151
|
Osipo C, Golde TE, Osborne BA, Miele LA. Off the beaten pathway: the complex cross talk between Notch and NF-kappaB. J Transl Med 2008; 88:11-7. [PMID: 18059366 DOI: 10.1038/labinvest.3700700] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The canonical Notch pathway that has been well characterized over the past 25 years is relatively simple compared to the plethora of recently published data suggesting non-canonical signaling mechanisms and cross talk with other pathways. The manner in which other pathways cross talk with Notch signaling appears to be extraordinarily complex and, not surprisingly, context-dependent. While the physiological relevance of many of these interactions remains to be established, there is little doubt that Notch signaling is integrated with numerous other pathways in ways that appear increasingly complex. Among the most intricate cross talks described for Notch is its interaction with the NF-kappaB pathway, another major cell fate regulatory network involved in development, immunity, and cancer. Numerous reports over the last 11 years have described multiple cross talk mechanisms between Notch and NF-kappaB in diverse experimental models. This article will provide a brief overview of the published evidence for Notch-NF-kappaB cross talk, focusing on vertebrate systems.
Collapse
Affiliation(s)
- Clodia Osipo
- Breast Cancer Program, Cardinal Bernadin Cancer Center, Loyola University Medical Center, Maywood, IL 60513, USA
| | | | | | | |
Collapse
|
152
|
|
153
|
Nagel AC, Wech I, Schwinkendorf D, Preiss A. Involvement of co-repressors Groucho and CtBP in the regulation of single-minded in Drosophila. Hereditas 2007; 144:195-205. [PMID: 18031354 DOI: 10.1111/j.2007.0018-0661.02020.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Dorso-ventral patterning results in the establishment of the two germ layers in the Drosophila embryo, mesoderm and mesectoderm, that are separated by a strip of cells giving rise to the mesectoderm and eventually to the ventral midline. The mesectoderm is specified by the expression of single-minded (sim) which is activated through the concerted action of Dorsal and Twist in addition to a Notch signal. In the mesoderm, sim is repressed by Snail together with the co-repressor C-terminal binding protein (CtBP). Here, we address the involvement of the two co-repressors CtBP and Groucho (Gro) in repression of sim in the neuroectoderm. It was shown earlier that sim is restricted in the neuroectoderm with help of Suppressor of Hairless [Su(H)] and Hairless. Using the female sterile technique, we generated germ line clones deficient for Gro, CtBP or Hairless and assayed sim mRNA relative to snail mRNA expression. We show that sim repression requires both co-repressors Gro and CtBP to be fully repressed in the neuroectoderm, suggesting that a repression complex is assembled including Su(H) and Hairless as was shown for other Notch target genes before. Moreover, our work implies that Gro is important for the repression of sim specifically within the mesoderm anlagen, indicating that Snail and CtBP are insufficient to entirely silence sim in this germ layer.
Collapse
Affiliation(s)
- Anja C Nagel
- Universität Hohenheim, Institut für Genetik, Stuttgart, Germany
| | | | | | | |
Collapse
|
154
|
Koutelou E, Sato S, Tomomori-Sato C, Florens L, Swanson SK, Washburn MP, Kokkinaki M, Conaway RC, Conaway JW, Moschonas NK. Neuralized-like 1 (Neurl1) targeted to the plasma membrane by N-myristoylation regulates the Notch ligand Jagged1. J Biol Chem 2007; 283:3846-53. [PMID: 18077452 DOI: 10.1074/jbc.m706974200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Notch signaling constitutes an evolutionarily conserved mechanism that mediates cell-cell interactions in various developmental processes. Numerous regulatory proteins interact with the Notch receptor and its ligands and control signaling at multiple levels. Ubiquitination and endocytosis followed by endosomal sorting of both the receptor and its ligands is essential for Notch-mediated signaling. The E3 ubiquitin ligases, Neuralized (Neur) and Mind Bomb (Mib1), are crucial for regulating the activity and stability of Notch ligands in Drosophila; however, biochemical evidence that the Notch ligands are directly targeted for ubiquitination by Neur and/or Mib1 has been lacking. In this report, we explore the function of Neurl1, a mouse ortholog of Drosophila Neur. We show that Neurl1 can function as an E3 ubiquitin ligase to activate monoubiquitination in vitro of Jagged1, but not other mammalian Notch ligands. Neurl1 expression decreases Jagged1 levels in cells and blocks signaling from Jagged1-expressing cells to neighboring Notch-expressing cells. We demonstrate that Neurl1 is myristoylated at its N terminus, and that myristoylation of Neurl1 targets it to the plasma membrane. Point mutations abolishing either Neurl1 myristoylation and plasma membrane localization or Neurl1 ubiquitin ligase activity impair its ability to down-regulate Jagged1 expression and to block signaling. Taken together, our results argue that Neurl1 at the plasma membrane can affect the signaling activity of Jagged1 by directly enhancing its ubiquitination and subsequent turnover.
Collapse
Affiliation(s)
- Evangelia Koutelou
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Roca C, Adams RH. Regulation of vascular morphogenesis by Notch signaling. Genes Dev 2007; 21:2511-24. [PMID: 17938237 DOI: 10.1101/gad.1589207] [Citation(s) in RCA: 348] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Notch pathway is a versatile regulator of cell fate specification, growth, differentiation, and patterning processes in metazoan organisms. In the vertebrate cardiovascular system, multiple Notch family receptors and several of their Jagged and Delta-like ligands are expressed during critical stages of embryonic and postnatal development. Functional studies in mice, fish, tumor models, and cell culture systems have shown that the angiogenic growth of the blood vessel network, the proliferation of endothelial cells, and the differentiation of arteries and veins are controlled by Notch signaling. Moreover, Notch pathway components play important roles in human pathological conditions involving the vasculature, namely CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) and Alagille syndrome. Recent findings highlight the Notch ligand Delta-like 4 as a key regulator of tumor angiogenesis and suggest that this protein might be a promising target for cancer therapy.
Collapse
Affiliation(s)
- Cristina Roca
- Vascular Development Laboratory, Cancer Research UK London Research Institute, London WC2A 3PX, United Kingdom
| | | |
Collapse
|
156
|
Luty WH, Rodeberg D, Parness J, Vyas YM. Antiparallel segregation of notch components in the immunological synapse directs reciprocal signaling in allogeneic Th:DC conjugates. THE JOURNAL OF IMMUNOLOGY 2007; 179:819-29. [PMID: 17617572 DOI: 10.4049/jimmunol.179.2.819] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Direct T cell allorecognition underlies the development of a vigorous immune response in the clinical setting of acute graft rejection. The Notch pathway is an important regulator of Th immune responses, yet the molecular underpinnings of directional Notch signaling, otherwise critical for binary cell fate decisions, are unknown during autologous or allogeneic Th:DC interactions. Using the development of immune synapses (IS) in the allogeneic, human physiological Th:DC interaction, we demonstrate that Th-Notch1 receptor and DC-Notch ligands (Delta-like1, Jagged1) cluster in their apposed central-supramolecular-activation-clusters (cSMAC), whereas DC-Notch1 receptor and Th-Notch ligands cluster in their apposed peripheral-SMAC (pSMAC). Numb, a negative regulator of Notch, is excluded from the IS-microdomains where Notch1 receptor accumulates. This antiparallel arrangement across the partnering halves of the IS supports reciprocal Notch signal propagation in the DC-to-Th direction via the cSMAC and Th-to-DC direction via the pSMAC. As a result, processed Notch1 receptor (Notch-intracellular-domain, NICD1) and its ligands, as well as their downstream targets, HES-1 and phosphorylated-STAT3, accumulate in the nuclei of both cell-types. There is also enhancement of GLUT1 expression in both cell-types, as well as increased production of Th-IFN-gamma. Significantly, neutralizing Notch1R Ab inhibits NICD1 and HES-1 nuclear translocation, and production of IFN-gamma. In contrast, the IS formed during Ag-nonspecific, autologous Th:DC interaction is immature, resulting in failure of Notch1 receptor segregation and subsequent nuclear translocation of NICD1. Our results provide the first evidence for the asymmetric recruitment of Notch components in the Th:DC immunological synapse, which regulates the bidirectional Notch signal propagation.
Collapse
Affiliation(s)
- Winifred H Luty
- Division of Pediatric Hematology-Oncology and Bone Marrow Transplantation, Children's Hospital of Pittsburgh, University of Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
157
|
Pintar A, De Biasio A, Popovic M, Ivanova N, Pongor S. The intracellular region of Notch ligands: does the tail make the difference? Biol Direct 2007; 2:19. [PMID: 17623096 PMCID: PMC1965462 DOI: 10.1186/1745-6150-2-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 07/10/2007] [Indexed: 02/06/2023] Open
Abstract
The cytoplasmic tail of Notch ligands drives endocytosis, mediates association with proteins implicated in the organization of cell-cell junctions and, through regulated intra-membrane proteolysis, is released from the membrane as a signaling fragment. We survey these findings and discuss the role of Notch ligands intracellular region in bidirectional signaling and possibly in signal modulation in mammals. This article was reviewed by Frank Eisenhaber, L Aravind, and Eugene V. Koonin.
Collapse
Affiliation(s)
- Alessandro Pintar
- International Centre for Genetic Engineering and Biotechnology, Protein Structure and Bioinformatics Group, AREA Science Park, Padriciano 99, I-34012 Trieste, Italy.
| | | | | | | | | |
Collapse
|
158
|
Vrailas-Mortimer AD, Majumdar N, Middleton G, Cooke EM, Marenda DR. Delta and Egfr expression are regulated by Importin-7/Moleskin in Drosophila wing development. Dev Biol 2007; 308:534-46. [PMID: 17628519 PMCID: PMC1994573 DOI: 10.1016/j.ydbio.2007.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 06/08/2007] [Accepted: 06/15/2007] [Indexed: 01/27/2023]
Abstract
Drosophila DIM-7 (encoded by the moleskin gene, msk) is the orthologue of vertebrate Importin-7. Both Importin-7 and Msk/DIM-7 function as nuclear import cofactors, and have been implicated in the control of multiple signal transduction pathways, including the direct nuclear import of the activated (phosphorylated) form of MAP kinase. We performed two genetic deficiency screens to identify deficiencies that similarly modified Msk overexpression phenotypes in both eyes and wings. We identified 11 total deficiencies, one of which removes the Delta locus. In this report, we show that Delta loss-of-function alleles dominantly suppress Msk gain-of-function phenotypes in the developing wing. We find that Msk overexpression increases both Delta protein expression and Delta transcription, though Msk expression alone is not sufficient to activate Delta protein function. We also find that Msk overexpression increases Egfr protein levels, and that msk gene function is required for proper Egfr expression in both developing wings and eyes. These results indicate a novel function for Msk in Egfr expression. We discuss the implications of these data with respect to the integration of Egfr and Delta/Notch signaling, specifically through the control of MAP kinase subcellular localization.
Collapse
|
159
|
Abstract
The Notch pathway is a highly conserved and ubiquitous signaling system that functions in determining a diverse array of cell fates and regulates many cellular processes during embryonic development and throughout adulthood. Links to cancer, stroke and Alzheimer's disease underscore the need to define the molecular basis of Notch activation. Notch signaling is induced through direct cell-cell interactions that promote receptor activation following engagement with a membrane-bound Delta, Serrate, Lag-2 (DSL) ligand on adjacent cells. Cells take on distinct fates because Notch signaling is consistently activated in only one of the two interacting cells, highlighting the importance of establishing and maintaining signaling polarity. Studies in flies and worms have identified positive and negative transcriptional feedback mechanisms that amplify small differences in Notch and DSL ligand expression to bias which cells send or receive signals. However, endocytosis by signal-sending and signal-receiving cells also appears critical for directing and regulating Notch activation. In particular, endocytosis and membrane trafficking of DSL ligands, Notch and modulators can determine the competence of cells to send or receive signals that ensure reproducibility in generating cell types regulated by Notch signaling.
Collapse
Affiliation(s)
- James T Nichols
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, 650 Charles Young Drive South, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
160
|
Traub LM, Lukacs GL. Decoding ubiquitin sorting signals for clathrin-dependent endocytosis by CLASPs. J Cell Sci 2007; 120:543-53. [PMID: 17287393 DOI: 10.1242/jcs.03385] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cargo selectivity is a hallmark of clathrin-mediated endocytosis. A wide range of structurally unrelated internalization signals specify the preferential clustering of transmembrane cargo into clathrin coats forming on the plasma membrane. Intriguingly, the classical endocytic adaptor AP-2 appears to recognize only a subset of these endocytic sorting signals. New data now reveal the molecular basis for recognition of other internalization signals, including post-translationally appended ubiquitin, by clathrin-coat-associated sorting proteins (CLASPs). Curiously, structurally related ubiquitin-recognition modules are shared by select CLASPs and the 26S proteasome, and recent work indicates that both display similar requirements for ubiquitin binding. During endocytosis, these modules engage oligoubiquitylated cargo in the form of polyubiquitin chains and/or multiple single ubiquitin molecules appended to different acceptor lysines. Functional separation between clathrin-mediated endocytosis and proteasome-dependent proteolysis is probably ensured by temporally regulated, local assembly of ubiquitin-tagged membrane cargo at sorting stations on the cell surface, shielding ubiquitin sorting signals from the proteasome. Thus, an expanded repertoire of CLASPs couples the process of clathrin-coat assembly with high-fidelity incorporation of assorted, cargo-specific sorting signals.
Collapse
Affiliation(s)
- Linton M Traub
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, PA 15261, USA, and Program in Cell and Lung Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.
| | | |
Collapse
|
161
|
Gordon WR, Vardar-Ulu D, Histen G, Sanchez-Irizarry C, Aster JC, Blacklow SC. Structural basis for autoinhibition of Notch. Nat Struct Mol Biol 2007; 14:295-300. [PMID: 17401372 DOI: 10.1038/nsmb1227] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 03/07/2007] [Indexed: 11/08/2022]
Abstract
Notch receptors transmit signals between adjacent cells. Signaling is initiated when ligand binding induces metalloprotease cleavage of Notch within an extracellular negative regulatory region (NRR). We present here the X-ray structure of the human NOTCH2 NRR, which adopts an autoinhibited conformation. Extensive interdomain interactions within the NRR bury the metalloprotease site, showing that a substantial conformational movement is necessary to expose this site during activation by ligand. Leukemia-associated mutations in NOTCH1 probably release autoinhibition by destabilizing the conserved hydrophobic core of the NRR.
Collapse
Affiliation(s)
- Wendy R Gordon
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 77 Ave. Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
162
|
Pi H, Chien CT. Getting the edge: neural precursor selection. J Biomed Sci 2007; 14:467-73. [PMID: 17357812 DOI: 10.1007/s11373-007-9156-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 02/09/2007] [Indexed: 01/08/2023] Open
Abstract
A key issue in development is how to specify single isolated precursor cells to adopt a distinct fate from a group of naive cells. Studies on the development of Drosophila external sensory (ES) organs have revealed multiple mechanisms to specify single sensory organ precursors (SOPs) from clusters of cells with equivalent neural potential. Initially single SOPs are selected in part through cell-cell competition from clusters of ectodermal cells that express proneural proteins. To reinforce the singularity, lateral inhibition through the Delta/Notch system and feedback regulations lead to exclusive expression of proneural proteins in SOPs. As transcriptional activators, proneural proteins execute a genetic program in SOP cells for the development of an eventually ES organ. In this article, we will summarize recent advances on how transcriptional regulation, protein degradation, endocytosis and gene silencing by microRNA participate in SOP specification.
Collapse
Affiliation(s)
- Haiwei Pi
- Department of Life Science, Chang-Gung University, 259 Wen-Hwa 1st Road, Kweishan, Tao-Yuan, 333, Taiwan
| | | |
Collapse
|
163
|
Doroquez DB, Rebay I. Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk. Crit Rev Biochem Mol Biol 2007; 41:339-85. [PMID: 17092823 DOI: 10.1080/10409230600914344] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metazoan development relies on a highly regulated network of interactions between conserved signal transduction pathways to coordinate all aspects of cell fate specification, differentiation, and growth. In this review, we discuss the intricate interplay between the epidermal growth factor receptor (EGFR; Drosophila EGFR/DER) and the Notch signaling pathways as a paradigm for signal integration during development. First, we describe the current state of understanding of the molecular architecture of the EGFR and Notch signaling pathways that has resulted from synergistic studies in vertebrate, invertebrate, and cultured cell model systems. Then, focusing specifically on the Drosophila eye, we discuss how cooperative, sequential, and antagonistic relationships between these pathways mediate the spatially and temporally regulated processes that generate this sensory organ. The common themes underlying the coordination of the EGFR and Notch pathways appear to be broadly conserved and should, therefore, be directly applicable to elucidating mechanisms of information integration and signaling specificity in vertebrate systems.
Collapse
Affiliation(s)
- David B Doroquez
- Department of Biology, Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
164
|
Ing B, Shteiman-Kotler A, Castelli M, Henry P, Pak Y, Stewart B, Boulianne GL, Rotin D. Regulation of Commissureless by the ubiquitin ligase DNedd4 is required for neuromuscular synaptogenesis in Drosophila melanogaster. Mol Cell Biol 2007; 27:481-96. [PMID: 17074801 PMCID: PMC1800811 DOI: 10.1128/mcb.00463-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 05/23/2006] [Accepted: 10/18/2006] [Indexed: 11/20/2022] Open
Abstract
Muscle synaptogenesis in Drosophila melanogaster requires endocytosis of Commissureless (Comm), a binding partner for the ubiquitin ligase dNedd4. We investigated whether dNedd4 and ubiquitination mediate this process. Here we show that Comm is expressed in intracellular vesicles in the muscle, whereas Comm bearing mutations in the two PY motifs (L/PPXY) responsible for dNedd4 binding [Comm(2PY-->AY)], or bearing Lys-->Arg mutations in all Lys residues that serve as ubiquitin acceptor sites [Comm(10K-->R)], localize to the muscle surface, suggesting they cannot endocytose. Accordingly, aberrant muscle innervation is observed in the Comm(2PY-->AY) and Comm(10K-->R) mutants expressed early in muscle development. Similar muscle surface accumulation of Comm and innervation defects are observed when dNedd4 is knocked down by double-stranded RNA interference in the muscle, in dNedd4 heterozygote larvae, or in muscles overexpressing catalytically inactive dNedd4. Expression of the Comm mutants fused to a single ubiquitin that cannot be polyubiquitinated and mimics monoubiquitination [Comm(2PY-->AY)-monoUb or Comm(10K-->R)-monoUb] prevents the defects in both Comm endocytosis and synaptogenesis, suggesting that monoubiquitination is sufficient for Comm endocytosis in muscles. Expression of the Comm mutants later in muscle development, after synaptic innervation, has no effect. These results demonstrate that dNedd4 and ubiquitination are required for Commissureless endocytosis and proper neuromuscular synaptogenesis.
Collapse
Affiliation(s)
- Bryant Ing
- The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Fischer JA, Eun SH, Doolan BT. Endocytosis, endosome trafficking, and the regulation of Drosophila development. Annu Rev Cell Dev Biol 2006; 22:181-206. [PMID: 16776558 DOI: 10.1146/annurev.cellbio.22.010605.093205] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endocytosis and endosome trafficking regulate cell signaling in unexpected ways. Here we review the contribution that Drosophila research has made to this exciting field. In addition to attenuating signaling, endocytosis shapes morphogen gradients, activates ligands, and regulates spatially receptor activation within a single cell. Moreover, some receptors signal from within endosomes, and the ability of a specific type of endosome to form controls the ability of cells to signal. Experiments in Drosophila reveal that through regulation of a variety of cell signaling pathways, endocytosis controls cell patterning and cell fate.
Collapse
Affiliation(s)
- Janice A Fischer
- Institute for Cellular and Molecular Biology, Section of Molecular Cell and Development, University of Texas, Austin, Texas 78712, USA.
| | | | | |
Collapse
|
166
|
Eun SH, Lea K, Overstreet E, Stevens S, Lee JH, Fischer JA. Identification of genes that interact with Drosophila liquid facets. Genetics 2006; 175:1163-74. [PMID: 17179082 PMCID: PMC1840095 DOI: 10.1534/genetics.106.067959] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have performed mutagenesis screens of the Drosophila X chromosome and the autosomes for dominant enhancers of the rough eye resulting from overexpression of liquid facets. The liquid facets gene encodes the homolog of vertebrate endocytic Epsin, an endocytic adapter protein. In Drosophila, Liquid facets is a core component of the Notch signaling pathway required in the signaling cells for ligand endocytosis and signaling. Why ligand internalization by the signaling cells is essential for signaling is a mystery. The requirement for Liquid facets is a hint at the answer, and the genes identified in this screen provide further clues. Mutant alleles of clathrin heavy chain, Rala, split ends, and auxilin were identified as enhancers. We describe the mutant alleles and mutant phenotypes of Rala and aux. We discuss the relevance of all of these genetic interactions to the function of Liquid facets in Notch signaling.
Collapse
Affiliation(s)
- Suk Ho Eun
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | | | | | | | | | | |
Collapse
|
167
|
Gallagher CM, Knoblich JA. The Conserved C2 Domain Protein Lethal (2) Giant Discs Regulates Protein Trafficking in Drosophila. Dev Cell 2006; 11:641-53. [PMID: 17084357 DOI: 10.1016/j.devcel.2006.09.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 07/11/2006] [Accepted: 09/15/2006] [Indexed: 10/23/2022]
Abstract
Drosophila sensory organ precursor (SOP) cells undergo several rounds of asymmetric cell division to generate the four different cell types that make up external sensory organs. Establishment of different fates among daughter cells of the SOP relies on differential regulation of the Notch pathway. Here, we identify the protein Lethal (2) giant discs (Lgd) as a critical regulator of Notch signaling in the SOP lineage. We show that lgd encodes a conserved C2 domain protein that binds to phospholipids present on early endosomes. When Lgd function is compromised, Notch and other transmembrane proteins accumulate in enlarged early endosomal compartments. These enlarged endosomes are positive for Rab5 and Hrs, a protein involved in trafficking into the degradative pathway. Our experiments suggest that Lgd is a critical regulator of endocytosis that is not present in yeast and acts in the degradative pathway after Hrs.
Collapse
Affiliation(s)
- Ciara M Gallagher
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr Bohr Gasse 3, 1030 Vienna, Austria
| | | |
Collapse
|
168
|
Jaekel R, Klein T. The Drosophila Notch Inhibitor and Tumor Suppressor Gene lethal (2) giant discs Encodes a Conserved Regulator of Endosomal Trafficking. Dev Cell 2006; 11:655-69. [PMID: 17084358 DOI: 10.1016/j.devcel.2006.09.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 07/12/2006] [Accepted: 09/21/2006] [Indexed: 11/19/2022]
Abstract
Notch signaling is involved in many developmental and pathological processes, and its activity must be precisely controlled in order to prevent aberrant development and disease. We have previously shown that the tumor suppressor gene lethal (2) giant discs (lgd) is required to prevent ectopic activation of Notch in developmental processes in Drosophila. Here we show that lgd is required in all imaginal disc cells to suppress the activity of the Notch pathway. lgd encodes a member of a poorly characterized protein family present in all animals, which includes a member that is involved in an inheritable form of mental retardation in humans. Our analysis reveals that Lgd is required for endosomal trafficking of Notch and other proteins. In the absence of Lgd, Notch is activated in a ligand-independent manner in probably all imaginal disc cells in an endosomal compartment downstream of the block in hrs mutants.
Collapse
Affiliation(s)
- Robert Jaekel
- Institute for Genetics, University of Cologne, Zülpicherstrasse 47, 50674 Cologne, Germany
| | | |
Collapse
|
169
|
Commisso C, Boulianne GL. The NHR1 domain of Neuralized binds Delta and mediates Delta trafficking and Notch signaling. Mol Biol Cell 2006; 18:1-13. [PMID: 17065551 PMCID: PMC1751308 DOI: 10.1091/mbc.e06-08-0753] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Notch signaling, which is crucial to metazoan development, requires endocytosis of Notch ligands, such as Delta and Serrate. Neuralized is a plasma membrane-associated ubiquitin ligase that is required for neural development and Delta internalization. Neuralized is comprised of three domains that include a C-terminal RING domain and two neuralized homology repeat (NHR) domains. All three domains are conserved between organisms, suggesting that these regions of Neuralized are functionally important. Although the Neuralized RING domain has been shown to be required for Delta ubiquitination, the function of the NHR domains remains elusive. Here we show that neuralized, a well-characterized neurogenic allele, exhibits a mutation in a conserved residue of the NHR1 domain that results in mislocalization of Neuralized and defects in Delta binding and internalization. Furthermore, we describe a novel isoform of Neuralized and show that it is recruited to the plasma membrane by Delta and that this is mediated by the NHR1 domain. Finally, we show that the NHR1 domain of Neuralized is both necessary and sufficient to bind Delta. Altogether, our data demonstrate that NHR domains can function in facilitating protein-protein interactions and in the case of Neuralized, mediate binding to its ubiquitination target, Delta.
Collapse
Affiliation(s)
- Cosimo Commisso
- The Hospital for Sick Children, Program in Developmental Biology and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | - Gabrielle L. Boulianne
- The Hospital for Sick Children, Program in Developmental Biology and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| |
Collapse
|
170
|
Abstract
A small number of signalling pathways are used iteratively to regulate cell fates, cell proliferation and cell death in development. Notch is the receptor in one such pathway, and is unusual in that most of its ligands are also transmembrane proteins; therefore signalling is restricted to neighbouring cells. Although the intracellular transduction of the Notch signal is remarkably simple, with no secondary messengers, this pathway functions in an enormous diversity of developmental processes and its dysfunction is implicated in many cancers.
Collapse
Affiliation(s)
- Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
171
|
Parks AL, Stout JR, Shepard SB, Klueg KM, Dos Santos AA, Parody TR, Vaskova M, Muskavitch MAT. Structure-function analysis of delta trafficking, receptor binding and signaling in Drosophila. Genetics 2006; 174:1947-61. [PMID: 17028337 PMCID: PMC1698634 DOI: 10.1534/genetics.106.061630] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transmembrane proteins Delta and Notch act as ligand and receptor in a conserved signaling pathway required for a variety of cell fate specification events in many organisms. Binding of Delta to Notch results in a proteolytic cascade that releases the Notch intracellular domain, allowing it to participate in transcriptional activation in the nucleus. Recent research has implicated the endocytic and ubiquitylation machinery as essential components of Delta-Notch signaling. Our analysis of chimeric and missense Delta variants has delineated a number of structural requirements for Delta trafficking, receptor binding, and signaling. We find that while the Delta N-terminal domain is necessary and sufficient for binding to Notch, the integrity of the epidermal-growth-factor-like repeat (ELR) 2 is also required for Notch binding. Screening of 117 Delta mutant lines for proteins that exhibit aberrant subcellular trafficking has led to the identification of 18 Delta alleles (DlTD alleles) that encode "trafficking-defective" Delta proteins. We find, unexpectedly, that many DlTD alleles contain missense mutations in ELRs within the Delta extracellular domain. Finally, we find that two DlTD alleles contain lysine missense mutations within the Delta intracellular domain (DeltaICD) that may identify residues important for DeltaICD mono-ubiquitylation and subsequent Delta endocytosis and signaling.
Collapse
Affiliation(s)
- Annette L Parks
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Glittenberg M, Pitsouli C, Garvey C, Delidakis C, Bray S. Role of conserved intracellular motifs in Serrate signalling, cis-inhibition and endocytosis. EMBO J 2006; 25:4697-706. [PMID: 17006545 PMCID: PMC1618092 DOI: 10.1038/sj.emboj.7601337] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 08/16/2006] [Indexed: 11/09/2022] Open
Abstract
Notch is the receptor in a signalling pathway that operates in a diverse spectrum of developmental processes. Its ligands (e.g. Serrate) are transmembrane proteins whose signalling competence is regulated by the endocytosis-promoting E3 ubiquitin ligases, Mindbomb1 and Neuralized. The ligands also inhibit Notch present in the same cell (cis-inhibition). Here, we identify two conserved motifs in the intracellular domain of Serrate that are required for efficient endocytosis. The first, a dileucine motif, is dispensable for trans-activation and cis-inhibition despite the endocytic defect, demonstrating that signalling can be separated from bulk endocytosis. The second, a novel motif, is necessary for interactions with Mindbomb1/Neuralized and is strictly required for Serrate to trans-activate and internalise efficiently but not for it to inhibit Notch signalling. Cis-inhibition is compromised when an ER retention signal is added to Serrate, or when the levels of Neuralized are increased, and together these data indicate that cis-inhibitory interactions occur at the cell surface. The balance of ubiquitinated/unubiquitinated ligand will thus affect the signalling capacity of the cell at several levels.
Collapse
Affiliation(s)
- Marcus Glittenberg
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Chrysoula Pitsouli
- Institute of Molecular Biology and Biotechnology, FORTH, and Department of Biology, University of Crete, Heraklion, Greece
| | - Clare Garvey
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, FORTH, and Department of Biology, University of Crete, Heraklion, Greece
| | - Sarah Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK. Tel.: +44 1223 333792; Fax: +44 1223 333786; E-mail:
| |
Collapse
|
173
|
Song R, Koo BK, Yoon KJ, Yoon MJ, Yoo KW, Kim HT, Oh HJ, Kim YY, Han JK, Kim CH, Kong YY. Neuralized-2 regulates a Notch ligand in cooperation with Mind bomb-1. J Biol Chem 2006; 281:36391-400. [PMID: 17003037 DOI: 10.1074/jbc.m606601200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in Drosophila neuralized (Dneur) result in a variety of developmental defects that closely resemble those of Notch mutants and other Notch pathway mutants. However, mice with disrupted neur1 do not show any aberrant cell fate specifications in neurogenesis and somitogenesis. Thus, we speculated that other vertebrate neur homolog(s) might compensate for loss of the neur gene. Here, we report the paralog of mouse Neur1, named Neuralized-2 (Neur2), which is a ubiquitin-protein isopeptide ligase (E3) that interacts with and ubiquitinates Delta. Both murine Neur1 and Neur2 have similar degrees of homology to DNeur, and neur2 is expressed in patterns similar to those of neur1 in embryos, suggesting potential functional redundancy. Interestingly, two distinct classes of E3 ligases, Mind bomb-1 (Mib1) and Neur2, have cooperative but distinct roles in Delta endocytosis to Hrs-positive vesicles, i.e. Mib1 functions in the initial step of Delta endocytosis, and Neur2 is required for targeting endocytosed Delta to Hrs-positive vesicles. Thus, our study provides a new insight into how distinct E3 ligases work together in the endocytic pathways for Notch signaling.
Collapse
Affiliation(s)
- Ran Song
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Hagedorn EJ, Bayraktar JL, Kandachar VR, Bai T, Englert DM, Chang HC. Drosophila melanogaster auxilin regulates the internalization of Delta to control activity of the Notch signaling pathway. ACTA ACUST UNITED AC 2006; 173:443-52. [PMID: 16682530 PMCID: PMC2063844 DOI: 10.1083/jcb.200602054] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have isolated mutations in the Drosophila melanogaster homologue of auxilin, a J-domain-containing protein known to cooperate with Hsc70 in the disassembly of clathrin coats from clathrin-coated vesicles in vitro. Consistent with this biochemical role, animals with reduced auxilin function exhibit genetic interactions with Hsc70 and clathrin. Interestingly, the auxilin mutations interact specifically with Notch and disrupt several Notch-mediated processes. Genetic evidence places auxilin function in the signal-sending cells, upstream of Notch receptor activation, suggesting that the relevant cargo for this auxilin-mediated endocytosis is the Notch ligand Delta. Indeed, the localization of Delta protein is disrupted in auxilin mutant tissues. Thus, our data suggest that auxilin is an integral component of the Notch signaling pathway, participating in the ubiquitin-dependent endocytosis of Delta. Furthermore, the fact that auxilin is required for Notch signaling suggests that ligand endocytosis in the signal-sending cells needs to proceed past coat disassembly to activate Notch.
Collapse
MESH Headings
- Animals
- Auxilins/genetics
- Auxilins/physiology
- Body Patterning/genetics
- Body Patterning/physiology
- Clathrin/genetics
- Clathrin/metabolism
- Drosophila melanogaster/embryology
- Drosophila melanogaster/genetics
- Drosophila melanogaster/physiology
- Endocytosis/genetics
- Endocytosis/physiology
- ErbB Receptors/genetics
- ErbB Receptors/physiology
- Eye Abnormalities/genetics
- Eye Abnormalities/ultrastructure
- Gene Expression Regulation, Developmental
- Genotype
- HSC70 Heat-Shock Proteins/genetics
- HSC70 Heat-Shock Proteins/metabolism
- Intracellular Signaling Peptides and Proteins
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Microscopy, Electron, Scanning
- Mutation/genetics
- Nervous System/embryology
- Nervous System/metabolism
- Phenotype
- Photoreceptor Cells, Invertebrate/embryology
- Photoreceptor Cells, Invertebrate/metabolism
- RNA, Small Interfering/genetics
- Receptors, Notch/genetics
- Receptors, Notch/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
- Wings, Animal/embryology
- Wings, Animal/metabolism
- Wings, Animal/ultrastructure
Collapse
Affiliation(s)
- Elliott J Hagedorn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
175
|
Emery G, Knoblich JA. Endosome dynamics during development. Curr Opin Cell Biol 2006; 18:407-15. [PMID: 16806877 DOI: 10.1016/j.ceb.2006.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
Abstract
Endocytosis has traditionally been studied in isolated cells. More recently, however, the analysis of protein trafficking in whole organisms has revealed that it plays exciting roles during development. Endocytic trafficking of cell adhesion molecules regulates epithelial polarity and cell migration. Developmental signaling pathways are regulated by the trafficking of receptors and their ligands through the endocytic pathway. Finally, impairment of the endocytic machinery can affect proliferation control and contribute to tumor development.
Collapse
Affiliation(s)
- Gregory Emery
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr Bohr Gasse 3, 1030 Vienna, Austria
| | | |
Collapse
|
176
|
Abstract
A number of recent studies have shown that endocytosis of Notch ligands is required for activation of Notch. There are at least two broad models that account for how Delta endocytosis in one cell might contribute to activation of Notch in the neighboring cell. The first class of models is related to the possibility that Delta endocytosis facilitates S2 cleavage and removal of the Notch extracellular domain, a critical step in Notch activation. A second class of models is related to the possibility that Delta ubiquitylation and endocytosis facilitates interactions between Delta and Notch. In the second set of models, Delta undergoes endocytosis and its subsequent trafficking back to the surface, following modifications or some change in the context in which it is presented, makes Delta a more effective ligand. Though it is still not clear how either or both mechanisms contribute, recent evidence points to the importance of both endocytosis and recycling in Delta signaling.
Collapse
Affiliation(s)
- Ajay Chitnis
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Drive, 3B 315, Bethesda, MD 20892, USA.
| |
Collapse
|
177
|
Hawryluk MJ, Keyel PA, Mishra SK, Watkins SC, Heuser JE, Traub LM. Epsin 1 is a polyubiquitin-selective clathrin-associated sorting protein. Traffic 2006; 7:262-81. [PMID: 16497222 DOI: 10.1111/j.1600-0854.2006.00383.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epsin 1 engages several core components of the endocytic clathrin coat, yet the precise mode of operation of the protein remains controversial. The occurrence of tandem ubiquitin-interacting motifs (UIMs) suggests that epsin could recognize a ubiquitin internalization tag, but the association of epsin with clathrin-coat components or monoubiquitin is reported to be mutually exclusive. Here, we show that endogenous epsin 1 is clearly an integral component of clathrin coats forming at the cell surface and is essentially absent from caveolin-1-containing structures under normal conditions. The UIM region of epsin 1 associates directly with polyubiquitin chains but has extremely poor affinity for monoubiquitin. Polyubiquitin binding is retained when epsin synchronously associates with phosphoinositides, the AP-2 adaptor complex and clathrin. The enrichment of epsin within clathrin-coated vesicles purified from different tissue sources varies and correlates with sorting of multiubiquitinated cargo, and in cultured cells, polyubiquitin, rather than non-conjugable monoubiquitin, promotes rapid internalization. As epsin interacts with eps15, which also contains a UIM region that binds to polyubiquitin, epsin and eps15 appear to be central components of the vertebrate poly/multiubiquitin-sorting endocytic clathrin machinery.
Collapse
Affiliation(s)
- Matthew J Hawryluk
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
178
|
Barriere H, Nemes C, Lechardeur D, Khan-Mohammad M, Fruh K, Lukacs GL. Molecular basis of oligoubiquitin-dependent internalization of membrane proteins in Mammalian cells. Traffic 2006; 7:282-97. [PMID: 16497223 DOI: 10.1111/j.1600-0854.2006.00384.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ubiquitination induced down-regulation of cell surface proteins by internalization and lysosomal targeting plays a fundamental role in cell physiology and pathogenesis of diseases. The molecular basis of a single ubiquitin (Ub) as an autonomous endocytic signal, the widely accepted mechanism, however, remains elusive in higher eukaryotes. Using Ub containing reporter proteins without signalling abilities, we present evidence that only multiple Ub moieties, linked either covalently or assembled as oligomers with an intact interface for recognition by Ub-interacting motifs (UIMs), are recognized by the endocytic machinery in vivo and associate with a subset of Ub-binding clathrin adaptors in vitro. Genetic and pharmacological approaches show that internalization of plasma membrane proteins harbouring multiple Ub moieties is clathrin-dependent, but caveolin-independent. Functional assays demonstrate the cargo-dependent involvement of eps15/15R and epsin, UIM containing clathrin adaptors, in the endocytosis of model proteins, CD4 and the activated beta(2)-adrenergic receptor complex, containing polymeric or oligomeric Ub. These results provide a paradigm for the clathrin-mediated uptake of ubiquitinated membrane proteins in mammalian cells, requiring the assembly of multiple UIM-Ub interactions to overcome the low affinity binding of mono-Ub to UIM.
Collapse
Affiliation(s)
- Herve Barriere
- Program in Cell and Lung Biology, Hospital for Sick Children Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | |
Collapse
|
179
|
Millard SM, Wood SA. Riding the DUBway: regulation of protein trafficking by deubiquitylating enzymes. ACTA ACUST UNITED AC 2006; 173:463-8. [PMID: 16702236 PMCID: PMC2063856 DOI: 10.1083/jcb.200602082] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ubiquitylation is a key regulator of protein trafficking, and much about the functions of ubiquitin ligases, which add ubiquitin to substrates in this regulation, has recently come to light. However, a clear understanding of ubiquitin-dependent protein localization cannot be achieved without knowledge of the role of deubiquitylating enzymes (DUBs). DUBs, by definition, function downstream in ubiquitin pathways and, as such, have the potential to be the final editors of protein ubiquitylation status, thus determining substrate fate. This paper assimilates the current evidence concerning the substrates and activities of DUBs that regulate protein trafficking.
Collapse
Affiliation(s)
- Susan M Millard
- Child Health Research Institute, North Adelaide, South Australia 5006, Australia
| | | |
Collapse
|
180
|
Wang H, Traub LM, Weixel KM, Hawryluk MJ, Shah N, Edinger RS, Perry CJ, Kester L, Butterworth MB, Peters KW, Kleyman TR, Frizzell RA, Johnson JP. Clathrin-mediated Endocytosis of the Epithelial Sodium Channel. J Biol Chem 2006; 281:14129-35. [PMID: 16574660 DOI: 10.1074/jbc.m512511200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we present evidence that the epithelial sodium channel (ENaC), a heteromeric membrane protein whose surface expression is regulated by ubiquitination, is present in clathrin-coated vesicles in epithelial cells that natively express ENaC. The channel subunits are ubiquitinated and co-immunoprecipitate with both epsin and clathrin adaptor proteins, and epsin, as expected, co-immunoprecipitates with clathrin adaptor proteins. The functional significance of these interactions was evaluated in a Xenopus oocyte expression system where co-expression of epsin and ENaC resulted in a down-regulation of ENaC activity; conversely, co-expression of epsin sub-domains acted as dominant-negative effectors and stimulated ENaC activity. These results identify epsin as an accessory protein linking ENaC to the clathrin-based endocytic machinery thereby regulating the activity of this ion channel at the cell surface.
Collapse
Affiliation(s)
- Huamin Wang
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Bardin AJ, Schweisguth F. Bearded family members inhibit Neuralized-mediated endocytosis and signaling activity of Delta in Drosophila. Dev Cell 2006; 10:245-55. [PMID: 16459303 DOI: 10.1016/j.devcel.2005.12.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 12/16/2005] [Accepted: 12/28/2005] [Indexed: 11/26/2022]
Abstract
Endocytosis of Notch receptor ligands in signaling cells is essential for Notch receptor activation. In Drosophila, the E3 ubiquitin ligase Neuralized (Neur) promotes the endocytosis and signaling activity of the ligand Delta (Dl). In this study, we identify proteins of the Bearded (Brd) family as interactors of Neur. We show that Tom, a prototypic Brd family member, inhibits Neur-dependent Notch signaling. Overexpression of Tom inhibits the endocytosis of Dl and interferes with the interaction of Dl with Neur. Deletion of the Brd gene complex results in ectopic endocytosis of Dl in dorsal cells of stage 5 embryos. This defect in Dl trafficking is associated with ectopic expression of the single-minded gene, a direct Notch target gene that specifies the mesectoderm. We propose that inhibition of Neur by Brd proteins is important for precise spatial regulation of Dl signaling.
Collapse
Affiliation(s)
- Allison J Bardin
- CNRS UMR 8542, Ecole Normale Supérieure, 46, rue d'Ulm, 75230 Paris Cedex, France
| | | |
Collapse
|
182
|
Le Borgne R. Regulation of Notch signalling by endocytosis and endosomal sorting. Curr Opin Cell Biol 2006; 18:213-22. [PMID: 16488590 DOI: 10.1016/j.ceb.2006.02.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 02/08/2006] [Indexed: 01/31/2023]
Abstract
Cell-cell signalling is an essential process in the formation of multicellular organisms. Notch is the receptor of an evolutionarily conserved signalling pathway regulating numerous developmental decisions. Indeed, its misregulation is linked to multiple developmental and physiological disorders. Notch and its ligands are distributed widely throughout development, yet Notch activity is highly controlled and restricted in time and space. Recent advances have highlighted that endocytosis followed by endosomal sorting of both the Notch receptor and its ligands is an essential mechanism by which Notch-mediated signalling is developmentally controlled.
Collapse
Affiliation(s)
- Roland Le Borgne
- CNRS UMR 6061, Faculté de Médecine, 2 avenue du Professeur Léon Bernard, CS 34317, 35043 Rennes Cedex, France.
| |
Collapse
|
183
|
Abstract
A fusion of cutting-edge research in cell biology, developmental biology and immunology made the recent workshop on Membrane Dynamics in Endocytosis an outstanding success. Members of an increasingly diverse community converged upon the small town of Sant Feliu de Guixols on the coast of Spain, between September 17-22, 2005, to discuss common themes emerging from their studies on membrane transport. Organized by Margaret Robinson (Cambridge, UK) and Howard Riezman (Geneva, Switzerland), the meeting covered diverse topics that highlighted essential roles for endocytosis during cell growth, development and parasitic invasion.
Collapse
Affiliation(s)
- Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, 604 Allison Road, Nelson Biological Laboratories Room A307, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
184
|
Tosoni D, Puri C, Confalonieri S, Salcini AE, De Camilli P, Tacchetti C, Di Fiore PP. TTP specifically regulates the internalization of the transferrin receptor. Cell 2006; 123:875-88. [PMID: 16325581 DOI: 10.1016/j.cell.2005.10.021] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 08/10/2005] [Accepted: 10/13/2005] [Indexed: 10/25/2022]
Abstract
Different plasma membrane receptors are internalized through saturable/noncompetitive pathways, suggesting cargo-specific regulation. Here, we report that TTP (SH3BP4), a SH3-containing protein, specifically regulates the internalization of the transferrin receptor (TfR). TTP interacts with endocytic proteins, including clathrin, dynamin, and the TfR, and localizes selectively to TfR-containing coated-pits (CCP) and -vesicles (CCV). Overexpression of TTP specifically inhibits TfR internalization, and causes the formation of morphologically aberrant CCP, which are probably fission impaired. This effect is mediated by the SH3 of TTP, which can bind to dynamin, and it is rescued by overexpression of dynamin. Functional ablation of TTP causes a reduction in TfR internalization, and reduced cargo loading and size of TfR-CCV. Tyrosine phosphorylation of either TTP or dynamin prevents their interaction, pointing to a possible mechanism of exclusion of TTP from some CCP. Thus, TTP might represent one of the long sought for molecules that allow cargo-specific control of clathrin endocytosis.
Collapse
Affiliation(s)
- Daniela Tosoni
- IFOM, Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
185
|
Mahoney MB, Parks AL, Ruddy DA, Tiong SYK, Esengil H, Phan AC, Philandrinos P, Winter CG, Chatterjee R, Huppert K, Fisher WW, L'Archeveque L, Mapa FA, Woo W, Ellis MC, Curtis D. Presenilin-based genetic screens in Drosophila melanogaster identify novel notch pathway modifiers. Genetics 2006; 172:2309-24. [PMID: 16415372 PMCID: PMC1456381 DOI: 10.1534/genetics.104.035170] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Presenilin is the enzymatic component of gamma-secretase, a multisubunit intramembrane protease that processes several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human Presenilins lead to altered APP cleavage and early-onset Alzheimer's disease. Presenilins also play an essential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling pathway that functions during the development of multicellular organisms, including vertebrates, Drosophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers, including nicastrin and several genes with previously undescribed involvement in Notch biology. The predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for gamma-tubulin in the pathway.
Collapse
|
186
|
Campos LS, Decker L, Taylor V, Skarnes W. Notch, epidermal growth factor receptor, and beta1-integrin pathways are coordinated in neural stem cells. J Biol Chem 2005; 281:5300-9. [PMID: 16332675 DOI: 10.1074/jbc.m511886200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Notch1 and beta1-integrins are cell surface receptors involved in the recognition of the niche that surrounds stem cells through cell-cell and cell-extracellular matrix interactions, respectively. Notch1 is also involved in the control of cell fate choices in the developing central nervous system (Lewis, J. (1998) Semin. Cell Dev. Biol. 9, 583-589). Here we report that Notch and beta1-integrins are co-expressed and that these proteins cooperate with the epidermal growth factor receptor in neural progenitors. We describe data that suggests that beta1-integrins may affect Notch signaling through 1) physical interaction (sequestration) of the Notch intracellular domain fragment by the cytoplasmic tail of the beta1-integrin and 2) affecting trafficking of the Notch intracellular domain via caveolin-mediated mechanisms. Our findings suggest that caveolin 1-containing lipid rafts play a role in the coordination and coupling of beta1-integrin, Notch1, and tyrosine kinase receptor signaling pathways. We speculate that this will require the presence of the adequate beta1-activating extracellular matrix or growth factors in restricted regions of the central nervous system and namely in neurogenic niches.
Collapse
Affiliation(s)
- Lia Scotti Campos
- INSERM U368, Biologie Moléculaire du Développement, Ecole Normale Supérieure, Paris, France.
| | | | | | | |
Collapse
|
187
|
|
188
|
Abstract
Three current papers in Cell and in this issue of Developmental Cell highlight the role of the exocyst in recycling of membrane proteins from endosomes to the plasma membrane in asymmetric cell division and polarized epithelial cells.
Collapse
Affiliation(s)
- W Gregory Somers
- Temasek Lifesciences Laboratory, The National University of Singapore
| | | |
Collapse
|
189
|
Jafar-Nejad H, Andrews HK, Acar M, Bayat V, Wirtz-Peitz F, Mehta SQ, Knoblich JA, Bellen HJ. Sec15, a component of the exocyst, promotes notch signaling during the asymmetric division of Drosophila sensory organ precursors. Dev Cell 2005; 9:351-63. [PMID: 16137928 DOI: 10.1016/j.devcel.2005.06.010] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Revised: 06/13/2005] [Accepted: 06/30/2005] [Indexed: 01/05/2023]
Abstract
Asymmetric division of sensory organ precursors (SOPs) in Drosophila generates different cell types of the mature sensory organ. In a genetic screen designed to identify novel players in this process, we have isolated a mutation in Drosophila sec15, which encodes a component of the exocyst, an evolutionarily conserved complex implicated in intracellular vesicle transport. sec15(-) sensory organs contain extra neurons at the expense of support cells, a phenotype consistent with loss of Notch signaling. A vesicular compartment containing Notch, Sanpodo, and endocytosed Delta accumulates in basal areas of mutant SOPs. Based on the dynamic traffic of Sec15, its colocalization with the recycling endosomal marker Rab11, and the aberrant distribution of Rab11 in sec15 clones, we propose that a defect in Delta recycling causes cell fate transformation in sec15(-) sensory lineages. Our data indicate that Sec15 mediates a specific vesicle trafficking event to ensure proper neuronal fate specification in Drosophila.
Collapse
Affiliation(s)
- Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Emery G, Hutterer A, Berdnik D, Mayer B, Wirtz-Peitz F, Gaitan MG, Knoblich JA. Asymmetric Rab 11 endosomes regulate delta recycling and specify cell fate in the Drosophila nervous system. Cell 2005; 122:763-73. [PMID: 16137758 DOI: 10.1016/j.cell.2005.08.017] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 06/22/2005] [Accepted: 08/16/2005] [Indexed: 01/15/2023]
Abstract
Drosophila sensory organ precursor (SOP) cells are a well-studied model system for asymmetric cell division. During SOP division, the determinants Numb and Neuralized segregate into the pIIb daughter cell and establish a distinct cell fate by regulating Notch/Delta signaling. Here, we describe a Numb- and Neuralized-independent mechanism that acts redundantly in cell-fate specification. We show that trafficking of the Notch ligand Delta is different in the two daughter cells. In pIIb, Delta passes through the recycling endosome which is marked by Rab 11. In pIIa, however, the recycling endosome does not form because the centrosome fails to recruit Nuclear fallout, a Rab 11 binding partner that is essential for recycling endosome formation. Using a mammalian cell culture system, we demonstrate that recycling endosomes are essential for Delta activity. Our results suggest that cells can regulate signaling pathways and influence their developmental fate by inhibiting the formation of individual endocytic compartments.
Collapse
Affiliation(s)
- Gregory Emery
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3-5, 1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
191
|
Wildonger J, Mann RS. Evidence that nervy, the Drosophila homolog of ETO/MTG8, promotes mechanosensory organ development by enhancing Notch signaling. Dev Biol 2005; 286:507-20. [PMID: 16168983 DOI: 10.1016/j.ydbio.2005.08.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 08/11/2005] [Accepted: 08/12/2005] [Indexed: 11/18/2022]
Abstract
In the imaginal tissue of developing fruit flies, achaete (ac) and scute (sc) expression defines a group of neurally-competent cells called the proneural cluster (PNC). From the PNC, a single cell, the sensory organ precursor (SOP), is selected as the adult mechanosensory organ precursor. The SOP expresses high levels of ac and sc and sends a strong Delta (Dl) signal, which activates the Notch (N) receptor in neighboring cells, preventing them from also adopting a neural fate. Previous work has determined how ac and sc expression in the PNC and SOP is regulated, but less is known about SOP-specific factors that promote SOP fate. Here, we describe the role of nervy (nvy), the Drosophila homolog of the mammalian proto-oncogene ETO, in mechanosensory organ formation. Nvy is specifically expressed in the SOP, where it interacts with the Ac and Sc DNA binding partner Daughterless (Da) and affects the expression of Ac and Sc targets. nvy loss- and gain-of-function experiments suggest that nvy reinforces, but is not absolutely required for, the SOP fate. We propose a model in which nvy acts downstream of ac and sc to promote the SOP fate by transiently strengthening the Dl signal emanating from the SOP.
Collapse
Affiliation(s)
- Jill Wildonger
- Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
192
|
Katic I, Vallier LG, Greenwald I. New positive regulators of lin-12 activity in Caenorhabditis elegans include the BRE-5/Brainiac glycosphingolipid biosynthesis enzyme. Genetics 2005; 171:1605-15. [PMID: 16157663 PMCID: PMC1389698 DOI: 10.1534/genetics.105.048041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Screens for suppressors of lin-12 hypermorphic alleles in C. elegans have identified core components and modulators of the LIN-12/Notch signaling pathway. Here we describe the recovery of alleles of six new genes from a screen for suppressors of the egg-laying defect associated with elevated lin-12 activity. The molecular identification of one of the new suppressor genes revealed it as bre-5, which had previously been identified in screens for mutations that confer resistance to Bt toxin in C. elegans. bre-5 is the homolog of D. melanogaster brainiac. BRE-5/Brainiac catalyzes a step in the synthesis of glycosphingolipids, components of lipid rafts that are thought to act as platforms for association among certain kinds of membrane-bound proteins. Reducing the activity of several other genes involved in glycosphingolipid biosynthesis also suppresses the effects of constitutive lin-12 activity. Genetic analysis and cell ablation experiments suggest that bre-5 functions prior to ligand-induced ectodomain shedding that activates LIN-12 for signal transduction.
Collapse
Affiliation(s)
- Iskra Katic
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University College of Physicians and Surgeons, 701 W. 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
193
|
Pitsouli C, Delidakis C. The interplay between DSL proteins and ubiquitin ligases in Notch signaling. Development 2005; 132:4041-50. [PMID: 16093323 DOI: 10.1242/dev.01979] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lateral inhibition is a pattern refining process that generates single neural precursors from a field of equipotent cells and is mediated via Notch signaling. Of the two Notch ligands Delta and Serrate, only the former was thought to participate in this process. We now show that macrochaete lateral inhibition involves both Delta and Serrate. In this context, Serrate interacts with Neuralized, a ubiquitin ligase that was heretofore thought to act only on Delta. Neuralized physically associates with Serrate and stimulates its endocytosis and signaling activity. We also characterize a mutation in mib1, a Drosophila homolog of mind bomb, another Delta-targeting ubiquitin ligase from zebrafish. Mib1 affects the signaling activity of Delta and Serrate in both lateral inhibition and wing dorsoventral boundary formation. Simultaneous absence of neuralized and mib1 completely abolishes Notch signaling in both aforementioned contexts, making it likely that ubiquitination is a prerequisite for Delta/Serrate signaling.
Collapse
Affiliation(s)
- Chrysoula Pitsouli
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | | |
Collapse
|
194
|
Wang W, Struhl G. Distinct roles for Mind bomb, Neuralized and Epsin in mediating DSL endocytosis and signaling in Drosophila. Development 2005; 132:2883-94. [PMID: 15930117 DOI: 10.1242/dev.01860] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ligands of the Delta/Serrate/Lag2 (DSL) family must normally be endocytosed in signal-sending cells to activate Notch in signal-receiving cells. DSL internalization and signaling are promoted in zebrafish and Drosophila, respectively, by the ubiquitin ligases Mind bomb (Mib) and Neuralized (Neur). DSL signaling activity also depends on Epsin, a conserved endocytic adaptor thought to target mono-ubiquitinated membrane proteins for internalization. Here, we present evidence that the Drosophila ortholog of Mib (Dmib) is required for ubiquitination and signaling activity of DSL ligands in cells that normally do not express Neur, and can be functionally replaced by ectopically expressed Neur. Furthermore, we show that both Dmib and Epsin are required in these cells for some of the endocytic events that internalize DSL ligands, and that the two Drosophila DSL ligands Delta and Serrate differ in their utilization of these Dmib- and Epsin-dependent pathways: most Serrate is endocytosed via the actions of Dmib and Epsin, whereas most Delta enters by other pathways. Nevertheless, only those Serrate and Delta proteins that are internalized via the action of Dmib and Epsin can signal. These results support and extend our previous proposal that mono-ubiquitination of DSL ligands allows them to gain access to a select, Epsin-dependent, endocytic pathway that they must normally enter to activate Notch.
Collapse
Affiliation(s)
- Weidong Wang
- Howard Hughes Medical Institute, Department of Genetics and Development, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
195
|
Traub LM. Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:415-37. [PMID: 15922462 DOI: 10.1016/j.bbamcr.2005.04.005] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 04/17/2005] [Accepted: 04/19/2005] [Indexed: 12/12/2022]
Abstract
Clathrin-mediated vesicular trafficking events underpin the vectorial transfer of macromolecules between several eukaryotic membrane-bound compartments. Classical models for coat operation, focused principally on interactions between clathrin, the heterotetrameric adaptor complexes, and cargo molecules, fail to account for the full complexity of the coat assembly and sorting process. New data reveal that targeting of clathrin adaptor complexes is generally supported by phosphoinositides, that cargo recognition by heterotetrameric adaptors depends on phosphorylation-driven conformational alterations, and that dedicated clathrin-associated sorting proteins (CLASPs) exist to promote the selective trafficking of specific categories of cargo. A host of accessory factors also participate in coat polymerization events, and the independently folded appendage domains that project off the heterotetrameric adaptor core function as recruitment platforms that appear to oversee assembly operations. It is also now clear that focal polymerization of branched actin microfilaments contributes to clathrin-coated vesicle assembly and movement at both plasma membrane and Golgi sites. This improved appreciation of the complex mechanisms governing clathrin-dependent sorting events reveals several common principles of clathrin operation at the Golgi and the plasma membrane.
Collapse
Affiliation(s)
- Linton M Traub
- Department of Cell Biology and Physiology University of Pittsburgh School of Medicine 3500 Terrace Street, S325BST Pittsburgh, PA 15206, USA.
| |
Collapse
|
196
|
Roegiers F, Jan LY, Jan YN. Regulation of membrane localization of Sanpodo by lethal giant larvae and neuralized in asymmetrically dividing cells of Drosophila sensory organs. Mol Biol Cell 2005; 16:3480-7. [PMID: 15901829 DOI: 10.1091/mbc.e05-03-0177] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Drosophila, asymmetric division occurs during proliferation of neural precursors of the central and peripheral nervous system (PNS), where a membrane-associated protein, Numb, is asymmetrically localized during cell division and is segregated to one of the two daughter cells (the pIIb cell) after mitosis. numb has been shown genetically to function as an antagonist of Notch signaling and also as a negative regulator of the membrane localization of Sanpodo, a four-pass transmembrane protein required for Notch signaling during asymmetric cell division in the CNS. Previously, we identified lethal giant larvae (lgl) as a gene required for numb-mediated inhibition of Notch in the adult PNS. In this study we show that Sanpodo is expressed in asymmetrically dividing precursor cells of the PNS and that Sanpodo internalization in the pIIb cell is dependent cytoskeletally associated Lgl. Lgl specifically regulates internalization of Sanpodo, likely through endocytosis, but is not required for the endocytosis Delta, which is a required step in the Notch-mediated cell fate decision during asymmetric cell division. Conversely, the E3 ubiquitin ligase neuralized is required for both Delta endocytosis and the internalization of Sanpodo. This study identifies a hitherto unreported role for Lgl as a regulator of Sanpodo during asymmetric cell division in the adult PNS.
Collapse
Affiliation(s)
- Fabrice Roegiers
- Howard Hughes Medical Institute and Department of Physiology and Biochemistry, University of California-San Francisco, San Francisco, CA 94143-0725, USA.
| | | | | |
Collapse
|
197
|
Abstract
Notch signaling is regulated by ubiquitination of the receptor and its extracellular ligands. New studies reveal distinct ubiquitination-dependent endosomal sorting pathways in which ligand-bound Notch is activated while unliganded Notch is recycled or degraded, facilitating signaling while preventing inappropriate activation of unstimulated receptors.
Collapse
Affiliation(s)
- Ritu Kanwar
- Laboratory of Protein Dynamics and Signaling, National Cancer Institute, 1050 Boyles Street, Frederick, Maryland 21701, USA
| | | |
Collapse
|
198
|
McKenzie GJ, Khan M, Briend E, Stallwood Y, Champion BR. Notch: a unique therapeutic target for immunomodulation. Expert Opin Ther Targets 2005; 9:395-410. [PMID: 15934923 DOI: 10.1517/14728222.9.2.395] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Under normal circumstances, the adaptive immune response to either self or harmless antigens is kept under tight control by a combination of deletion mechanisms in the central immune system, and by a system of regulatory cells in the periphery. Together, these control mechanisms enforce a state referred to as immunological tolerance. Breakdown of these mechanisms lead to a variety of immunological disease states involving persistent immune-mediated pathologies. Whereas the processes inducing central tolerance in the immune system are well documented, the mechanisms by which peripheral regulatory cells function are still unclear. Recent publications have reported an unexpected role for the Notch pathway, itself a classical regulator of cell fate, in the development of regulatory T cells. These exciting data demonstrate that Notch signals modulate events downstream of the T cell receptor, diverting T cell differentiation into alternative fates which regulate immune responses in an antigen-specific manner. The Notch pathway is, therefore, uniquely positioned in the developmental pathways leading to regulatory T cells. In this review, the authors discuss the data surrounding the role of Notch in the peripheral immune system, and discuss how this pathway might be manipulated for the treatment of immunological disorders.
Collapse
|
199
|
Le Borgne R, Bardin A, Schweisguth F. The roles of receptor and ligand endocytosis in regulating Notch signaling. Development 2005; 132:1751-62. [PMID: 15790962 DOI: 10.1242/dev.01789] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell-cell signaling is a central process in the formation of multicellular organisms. Notch (N) is the receptor of a conserved signaling pathway that regulates numerous developmental decisions, and the misregulation of N has been linked to various physiological and developmental disorders. The endocytosis of N and its ligands is a key mechanism by which N-mediated cell-cell signaling is developmentally regulated. We review here the recent findings that have highlighted the importance and complexity of this regulation.
Collapse
Affiliation(s)
- Roland Le Borgne
- CNRS UMR 8542, Ecole Normale Supérieure, 46, rue d'Ulm 75230 Paris cedex, France
| | | | | |
Collapse
|
200
|
Lai EC, Roegiers F, Qin X, Jan YN, Rubin GM. The ubiquitin ligase Drosophila Mind bomb promotes Notch signaling by regulating the localization and activity of Serrate and Delta. Development 2005; 132:2319-32. [PMID: 15829515 DOI: 10.1242/dev.01825] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The receptor Notch and its ligands of the Delta/Serrate/LAG2 (DSL) family are the central components in the Notch pathway, a fundamental cell signaling system that regulates pattern formation during animal development. Delta is directly ubiquitinated by Drosophila and Xenopus Neuralized, and by zebrafish Mind bomb, two unrelated RING-type E3 ubiquitin ligases with common abilities to promote Delta endocytosis and signaling activity. Although orthologs of both Neuralized and Mind bomb are found in most metazoan organisms, their relative contributions to Notch signaling in any single organism have not yet been assessed. We show here that a Drosophila ortholog of Mind bomb (D-mib) is a positive component of Notch signaling that is required for multiple Neuralized-independent, Notch-dependent developmental processes. Furthermore, we show that D-mib associates physically and functionally with both Serrate and Delta. We find that D-mib uses its ubiquitin ligase activity to promote DSL ligand activity, an activity that is correlated with its ability to induce the endocytosis and degradation of both Delta and Serrate (see also Le Borgne et al., 2005). We further demonstrate that D-mib can functionally replace Neuralized in multiple cell fate decisions that absolutely require endogenous Neuralized, a testament to the highly similar activities of these two unrelated ubiquitin ligases in regulating Notch signaling. We conclude that ubiquitination of Delta and Serrate by Neuralized and D-mib is an obligate feature of DSL ligand activation throughout Drosophila development.
Collapse
Affiliation(s)
- Eric C Lai
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, 545 Life Sciences Addition, University of California at Berkeley, Berkeley, CA 94720-3200, USA.
| | | | | | | | | |
Collapse
|