151
|
Datta RR, Schran S, Persa OD, Aguilar C, Thelen M, Lehmann J, Garcia-Marquez MA, Wennhold K, Preugszat E, Zentis P, von Bergwelt-Baildon MS, Quaas A, Bruns CJ, Kurschat C, Mauch C, Löser H, Stippel DL, Schlößer HA. Post-transplant Malignancies Show Reduced T-cell Abundance and Tertiary Lymphoid Structures as Correlates of Impaired Cancer Immunosurveillance. Clin Cancer Res 2022; 28:1712-1723. [PMID: 35191474 DOI: 10.1158/1078-0432.ccr-21-3746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/11/2021] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE An increased risk to develop cancer is one of the most challenging negative side effects of long-term immunosuppression in organ transplant recipients and impaired cancer immunosurveillance is assumed as underlying mechanism. This study aims to elucidate transplant-related changes in the tumor immune microenvironment (TME) of cancer. EXPERIMENTAL DESIGN Data from 123 organ transplant recipients (kidney, heart, lung, and liver) were compared with historic data from non-immunosuppressed patients. Digital image analysis of whole-section slides was used to assess abundance and spatial distribution of T cells and tertiary lymphoid structures (TLS) in the TME of 117 tumor samples. Expression of programmed cell death 1 ligand 1 (PD-L1) and human-leucocyte-antigen class I (HLA-I) was assessed on tissue microarrays. RESULTS We found a remarkably reduced immune infiltrate in the center tumor (CT) regions as well as the invasive margins (IM) of post-transplant cancers. These differences were more pronounced in the IM than in the CT and larger for CD8+ T cells than for CD3+ T cells. The Immune-score integrating results from CT and IM was also lower in transplant recipients. Density of TLS was lower in cancer samples of transplant recipients. The fraction of samples with PD-L1 expression was higher in controls whereas decreased expression of HLA-I was more common in transplant recipients. CONCLUSIONS Our study demonstrates the impact of immunosuppression on the TME and supports impaired cancer immunosurveillance as important cause of post-transplant cancer. Modern immunosuppressive protocols and cancer therapies should consider the distinct immune microenvironment of post-transplant malignancies.
Collapse
Affiliation(s)
- Rabi R Datta
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simon Schran
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Oana-Diana Persa
- Department of Dermatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology, CIO ABCD Aachen, Bonn, Cologne, Düsseldorf
| | - Claire Aguilar
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Thelen
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jonas Lehmann
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maria A Garcia-Marquez
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kerstin Wennhold
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ella Preugszat
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Peter Zentis
- Cluster of Excellence for Aging-Associated Diseases, CECAD Imaging Facility Cologne, University of Cologne, Cologne, Germany
| | | | - Alexander Quaas
- Center for Integrated Oncology, CIO ABCD Aachen, Bonn, Cologne, Düsseldorf
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christiane J Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology, CIO ABCD Aachen, Bonn, Cologne, Düsseldorf
| | - Christine Kurschat
- Center for Integrated Oncology, CIO ABCD Aachen, Bonn, Cologne, Düsseldorf
- Department of Internal Medicine II, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Cornelia Mauch
- Department of Dermatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology, CIO ABCD Aachen, Bonn, Cologne, Düsseldorf
| | - Heike Löser
- Center for Integrated Oncology, CIO ABCD Aachen, Bonn, Cologne, Düsseldorf
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Dirk L Stippel
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology, CIO ABCD Aachen, Bonn, Cologne, Düsseldorf
| | - Hans A Schlößer
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology, CIO ABCD Aachen, Bonn, Cologne, Düsseldorf
| |
Collapse
|
152
|
Sandker GGW, Adema G, Molkenboer-Kuenen J, Wierstra P, Bussink J, Heskamp S, Aarntzen EHJG. PD-L1 Antibody Pharmacokinetics and Tumor Targeting in Mouse Models for Infectious Diseases. Front Immunol 2022; 13:837370. [PMID: 35359962 PMCID: PMC8960984 DOI: 10.3389/fimmu.2022.837370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Programmed death-ligand 1 (PD-L1) regulates immune homeostasis by promoting T-cell exhaustion. It is involved in chronic infections and tumor progression. Nuclear imaging using radiolabeled anti-PD-L1 antibodies can monitor PD-L1 tissue expression and antibody distribution. However, physiological PD-L1 can cause rapid antibody clearance from blood at imaging doses. Therefore, we hypothesized that inflammatory responses, which can induce PD-L1 expression, affect anti-PD-L1 antibody distribution. Here, we investigated the effects of three different infectious stimuli on the pharmacokinetics and tumor targeting of radiolabeled anti-PD-L1 antibodies in tumor-bearing mice. Materials/Methods Anti-mouse-PD-L1 and isotype control antibodies were labelled with indium-111 ([111In]In-DTPA-anti-mPD-L1 and [111In]In-DTPA-IgG2a, respectively). We evaluated the effect of inflammatory responses on the pharmacokinetics of [111In]In-DTPA-anti-mPD-L1 in RenCa tumor-bearing BALB/c mice in three conditions: lipopolysaccharide (LPS), local Staphylococcus aureus, and heat-killed Candida albicans. After intravenous injection of 30 or 100 µg of [111In]In-DTPA-anti-mPD-L1 or [111In]In-DTPA-IgG2a, blood samples were collected 1, 4, and 24 h p.i. followed by microSPECT/CT and ex vivo biodistribution analyses. PD-L1 expression, neutrophil, and macrophage infiltration in relevant tissues were evaluated immunohistochemically. Results In 30 µg of [111In]In-DTPA-anti-mPD-L1 injected tumor-bearing mice the LPS-challenge significantly increased lymphoid organ uptake compared with vehicle controls (spleen: 49.9 ± 4.4%ID/g versus 21.2 ± 6.9%ID/g, p < 0.001), resulting in lower blood levels (3.6 ± 1.6%ID/g versus 11.5 ± 7.2%ID/g; p < 0.01) and reduced tumor targeting (8.1 ± 4.5%ID/g versus 25.2 ± 5.2%ID/g, p < 0.001). Local S. aureus infections showed high PD-L1+ neutrophil influx resulting in significantly increased [111In]In-DTPA-anti-mPD-L1 uptake in affected muscles (8.6 ± 2.6%ID/g versus 1.7 ± 0.8%ID/g, p < 0.001). Heat-killed Candida albicans (Hk-C. albicans) challenge did not affect pharmacokinetics. Increasing [111In]In-DTPA-anti-mPD-L1 dose to 100 µg normalized blood clearance and tumor uptake in LPS-challenged mice, although lymphoid organ uptake remained higher. Infectious stimuli did not affect [111In]In-DTPA-IgG2a pharmacokinetics. Conclusions This study shows that anti-PD-L1 antibody pharmacokinetics and tumor targeting can be significantly altered by severe inflammatory responses, which can be compensated for by increasing the tracer dose. This has implications for developing clinical PD-L1 imaging protocols in onco-immunology. We further demonstrate that radiolabeled anti-PD-L1 antibodies can be used to evaluate PD-L1 expression changes in a range of infectious diseases. This supports the exploration of using these techniques to assess hosts' responses to infectious stimuli.
Collapse
Affiliation(s)
- Gerwin G W Sandker
- Department of Medical Imaging, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gosse Adema
- Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Janneke Molkenboer-Kuenen
- Department of Medical Imaging, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Wierstra
- Department of Medical Imaging, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Erik H J G Aarntzen
- Department of Medical Imaging, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
153
|
In Situ PD-L1 Expression in Oral Squamous Cell Carcinoma Is Induced by Heterogeneous Mechanisms among Patients. Int J Mol Sci 2022; 23:ijms23084077. [PMID: 35456895 PMCID: PMC9029520 DOI: 10.3390/ijms23084077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/10/2022] Open
Abstract
The expression of programmed death ligand-1 (PD-L1) is controlled by complex mechanisms. The elucidation of the molecular mechanisms of PD-L1 expression is important for the exploration of new insights into PD-1 blockade therapy. Detailed mechanisms of the in situ expression of PD-L1 in tissues of oral squamous cell carcinomas (OSCCs) have not yet been clarified. We examined the mechanisms of PD-L1 expression focusing on the phosphorylation of downstream molecules of epidermal growth factor (EGF) and interferon gamma (IFN-γ) signaling in vitro and in vivo by immunoblotting and multi-fluorescence immunohistochemistry (MF-IHC), respectively. The in vitro experiments demonstrated that PD-L1 expression in OSCC cell lines is upregulated by EGF via the EGF receptor (EGFR)/PI3K/AKT pathway, the EGFR/STAT1 pathway, and the EGFR/MEK/ERK pathway, and by IFN-γ via the JAK2/STAT1 pathway. MF-IHC demonstrated that STAT1 and EGFR phosphorylation was frequently shown in PD-L1-positive cases and STAT1 phosphorylation was correlated with lymphocyte infiltration and EGFR phosphorylation. Moreover, the phosphorylation pattern of the related molecules in PD-L1-positive cells differed among the cases investigated. These findings indicate that PD-L1 expression mechanisms differ depending on the tissue environment and suggest that the examination of the tissue environment and molecular alterations of cancer cells affecting PD-L1 expression make it necessary for each patient to choose the appropriate combination drugs for PD-1 blockade cancer treatment.
Collapse
|
154
|
Tang X, Chen F, Xie LC, Liu SX, Mai HR. Targeting metabolism: A potential strategy for hematological cancer therapy. World J Clin Cases 2022; 10:2990-3004. [PMID: 35647127 PMCID: PMC9082716 DOI: 10.12998/wjcc.v10.i10.2990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/01/2021] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Most hematological cancer-related relapses and deaths are caused by metastasis; thus, the importance of this process as a target of therapy should be considered. Hematological cancer is a type of cancer in which metabolism plays an essential role in progression. Therefore, we are required to block fundamental metastatic processes and develop specific preclinical and clinical strategies against those biomarkers involved in the metabolic regulation of hematological cancer cells, which do not rely on primary tumor responses. To understand progress in this field, we provide a summary of recent developments in the understanding of metabolism in hematological cancer and a general understanding of biomarkers currently used and under investigation for clinical and preclinical applications involving drug development. The signaling pathways involved in cancer cell metabolism are highlighted and shed light on how we could identify novel biomarkers involved in cancer development and treatment. This review provides new insights into biomolecular carriers that could be targeted as anticancer biomarkers.
Collapse
Affiliation(s)
- Xue Tang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Fen Chen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Li-Chun Xie
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Si-Xi Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Hui-Rong Mai
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| |
Collapse
|
155
|
IL-3 signalling in the tumour microenvironment shapes the immune response via tumour endothelial cell-derived extracellular vesicles. Pharmacol Res 2022; 179:106206. [DOI: 10.1016/j.phrs.2022.106206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/17/2022]
|
156
|
Kong SK, Kim BS, Lim H, Kim HJ, Kim YS. Dissection of PD-L1 promoter reveals differential transcriptional regulation of PD-L1 in VHL mutant clear cell renal cell carcinoma. J Transl Med 2022; 102:352-362. [PMID: 34789838 DOI: 10.1038/s41374-021-00703-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) is constitutively expressed by hypoxia-inducible factor 2α (HIF2α). It can be induced by interferon gamma (IFNγ) signaling in clear cell renal cell carcinoma (ccRCC). Clinical trials of metastatic ccRCCs have suggested that a canonical IFNγ signature is a better biomarker for therapeutic response to immune checkpoint inhibitors (ICIs) than PD-L1 expression levels in tumor cells. To understand the therapeutic response to ICIs according to PD-L1 expression levels, we analyzed transcriptional regulation of the PD-L1 promoter by HIF2α and IFNγ-inducible interferon regulatory factor-1 (IRF-1) in ccRCC cells. Here, we present two ccRCC cell models showing differential PD-L1 expression levels in response to IFNγ and hypoxia. Analysis of The Cancer Genome Atlas RNA-sequencing data revealed that PD-L1 expression correlated with JAK2 and STAT1 expression of the canonical IFNγ signature in ccRCC tissues. Upon IFNγ stimulation, PD-L1 was induced by sequential activation of JAK2/STAT1/IRF-1 signaling in both WT- and Mut- VHL ccRCC cells. IFNγ activated the IRF-1α site of the PD-L1 promoter. The IFNγ-mediated increase of PD-L1 expression in Mut-VHL cells was 4.8-fold greater than that in WT-VHL cells. Under normoxia condition, PD-L1 expression in Mut-VHL cells was significantly higher than that in WT-VHL cells due to high basal HIF2α expression. Under hypoxia condition, PD-L1 expression in WT-VHL cells was induced up to 1.8-fold through activation of hypoxia-response elements 2 and 3. In contrast, although PD-L1 in Mut-VHL cells was already highly expressed in the basal state through activation of hypoxia-response elements 2, 3, and 4, it was no longer induced by hypoxia. In conclusion, Mut-VHL ccRCC cells displayed higher PD-L1 expression due to high basal HIF2α expression and a stronger response to IFNγ stimulation than WT-VHL cells. The fact that HIF2α antagonists can potentially reduce PD-L1 expression levels should be considered in ICI combination therapy.
Collapse
Affiliation(s)
- Su-Kang Kong
- Department of Pathology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung Soo Kim
- Department of Pathology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyangsoon Lim
- Department of Pathology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ji Kim
- Department of Pathology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Young-Sik Kim
- Department of Pathology, Korea University College of Medicine, Seoul, Republic of Korea. .,Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea.
| |
Collapse
|
157
|
Nihira NT, Miki Y. Regulation of Intrinsic Functions of PD-L1 by Post-Translational Modification in Tumors. Front Oncol 2022; 12:825284. [PMID: 35402280 PMCID: PMC8984111 DOI: 10.3389/fonc.2022.825284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor cells are eliminated by the immune system, including T lymphocytes and natural killer cells; however, many types of tumor cells acquire the immune tolerance by inhibiting T-cell activation and functions via immune checkpoint molecules. Immunotherapy targeting immune checkpoint molecules such as Programmed death receptor 1 (PD-1)/Programmed death ligand 1 (PD-L1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) have shown successful outcomes for multiple cancer treatments, however some patients show the lack of durable responses. Thus, discovering the chemical compounds or drugs manipulating the expression or function of immune checkpoint molecules are anticipated to overcome the drug resistance of immune checkpoint inhibitors. Function of inhibitory immune checkpoint molecules is often dysregulated by the transcriptional and post-translational levels in tumors. Here, this review focuses on the post-translational modification of intrinsic PD-L1 functions and regulators for PD-L1 transcription.
Collapse
Affiliation(s)
- Naoe Taira Nihira
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
- *Correspondence: Naoe Taira Nihira,
| | - Yoshio Miki
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
158
|
Bruns IB, Beltman JB. Quantifying the contribution of transcription factor activity, mutations and microRNAs to CD274 expression in cancer patients. Sci Rep 2022; 12:4374. [PMID: 35289334 PMCID: PMC8921511 DOI: 10.1038/s41598-022-08356-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
Immune checkpoint inhibitors targeting the programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) axis have been remarkably successful in inducing tumor remissions in several human cancers, yet a substantial number of patients do not respond to treatment. Because this may be partially due to the mechanisms giving rise to high PD-L1 expression within a patient, it is highly relevant to fully understand these mechanisms. In this study, we conduct a bioinformatic analysis to quantify the relative importance of transcription factor (TF) activity, microRNAs (miRNAs) and mutations in determining PD-L1 (CD274) expression at mRNA level based on data from the Cancer Genome Atlas. To predict individual CD274 levels based on TF activity, we developed multiple linear regression models by taking the expression of target genes of the TFs known to directly target PD-L1 as independent variables. This analysis showed that IRF1, STAT1, NFKB and BRD4 are the most important regulators of CD274 expression, explaining its mRNA levels in 90–98% of the patients. Because the remaining patients had high CD274 levels independent of these TFs, we next investigated whether mutations associated with increased CD274 mRNA levels, and low levels of miRNAs associated with negative regulation of CD274 expression could cause high CD274 levels in these patients. We found that mutations or miRNAs offered an explanation for high CD274 levels in 81–100% of the underpredicted patients. Thus, CD274 expression is largely explained by TF activity, and the remaining unexplained cases can largely be explained by mutations or low miRNA abundance.
Collapse
Affiliation(s)
- Imke B Bruns
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Joost B Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
159
|
Abstract
The paradigm of surface-expressed programmed death ligand 1 (PDL1) signalling to immune cell programmed death 1 (PD1) to inhibit antitumour immunity has helped to develop effective and revolutionary immunotherapies using antibodies blocking these cell-extrinsic interactions. The recent discovery of cancer cell-intrinsic PDL1 signals has broadened understanding of pathologic tumour PDL1 signal consequences that now includes control of tumour growth and survival pathways, stemness, immune effects, DNA damage responses and gene expression regulation. Many such effects are PD1-independent. These insights demonstrate that the prevailing cell-extrinsic PDL1 signalling paradigm is useful, but incomplete in important respects. This Perspective discusses historical and recent advances in understanding cancer cell-intrinsic PDL1 signals, mechanisms for signal controls and important immunopathologic consequences including resistance to cytotoxic agents, targeted small molecules and immunotherapies. Cancer cell-intrinsic PDL1 signals present novel drug discovery targets and also have potential as reliable treatment response biomarkers. Cancer cell-intrinsic PD1 signals and cell-intrinsic PDL1 signals in non-cancer cells are discussed briefly, as are PDL1 signals from soluble and vesicle-bound PDL1 and PDL1 isoforms. We conclude with suggestions for addressing the most pressing challenges and opportunities in this rapidly developing field.
Collapse
Affiliation(s)
- Anand V R Kornepati
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ratna K Vadlamudi
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, USA
- MD Anderson Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Tyler J Curiel
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, USA.
- MD Anderson Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
160
|
Jin S, Liu C, Shi G, Mu Y, Zhang H, Zhu Y, Su H, Ye D. IL-1A is associated with postoperative survival and immune contexture in clear cell renal cell carcinoma. Urol Oncol 2022; 40:111.e1-111.e9. [DOI: 10.1016/j.urolonc.2021.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
|
161
|
Koukourakis IM, Giatromanolaki A, Mitrakas A, Koukourakis MI. Loss of HLA-class-I expression in non-small-cell lung cancer: Association with prognosis and anaerobic metabolism. Cell Immunol 2022; 373:104495. [DOI: 10.1016/j.cellimm.2022.104495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 01/21/2023]
|
162
|
Yin Y, Liu B, Cao Y, Yao S, Liu Y, Jin G, Qin Y, Chen Y, Cui K, Zhou L, Bian Z, Fei B, Huang S, Huang Z. Colorectal Cancer-Derived Small Extracellular Vesicles Promote Tumor Immune Evasion by Upregulating PD-L1 Expression in Tumor-Associated Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:2102620. [PMID: 35356153 PMCID: PMC8948581 DOI: 10.1002/advs.202102620] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/19/2021] [Indexed: 05/21/2023]
Abstract
Tumor-associated macrophages (TAMs) are one of the most abundant cell types in colorectal cancer (CRC) tumor microenvironment (TME). Recent studies observed complicated "cross-talks" between cancer cells and macrophages in TME. However, the underlying mechanisms are still poorly elucidated. Here, PD-L1 levels are very low in CRC cells but highly abundant in TAMs, and a specific PD-L1+CD206+ macrophage subpopulation are identified, which is induced by tumor cells and associated with a poor prognosis. Mechanistic investigations reveal that CRC cells can secrete small extracellular vesicles (sEVs) taken up by macrophages that induce M2 like polarization and PD-L1 expression, resulting in increased PD-L1+CD206+ macrophage abundance and decreased T cell activity in CRC TME. sEV-derived miR-21-5p and miR-200a are identified as key signaling molecules mediating the regulatory effects of CRC on macrophages. Further studies reveal that CRC-derived miR-21-5p and miR-200a synergistically induces macrophage M2 like polarization and PD-L1 expression by regulating the PTEN/AKT and SCOS1/STAT1 pathways, resulting in decreased CD8+ T cell activity and increased tumor growth. This study suggests that inhibiting the secretion of specific sEV-miRNAs from CRC and targeting PD-L1 in TAMs may serve as novel methods for CRC treatment as well as a sensitization method for anti-PD-L1 therapy in CRC.
Collapse
Affiliation(s)
- Yuan Yin
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi214062China
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Bingxin Liu
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi214062China
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Yulin Cao
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi214062China
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Surui Yao
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi214062China
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Yuhang Liu
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi214062China
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Guoying Jin
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi214062China
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Yan Qin
- Department of PathologyAffiliated Hospital of Jiangnan UniversityWuxiJiangsu214062China
| | - Ying Chen
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi214062China
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Kaisa Cui
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi214062China
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Leyuan Zhou
- Department of Radiation OncologyAffiliated Hospital of Jiangnan UniversityWuxi214062China
| | - Zehua Bian
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi214062China
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Bojian Fei
- Department of Gastrointestinal SurgeryAffiliated Hospital of Jiangnan UniversityWuxi214062China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - Zhaohui Huang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi214062China
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxi214122China
| |
Collapse
|
163
|
Alhesa A, Awad H, Bloukh S, Al-Balas M, El-Sadoni M, Qattan D, Azab B, Saleh T. PD-L1 expression in breast invasive ductal carcinoma with incomplete pathological response to neoadjuvant chemotherapy. Int J Immunopathol Pharmacol 2022; 36:3946320221078433. [PMID: 35225058 PMCID: PMC8891930 DOI: 10.1177/03946320221078433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives: To investigate the expression of programmed death-ligand 1 (PD-L1) in breast cancer in association with incomplete pathological response (PR) to neoadjuvant chemotherapy (NAC). Methods PD-L1 expression was evaluated using immunohistochemistry in post-operative, post-NAC samples of 60 patients (n = 60) diagnosed with breast invasive ductal carcinoma with incomplete PR to NAC, including 31 matched pre-NAC and post-NAC samples (n = 31). PD-L1 protein expression was assessed using three scoring approaches, including the tumor proportion score (TPS), the immune cell score (ICS), and the combined tumor and immune cell score (combined positive score, CPS) with a 1% cut-off. Results In the post-operative, post-NAC samples (n = 60), positive expression rate of PD-L1 was observed in 18.3% (11/60) of cases by TPS, 31.7% (19/60) by ICS, and 25% (15/60) by CPS. In matched samples, positive expression rate of PD-L1 was observed in 19.3% (6/31) of patients by TPS, 51.6% (16/31) by ICS, and 19.3% (6/31) by CPS in pre-NAC specimens, while it was observed in 22.6% (7/31) of matched post-NAC samples by TPS, 22.6% (7/31) by ICS, and 19.3% (6/31) by CPS. In the matched samples, there was a significant decrease in PD-L1 immunoexpression using ICS in post-NAC specimens (McNemar’s, p = 0.020), while no significant differences were found using TPS and CPS between pre- and post-NAC samples (p = 1.000, p = 0.617; respectively). PD-L1 immunoexpression determined by TPS or CPS was only significantly associated with ER status (p = 0.022, p = 0.021; respectively), but not with other clinicopathological variables. We could not establish a correlation between PD-L1 expression and the overall survival rate (p > 0.05). There were no significant differences in the tumor infiltrating lymphocytes count between the paired pre- and post-NAC samples (t = 0.581, p = 0.563 or Wilcoxon’s Signed Rank test; z = -0.625, p = 0.529). Conclusion Our findings indicate that PD-L1 protein expression in infiltrating immune cells was significantly reduced in breast tumors that developed incomplete PR following the exposure to NAC.
Collapse
Affiliation(s)
- Ahmad Alhesa
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Heyam Awad
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Sarah Bloukh
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Mahmoud Al-Balas
- Department of General and Specialized Surgery, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Mohammed El-Sadoni
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Duaa Qattan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Bilal Azab
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
164
|
Bonam SR, Chauvin C, Mathew MJ, Bayry J. IFN-γ Induces PD-L1 Expression in Primed Human Basophils. Cells 2022; 11:801. [PMID: 35269423 PMCID: PMC8909048 DOI: 10.3390/cells11050801] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Programmed death-ligand 1 (PD-L1) plays a key role in maintaining immune tolerance and also in immune evasion of cancers and pathogens. Though the identity of stimuli that induce PD-L1 in various human innate cells and their function are relatively well studied, data on the basophils remain scarce. In this study, we have identified one of the factors, such as IFN-γ, that induces PD-L1 expression in human basophils. Interestingly, we found that basophil priming by IL-3 is indispensable for IFN-γ-induced PD-L1 expression in human basophils. However, priming by other cytokines including granulocyte-macrophage colony-stimulating factor (GM-CSF) and thymic stromal lymphopoietin (TSLP) was dispensable. Analyses of a published microarray data set on IL-3-treated basophils indicated that IL-3 enhances IFNGR2, one of the chains of the IFNGR heterodimer complex, and CD274, thus providing a mechanistic insight into the role of IL-3 priming in IFN-γ-induced PD-L1 expression in human basophils.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France; (S.R.B.); (C.C.)
| | - Camille Chauvin
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France; (S.R.B.); (C.C.)
| | | | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France; (S.R.B.); (C.C.)
- Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad 678623, India
| |
Collapse
|
165
|
Hu R, Zhou B, Chen Z, Chen S, Chen N, Shen L, Xiao H, Zheng Y. PRMT5 Inhibition Promotes PD-L1 Expression and Immuno-Resistance in Lung Cancer. Front Immunol 2022; 12:722188. [PMID: 35111150 PMCID: PMC8801487 DOI: 10.3389/fimmu.2021.722188] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Protein arginine transferase 5 (PRMT5) has been implicated as an important modulator of tumorigenesis as it promotes tumor cell proliferation, invasion, and metastasis. Studies have largely focused on PRMT5 regulating intrinsic changes in tumors; however, the effects of PRMT5 on the tumor microenvironment and particularly immune cells are largely unknown. Here we found that targeting PRMT5 by genetic or pharmacological inhibition reduced lung tumor progression in immunocompromised mice; however, the effects were weakened in immunocompetent mice. PRMT5 inhibition not only decreased tumor cell survival but also increased the tumor cell expression of CD274 in vitro and in vivo, which activated the PD1/PD-L1 axis and eliminated CD8+T cell antitumor immunity. Mechanistically, PRMT5 regulated CD274 gene expression through symmetric dimethylation of histone H4R3, increased deposition of H3R4me2s on CD274 promoter loci, and inhibition of CD274 gene expression. Targeting PRMT5 reduced this inhibitory effect and promoted CD274 expression in lung cancer. However, PRMT5 inhibitors represent a double-edged sword as they may selectively kill cancer cells but may also disrupt the antitumor immune response. The combination of PRMT5 inhibition and ani-PD-L1 therapy resulted in an increase in the number and enhanced the function of tumor-infiltrating T cells. Our findings address an unmet clinical need in which combining PRMT5 inhibition with anti-PD-L1 therapy could be a promising strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Rui Hu
- Department of Thoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingqian Zhou
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheyi Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyu Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningdai Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisong Shen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Xin Hua Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Xiao
- Department of Thoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingxia Zheng
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
166
|
Vogel A, Martin K, Soukup K, Halfmann A, Kerndl M, Brunner JS, Hofmann M, Oberbichler L, Korosec A, Kuttke M, Datler H, Kieler M, Musiejovsky L, Dohnal A, Sharif O, Schabbauer G. JAK1 signaling in dendritic cells promotes peripheral tolerance in autoimmunity through PD-L1-mediated regulatory T cell induction. Cell Rep 2022; 38:110420. [PMID: 35196494 DOI: 10.1016/j.celrep.2022.110420] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/17/2021] [Accepted: 02/01/2022] [Indexed: 11/25/2022] Open
Abstract
Dendritic cells (DCs) induce peripheral T cell tolerance, but cell-intrinsic signaling cascades governing their stable tolerogenesis remain poorly defined. Janus Kinase 1 (JAK1) transduces cytokine-receptor signaling, and JAK inhibitors (Jakinibs), including JAK1-specific filgotinib, break inflammatory cycles in autoimmunity. Here, we report in heterogeneous DC populations of multiple secondary lymphoid organs that JAK1 promotes peripheral T cell tolerance during experimental autoimmune encephalomyelitis (EAE). Mice harboring DC-specific JAK1 deletion exhibit elevated peripheral CD4+ T cell expansion, less regulatory T cells (Tregs), and worse EAE outcomes, whereas adoptive DC transfer ameliorates EAE pathogenesis by inducing peripheral Tregs, programmed cell death ligand 1 (PD-L1) dependently. This tolerogenic program is substantially reduced upon the transfer of JAK1-deficient DCs. DC-intrinsic IFN-γ-JAK1-STAT1 signaling induces PD-L1, which is required for DCs to convert CD4+ T cells into Tregs in vitro and attenuated upon JAK1 deficiency and filgotinib treatment. Thus, DC-intrinsic JAK1 promotes peripheral tolerance, suggesting potential unwarranted DC-mediated effects of Jakinibs in autoimmune diseases.
Collapse
Affiliation(s)
- Andrea Vogel
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | | | - Klara Soukup
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Angela Halfmann
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Martina Kerndl
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Julia S Brunner
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Melanie Hofmann
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Laura Oberbichler
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Ana Korosec
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Mario Kuttke
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Hannes Datler
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Markus Kieler
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Laszlo Musiejovsky
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | | | - Omar Sharif
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria.
| | - Gernot Schabbauer
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria.
| |
Collapse
|
167
|
Zhang Y, Zhu S, Du Y, Xu F, Sun W, Xu Z, Wang X, Qian P, Zhang Q, Feng J, Xu Y. RelB upregulates PD-L1 and exacerbates prostate cancer immune evasion. J Exp Clin Cancer Res 2022; 41:66. [PMID: 35177112 PMCID: PMC8851785 DOI: 10.1186/s13046-022-02243-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/31/2021] [Indexed: 11/10/2022] Open
Abstract
Background
The interaction between programmed death receptor (PD-1) and its ligand (PD-L1) is essential for suppressing activated T-lymphocytes. However, the precise mechanisms underlying PD-L1 overexpression in tumours have yet to be fully elucidated. Here, we describe that RelB participates in the immune evasion of prostate cancer (PCa) via cis/trans transcriptional upregulation of PD-L1.
Methods
Based on transcriptome results, RelB was manipulated in multiple human and murine PCa cell lines. Activated CD4+ and CD8+ T cells were cocultured with PCa cells with different levels of RelB to examine the effect of tumourous RelB on T cell immunity. Male mice were injected with murine PCa cells to validate the effect of RelB on the PD-1/PD-L1-mediated immune checkpoint using both tumour growth and metastatic experimental models.
Results
PD-L1 is uniquely expressed at a high level in PCa with high constitutive RelB and correlates with the patients’ Gleason scores. Indeed, a high level of PD-L1 is associated with RelB nuclear translocation in AR-negative aggressive PCa cells. Conversely, the silencing of RelB in advanced PCa cells resulted in reduced PD-L1 expression and enhanced susceptibility of PCa cells to the T cell immune response in vitro and in vivo. Mechanistically, a proximal NF-κB enhancer element was identified in the core promoter region of the human CD274 gene, which is responsible for RelB-mediated PD-L1 transcriptional activation. This finding provides an informative insight into immune checkpoint blockade by administering RelB within the tumour microenvironment.
Conclusion
This study deciphers the molecular mechanism by which tumourous RelB contributes to immune evasion by inhibiting T cell immunity via the amplification of the PD-L1/PD-1-mediated immune checkpoint. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02243-2.
Collapse
Affiliation(s)
- Yanyan Zhang
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Shuyi Zhu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, 211166, China
| | - Yuanyuan Du
- Department of Medical Oncology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Fan Xu
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Wenbo Sun
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Zhi Xu
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Xiumei Wang
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Peipei Qian
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Qin Zhang
- Department of Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China.
| | - Jifeng Feng
- Department of Medical Oncology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China.
| | - Yong Xu
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
168
|
Sumitomo R, Huang CL, Fujita M, Cho H, Date H. Differential expression of PD‑L1 and PD‑L2 is associated with the tumor microenvironment of TILs and M2 TAMs and tumor differentiation in non‑small cell lung cancer. Oncol Rep 2022; 47:73. [PMID: 35169863 PMCID: PMC8867258 DOI: 10.3892/or.2022.8284] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
To improve the treatment strategy of immune-checkpoint inhibitors for non-small cell lung cancer (NSCLC), a comprehensive analysis of programmed death-ligand (PD-L)1 and PD-L2 expression is clinically important. The expression of PD-L1 and PD-L2 on both tumor cells (TCs) and tumor-infiltrating immune cells (ICs) was investigated, with respect to tumor-infiltrating lymphocytes (TILs) and M2 tumor-associated macrophages (TAMs), which are key components of the tumor microenvironment, in 175 patients with resected NSCLC. The TIL and M2 TAM densities were associated with the expression of PD-L1 on the two TCs (both P<0.0001) and ICs (both P<0.0001). The TIL and M2 TAM densities were also associated with the expression of PD-L2 on both TCs (P=0.0494 and P=0.0452, respectively) and ICs (P=0.0048 and P=0.0125, respectively). However, there was no correlation between the percentage of PD-L1-positive TCs and the percentage of PD-L2-positive TCs (r=0.019; P=0.8049). Meanwhile, tumor differentiation was significantly associated with the PD-L1 expression on TCs and ICs (P=0.0002 and P<0.0001, respectively). By contrast, tumor differentiation was inversely associated with the PD-L2 expression on both TCs and ICs (P=0.0260 and P=0.0326, respectively). In conclusion, the combined evaluation of PD-L1 and PD-L2 expression could be clinically important in the treatment strategy of immune-checkpoint inhibitors in patients with NSCLC. In particular, the evaluation of PD-L2 expression may be necessary for patients with PD-L1-negative NSCLC.
Collapse
Affiliation(s)
- Ryota Sumitomo
- Department of Thoracic Surgery, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Kita‑ku, Osaka 530‑8480, Japan
| | - Cheng-Long Huang
- Department of Thoracic Surgery, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Kita‑ku, Osaka 530‑8480, Japan
| | - Masaaki Fujita
- Department of Oncology, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Kita‑ku, Osaka 530‑8480, Japan
| | - Hiroyuki Cho
- Department of Thoracic Surgery, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Kita‑ku, Osaka 530‑8480, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Shogoin, Sakyo‑ku, Kyoto 606‑8507, Japan
| |
Collapse
|
169
|
Zheng Y, Han L, Chen Z, Li Y, Zhou B, Hu R, Chen S, Xiao H, Ma Y, Xie G, Yang J, Ding X, Shen L. PD-L1+CD8+ T cells enrichment in lung cancer exerted regulatory function and tumor-promoting tolerance. iScience 2022; 25:103785. [PMID: 35146396 PMCID: PMC8819393 DOI: 10.1016/j.isci.2022.103785] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/09/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy targeting checkpoint blockade to rescue T cells from exhaustion has become an essential therapeutic strategy in treating cancers. Till now, little is known about the PD-L1 graphic pattern and characteristics in CD8+ T cells. We combined cytometry by time-of-flight (CyTOF) and imaging mass cytometry (IMC) approaches to analyze CD8+ T cells from primary lung cancers and discovered that PD-L1+CD8+ T cells were enriched in tumor lesions, spatially localized with PD-1+CD8+ T cells. Furthermore, PD-L1+CD8+ T cells exerted regulatory functions that inhibited CD8+ T cells proliferation and cytotoxic abilities through the PD-L1/PD-1 axis. Moreover, tumor-derived IL-27 promotes PD-L1+CD8+ T cells development through STAT1/STAT3 signaling. Single-cell RNA sequencing data analysis further clarified PD-L1+CD8+ T cells elevated in the components related to downregulation of adaptive immune response. Collectively, our data demonstrated that PD-L1+CD8+ T cells enriched in lung cancer engaged in tolerogenic effects and may become a therapeutic target in lung cancer. CyTOF and IMC revealed PD-L1+CD8+ T cells were enriched in human lung cancer PD-L1+CD8+ T cells inhibited CD8+ T cells function through PD-1/PD-L1 axis IL27 promoted PD-L1+CD8 T cells development through STAT1/STAT3 signaling
Collapse
Affiliation(s)
- Yingxia Zheng
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Corresponding author
| | - Li Han
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zheyi Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yiyang Li
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Bingqian Zhou
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Rui Hu
- Department of Thoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200230, China
| | - Shiyu Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Haibo Xiao
- Department of Thoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200230, China
| | - Yanhui Ma
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Guohua Xie
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Junyao Yang
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Corresponding author
| | - Lisong Shen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Xin Hua Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Corresponding author
| |
Collapse
|
170
|
Guan YH, Wang N, Deng ZW, Chen XG, Liu Y. Exploiting autophagy-regulative nanomaterials for activation of dendritic cells enables reinforced cancer immunotherapy. Biomaterials 2022; 282:121434. [DOI: 10.1016/j.biomaterials.2022.121434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/15/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
|
171
|
Chen YC, He XL, Qi L, Shi W, Yuan LW, Huang MY, Xu YL, Chen X, Gu L, Zhang LL, Lu JJ. Myricetin inhibits interferon-γ-induced PD-L1 and IDO1 expression in lung cancer cells. Biochem Pharmacol 2022; 197:114940. [PMID: 35120895 DOI: 10.1016/j.bcp.2022.114940] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/02/2022]
Abstract
Programmed death ligand-1 (PD-L1) and indoleamine 2, 3-dioxygenase 1 (IDO1) are immune checkpoints induced by interferon-γ (IFN-γ) in the tumor microenvironment, leading to immune escape of tumors. Myricetin (MY) is a flavonoid distributed in many edible and medicinal plants. In this study, MY was identified to inhibit IFN-γ-induced PD-L1 expression in human lung cancer cells. It also reduced the expression of IDO1 and the production of kynurenine which is the product catalyzed by IDO1, while didn't show obvious effect on the expression of major histocompatibility complex-I (MHC-I), a crucial molecule for antigen presentation. In addition, the function of T cells was evaluated using a co-culture system consist of lung cancer cells and the Jurkat-PD-1 T cell line overexpressing PD-1. MY restored the survival, proliferation, CD69 expression and interleukin-2 (IL-2) secretion of Jurkat-PD-1 T cells suppressed by IFN-γ-treated lung cancer cells. Mechanistically, IFN-γ up-regulated PD-L1 and IDO1 at the transcriptional level through the JAK-STAT-IRF1 axis, which was targeted and inhibited by MY. Together, our research revealed a new mechanism of MY mediated anti-tumor activity and highlighted the potential implications of MY in tumor immunotherapy.
Collapse
Affiliation(s)
- Yu-Chi Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xin-Ling He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Lu Qi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wei Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Luo-Wei Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mu-Yang Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yu-Lian Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Lei Gu
- Epigenetics Laboratory, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; Cardiopulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Le-Le Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Macao, China.
| |
Collapse
|
172
|
Liu D, Gao S, Zhai Y, Yang X, Zhai G. Research progress of tumor targeted drug delivery based on PD-1/PD-L1. Int J Pharm 2022; 616:121527. [DOI: 10.1016/j.ijpharm.2022.121527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
|
173
|
Gross DJ, Chintala NK, Vaghjiani RG, Grosser R, Tan KS, Li X, Choe J, Li Y, Aly RG, Emoto K, Zheng H, Dux J, Cheema W, Bott MJ, Travis WD, Isbell JM, Li BT, Jones DR, Adusumilli PS. Tumor and Tumor-Associated Macrophage Programmed Death-Ligand 1 Expression Is Associated With Adjuvant Chemotherapy Benefit in Lung Adenocarcinoma. J Thorac Oncol 2022; 17:89-102. [PMID: 34634452 PMCID: PMC8692446 DOI: 10.1016/j.jtho.2021.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Patients with stage II to III lung adenocarcinomas are treated with adjuvant chemotherapy (ACT) to target the premetastatic niche that persists after curative-intent resection. We hypothesized that the premetastatic niche is a scion of resected lung tumor microenvironment and that analysis of tumor microenvironment can stratify survival benefit from ACT. METHODS Using tumor and tumoral stroma from 475 treatment-naive patients with stage II to III lung adenocarcinomas, we constructed a tissue microarray and performed multiplex immunofluorescent staining for immune markers (programmed death-ligand 1 [PD-L1], tumor-associated macrophages [TAMs], and myeloid-derived suppressor cells) and derived myeloid-lymphoid ratio. The association between immune markers and survival was evaluated using Cox models adjusted for pathologic stage. RESULTS Patients with high PD-L1 expression on TAMs or tumor cells in resected tumors had improved survival with ACT (TAMs: hazard ratio [HR] = 1.79, 95% confidence interval [CI]: 1.12-2.85; tumor cells: HR = 3.02, 95% CI: 1.69-5.40). Among patients with high PD-L1 expression on TAMs alone or TAMs and tumor cells, ACT survival benefit is pronounced with high myeloid-lymphoid ratio (TAMs: HR = 3.87, 95% CI: 1.79-8.37; TAMs and tumor cells: HR = 2.19, 95% CI: 1.02-4.71) or with high stromal myeloid-derived suppressor cell ratio (TAMs: HR = 2.53, 95% CI: 1.29-4.96; TAMs and tumor cells: HR = 3.21, 95% CI: 1.23-8.35). Patients with low or no PD-L1 expression on TAMs or tumor cells had no survival benefit from ACT. CONCLUSIONS Our observation that PD-L1 expression on TAMs or tumor cells is associated with improved survival with ACT provides rationale for prospective investigation and developing chemoimmunotherapy strategies for patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Daniel J Gross
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Navin K Chintala
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Raj G Vaghjiani
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rachel Grosser
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kay See Tan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xiaoyu Li
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jennie Choe
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yan Li
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Union Hospital, Tongi Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Rania G Aly
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Alexandria University, Alexandria, Egypt
| | - Katsura Emoto
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hua Zheng
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Joseph Dux
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Waseem Cheema
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew J Bott
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James M Isbell
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bob T Li
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
174
|
Profiling of the immune landscape in murine glioblastoma following blood brain/tumor barrier disruption with MR image-guided focused ultrasound. J Neurooncol 2022; 156:109-122. [PMID: 34734364 PMCID: PMC8714701 DOI: 10.1007/s11060-021-03887-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Glioblastoma (GB) poses formidable challenges to systemic immunotherapy approaches owing to the paucity of immune infiltration and presence of the blood brain/tumor barriers (BBB/BTB). We hypothesize that BBB/BTB disruption (BBB/BTB-D) with focused ultrasound (FUS) and microbubbles (MB) increases immune infiltration in GB. As a prelude to rational combination of FUS with ITx, we herein investigate the impact of localized BBB/BTB-D on innate and adaptive immune responses in an orthotopic murine GB model. METHODS Mice with GL261 gliomas received i.v. MB and underwent FUS BBB/BTB-D (1.1 MHz, 0.5 Hz pulse repetition frequency, 10 ms bursts, 0.4-0.6 MPa). Brains, meninges, and peripheral lymphoid organs were excised and examined by flow cytometry 1-2 weeks following FUS. RESULTS The number of dendritic cells (DC) was significantly elevated in GL261 tumors and draining cervical LN in response to sonication. CD86 + DC frequency was also upregulated with 0.6 MPa FUS, suggesting increased maturity. While FUS did not significantly alter CD8 + T cell frequency across evaluated organs, these cells upregulated checkpoint molecules at 1 week post-FUS, suggesting increased activation. By 2 weeks post-FUS, we noted emergence of adaptive resistance mechanisms, including upregulation of TIGIT on CD4 + T cells and CD155 on non-immune tumor and stromal cells. CONCLUSIONS FUS BBB/BTB-D exerts mild, transient inflammatory effects in gliomas-suggesting that its combination with adjunct therapeutic strategies targeting adaptive resistance may improve outcomes. The potential for FUS-mediated BBB/BTB-D to modify immunological signatures is a timely and important consideration for ongoing clinical trials investigating this regimen in GB.
Collapse
|
175
|
Li Y, Ni K, Chan C, Guo N, Luo T, Han W, Culbert A, Weichselbaum RR, Lin W. Dimethylaminomicheliolide Sensitizes Cancer Cells to Radiotherapy for Synergistic Combination with Immune Checkpoint Blockade. ADVANCED THERAPEUTICS 2022; 5:2100160. [PMID: 35812344 PMCID: PMC9269983 DOI: 10.1002/adtp.202100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 01/03/2023]
Abstract
Radiotherapy (RT) has demonstrated synergy with immune checkpoint blockade (ICB) in preclinical models. However, its potential as an immunoadjuvant is limited by low immunogenicity at low radiation doses and immunosuppression at high radiation doses. It is hypothesized that radiosensitizers can enhance both the anticancer and immunogenic effects of low-dose radiation. Herein the authors report the antitumor immunity of combined RT and immunotherapy with dimethylaminomicheliolide (DMAMCL), a prodrug of the anti-inflammatory sesquiterpene lactone micheliolide (MCL). DMAMCL sensitized cancer cells to a single fraction of RT in vitro by inducing apoptosis and DNA double-strand breaks. DMAMCL with 5 fractions of 2 Gy focal X-ray irradiation led to significant anticancer efficacy in subcutaneous and spontaneous models of murine cancer. DMAMCL-sensitized RT upregulated programmed death-ligand 1 (PD-L1) expression in the tumors. Combination of DMAMCL-sensitized RT with anti-PD-L1 ICB significantly enhanced antitumor efficacy by increasing tumor-infiltrating CD4+ and CD8+ T cells and establishing immune memory.
Collapse
Affiliation(s)
- Yingying Li
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| | - Kaiyuan Ni
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| | - Christina Chan
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| | - Nining Guo
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| | - Taokun Luo
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| | - Wenbo Han
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| | - August Culbert
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research University of Chicago, Chicago, IL 60637, USA
| | - Wenbin Lin
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| |
Collapse
|
176
|
Souza VGD, Santos DJS, Silva AG, Ribeiro RIMDA, Loyola AM, Cardoso SV, Miranda CSS, Cardoso LPV. Immunoexpression of PD-L1, CD4+ and CD8+ cell infiltrates and tumor-infiltrating lymphocytes (TILs) in the microenvironment of actinic cheilitis and lower lip squamous cell carcinoma. J Appl Oral Sci 2022; 30:e20210344. [PMID: 35195152 PMCID: PMC8860405 DOI: 10.1590/1678-7757-2021-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022] Open
Abstract
Lower lip squamous cell carcinomas (LLSCC) could be associated with a previous history of potentially malignant oral diseases (PMOD), especially actinic cheilitis (AC), with high sun exposure being a well-described risk factor. Immune evasion mechanisms, such as the PD-1/PD-L1 (programmed cell death protein 1/programmed death-ligand 1) pathway has been gaining prominence since immunotherapy with immune checkpoint inhibitors showed a positive effect on the survival of patients with different types of neoplasms. Concomitant with the characterization of the tumor microenvironment, the expression of either or both PD-1 and PD-L1 molecules may estimate mutual relations of progression or regression of the carcinoma and prognostic values of the patient.
Collapse
|
177
|
Monsrud AL, Avadhani V, Mosunjac MB, Flowers L, Krishnamurti U. Programmed Death Ligand-1 Expression Is Associated With Poorer Survival in Anal Squamous Cell Carcinoma. Arch Pathol Lab Med 2021; 146:1094-1101. [DOI: 10.5858/arpa.2021-0169-oa] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 11/06/2022]
Abstract
Context.—
Upregulation of programmed death ligand-1 (PD-L1), an immunoregulatory protein, is associated with an adverse outcome in several malignancies. Very few studies have evaluated PD-L1 expression in invasive anal squamous cell carcinoma (ASCC).
Objective.—
To assess PD-L1 expression in patients with ASCC and correlate it with clinicopathologic factors and clinical outcomes.
Design.—
Fifty-one cases of ASCC were immunostained for PD-L1. PD-L1 expression by combined positive score and tumor proportion score was correlated with age, gender, HIV status, HIV viral load, CD4 count, stage, and outcomes. Kaplan-Meier curves for overall survival were plotted and compared using the log-rank test. Cox regression analysis was performed to identify significant prognostic factors (2-tailed P < .05 was considered statistically significant).
Results.—
PD-L1 was positive in 24 of 51 cases (47%) by combined positive score and in 18 of 51 (35%) by tumor proportion score. The median cancer-specific survival and 5-year overall survival were significantly lower in PD-L1+ patients. Age, gender, HIV status, HIV viral load, stage, and cancer progression were not significantly different between the two groups. CD4 count of more than 200/μL was significantly higher in PD-L1+ patients. PD-L1+ status remained statistically significant for worse overall survival on multivariate analysis.
Conclusions.—
PD-L1+ status is an independent adverse prognostic factor for overall survival in ASCC. This study highlights the potential of PD-L1 targeted therapy in better management of ASCC.
Collapse
Affiliation(s)
- Ashley L. Monsrud
- From the Department of Pathology & Laboratory Medicine (Monsrud, Avadhani, Mosunjac, Krishnamurti), Emory University, Atlanta, Georgia
| | - Vaidehi Avadhani
- From the Department of Pathology & Laboratory Medicine (Monsrud, Avadhani, Mosunjac, Krishnamurti), Emory University, Atlanta, Georgia
| | - Marina B. Mosunjac
- From the Department of Pathology & Laboratory Medicine (Monsrud, Avadhani, Mosunjac, Krishnamurti), Emory University, Atlanta, Georgia
| | - Lisa Flowers
- Department of Gynecology & Obstetrics (Flowers), Emory University, Atlanta, Georgia
| | - Uma Krishnamurti
- From the Department of Pathology & Laboratory Medicine (Monsrud, Avadhani, Mosunjac, Krishnamurti), Emory University, Atlanta, Georgia
- Krishnamurti is now with the Department of Pathology at Yale School of Medicine
| |
Collapse
|
178
|
Korman AJ, Garrett-Thomson SC, Lonberg N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat Rev Drug Discov 2021; 21:509-528. [PMID: 34937915 DOI: 10.1038/s41573-021-00345-8] [Citation(s) in RCA: 250] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 12/11/2022]
Abstract
Cancer immunity, and the potential for cancer immunotherapy, have been topics of scientific discussion and experimentation for over a hundred years. Several successful cancer immunotherapies - such as IL-2 and interferon-α (IFNα) - have appeared over the past 30 years. However, it is only in the past decade that immunotherapy has made a broad impact on patient survival in multiple high-incidence cancer indications. The emergence of immunotherapy as a new pillar of cancer treatment (adding to surgery, radiation, chemotherapy and targeted therapies) is due to the success of immune checkpoint blockade (ICB) drugs, the first of which - ipilimumab - was approved in 2011. ICB drugs block receptors and ligands involved in pathways that attenuate T cell activation - such as cytotoxic T lymphocyte antigen 4 (CTLA4), programmed cell death 1 (PD1) and its ligand, PDL1 - and prevent, or reverse, acquired peripheral tolerance to tumour antigens. In this Review we mark the tenth anniversary of the approval of ipilimumab and discuss the foundational scientific history of ICB, together with the history of the discovery, development and elucidation of the mechanism of action of the first generation of drugs targeting the CTLA4 and PD1 pathways.
Collapse
|
179
|
Immune-Proteome Profiling in Classical Hodgkin Lymphoma Tumor Diagnostic Tissue. Cancers (Basel) 2021; 14:cancers14010009. [PMID: 35008176 PMCID: PMC8750205 DOI: 10.3390/cancers14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
In classical Hodgkin Lymphoma (cHL), immunoediting via protein signaling is key to evading tumor surveillance. We aimed to identify immune-related proteins that distinguish diagnostic cHL tissues (=diagnostic tumor lysates, n = 27) from control tissues (reactive lymph node lysates, n = 30). Further, we correlated our findings with the proteome plasma profile between cHL patients (n = 26) and healthy controls (n = 27). We used the proximity extension assay (PEA) with the OlinkTM multiplex Immuno-Oncology panel, consisting of 92 proteins. Univariate, multivariate-adjusted analysis and Benjamini–Hochberg’s false discovery testing (=Padj) were performed to detect significant discrepancies. Proteins distinguishing cHL cases from controls were more numerous in plasma (30 proteins) than tissue (17 proteins), all Padj < 0.05. Eight of the identified proteins in cHL tissue (PD-L1, IL-6, CCL17, CCL3, IL-13, MMP12, TNFRS4, and LAG3) were elevated in both cHL tissues and cHL plasma compared with control samples. Six proteins distinguishing cHL tissues from controls tissues were significantly correlated to PD-L1 expression in cHL tissue (IL-6, MCP-2, CCL3, CCL4, GZMB, and IFN-gamma, all p ≤0.05). In conclusion, this study introduces a distinguishing proteomic profile in cHL tissue and potential immune-related markers of pathophysiological relevance.
Collapse
|
180
|
Immune Regulatory Processes of the Tumor Microenvironment under Malignant Conditions. Int J Mol Sci 2021; 22:ijms222413311. [PMID: 34948104 PMCID: PMC8706102 DOI: 10.3390/ijms222413311] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) is a critical regulator of tumor growth, progression, and metastasis. Since immune cells represent a large fraction of the TME, they play a key role in mediating pro- and anti-tumor immune responses. Immune escape, which suppresses anti-tumor immunity, enables tumor cells to maintain their proliferation and growth. Numerous mechanisms, which have been intensively studied in recent years, are involved in this process and based on these findings, novel immunotherapies have been successfully developed. Here, we review the composition of the TME and the mechanisms by which immune evasive processes are regulated. In detail, we describe membrane-bound and soluble factors, their regulation, and their impact on immune cell activation in the TME. Furthermore, we give an overview of the tumor/antigen presentation and how it is influenced under malignant conditions. Finally, we summarize novel TME-targeting agents, which are already in clinical trials for different tumor entities.
Collapse
|
181
|
Schönefeldt S, Wais T, Herling M, Mustjoki S, Bekiaris V, Moriggl R, Neubauer HA. The Diverse Roles of γδ T Cells in Cancer: From Rapid Immunity to Aggressive Lymphoma. Cancers (Basel) 2021; 13:6212. [PMID: 34944832 PMCID: PMC8699114 DOI: 10.3390/cancers13246212] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
γδ T cells are unique players in shaping immune responses, lying at the intersection between innate and adaptive immunity. Unlike conventional αβ T cells, γδ T cells largely populate non-lymphoid peripheral tissues, demonstrating tissue specificity, and they respond to ligands in an MHC-independent manner. γδ T cells display rapid activation and effector functions, with a capacity for cytotoxic anti-tumour responses and production of inflammatory cytokines such as IFN-γ or IL-17. Their rapid cytotoxic nature makes them attractive cells for use in anti-cancer immunotherapies. However, upon transformation, γδ T cells can give rise to highly aggressive lymphomas. These rare malignancies often display poor patient survival, and no curative therapies exist. In this review, we discuss the diverse roles of γδ T cells in immune surveillance and response, with a particular focus on cancer immunity. We summarise the intriguing dichotomy between pro- and anti-tumour functions of γδ T cells in solid and haematological cancers, highlighting the key subsets involved. Finally, we discuss potential drivers of γδ T-cell transformation, summarising the main γδ T-cell lymphoma/leukaemia entities, their clinical features, recent advances in mapping their molecular and genomic landscapes, current treatment strategies and potential future targeting options.
Collapse
Affiliation(s)
- Susann Schönefeldt
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| | - Tamara Wais
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| | - Marco Herling
- Department of Hematology, Cellular Therapy and Hemostaseology, University of Leipzig, 04103 Leipzig, Germany;
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland;
- iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Vasileios Bekiaris
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| |
Collapse
|
182
|
Lee A, Lim S, Oh J, Lim J, Yang Y, Lee MS, Lim JS. NDRG2 Expression in Breast Cancer Cells Downregulates PD-L1 Expression and Restores T Cell Proliferation in Tumor-Coculture. Cancers (Basel) 2021; 13:cancers13236112. [PMID: 34885221 PMCID: PMC8656534 DOI: 10.3390/cancers13236112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary N-myc downstream-regulated gene 2 (NDRG2) is a candidate tumor suppressor in various cancers, including breast cancer. Increased expression of programmed death ligand 1 (PD-L1) is frequently observed in human cancers. Despite its role in cancer cells, the effects of NDRG2 on PD-L1 expression and PD-L1-PD-1 pathway disruption have not been investigated. We demonstrated that NDRG2 overexpression inhibits PD-L1 expression in human breast cancer cells. Blocking T cell proliferation by coculture with 4T1 mouse tumor cells that express high levels of PD-L1 could be significantly reversed by NDRG2 overexpression in the same tumor cells. NDRG2 knockdown in NDRG2-transfected cells elicited the upregulation of PD-L1 expression and accelerated the inhibition of T cell proliferation. These findings were confirmed from The Cancer Genome Atlas (TCGA) data that PD-L1 expression in basal and triple-negative breast cancer (TNBC) patients, but not in luminal A or B cancer patients, was negatively correlated with the NDRG2 expression. Abstract (1) Background: The aim of the present study was to evaluate the effect of NDRG2 expression in regulating PD-L1 or PD-L2 on malignant breast cancer cells. (2) Methods: Overexpression and knockdown of the NDRG2 gene in human and mouse cancer cells were applied and quantitative real-time PCR and Western blot analysis were performed. T cell proliferation and TCGA analysis were conducted to validate negative correlation of the PD-L1 expression with the NDRG2 expression. (3) Results: We found that NDRG2 overexpression inhibits PD-L1 expression in human breast cancer cells through NF-κB signaling. NDRG2 overexpression in 4T1 mouse breast cancer cells followed by PD-L1 downregulation could block the suppressive activity of cancer cells on T cell proliferation and knockdown of NDRG2 expression enhanced the expression of PD-L1, leading to the inhibition of T cell proliferation by tumor cell coculture. Finally, we confirmed from TCGA data that PD-L1 expression in basal and triple-negative breast cancer patients was negatively correlated with the expression of NDRG2. Intriguingly, linear regression analysis using TNBC cell lines showed that the PD-L1 level was negatively associated with the NDRG2 expression level. (4) Conclusions: Our findings demonstrate that NDRG2 expression is instrumental in suppressing PD-L1 expression and restoring PD-L1-inhibited T cell proliferation activity in TNBC cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jong-Seok Lim
- Correspondence: ; Tel.: +82-2-710-9560; Fax: +82-2-2077-7322
| |
Collapse
|
183
|
Zheng X, Liu Z, Mi M, Wen Q, Wu G, Zhang L. Disulfiram Improves the Anti-PD-1 Therapy Efficacy by Regulating PD-L1 Expression via Epigenetically Reactivation of IRF7 in Triple Negative Breast Cancer. Front Oncol 2021; 11:734853. [PMID: 34858816 PMCID: PMC8631359 DOI: 10.3389/fonc.2021.734853] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
Immune checkpoint blockade (ICB), particularly programmed death 1 (PD-1) and its ligand (PD-L1), has shown considerable clinical benefits in patients with various cancers. Many studies show that PD-L1 expression may be biomarkers to help select responders for anti-PD-1 treatment. Therefore, it is necessary to elucidate the molecular mechanisms that control PD-L1 expression. As a potential chemosensitizer and anticancer drug, disulfiram (DSF) kills tumor cells via regulating multiple signaling pathways and transcription factors. However, its effect on tumor immune microenvironment (TIME) remains unclear. Here, we showed that DSF increased PD-L1 expression in triple negative breast cancer (TNBC) cells. Through bioinformatics analysis, we found that DNMT1 was highly expressed in TNBC tissue and PD-L1 was negatively correlated with IRF7 expression. DSF reduced DNMT1 expression and activity, and hypomethylated IRF7 promoter region resulting in upregulation of IRF7. Furthermore, we found DSF enhanced PD-L1 expression via DNMT1-mediated IRF7 hypomethylation. In in vivo experiments, DSF significantly improved the response to anti-PD-1 antibody (Ab) in 4T1 breast cancer mouse model. Immunohistochemistry staining showed that granzyme B+ and CD8+ T cells in the tumor tissues were significantly increased in the combination group. By analyzing the results of the tumor tissue RNA sequencing, four immune-associated pathways were significantly enriched in the DSF joint anti-PD-1 Ab group. In conclusion, we found that DSF could upregulate PD-L1 in TNBC cells and elucidated its mechanism. Our findings revealed that the combination of DSF and anti-PD-1 Ab could activate TIME to show much better antitumor efficacy than monotherapy.
Collapse
Affiliation(s)
- Xin Zheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zijian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mi Mi
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyue Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liling Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
184
|
Alloghbi A, Ninia J, Alshare B, Hotaling J, Raza S, Sukari A. Anti-PD-1 therapy using cemiplimab for advanced cutaneous squamous cell carcinoma in HIV patient: A case report. Clin Case Rep 2021; 9:e05228. [PMID: 34950481 PMCID: PMC8673230 DOI: 10.1002/ccr3.5228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/16/2021] [Accepted: 12/03/2021] [Indexed: 11/11/2022] Open
Abstract
This is a case of a 60-year-old man living with HIV who presented with advanced cutaneous squamous cell carcinoma. After workup, medical and surgical treatment, and disease recurrence, he achieved a complete response with no unexpected toxicities after immunotherapy with cemiplimab.
Collapse
Affiliation(s)
- Abdurahman Alloghbi
- Department of OncologyKarmanos Cancer InstituteWayne State UniversityDetroitMichiganUSA
| | - James Ninia
- School of MedicineWayne State UniversityDetroitMichiganUSA
| | - Bayan Alshare
- Department of OncologyKarmanos Cancer InstituteWayne State UniversityDetroitMichiganUSA
| | - Jeffrey Hotaling
- Department of Surgical OncologyKarmanos Cancer InstituteDetroitMichiganUSA
| | - Syed Raza
- Department of Surgical OncologyKarmanos Cancer InstituteDetroitMichiganUSA
| | - Ammar Sukari
- Department of OncologyKarmanos Cancer InstituteWayne State UniversityDetroitMichiganUSA
| |
Collapse
|
185
|
Huo Y, Zhang K, Han S, Feng Y, Bao Y. Lymphocyte cytosolic protein 2 is a novel prognostic marker in lung adenocarcinoma. J Int Med Res 2021; 49:3000605211059681. [PMID: 34816740 PMCID: PMC8649447 DOI: 10.1177/03000605211059681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Lymphocyte cytosolic protein 2 (LCP2) is often ectopically expressed in various human tumors. However, the clinical significance and role of LCP2 in lung adenocarcinoma (LUAD) remain unclear. This study explored the prognostic significance of LCP2 in LUAD patients. METHODS LCP2 expression in LUAD tissues was analyzed using data from The Cancer Genome Atlas and Genotype-Tissue Expression databases. Western blotting was employed to detect LCP2 expression in LUAD. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to explore signaling pathways mediated by LCP2 co-regulatory genes. Immunohistochemistry was used to examine levels of LCP2 and programmed death ligand 1 (PD-L1) in 68 LUAD patients. Associations between LCP2 expression and clinicopathological features, prognoses, and PD-L1 levels among the LUAD in-patients were analyzed. RESULTS Among the 68 LUAD in-patients, LCP2 expression was correlated with clinical stage and lymph node metastasis. LUAD patients with high LCP2 expression were associated with increased overall survival. LCP2 expression may be associated with an enrichment of several immune functions. Moreover, our immunohistochemistry results demonstrated that LCP2 expression was positively correlated with PD-L1 expression in LUAD tissues. CONCLUSIONS In the study, LCP2 was found to be a favorable prognostic biomarker in LUAD patients.
Collapse
Affiliation(s)
- Yishan Huo
- Clinical Oncology Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China.,Clinical Laboratory Center, 74790Xinjiang Medical University, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Kainan Zhang
- Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Songtao Han
- Clinical Laboratory Center of Xinjiang Medical University Affiliated Traditional Chinese Medicine Hospital, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yangchun Feng
- Clinical Laboratory Center, 74790Xinjiang Medical University, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yongxing Bao
- Clinical Oncology Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
186
|
Azcue P, Guerrero Setas D, Encío I, Ibáñez-Beroiz B, Mercado M, Vera R, Gómez-Dorronsoro ML. A Novel Prognostic Biomarker Panel for Early-Stage Colon Carcinoma. Cancers (Basel) 2021; 13:5909. [PMID: 34885019 PMCID: PMC8656725 DOI: 10.3390/cancers13235909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/09/2022] Open
Abstract
Molecular characterization of colorectal cancer has helped us understand better the biology of the disease. However, previous efforts have yet to provide significant clinical value in order to be integrated into clinical practice for patients with early-stage colon cancer (CC). The purpose of this study was to assess PD-L1, GLUT-1, e-cadherin, MUC2, CDX2, and microsatellite instability (dMMR) and to propose a risk-panel with prognostic capabilities. Biomarkers were immunohistochemically assessed through tissue microarrays in a cohort of 144 patients with stage II/III colon cancer. A biomarker panel consisting of PD-L1, GLUT-1, dMMR, and potentially CDX2 was constructed that divided patients into low, medium, and high risk of overall survival or disease-free survival (DFS) in equally sized groups. Compared with low-risk patients, medium-risk patients have almost twice the risk of death (HR = 2.10 (0.99-4.46), p = 0.054), while high-risk patients have almost four times the risk (HR = 3.79 (1.77-8.11), p = 0.001). The multivariate goodness of fit was 0.756 and was correlated with Kaplan-Meier curves (p = 0.002). Consistent results were found for DFS. This study provides a critical basis for the future development of an immunohistochemical assessment capable of discerning early-stage CC patients as a function of their prognosis. This tool may aid with treatment personalization in daily clinical practice and improve survival outcomes.
Collapse
Affiliation(s)
- Pablo Azcue
- Department of Health Science, Public University of Navarra, 31008 Pamplona, Spain; (I.E.); (B.I.-B.)
| | - David Guerrero Setas
- Department of Pathology, University Hospital of Navarra, 31008 Pamplona, Spain; (D.G.S.); (M.M.)
- Campus Arrosadia, Public University of Navarra, 31006 Pamplona, Spain
- Molecular Pathology of Cancer Group–Navarrabiomed, 31008 Pamplona, Spain
- Department of Medical Oncology, University Hospital of Navarra, 31008 Pamplona, Spain;
| | - Ignacio Encío
- Department of Health Science, Public University of Navarra, 31008 Pamplona, Spain; (I.E.); (B.I.-B.)
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
| | - Berta Ibáñez-Beroiz
- Department of Health Science, Public University of Navarra, 31008 Pamplona, Spain; (I.E.); (B.I.-B.)
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
- Unit of Methodology-Navarrabiomed-University Hospital of Navarra, 31008 Pamplona, Spain
- Research Network on Health Services Research and Chronic Diseases (REDISSEC), 31008 Pamplona, Spain
| | - María Mercado
- Department of Pathology, University Hospital of Navarra, 31008 Pamplona, Spain; (D.G.S.); (M.M.)
| | - Ruth Vera
- Department of Medical Oncology, University Hospital of Navarra, 31008 Pamplona, Spain;
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
| | - María Luisa Gómez-Dorronsoro
- Department of Pathology, University Hospital of Navarra, 31008 Pamplona, Spain; (D.G.S.); (M.M.)
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
| |
Collapse
|
187
|
Guo Z, Zhao Y, Zhang Z, Li Y. Interleukin-10-Mediated Lymphopenia Caused by Acute Infection with Foot-and-Mouth Disease Virus in Mice. Viruses 2021; 13:v13122358. [PMID: 34960627 PMCID: PMC8708299 DOI: 10.3390/v13122358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/06/2021] [Accepted: 11/20/2021] [Indexed: 12/14/2022] Open
Abstract
Foot-and-mouth disease (FMD) is characterized by a pronounced lymphopenia that is associated with immune suppression. However, the mechanisms leading to lymphopenia remain unclear. In this study, the number of total CD4+, CD8+ T cells, B cells, and NK cells in the peripheral blood were dramatically reduced in C57BL/6 mice infected with foot-and-mouth disease virus (FMDV) serotype O, and it was noted that mice with severe clinical symptoms had expressively lower lymphocyte counts than mice with mild or without clinical symptoms, indicating that lymphopenia was associated with disease severity. A further analysis revealed that lymphocyte apoptosis and trafficking occurred after FMDV infection. In addition, coinhibitory molecules were upregulated in the expression of CD4+ and CD8+ T cells from FMDV-infected mice, including CTLA-4, LAG-3, 2B4, and TIGIT. Interestingly, the elevated IL-10 in the serum was correlated with the appearance of lymphopenia during FMDV infection but not IL-6, IL-2, IL-17, IL-18, IL-1β, TNF-α, IFN-α/β, TGF-β, and CXCL1. Knocking out IL-10 (IL-10-/-) mice or blocking IL-10/IL-10R signaling in vivo was able to prevent lymphopenia via downregulating apoptosis, trafficking, and the coinhibitory expression of lymphocytes in the peripheral blood, which contribute to enhance the survival of mice infected with FMDV. Our findings support that blocking IL-10/IL-10R signaling may represent a novel therapeutic approach for FMD.
Collapse
Affiliation(s)
- Zijing Guo
- State Key Laboratory on Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (Z.G.); (Y.Z.)
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Yin Zhao
- State Key Laboratory on Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (Z.G.); (Y.Z.)
| | - Zhidong Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (Z.Z.); (Y.L.); Tel.: +86-028-85528276 (Y.L.)
| | - Yanmin Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (Z.Z.); (Y.L.); Tel.: +86-028-85528276 (Y.L.)
| |
Collapse
|
188
|
Li B, He Y, Li P, Chen X. Leptin Receptor Overlapping Transcript (LEPROT) Is Associated with the Tumor Microenvironment and a Prognostic Predictor in Pan-Cancer. Front Genet 2021; 12:749435. [PMID: 34804118 PMCID: PMC8596502 DOI: 10.3389/fgene.2021.749435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background Leptin receptor overlapping transcript (LEPROT) is reported to be involved in metabolism regulation and energy balance as well as molecular signaling of breast cancer and osteosarcoma. LEPROT is expressed in various tissue and is suggested to be involved in cancer developments but with contradictory roles. The comprehensive knowledge of the effects of LEPROT on cancer development and progression across pan-cancer is still missing. Methods The expressions of LEPROT in cancers were compared with corresponding normal tissues across pan-cancer types. The relationships between expression and methylation of LEPROT were then demonstrated. The correlations of LEPROT with the tumor microenvironment (TME), including immune checkpoints, tumor immune cells infiltration (TII), and cancer-associated fibroblasts (CAFs), were also investigated. Co-expression analyses and functional enrichments were conducted to suggest the most relevant genes and the mechanisms of the effects in cancers for LEPROT. Finally, the correlations of LEPROT with patient survival and immunotherapy response were explored. Results LEPROT expression was found to be significantly aberrant in 15/19 (78.9%) cancers compared with corresponding normal tissues; LEPROT was downregulated in 12 cancers and upregulated in three cancers. LEPROT expressions were overall negatively correlated with its methylation alterations. Moreover, LEPROT was profoundly correlated with the TME, including immune checkpoints, TIIs, and CAFs. According to co-expression analyses and functional enrichments, the interactions of LEPROT with the TME may be mediated by the interleukin six signal transducer/the Janus kinase/signal transducers and activators of the transcription signaling pathway. Prognostic values may exist for LEPROT to predict patient survival and immunotherapy response in a context-dependent way. Conclusions LEPROT affects cancer development by interfering with the TME and regulating inflammatory or immune signals. LEPROT may also serve as a potential prognostic marker or a target in cancer therapy. This is the first study to investigate the roles of LEPROT across pan-cancer.
Collapse
Affiliation(s)
- Bingsheng Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Pan Li
- Institute for Pathology of the Ludwig-Maximilians-Universität München, Munich, Germany
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
189
|
Liang T, Chen J, Xu G, Zhang Z, Xue J, Zeng H, Jiang J, Chen T, Qin Z, Li H, Ye Z, Nie Y, Liu C, Zhan X. Epithelial-mesenchymal transition interaction with CD8+ T cell, dendritic cell and immune checkpoints in the development of melanoma. Cancer Biomark 2021; 34:131-147. [PMID: 34957999 DOI: 10.3233/cbm-210329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Melanoma is fatal cancer originating from melanocytes, whose high metastatic potential leads to an extremely poor prognosis. OBJECTIVE This study aimed to reveal the relationship among EMT, TIICs, and immune checkpoints in melanoma. METHODS Gene expression data and clinical data of melanoma were downloaded from TCGA, UCSC Xena and GEO databases. EMT-related DEGs were detected for risk score calculation. "ESTIMATE" and "xCell" were used for estimating TIICs and obtaining 64 immune cell subtypes, respectively. Moreover, we evaluated the relationship between the risk score and immune cell subtypes and immune checkpoints. RESULTS Seven EMT-related genes were selected to establish a risk scoring system because of their integrated prognostic relevance. The results of GSEA revealed that most of the gene sets focused on immune-related pathways in the low-risk score group. The risk score was significantly correlated with the xCell score of some TIICs, which significantly affected the prognosis of melanoma. Patients with a low-risk score may be associated with a better response to ICI therapy. CONCLUSION The individualized risk score could effectively conduct risk stratification, overall survival prediction, ICI therapy prediction, and TME judgment for patients with melanoma, which would be conducive to patients' precise treatment.
Collapse
Affiliation(s)
- Tuo Liang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiarui Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guoyong Xu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zide Zhang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiang Xue
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haopeng Zeng
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jie Jiang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tianyou Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhaojie Qin
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Li
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhen Ye
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yunfeng Nie
- Guangxi Medical University, Nanning, Guangxi, China
| | - Chong Liu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xinli Zhan
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
190
|
Samlowski W, Adajar C. Cautious addition of targeted therapy to PD-1 inhibitors after initial progression of BRAF mutant metastatic melanoma on checkpoint inhibitor therapy. BMC Cancer 2021; 21:1187. [PMID: 34743688 PMCID: PMC8573907 DOI: 10.1186/s12885-021-08906-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Background Virtually all metastatic patients with metastatic melanoma who progress after initial treatment with PD-1 or CTLA-4 directed antibodies will die of their disease. Salvage options are urgently needed. It is theoretically attractive to combine immunotherapy with targeted agents in progressing patients with BRAF mutation positive melanoma, but the toxicity of combined treatment has proven challenging. Methods We performed a retrospective analysis of our patient database and identified 23 patients who progressed on initial checkpoint inhibitor treatment, who subsequently had cautious addition of BRAF±MEK inhibitor therapy to continued PD-1 antibody treatment. Results We found an objective response rate of 55% in second line therapy, with a median progression-free survival of 33.4 months and median overall survival of 34.1 months, with 40% of patients in unmaintained remission at over 3 years. Ten of 12 responding patients were able to discontinue all therapy and continue in unmaintained remission. Toxicity of this approach was generally manageable (21.7% grade 3–5 toxicity). There was 1 early sudden death for unknown reasons in a responding patient. Discussion Our results suggest that 2nd line therapy with PD-1 inhibitors plus BRAF±MEK inhibitors has substantial activity and manageable toxicity. This treatment can induce additional durable complete responses in patients who have progressed on initial immunotherapy. These results suggest further evaluation be performed of sequential PD-1 antibody treatment with cautious addition of targeted therapy in appropriate patients.
Collapse
Affiliation(s)
- Wolfram Samlowski
- Comprehensive Cancer Centers of Nevada, 9280 W. Sunset Rd., Suite 100, Las Vegas, NV, 89148, USA. .,University of Nevada Las Vegas, (UNLV) Kerkorian School of Medicine, Las Vegas, NV, USA. .,University of Nevada School of Medicine, Reno, NV, USA.
| | - Camille Adajar
- University of Nevada Las Vegas, (UNLV) Kerkorian School of Medicine, Las Vegas, NV, USA
| |
Collapse
|
191
|
Peng JH, Tai Y, Zhao YX, Luo BJ, Ou QJ, Pan ZZ, Zhang L, Lu ZH. Programmed death-ligand 1 expression in the tumour stroma of colorectal liver oligometastases and its association with prognosis after liver resection. Gastroenterol Rep (Oxf) 2021; 9:443-450. [PMID: 34733530 PMCID: PMC8560040 DOI: 10.1093/gastro/goaa077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/09/2022] Open
Abstract
Background The clinical value of programmed death-ligand 1 (PD-L1) expression in colorectal liver oligometastases (CLOs) remains undefined. This study aimed to detect PD-L1 in the microenvironment of CLOs and determine its association with patient prognosis. Methods We collected 126 liver-resection specimens from CLO patients who underwent curative liver resection between June 1999 and December 2016. Immunohistochemistry (IHC) was performed to assess PD-L1 expression in paraffin-embedded specimens. Overall survival (OS) and recurrence-free survival (RFS) were analysed using the Kaplan–Meier method and log-rank test. Results PD-L1 was mainly expressed in the stroma of liver oligometastases. Patients with high PD-L1 expression had a higher proportion of clinical-risk scores (CRSs) of 2–4 (67.7% vs 40.4%; P = 0.004). With a median 58-month follow-up, patients with high PD-L1 expression had a significantly lower 3-year OS rate (65.5% vs 92.7%; P = 0.001) and 3-year RFS rate (34.7% vs 83.8%; P < 0.001) than patients with low PD-L1 expression. Multivariate Cox analysis demonstrated that high PD-L1 expression (hazard ratio [HR] = 3.581; 95% confidence interval [CI] 2.301–9.972; P = 0.015), CRS 2–4 (HR = 6.960; 95% CI 1.135–42.689; P = 0.036) and increased preoperative CA19-9 (HR = 2.843; 95% CI 1.229–6.576; P = 0.015) were independent risk factors for OS. High PD-L1 expression (HR = 4.815; 95% CI 2.139–10.837; P < 0.001) and lymph-node metastasis (HR = 2.115; 95% CI 1.041–4.297; P = 0.038) were independent risk factors for RFS. Conclusion This study found that PD-L1 was commonly expressed in the tumour stroma of CLOs and high PD-L1 expression was associated with poor prognosis.
Collapse
Affiliation(s)
- Jian-Hong Peng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou, Guangdong, P. R. China
| | - Yi Tai
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou, Guangdong, P. R. China
| | - Yi-Xin Zhao
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou, Guangdong, P. R. China
| | - Bao-Jia Luo
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou, Guangdong, P. R. China
| | - Qing-Jian Ou
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou, Guangdong, P. R. China
| | - Zhi-Zhong Pan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou, Guangdong, P. R. China
| | - Lin Zhang
- Department of Clinical Laboratory, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P. R. China
| | - Zhen-Hai Lu
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou, Guangdong, P. R. China
| |
Collapse
|
192
|
Taki S, Matsuoka K, Nishinaga Y, Takahashi K, Yasui H, Koike C, Shimizu M, Sato M, Sato K. Spatiotemporal depletion of tumor-associated immune checkpoint PD-L1 with near-infrared photoimmunotherapy promotes antitumor immunity. J Immunother Cancer 2021; 9:jitc-2021-003036. [PMID: 34725216 PMCID: PMC8559243 DOI: 10.1136/jitc-2021-003036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/22/2022] Open
Abstract
Background Near-infrared photoimmunotherapy (NIR-PIT) is a new modality for treating cancer, which uses antibody-photoabsorber (IRDye700DX) conjugates that specifically bind to target tumor cells. This conjugate is then photoactivated by NIR light, inducing rapid necrotic cell death. NIR-PIT needs a highly expressed targeting antigen on the cells because of its reliance on antibodies. However, using antibodies limits this useful technology to only those patients whose tumors express high levels of a specific antigen. Thus, to propose an alternative strategy, we modified this phototechnology to augment the anticancer immune system by targeting the almost low-expressed immune checkpoint molecules on tumor cells. Methods We used programmed death-ligand 1 (PD-L1), an immune checkpoint molecule, as the target for NIR-PIT. Although the expression of PD-L1 on tumor cells is usually low, PD-L1 is almost expressed on tumor cells. Intratumoral depletion with PD-L1-targeted NIR-PIT was tested in mouse syngeneic tumor models. Results Although PD-L1-targeted NIR-PIT showed limited effect on tumor cells in vitro, the therapy induced sufficient antitumor effects in vivo, which were thought to be mediated by the ‘photoimmuno’ effect and antitumor immunity augmentation. Moreover, PD-L1-targeted NIR-PIT induced antitumor effect on non-NIR light-irradiated tumors. Conclusions Local PD-L1-targeted NIR-PIT enhanced the antitumor immune reaction through a direct photonecrotic effect, thereby providing an alternative approach to targeted cancer immunotherapy and expanding the scope of cancer therapeutics.
Collapse
Affiliation(s)
- Shunichi Taki
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, AICHI, Japan
| | - Kohei Matsuoka
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, AICHI, Japan
| | - Yuko Nishinaga
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, AICHI, Japan
| | - Kazuomi Takahashi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, AICHI, Japan
| | - Hirotoshi Yasui
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, AICHI, Japan
| | - Chiaki Koike
- Advanced Analytical and Diagnostic Imaging Center (AADIC) / Medical Engineering Unit (MEU), B3 Unit, Nagoya University Institute for Advanced Research, Nagoya, AICHI, Japan
| | - Misae Shimizu
- Advanced Analytical and Diagnostic Imaging Center (AADIC) / Medical Engineering Unit (MEU), B3 Unit, Nagoya University Institute for Advanced Research, Nagoya, AICHI, Japan
| | - Mitsuo Sato
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, AICHI, Japan
| | - Kazuhide Sato
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, AICHI, Japan .,Advanced Analytical and Diagnostic Imaging Center (AADIC) / Medical Engineering Unit (MEU), B3 Unit, Nagoya University Institute for Advanced Research, Nagoya, AICHI, Japan.,FOREST-Souhatsu, CREST, JST, Tokyo, Japan.,Nagoya University Institute for Advanced Research, S-YLC, Nagoya University, Nagoya, AICHI, Japan
| |
Collapse
|
193
|
Tang Y, Ma T, Jia S, Zhang Q, Liu S, Qi L, Yang L. The Mechanism of Interleukin-35 in Chronic Hepatitis B. Semin Liver Dis 2021; 41:516-524. [PMID: 34233371 DOI: 10.1055/s-0041-1731708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Interleukin-35 (IL-35) is a newly identified inhibitory cytokine. It has recently been found to play an extremely important role in chronic hepatitis B disease, which makes it likely to be a target for new therapies for hepatitis B malady. IL-35 modulates a variety of immune mechanisms to cause persistent viral infections, such as affecting the ratio of helper T cells, reducing the activity of cytotoxic T cells, hindering the antigen presentation capacity for dendritic cells, and increasing the transcription level of hepatitis B virus. On the other hand, IL-35 can control the inflammation caused by hepatitis B liver injury. Therefore, to seek a breakthrough in curing hepatitis B disease, the contradictory part of IL-35 in the occurrence and development of this sickness is worthy of further discussion and research. This article will systematically review the biological effects of IL-35 and the specific mechanisms affecting the disease.
Collapse
Affiliation(s)
- Ying Tang
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Tianyi Ma
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Shengnan Jia
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Qian Zhang
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Siqi Liu
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Ling Qi
- Department of Core Medical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Lanlan Yang
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
194
|
Nada MH, Wang H, Hussein AJ, Tanaka Y, Morita CT. PD-1 checkpoint blockade enhances adoptive immunotherapy by human Vγ2Vδ2 T cells against human prostate cancer. Oncoimmunology 2021; 10:1989789. [PMID: 34712512 PMCID: PMC8547840 DOI: 10.1080/2162402x.2021.1989789] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human Vγ2Vδ2 (also termed Vγ9Vδ2) T cells play important roles in microbial and tumor immunity by monitoring foreign- and self-prenyl pyrophosphate metabolites in isoprenoid biosynthesis. Accumulation of isoprenoid metabolites after bisphosphonate treatment allows Vγ2Vδ2 T cells to recognize and kill tumors independently of their MHC expression or burden of non-synonymous mutations. Clinical trials with more than 400 patients show that adoptive immunotherapy with Vγ2Vδ2 T cells has few side effects but has resulted in only a few partial and complete remissions. Here, we have tested Vγ2Vδ2 T cells for expression of inhibitory receptors and determined whether adding PD-1 checkpoint blockade to adoptively transferred Vγ2Vδ2 T cells enhances immunity to human PC-3 prostate tumors in an NSG mouse model. We find that Vγ2Vδ2 T cells express PD-1, CTLA-4, LAG-3, and TIM-3 inhibitory receptors during the 14-day ex vivo expansion period, and PD-1, LAG-3, and TIM-3 upon subsequent stimulation by pamidronate-treated tumor cells. Expression of PD-L1 on PC-3 prostate cancer cells was increased by co-culture with activated Vγ2Vδ2 T cells. Importantly, anti-PD-1 mAb treatment enhanced Vγ2Vδ2 T cell immunity to PC-3 tumors in immunodeficient NSG mice, reducing tumor volume nearly to zero after 5 weeks. These results demonstrate that PD-1 checkpoint blockade can enhance the effectiveness of adoptive immunotherapy with human γδ T cells in treating prostate tumors in a preclinical model.
Collapse
Affiliation(s)
- Mohanad H Nada
- Department of Veterans Affairs, Iowa City Veterans Health Care System, Iowa City, IA, USA.,Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA.,Department of Pathology, College of Medicine, Tikrit University, Tikrit, Iraq.,Department of Medical and Health Sciences, The American University of Iraq, Sulaimani, Sulaymaniah, Iraq
| | - Hong Wang
- Department of Veterans Affairs, Iowa City Veterans Health Care System, Iowa City, IA, USA.,Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Auter J Hussein
- Department of Veterans Affairs, Iowa City Veterans Health Care System, Iowa City, IA, USA.,Salah Al-Din Directorate of Health, Ministry of Health, Iraq
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki Japan
| | - Craig T Morita
- Department of Veterans Affairs, Iowa City Veterans Health Care System, Iowa City, IA, USA.,Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA.,Interdisciplinary Graduate Program in Immunology,University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
195
|
Gavrielatou N, Liu Y, Vathiotis I, Zugazagoitia J, Aung TN, Shafi S, Fernandez A, Schalper K, Psyrri A, Rimm DL. Association of PD-1/PD-L1 Co-location with Immunotherapy Outcomes in Non-Small Cell Lung Cancer. Clin Cancer Res 2021; 28:360-367. [PMID: 34686497 DOI: 10.1158/1078-0432.ccr-21-2649] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/14/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Programmed cell death protein 1(PD-1)/programmed death-ligand 1 (PD-L1) interaction suppresses local T cell responses and promotes peripheral tolerance. In the present study, we focus on PD-1/PD-L1 co-location as a surrogate for this interaction and assess its association with immunotherapy outcomes in patients with non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN Pre-treatment biopsies from a retrospective cohort of 154 immunotherapy-treated patients with advanced NSCLC were analysed. Expression of PD-1 and PD-L1 was assessed by multiplexed quantitative immunofluorescence (QIF) and PD-1 expression in the same pixels as PD-L1 (called a co-location score) was measured using an algorithm to define overlapping expression areas. Co-location scores were correlated with immunotherapy outcomes and PD-L1 tumor proportion score. RESULTS PD-1/PD-L1 co-location score was associated with best overall response (p=0.0012), progression free survival (p=0.0341) and overall survival after immunotherapy (p=0.0249). The association was driven by patients receiving immune checkpoint inhibitors in the second or subsequent line of treatment. PD-L1 TPS by IHC was also correlated with best overall response and progression-free survival. PD-L1 measured within the tumor compartment by QIF did not show any significant association with either best overall response or overall survival. Finally, co-location score was not associated with PD-L1 expression by either method. CONCLUSIONS Based on our findings, co-location score shows promise as a biomarker associated with outcome after immunotherapy. With further validation, it could have value as a predictive biomarker for the selection of NSCLC patients receiving treatment with immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Amanda Psyrri
- Second Department of Internal Medicine, Section of Medical Oncology,, University of Athens, School of Medicine
| | - David L Rimm
- Department of Pathology, Yale School of Medicine
| |
Collapse
|
196
|
Wandmacher AM, Mehdorn AS, Sebens S. The Heterogeneity of the Tumor Microenvironment as Essential Determinant of Development, Progression and Therapy Response of Pancreatic Cancer. Cancers (Basel) 2021; 13:4932. [PMID: 34638420 PMCID: PMC8508450 DOI: 10.3390/cancers13194932] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed at advanced stages and most anti-cancer therapies have failed to substantially improve prognosis of PDAC patients. As a result, PDAC is still one of the deadliest tumors. Tumor heterogeneity, manifesting at multiple levels, provides a conclusive explanation for divergent survival times and therapy responses of PDAC patients. Besides tumor cell heterogeneity, PDAC is characterized by a pronounced inflammatory stroma comprising various non-neoplastic cells such as myofibroblasts, endothelial cells and different leukocyte populations which enrich in the tumor microenvironment (TME) during pancreatic tumorigenesis. Thus, the stromal compartment also displays a high temporal and spatial heterogeneity accounting for diverse effects on the development, progression and therapy responses of PDAC. Adding to this heterogeneity and the impact of the TME, the microbiome of PDAC patients is considerably altered. Understanding this multi-level heterogeneity and considering it for the development of novel therapeutic concepts might finally improve the dismal situation of PDAC patients. Here, we outline the current knowledge on PDAC cell heterogeneity focusing on different stromal cell populations and outline their impact on PDAC progression and therapy resistance. Based on this information, we propose some novel concepts for treatment of PDAC patients.
Collapse
Affiliation(s)
| | - Anna Maxi Wandmacher
- Department of Internal Medicine II, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany;
| | - Anne-Sophie Mehdorn
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105 Kiel, Germany;
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building U30 Entrance 1, 24105 Kiel, Germany
| |
Collapse
|
197
|
Zheng W, Xue Q, Sha X, Wang Y, Wang Y, Liu J, Zhang Y, Shi W. Successful PD-1 inhibitor treatment in a patient with refractory transformed follicular lymphoma who failed to respond to CAR-T cell therapy: a case report and literature review. Cancer Biol Ther 2021; 22:537-543. [PMID: 34570671 DOI: 10.1080/15384047.2021.1967083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Follicular lymphoma (FL) accounts for approximately 35% of all non-Hodgkin lymphomas and can progress to diffuse large B cell lymphoma (DLBCL) at a rate of 2% per year. Here, we present a 56-year-old female patient who was diagnosed with grade 3a FL. Further pathological investigation revealed that the lymphoma had transformed into DLBCL following six courses of R-CHOP regimen, and further disease progression was observed after two courses of R2-GemOx. We ultimately failed to collect hematopoietic stem cells after two courses of R2-ICE. CD-22 CAR-T cell therapy salvaged the patient; however, a new soft tissue mass of 4.8 × 4.1 cm rapidly emerged in the patient's right lung. Following the observation of strong tissue staining of PD-L1 (90%), the patient was administered PD-1 inhibitor and 26 Gy of radiotherapy and has maintained progression-free survival at more than 15 months of follow-up. Transformed FL with strong PD-L1 expression showed a poor response to standard immunochemotherapy. Our findings support the potential benefit of PD-1 inhibitor and combination therapies in this type of transformed FL.
Collapse
Affiliation(s)
- Weicheng Zheng
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qingfeng Xue
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xueping Sha
- Department of Hematology, Nantong Haimen People's Hospital, Nantong, China
| | - Yao Wang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuan Wang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Juan Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yaping Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenyu Shi
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
198
|
Lee SA, Liu F, Yun DY, Riordan SM, Tay ACY, Liu L, Lee CS, Zhang L. Campylobacter concisus upregulates PD-L1 mRNA expression in IFN-γ sensitized intestinal epithelial cells and induces cell death in esophageal epithelial cells. J Oral Microbiol 2021; 13:1978732. [PMID: 34552702 PMCID: PMC8451702 DOI: 10.1080/20002297.2021.1978732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Introduction: Campylobacter concisus is an oral bacterium that is associated with inflammatory bowel disease (IBD) and Barrett's esophagus (BE). Programmed cell death ligand-1 (PD-L1) is an immune checkpoint protein that is used by tumor cells for immune evasion and has increased expression in patients with IBD and BE. We examined whether C. concisus upregulates PD-L1 expression in intestinal and esophageal epithelial cells. Methods: Human intestinal epithelial HT-29 cells and esophageal epithelial FLO-1 cells with and without interferon (IFN)-γ sensitization were incubated with C. concisus strains. The level of PD-L1 mRNA was quantified using quantitative real-time PCR. Cytokines were measured using Enzyme-Linked Immunosorbent Assay (ELISA). Apoptosis of HT-29 and FLO-1 cells were measured using caspase 3/7 assay. Results: We found that intestinal epithelial cells with IFN-γ sensitization incubated with C. concisus significantly upregulated PD-L1 expression and significantly increased the production of interleukin (IL)-8. Whereas, PD-L1 expression was significantly inhibited in IFN-γ sensitized FLO-1 cells incubated with C. concisus strains. Furthermore, FLO-1 cells with and without IFN-γ sensitization incubated with C. concisus strains both had significantly higher levels of cell death. Conclusion: C. concisushas the potential to cause damage to both intestinal and esophageal epithelial cells, however, with different pathogenic effects.
Collapse
Affiliation(s)
- Seul A Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Doo Young Yun
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Stephen M Riordan
- Gastrointestinal and Liver Unit,Prince of Wales Hospital, University of New South Wales, Sydney, Australia
| | - Alfred Chin Yen Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Cheok Soon Lee
- School of Medicine, Western Sydney University, Sydney, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
- Central Clinical School, University of Sydney, Sydney, Australia
- Department of Anatomical Pathology, Liverpool Hospital, Sydney, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
199
|
Leung D, Bonacorsi S, Smith RA, Weber W, Hayes W. Molecular Imaging and the PD-L1 Pathway: From Bench to Clinic. Front Oncol 2021; 11:698425. [PMID: 34497758 PMCID: PMC8420047 DOI: 10.3389/fonc.2021.698425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/22/2021] [Indexed: 01/24/2023] Open
Abstract
Programmed death-1 (PD-1) and programmed death ligand 1 (PD-L1) inhibitors target the important molecular interplay between PD-1 and PD-L1, a key pathway contributing to immune evasion in the tumor microenvironment (TME). Long-term clinical benefit has been observed in patients receiving PD-(L)1 inhibitors, alone and in combination with other treatments, across multiple tumor types. PD-L1 expression has been associated with response to immune checkpoint inhibitors, and treatment strategies are often guided by immunohistochemistry-based diagnostic tests assessing expression of PD-L1. However, challenges related to the implementation, interpretation, and clinical utility of PD-L1 diagnostic tests have led to an increasing number of preclinical and clinical studies exploring interrogation of the TME by real-time imaging of PD-(L)1 expression by positron emission tomography (PET). PET imaging utilizes radiolabeled molecules to non-invasively assess PD-(L)1 expression spatially and temporally. Several PD-(L)1 PET tracers have been tested in preclinical and clinical studies, with clinical trials in progress to assess their use in a number of cancer types. This review will showcase the development of PD-(L)1 PET tracers from preclinical studies through to clinical use, and will explore the opportunities in drug development and possible future clinical implementation.
Collapse
Affiliation(s)
- David Leung
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, United States
| | - Samuel Bonacorsi
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, United States
| | - Ralph Adam Smith
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, United States
| | - Wolfgang Weber
- Technische Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wendy Hayes
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, United States
| |
Collapse
|
200
|
Awad RM, Lecocq Q, Zeven K, Ertveldt T, De Beck L, Ceuppens H, Broos K, De Vlaeminck Y, Goyvaerts C, Verdonck M, Raes G, Van Parys A, Cauwels A, Keyaerts M, Devoogdt N, Breckpot K. Formatting and gene-based delivery of a human PD-L1 single domain antibody for immune checkpoint blockade. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:172-182. [PMID: 34485603 PMCID: PMC8397838 DOI: 10.1016/j.omtm.2021.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/27/2021] [Indexed: 12/03/2022]
Abstract
Monoclonal antibodies that target the inhibitory immune checkpoint axis consisting of programmed cell death protein 1 (PD-1) and its ligand, PD-L1, have changed the immune-oncology field. We identified K2, an anti-human PD-L1 single-domain antibody fragment, that can enhance T cell activation and tumor cell killing. In this study, the potential of different K2 formats as immune checkpoint blocking medicines was evaluated using a gene-based delivery approach. We showed that 2K2 and 3K2, a bivalent and trivalent K2 format generated using a 12 GS (glycine-serine) linker, were 313- and 135-fold more potent in enhancing T cell receptor (TCR) signaling in PD-1POS cells than was monovalent K2. We further showed that bivalent constructs generated using a 30 GS linker or disulfide bond were 169- and 35-fold less potent in enhancing TCR signaling than was 2K2. 2K2 enhanced tumor cell killing in a 3D melanoma model, albeit to a lesser extent than avelumab. Therefore, an immunoglobulin (Ig)G1 antibody-like fusion protein was generated, referred to as K2-Fc. K2-Fc was significantly better than avelumab in enhancing tumor cell killing in the 3D melanoma model. Overall, this study describes K2-based immune checkpoint medicines, and it highlights the benefit of an IgG1 Fc fusion to K2 that gains bivalency, effector functions, and efficacy.
Collapse
Affiliation(s)
- Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Katty Zeven
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium.,In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas Ertveldt
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Lien De Beck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Hannelore Ceuppens
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Katrijn Broos
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Yannick De Vlaeminck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Magali Verdonck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| | - Alexander Van Parys
- Cytokine Receptor Laboratory, Flanders Institute of Biotechnology, VIB Medical Biotechnology Center, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Anje Cauwels
- Cytokine Receptor Laboratory, Flanders Institute of Biotechnology, VIB Medical Biotechnology Center, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Marleen Keyaerts
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, 1090 Brussels, Belgium.,Nuclear Medicine Department, UZ Brussel, 1090 Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| |
Collapse
|