoid bodies, opening new perspectives for discovery of novel predictive progression markers and for drug-screening for future precision-medicine strategies.
Collapse
Affiliation(s)
- Jin Wook Hwang
- INSERM UMR-S 935 and ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France.
| | - Christophe Desterke
- INSERM UMR-S 935 and ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France.
| | - Olivier Féraud
- INSERM UMR-S 935 and ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France.
| | - Stephane Richard
- Réseau National de Référence pour Cancers Rares de l'Adulte PREDIR, labellisé par l'INCa, et Service d'Urologie, AP-HP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; Génétique Oncologique EPHE, PSL Université, INSERM UMR 1186, Gustave Roussy, Faculté de Médecine et Université Paris-Sud, 94800 Villejuif, France.
| | - Sophie Ferlicot
- INSERM, UMR 1186, Gustave Roussy, Paris-Sud University, Paris-Saclay University, 94800 Villejuif, France.
- Department of Pathology, Bicêtre Hospital, AP-HP, 94270 Le Kremlin-Bicêtre, France.
| | - Virginie Verkarre
- Service d'Anatomie Pathologique, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.
- Faculté de médecine, Université Paris Descartes, 75006 Paris, France.
| | - Jean Jacques Patard
- Service d'Urologie, Centre Hospitalier de Mont de Marsan, 40024 Mont de Marsan, France.
| | - Julien Loisel-Duwattez
- INSERM U1195, Université Paris Sud, Faculté de Médecine, APHP, Service de Neurologie, Hôpital Bicêtre, 94276 le Kremlin Bicêtre, France.
| | - Adlen Foudi
- INSERM UMR-S 935 and ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France.
- ATIP Avenir INSERM UMR-S 935, Université Paris Sud, 94800 Villejuif, France.
| | - Frank Griscelli
- INSERM UMR-S 935 and ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France.
- INGESTEM National IPSC Infrastructure, 94800 Villejuif, France.
- Paris Descartes University, Faculty Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France.
| | - Annelise Bennaceur-Griscelli
- INSERM UMR-S 935 and ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France.
- INGESTEM National IPSC Infrastructure, 94800 Villejuif, France.
- Division of Hematology, Paris Sud University Hospitals, Le Kremlin Bicêtre 75006, 94800 Villejuif, France.
| | - Ali G Turhan
- INSERM UMR-S 935 and ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France.
- INGESTEM National IPSC Infrastructure, 94800 Villejuif, France.
- Division of Hematology, Paris Sud University Hospitals, Le Kremlin Bicêtre 75006, 94800 Villejuif, France.
| |
Collapse
|
165
|
Wang Z, Chen H, Chen J, Hong Z, Liao Y, Zhang Q, Tong H. Emodin sensitizes human pancreatic cancer cells to EGFR inhibitor through suppressing Stat3 signaling pathway. Cancer Manag Res 2019; 11:8463-8473. [PMID: 31572001 PMCID: PMC6756157 DOI: 10.2147/cmar.s221877] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Background Excessive expression of EGFR is closely related to tumor formation, transfer and deterioration, which has attracted much attention. EGFR overexpression may be detected in up to 90% of pancreatic tumors. However, drug resistance of EGFR inhibitors targeting treatment severely limits its clinical application. Methods In this study, Western blotting was used to detect the expression of p-Stat3, EGFR, Bcl-2, cleaved-caspase3 and Bax. Cell apoptosis was evaluated via flow cytometry. The colon assay and MTT assay were applied for detecting the cell proliferation in vitro. The xenograft mouse model was used to examine the cell proliferation in vivo. Results Emodin remarkably enhanced the anti-cancer effect of EGFR inhibitor on pancreatic cancer cells. In addition, emodin promoted afatinib-induced apoptosis by inhibiting the Stat3 signaling pathway. Meanwhile, siRNAs against Stat3 significantly increased the apoptosis of pancreatic cancer cells. EGFR inhibitor promoted phosphorylation of Stat3 in pancreatic cancer cells. Interestingly, emodin combined with EGFR inhibitor inhibited the proliferation of pancreatic cancer cells in vitro. The tumor xenograft mice model was further confirmed that emodin possessed a synergy anticancer effect with afatinib on pancreatic cancer cells by regulating the Stat3 expression. Conclusion These results indicate that the combination of emodin with EGFR inhibitor is an effective therapeutic strategy to sensitize human pancreatic cancer.
Collapse
Affiliation(s)
- Zhaohong Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Hui Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Jingjing Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Zhong Hong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Yi Liao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Qiyu Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Hongfei Tong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| |
Collapse
|
166
|
Liu Y, Liu L, Zhu F. Therapies targeting the signal pathways of pheochromocytoma and paraganglioma. Onco Targets Ther 2019; 12:7227-7241. [PMID: 31564906 PMCID: PMC6732510 DOI: 10.2147/ott.s219056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022] Open
Abstract
Pheochromocytoma and paraganglioma (PCC/PGL) are rare tumors that originate from adrenal or extra-adrenal chromaffin cells. A significant clinical manifestation of PCC/PGL is that the tumors release a large number of catecholamines continuously or intermittently, causing persistent or paroxysmal hypertension and multiple organ functions and metabolic disorders. Though majority of the tumors are non-metastatic, about 10% are metastatic tumors. Others even have estimated that the rate of metastasis may be as high as 26%. The disease is most common in individuals ranging from 20 to 50 years old and the age of onset strongly depends on the genetic background: patients with germline mutations in susceptible genes have an earlier presentation. Besides, there are no significant differences in the incidence between men and women. At present, traditional treatments, such as surgical treatment, radionuclide therapy, and chemotherapy are still prior choices. However, they all have several deficiencies so that the effects are not extremely significant. Contemporary studies have shown that hypoxia-associated signal pathway, associated with the cluster 1 genes of PCC/PGL, and increased kinase signal pathways, associated with the cluster 2 genes of PCC/PGL, are the two major pathways involving the molecular pathogenesis of PCC/PGL, indicating that PCC/PGL can be treated with targeted therapies in emerging trends. This article reviews the progress of molecular-targeted therapies for PCC/PGL.
Collapse
Affiliation(s)
- Yalin Liu
- Department of Biochemistry and Molecular Biology, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Longfei Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Feizhou Zhu
- Department of Biochemistry and Molecular Biology, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
167
|
Dokla EME, Fang CS, Abouzid KAM, Chen CS. 1,2,4-Oxadiazole derivatives targeting EGFR and c-Met degradation in TKI resistant NSCLC. Eur J Med Chem 2019; 182:111607. [PMID: 31446247 DOI: 10.1016/j.ejmech.2019.111607] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 11/15/2022]
Abstract
Development of small-molecule agents with the ability to facilitate oncoprotein degradation has emerged as a promising strategy for cancer therapy. Since EGFR and c-Met are both implicated in oncogenesis and tumor progression, we initiated a screening program by using an in-house library to identify agents capable of inducing the concomitant suppression of EGFR and c-Met expression, which led to the identification of compound 1, a 1,2,4-oxadiazole derivative. Based on the scaffold of 1, we developed a series of derivatives to assess their efficacies in facilitating the downregulation of EGFR and c-Met, among which compound 48 represented the optimal agent. 48 showed equipotent antiproliferative activity against a panel of five NSCLC cell lines with different EGFR mutational status (IC50 = 0.2-0.6 μM), while the same panel exhibited differential sensitivity to different EGFR kinase inhibitors tested. Cell cycle analysis indicated that the antiproliferative activity of 48 was associated with its ability to cause G2/M arrest and, to a lesser extent, apoptosis. Western blot and RT-PCR analyses revealed that 48 facilitated the downregulation of EGFR and c-Met at the protein level. In vivo data showed that oral administration of 48 was effective in suppressing gefitinib-resistant H1975 xenograft tumor growth in nude mice, and at a suboptimal dose, could sensitize H1975 tumors to gefitinib. Based on these findings, 48 represents a promising candidate for further development to target EGFR TKI-resistant NSCLC via dual inhibition of EGFR and c-Met oncoproteins.
Collapse
Affiliation(s)
- Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Chun-Sheng Fang
- Institute of New Drug Development, China Medical University, Taichung, 40402, Taiwan
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt; Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt.
| | - Ching S Chen
- Institute of New Drug Development, China Medical University, Taichung, 40402, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40447, Taiwan.
| |
Collapse
|