151
|
Liu X, Li F, Pan Z, Wang W, Wen W. Solution structure of the SH3 domain of DOCK180. Proteins 2013; 81:906-10. [PMID: 23239367 DOI: 10.1002/prot.24236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/09/2012] [Accepted: 11/28/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Xiangrong Liu
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
152
|
Sanematsu F, Nishikimi A, Watanabe M, Hongu T, Tanaka Y, Kanaho Y, Côté JF, Fukui Y. Phosphatidic acid-dependent recruitment and function of the Rac activator DOCK1 during dorsal ruffle formation. J Biol Chem 2013; 288:8092-8100. [PMID: 23362269 DOI: 10.1074/jbc.m112.410423] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of receptor tyrosine kinases leads to the formation of two different types of plasma membrane structures: peripheral ruffles and dorsal ruffles. Although the formation of both ruffle types requires activation of the small GTPase Rac, the difference in kinetics suggests that a distinct regulatory mechanism operates for their ruffle formation. DOCK1 and DOCK5 are atypical Rac activators and are both expressed in mouse embryonic fibroblasts (MEFs). We found that although PDGF-induced Rac activation and peripheral ruffle formation were coordinately regulated by DOCK1 and DOCK5 in MEFs, DOCK1 deficiency alone impaired dorsal ruffle formation in MEFs. Unlike DOCK5, DOCK1 bound to phosphatidic acid (PA) through the C-terminal polybasic amino acid cluster and was localized to dorsal ruffles. When this interaction was blocked, PDGF-induced dorsal ruffle formation was severely impaired. In addition, we show that phospholipase D, an enzyme that catalyzes PA synthesis, is required for PDGF-induced dorsal, but not peripheral, ruffle formation. These results indicate that the phospholipase D-PA axis selectively controls dorsal ruffle formation by regulating DOCK1 localization.
Collapse
Affiliation(s)
- Fumiyuki Sanematsu
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo 102-0075, Japan
| | - Akihiko Nishikimi
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo 102-0075, Japan
| | - Mayuki Watanabe
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo 102-0075, Japan
| | - Tsunaki Hongu
- Graduate School of Comprehensive Human Sciences, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshihiko Tanaka
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo 102-0075, Japan
| | - Yasunori Kanaho
- Graduate School of Comprehensive Human Sciences, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Jean-François Côté
- Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo 102-0075, Japan.
| |
Collapse
|
153
|
RADVAK PETER, REPIC MARKO, SVASTOVA ELISKA, TAKACOVA MARTINA, CSADEROVA LUCIA, STRNAD HYNEK, PASTOREK JAROMIR, PASTOREKOVA SILVIA, KOPACEK JURAJ. Suppression of carbonic anhydrase IX leads to aberrant focal adhesion and decreased invasion of tumor cells. Oncol Rep 2013; 29:1147-53. [DOI: 10.3892/or.2013.2226] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 12/05/2012] [Indexed: 11/06/2022] Open
|
154
|
Abstract
Severe combined immunodeficiency (SCID) comprises a group of disorders that are fatal owing to genetic defects that abrogate T cell development. Numerous related defects have recently been identified that allow T cell development but that compromise T cell function by affecting proximal or distal steps in intracellular signaling. These functional T cell immunodeficiencies are characterized by immune dysregulation and increased risk of malignancies, in addition to infections. The study of patients with these rare conditions, and of corresponding animal models, illustrates the importance of intracellular signaling to maintain T cell homeostasis.
Collapse
Affiliation(s)
- Luigi D Notarangelo
- Division of Immunology and The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA.
| |
Collapse
|
155
|
Wallez Y, Mace PD, Pasquale EB, Riedl SJ. NSP-CAS Protein Complexes: Emerging Signaling Modules in Cancer. Genes Cancer 2012; 3:382-93. [PMID: 23226576 DOI: 10.1177/1947601912460050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The CAS (CRK-associated substrate) family of adaptor proteins comprises 4 members, which share a conserved modular domain structure that enables multiple protein-protein interactions, leading to the assembly of intracellular signaling platforms. Besides their physiological role in signal transduction downstream of a variety of cell surface receptors, CAS proteins are also critical for oncogenic transformation and cancer cell malignancy through associations with a variety of regulatory proteins and downstream effectors. Among the regulatory partners, the 3 recently identified adaptor proteins constituting the NSP (novel SH2-containing protein) family avidly bind to the conserved carboxy-terminal focal adhesion-targeting (FAT) domain of CAS proteins. NSP proteins use an anomalous nucleotide exchange factor domain that lacks catalytic activity to form NSP-CAS signaling modules. Additionally, the NSP SH2 domain can link NSP-CAS signaling assemblies to tyrosine-phosphorylated cell surface receptors. NSP proteins can potentiate CAS function by affecting key CAS attributes such as expression levels, phosphorylation state, and subcellular localization, leading to effects on cell adhesion, migration, and invasion as well as cell growth. The consequences of these activities are well exemplified by the role that members of both families play in promoting breast cancer cell invasiveness and resistance to antiestrogens. In this review, we discuss the intriguing interplay between the NSP and CAS families, with a particular focus on cancer signaling networks.
Collapse
Affiliation(s)
- Yann Wallez
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | | |
Collapse
|
156
|
Mahankali M, Henkels KM, Alter G, Gomez-Cambronero J. Identification of the catalytic site of phospholipase D2 (PLD2) newly described guanine nucleotide exchange factor activity. J Biol Chem 2012; 287:41417-31. [PMID: 23035122 PMCID: PMC3510840 DOI: 10.1074/jbc.m112.383596] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/18/2012] [Indexed: 11/06/2022] Open
Abstract
We have demonstrated that phospholipase D2 (PLD2) is a guanine nucleotide exchange factor (GEF) for Rac2 and determined the PLD2 domains and amino acid site(s) responsible for its GEF activity. Experiments using GST fusion proteins or GST-free counterparts, purified proteins revealed that the PX domain is sufficient to exert GEF activity similar to full-length PLD2. The PLD2-GEF catalytic site is formed by a hydrophobic pocket of residues Phe-107, Phe-129, Leu-166, and Leu-173, all of which are in the PX domain. A nearby Arg-172 is also important in the overall activity. PX mutants altering any of those five amino acids fail to have GEF activity but still bind to Rac2, while their lipase activity was mostly unaffected. In addition to the PX domain, a region in the pleckstrin homology domain (Ile-306-Ala-310) aids in the PX-mediated GEF activity by providing a docking site to hold Rac2 in place during catalysis. We conclude that PLD2 is a unique GEF, with the PX being the major catalytic domain for its GEF activity, whereas the pleckstrin homology domain assists in the PX-mediated activity. The physiological relevance of this novel GEF in cell biology is demonstrated here in chemotaxis and phagocytosis of leukocytes, as the specific PX and PH mutants abolished cell function. Thus, this study reveals for the first time the catalytic site that forms the basis for the mechanism behind the GEF activity of PLD2.
Collapse
Affiliation(s)
- Madhu Mahankali
- From the Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435
| | - Karen M. Henkels
- From the Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435
| | - Gerald Alter
- From the Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435
| | - Julian Gomez-Cambronero
- From the Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435
| |
Collapse
|
157
|
Margaron Y, Fradet N, Côté JF. ELMO recruits actin cross-linking family 7 (ACF7) at the cell membrane for microtubule capture and stabilization of cellular protrusions. J Biol Chem 2012. [PMID: 23184944 DOI: 10.1074/jbc.m112.431825] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ELMO and DOCK180 proteins form an evolutionarily conserved module controlling Rac GTPase signaling during cell migration, phagocytosis, and myoblast fusion. Here, we identified the microtubule and actin-binding spectraplakin ACF7 as a novel ELMO-interacting partner. A C-terminal polyproline segment in ELMO and the last spectrin repeat of ACF7 mediate a direct interaction between these proteins. Co-expression of ELMO1 with ACF7 promoted the formation of long membrane protrusions during integrin-mediated cell spreading. Quantification of membrane dynamics established that coupling of ELMO and ACF7 increases the persistence of the protruding activity. Mechanistically, we uncovered a role for ELMO in the recruitment of ACF7 to the membrane to promote microtubule capture and stability. Functionally, these effects of ELMO and ACF7 on cytoskeletal dynamics required the Rac GEF DOCK180. In conclusion, our findings support a role for ELMO in protrusion stability by acting at the interface between the actin cytoskeleton and the microtubule network.
Collapse
Affiliation(s)
- Yoran Margaron
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | | | | |
Collapse
|
158
|
Abstract
Small GTPases like Rac2 are crucial regulators of many cell functions central to life itself. Our laboratory has recently found that phospholipase D2 (PLD2) can act as a guanine nucleotide exchange factor (GEF) for Rac2. PLD2 has a Pleckstrin Homology (PH) domain but does not bear a Dbl homology (DH) or DOCK homology region (DHR) domain. It has, however, a Phox (PX) domain upstream of its PH domain. To better understand the novel finding of PLD2 as an enhancer of GDP/GTP exchange, we modeled the N-terminal portion of PLD2 (as the crystal structure of this protein has not as of yet been resolved), and studied the correlation with two known GEFs, SWAP-70 and the Leukemic Associated RhoGEF (LARG). Structural similarities between PLD2's PH and SWAP-70s or LARG's PH domain are very extensive, while similarities between PLD2's PX and SWAP-70s or LARG's DH domains are less evident. This indicates that PLD functions as a GEF utilizing its PH domain and part of its PX domain and possibly other regions. All this makes PLD unique, and an entirely new class of GEF. By bearing two enzymatic activities (break down of PC and GDP/GTP exchange), it is realistic to assume that PLD is an important signaling node for several intracellular pathways. Future experiments will ascertain how the newly described PLD2's GEF is regulated in the context of cell activation.
Collapse
|
159
|
Terasawa M, Uruno T, Mori S, Kukimoto-Niino M, Nishikimi A, Sanematsu F, Tanaka Y, Yokoyama S, Fukui Y. Dimerization of DOCK2 is essential for DOCK2-mediated Rac activation and lymphocyte migration. PLoS One 2012; 7:e46277. [PMID: 23050005 PMCID: PMC3458822 DOI: 10.1371/journal.pone.0046277] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/29/2012] [Indexed: 11/17/2022] Open
Abstract
The migratory properties of lymphocytes depend on DOCK2, an atypical Rac activator predominantly expressed in hematopoietic cells. Although DOCK2 does not contain the Dbl homology domain typically found in guanine nucleotide exchange factors (GEFs), DOCK2 mediates the GTP-GDP exchange reaction for Rac via its DOCK homology region (DHR)-2 (also known as CZH2 or Docker) domain. DOCK2 DHR-2 domain is composed of three lobes, and Rac binding site and catalytic center are generated entirely from lobes B and C. On the other hand, lobe A has been implicated in dimer formation, yet its physiological significance remains unknown. Here, we report that lobe A-mediated DOCK2 dimerization is crucial for Rac activation and lymphocyte migration. We found that unlike wild-type DOCK2, DOCK2 mutant lacking lobe A failed to restore motility and polarity when expressed in thymoma cells and primary T cells lacking endogenous expression of DOCK2. Similar results were obtained with the DOCK2 point mutant having a defect in dimerization. Deletion of lobe A from the DHR-2 domain did not affect Rac GEF activity in vitro. However, fluorescence resonance energy transfer analyses revealed that lobe A is required for DOCK2 to activate Rac effectively during cell migration. Our results thus indicate that DOCK2 dimerization is functionally important under the physiological condition where only limited amounts of DOCK2 and Rac are localized to the plasma membrane.
Collapse
Affiliation(s)
- Masao Terasawa
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Sampson CJ, Valanne S, Fauvarque MO, Hultmark D, Rämet M, Williams MJ. The RhoGEF Zizimin-related acts in the Drosophila cellular immune response via the Rho GTPases Rac2 and Cdc42. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:160-8. [PMID: 22634526 DOI: 10.1016/j.dci.2012.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/10/2012] [Accepted: 05/15/2012] [Indexed: 06/01/2023]
Abstract
Zizimin-related (Zir), a Rho guanine nucleotide exchange factor (RhoGEF) homologous to the mammalian Dock-C/Zizimin-related family, was identified in a screen to find new genes involved in the Drosophila melanogaster cellular immune response against eggs from the parasitoid wasp Leptopilina boulardi. RhoGEFs activate Rho-family GTPases, which are known to be central regulators of cell migration, spreading and polarity. When a parasitoid wasp is recognized as foreign, multiple layers of circulating immunosurveillance cells (haemocytes) should attach to the egg. In Zir mutants this process is disrupted and lamellocytes, a haemocyte subtype, fail to properly encapsulate the wasp egg. Furthermore, macrophage-like plasmatocytes exhibit a strong reduction in their ability to phagocytise Escherichia coli and Staphylococcus aureus bacteria. During encapsulation and phagocytosis Zir genetically interacts with two Rho-family GTPases, Rac2 and Cdc42. Finally, Zir is dispensable for the humoral immune response against bacteria. We propose that Zir is necessary to activate the Rho-family GTPases Rac2 and Cdc42 during the Drosophila cellular immune response.
Collapse
Affiliation(s)
- Christopher J Sampson
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, UK
| | | | | | | | | | | |
Collapse
|
161
|
El-Sayed Moustafa JS, Eleftherohorinou H, de Smith AJ, Andersson-Assarsson JC, Couto Alves A, Hadjigeorgiou E, Walters RG, Asher JE, Bottolo L, Buxton JL, Sladek R, Meyre D, Dina C, Visvikis-Siest S, Jacobson P, Sjöström L, Carlsson LM, Walley A, Falchi M, Froguel P, Blakemore AI, Coin LJ. Novel association approach for variable number tandem repeats (VNTRs) identifies DOCK5 as a susceptibility gene for severe obesity. Hum Mol Genet 2012; 21:3727-38. [PMID: 22595969 PMCID: PMC3406755 DOI: 10.1093/hmg/dds187] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/11/2012] [Indexed: 12/18/2022] Open
Abstract
Variable number tandem repeats (VNTRs) constitute a relatively under-examined class of genomic variants in the context of complex disease because of their sequence complexity and the challenges in assaying them. Recent large-scale genome-wide copy number variant mapping and association efforts have highlighted the need for improved methodology for association studies using these complex polymorphisms. Here we describe the in-depth investigation of a complex region on chromosome 8p21.2 encompassing the dedicator of cytokinesis 5 (DOCK5) gene. The region includes two VNTRs of complex sequence composition which flank a common 3975 bp deletion, all three of which were genotyped by polymerase chain reaction and fragment analysis in a total of 2744 subjects. We have developed a novel VNTR association method named VNTRtest, suitable for association analysis of multi-allelic loci with binary and quantitative outcomes, and have used this approach to show significant association of the DOCK5 VNTRs with childhood and adult severe obesity (P(empirical)= 8.9 × 10(-8) and P= 3.1 × 10(-3), respectively) which we estimate explains ~0.8% of the phenotypic variance. We also identified an independent association between the 3975 base pair (bp) deletion and obesity, explaining a further 0.46% of the variance (P(combined)= 1.6 × 10(-3)). Evidence for association between DOCK5 transcript levels and the 3975 bp deletion (P= 0.027) and both VNTRs (P(empirical)= 0.015) was also identified in adipose tissue from a Swedish family sample, providing support for a functional effect of the DOCK5 deletion and VNTRs. These findings highlight the potential role of DOCK5 in human obesity and illustrate a novel approach for analysis of the contribution of VNTRs to disease susceptibility through association studies.
Collapse
Affiliation(s)
| | | | - Adam J. de Smith
- Department of Genomics of Common Disease, School of Public Health Inperial College London, W12 ONN, UK
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Johanna C. Andersson-Assarsson
- Department of Genomics of Common Disease, School of Public Health Inperial College London, W12 ONN, UK
- Department of Molecular and Clinical Medicine and Center for Cardiovascular and Metabolic Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg 413 45, Sweden
| | | | - Eleni Hadjigeorgiou
- Department of Genomics of Common Disease, School of Public Health Inperial College London, W12 ONN, UK
| | - Robin G. Walters
- Department of Genomics of Common Disease, School of Public Health Inperial College London, W12 ONN, UK
| | - Julian E. Asher
- Department of Genomics of Common Disease, School of Public Health Inperial College London, W12 ONN, UK
| | - Leonardo Bottolo
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, UK
- Department of Mathematics, Imperial College London, London SW7 AZ, UK
| | - Jessica L. Buxton
- Department of Genomics of Common Disease, School of Public Health Inperial College London, W12 ONN, UK
| | - Rob Sladek
- Department of Medicine and
- Department of Human Genetics, McGill University, Montreal, CanadaH3A 1A4
| | - David Meyre
- CNRS 8199-University Lille North of France, Institut Pasteur de Lille, Lille 59000, France
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, CanadaL8S 4K1
| | - Christian Dina
- INSERM UMR 915, l'institut du thorax, CNRS ERL3147, University of Nantes, France and
| | - Sophie Visvikis-Siest
- Unité de Recherche ‘Génétique Cardiovasculaire’, EA-4373, Faculté de Pharmacie, Université de Lorraine, 30, rue Lionnois, Nancy 54000, France
| | - Peter Jacobson
- Department of Molecular and Clinical Medicine and Center for Cardiovascular and Metabolic Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg 413 45, Sweden
| | - Lars Sjöström
- Department of Molecular and Clinical Medicine and Center for Cardiovascular and Metabolic Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg 413 45, Sweden
| | - Lena M.S. Carlsson
- Department of Molecular and Clinical Medicine and Center for Cardiovascular and Metabolic Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg 413 45, Sweden
| | - Andrew Walley
- Department of Genomics of Common Disease, School of Public Health Inperial College London, W12 ONN, UK
| | - Mario Falchi
- Department of Genomics of Common Disease, School of Public Health Inperial College London, W12 ONN, UK
| | - Philippe Froguel
- Department of Genomics of Common Disease, School of Public Health Inperial College London, W12 ONN, UK
- CNRS 8199-University Lille North of France, Institut Pasteur de Lille, Lille 59000, France
| | - Alexandra I.F. Blakemore
- Department of Genomics of Common Disease, School of Public Health Inperial College London, W12 ONN, UK
| | - Lachlan J.M. Coin
- Department of Genomics of Common Disease, School of Public Health Inperial College London, W12 ONN, UK
| |
Collapse
|
162
|
Zhang W, Huang Y, Gunst SJ. The small GTPase RhoA regulates the contraction of smooth muscle tissues by catalyzing the assembly of cytoskeletal signaling complexes at membrane adhesion sites. J Biol Chem 2012; 287:33996-4008. [PMID: 22893699 DOI: 10.1074/jbc.m112.369603] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The activation of the small GTPase RhoA is necessary for ACh-induced actin polymerization and airway smooth muscle (ASM) contraction, but the mechanism by which it regulates these events is unknown. Actin polymerization in ASM is catalyzed by the actin filament nucleation activator, N-WASp and the polymerization catalyst, Arp2/3 complex. Activation of the small GTPase cdc42, a specific N-WASp activator, is also required for actin polymerization and tension generation. We assessed the mechanism by which RhoA regulates actin dynamics and smooth muscle contraction by expressing the dominant negative mutants RhoA T19N and cdc42 T17N, and non-phosphorylatable paxillin Y118/31F and paxillin ΔLD4 deletion mutants in SM tissues. Their effects were evaluated in muscle tissue extracts and freshly dissociated SM cells. Protein interactions and cellular localization were analyzed using proximity ligation assays (PLA), immunofluorescence, and GTPase and kinase assays. RhoA inhibition prevented ACh-induced cdc42 activation, N-WASp activation and the interaction of N-WASp with the Arp2/3 complex at the cell membrane. ACh induced paxillin phosphorylation and its association with the cdc42 GEFS, DOCK180 and α/βPIX. Paxillin tyrosine phosphorylation and its association with βPIX were RhoA-dependent, and were required for cdc42 activation. The ACh-induced recruitment of paxillin and FAK to the cell membrane was dependent on RhoA. We conclude that RhoA regulates the contraction of ASM by catalyzing the assembly and activation of cytoskeletal signaling modules at membrane adhesomes that initiate signaling cascades that regulate actin polymerization and tension development in response to contractile agonist stimulation. Our results suggest that the RhoA-mediated assembly of adhesome complexes is a fundamental step in the signal transduction process in response to agonist -induced smooth muscle contraction.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
163
|
DOCK7 interacts with TACC3 to regulate interkinetic nuclear migration and cortical neurogenesis. Nat Neurosci 2012; 15:1201-10. [PMID: 22842144 PMCID: PMC3431462 DOI: 10.1038/nn.3171] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/26/2012] [Indexed: 12/12/2022]
Abstract
Neurogenesis in the developing neocortex relies on the ability of radial glial progenitor cells (RGCs) to switch from proliferative to differentiative neuron-generating divisions, but the molecular mechanisms that control this switch in a correct temporal manner are not well understood. Here, we show that DOCK7, a member of the DOCK180 family of proteins, plays an important role in the regulation of RGC proliferation versus differentiation. Silencing of DOCK7 in RGCs of developing mouse embryos impedes neuronal differentiation and maintains cells as cycling progenitors. In contrast, DOCK7 overexpression promotes RGC differentiation to basal progenitors and neurons. We further present evidence that DOCK7 influences neurogenesis by controlling apically directed interkinetic nuclear migration (INM) of RGCs. Importantly, DOCK7 exerts its effects by antagonizing the microtubule growth-promoting function of the centrosome-associated protein TACC3. Thus, DOCK7 interaction with TACC3 controls INM and the genesis of neurons from RGCs during cortical development.
Collapse
|
164
|
Starfish ApDOCK protein essentially functions in larval defense system operated by mesenchyme cells. Immunol Cell Biol 2012; 90:955-65. [PMID: 22801573 DOI: 10.1038/icb.2012.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In larvae of the starfish, Asterina pectinifera, mesenchyme cells operate in the defense system through various behaviors. We have investigated mesenchyme cell dynamics during the immune response by identifying ApDOCK, a new member of the DOCK180 superfamily protein. In 4-day-old bipinnaria larvae processed for morpholino oligonucleotide-mediated knockdown of ApDOCK, injection of inorganic foreign substances revealed that (1) mesenchyme cells fail to undergo either directed migration toward a large oil-droplet or persistent spreading on the oil-droplet after contact; (2) neither uptake of micro-beads nor cell-to-cell fusion on the large oil-droplet differed from that of mesenchyme cells from control larvae. Similar behaviors were also recorded in experiments where bacteria were injected. Under culture conditions, the expression level of ApDOCK mRNA was significantly associated with the immunological behavior of mesenchyme cells. Apparently, the mesenchyme cells from ApDOCK loss-of-function larvae exhibited insufficient lamellipodium formation via lack of fibrous form of actin organization at the leading edge. These results suggest that the migratory congregation and persistence of encapsulation of larval mesenchyme cells are intracellularly regulated by ApDOCK protein, and this regulation is associated with organization of cytoskeletal actin.
Collapse
|
165
|
Pakes NK, Veltman DM, Rivero F, Nasir J, Insall R, Williams RSB. The Rac GEF ZizB regulates development, cell motility and cytokinesis in Dictyostelium. J Cell Sci 2012; 125:2457-65. [PMID: 22366457 DOI: 10.1242/jcs.100966] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dock (dedicator of cytokinesis) proteins represent a family of guanine nucleotide exchange factors (GEFs) that include the well-studied Dock180 family and the poorly characterised zizimin family. Our current understanding of Dock180 function is that it regulates Rho small GTPases and thus has a role in a number of cell processes, including cell migration, development and division. Here, we use a tractable model for cell motility research, Dictyostelium discoideum, to help elucidate the role of the related zizimin proteins. We show that gene ablation of zizA causes no change in development, whereas ablation of zizB gives rise to an aberrant developmental morphology and a reduction in cell directionality and velocity, and altered cell shape. Fluorescently labelled ZizA protein associates with the microtubule-organising centre (MTOC), whereas ZizB is enriched in the cortex. Overexpression of ZizB also causes an increase in the number of filopodia and a partial inhibition of cytokinesis. Analysis of ZizB protein binding partners shows that it interacts with Rac1a and a range of actin-associated proteins. In conclusion, our work provides insight into the molecular and cellular functions of zizimin GEF proteins, which are shown to have a role in cell movement, filopodia formation and cytokinesis.
Collapse
Affiliation(s)
- Nicholl K Pakes
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | | | | | | | | | | |
Collapse
|
166
|
Rieder M, Green G, Park S, Stamper B, Gordon C, Johnson J, Cunniff C, Smith J, Emery S, Lyonnet S, Amiel J, Holder M, Heggie A, Bamshad M, Nickerson D, Cox T, Hing A, Horst J, Cunningham M. A human homeotic transformation resulting from mutations in PLCB4 and GNAI3 causes auriculocondylar syndrome. Am J Hum Genet 2012; 90:907-14. [PMID: 22560091 DOI: 10.1016/j.ajhg.2012.04.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/10/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022] Open
Abstract
Auriculocondylar syndrome (ACS) is a rare, autosomal-dominant craniofacial malformation syndrome characterized by variable micrognathia, temporomandibular joint ankylosis, cleft palate, and a characteristic "question-mark" ear malformation. Careful phenotypic characterization of severely affected probands in our cohort suggested the presence of a mandibular patterning defect resulting in a maxillary phenotype (i.e., homeotic transformation). We used exome sequencing of five probands and identified two novel (exclusive to the patient and/or family studied) missense mutations in PLCB4 and a shared mutation in GNAI3 in two unrelated probands. In confirmatory studies, three additional novel PLCB4 mutations were found in multigenerational ACS pedigrees. All mutations were confirmed by Sanger sequencing, were not present in more than 10,000 control chromosomes, and resulted in amino-acid substitutions located in highly conserved protein domains. Additionally, protein-structure modeling demonstrated that all ACS substitutions disrupt the catalytic sites of PLCB4 and GNAI3. We suggest that PLCB4 and GNAI3 are core signaling molecules of the endothelin-1-distal-less homeobox 5 and 6 (EDN1-DLX5/DLX6) pathway. Functional studies demonstrated a significant reduction in downstream DLX5 and DLX6 expression in ACS cases in assays using cultured osteoblasts from probands and controls. These results support the role of the previously implicated EDN1-DLX5/6 pathway in regulating mandibular specification in other species, which, when disrupted, results in a maxillary phenotype. This work defines the molecular basis of ACS as a homeotic transformation (mandible to maxilla) in humans.
Collapse
|
167
|
Sakabe I, Asai A, Iijima J, Maruyama M. Age-related guanine nucleotide exchange factor, mouse Zizimin2, induces filopodia in bone marrow-derived dendritic cells. IMMUNITY & AGEING 2012; 9:2. [PMID: 22494997 PMCID: PMC3359169 DOI: 10.1186/1742-4933-9-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/11/2012] [Indexed: 01/10/2023]
Abstract
Background We recently isolated and identified Zizimin2 as a functional factor that is highly expressed in murine splenic germinal center B cells after immunization with T-cell-dependent antigen. Zizimin2 was revealed to be a new family member of Dock (dedicator of cytokinesis), Dock11, which is the guanine nucleotide exchange factor for Cdc42, a low-molecular-weight GTPase. However, the molecular function of Zizimin2 in acquired immunity has not been elucidated. Results In this study, we show that the protein expression of Zizimin2, which is also restricted to lymphoid tissues and lymphocytes, is reduced in aged mice. Over-expression of full-length Zizimin2 induced filopodial formation in 293T cells, whereas expression of CZH2 domain inhibited it. Stimulation of Fcγ receptor and Toll-like receptor 4 triggered Zizimin2 up-regulation and Cdc42 activation in bone marrow-derived dendritic cells. Conclusions These data suggest that Zizimin2 is an immune-related and age-regulated guanine nucleotide exchange factor, which facilitates filopodial formation through activation of Cdc42, which results in activation of cell migration.
Collapse
Affiliation(s)
- Isamu Sakabe
- Department of Mechanism of Aging, Research Institute - National Center for Geriatrics and Gerontology, 35, Gengo, Morioka-Machi, Obu-city, Aichi 474-8511, Japan.
| | | | | | | |
Collapse
|
168
|
Majewski Ł, Sobczak M, Havrylov S, Jóźwiak J, Rędowicz MJ. Dock7: a GEF for Rho-family GTPases and a novel myosin VI-binding partner in neuronal PC12 cells. Biochem Cell Biol 2012; 90:565-74. [PMID: 22475431 DOI: 10.1139/o2012-009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Myosin VI (MVI), the only known myosin that walks towards the minus end of actin filaments, is involved in several processes such as endocytosis, cell migration, and cytokinesis. It may act as a transporting motor or a protein engaged in actin cytoskeleton remodelling via its binding partners, interacting with its C-terminal globular tail domain. By means of pull-down technique and mass spectrometry, we identified Dock7 (dedicator of cytokinesis 7) as a potential novel MVI-binding partner in neurosecretory PC12 cells. Dock7, expressed mainly in neuronal cells, is a guanine nucleotide exchange factor (GEF) for small GTPases, Rac1 and Cdc42, which are the major regulators of actin cytoskeleton. MVI-Dock7 interaction was further confirmed by co-immunoprecipitation of endogenous MVI complexed with Dock7. In addition, MVI and Dock7 colocalized in interphase and dividing cells. We conclude that in PC12 cells MVI-Dock7 complexes may function at different cellular locations during the entire cell cycle. Of note, MVI and Dock7 colocalized in primary culture hippocampal neurons also, predominantly in the outgrowths. We hypothesize that this newly identified interaction between MVI and Dock7 may help explain a mechanism for MVI-dependent regulation of actin cytoskeleton organization.
Collapse
Affiliation(s)
- Łukasz Majewski
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St, 02-093 Warsaw, Poland
| | | | | | | | | |
Collapse
|
169
|
Nishikimi A, Uruno T, Duan X, Cao Q, Okamura Y, Saitoh T, Saito N, Sakaoka S, Du Y, Suenaga A, Kukimoto-Niino M, Miyano K, Gotoh K, Okabe T, Sanematsu F, Tanaka Y, Sumimoto H, Honma T, Yokoyama S, Nagano T, Kohda D, Kanai M, Fukui Y. Blockade of Inflammatory Responses by a Small-Molecule Inhibitor of the Rac Activator DOCK2. ACTA ACUST UNITED AC 2012; 19:488-97. [DOI: 10.1016/j.chembiol.2012.03.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 02/17/2012] [Accepted: 03/01/2012] [Indexed: 01/08/2023]
|
170
|
DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses. Blood 2012; 119:4451-61. [PMID: 22461490 DOI: 10.1182/blood-2012-01-407098] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To migrate efficiently through the interstitium, dendritic cells (DCs) constantly adapt their shape to the given structure of the extracellular matrix and follow the path of least resistance. It is known that this amoeboid migration of DCs requires Cdc42, yet the upstream regulators critical for localization and activation of Cdc42 remain to be determined. Mutations of DOCK8, a member of the atypical guanine nucleotide exchange factor family, causes combined immunodeficiency in humans. In the present study, we show that DOCK8 is a Cdc42-specific guanine nucleotide exchange factor that is critical for interstitial DC migration. By generating the knockout mice, we found that in the absence of DOCK8, DCs failed to accumulate in the lymph node parenchyma for T-cell priming. Although DOCK8-deficient DCs migrated normally on 2-dimensional surfaces, DOCK8 was required for DCs to crawl within 3-dimensional fibrillar networks and to transmigrate through the subcapsular sinus floor. This function of DOCK8 depended on the DHR-2 domain mediating Cdc42 activation. DOCK8 deficiency did not affect global Cdc42 activity. However, Cdc42 activation at the leading edge membrane was impaired in DOCK8-deficient DCs, resulting in a severe defect in amoeboid polarization and migration. Therefore, DOCK8 regulates interstitial DC migration by controlling Cdc42 activity spatially.
Collapse
|
171
|
Abstract
The discovery that loss-of-function mutations in the gene DOCK8 are responsible for most forms of autosomal recessive hyper-IgE syndrome and some forms of combined immunodeficiency without elevated serum IgE has led to studies into the immunopathogenesis of this disease. In this review, we relate the clinical features of this disease to studies using patients' cells and a mouse model of Dock8 deficiency, which have revealed how DOCK8 regulates T and B cell numbers and functions. The results of these studies help to explain how the absence of DOCK8 contributes to patients' susceptibility to viral, fungal, and bacterial infections. However, unanswered questions remain regarding how the absence of DOCK8 also leads to high IgE and allergic disease, predisposition for malignancy, and unusual clinical features, such as CNS abnormalities and autoimmunity, observed in some patients.
Collapse
Affiliation(s)
- Helen C Su
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1546, USA
| | | | | |
Collapse
|
172
|
Myers JP, Robles E, Ducharme-Smith A, Gomez TM. Focal adhesion kinase modulates Cdc42 activity downstream of positive and negative axon guidance cues. J Cell Sci 2012; 125:2918-29. [PMID: 22393238 DOI: 10.1242/jcs.100107] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
There is biochemical, imaging and functional evidence that Rho GTPase signaling is a crucial regulator of actin-based structures such as lamellipodia and filopodia. However, although Rho GTPases are believed to serve similar functions in growth cones, the spatiotemporal dynamics of Rho GTPase signaling has not been examined in living growth cones in response to known axon guidance cues. Here we provide the first measurements of Cdc42 activity in living growth cones acutely stimulated with both growth-promoting and growth-inhibiting axon-guidance cues. Interestingly, we find that both permissive and repulsive factors can work by modulating Cdc42 activity, but in opposite directions. We find that the growth-promoting factors laminin and BDNF activate Cdc42, whereas the inhibitor Slit2 reduces Cdc42 activity in growth cones. Remarkably, we find that regulation of focal adhesion kinase (FAK) activity is a common upstream modulator of Cdc42 by BDNF, laminin and Slit. These findings suggest that rapid modulation of Cdc42 signaling through FAK by receptor activation underlies changes in growth cone motility in response to permissive and repulsive guidance cues.
Collapse
Affiliation(s)
- Jonathan P Myers
- Department of Neuroscience, Medical Scientist Training Program and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
173
|
Jain M, Bhat GP, Vijayraghavan K, Inamdar MS. Rudhira/BCAS3 is a cytoskeletal protein that controls Cdc42 activation and directional cell migration during angiogenesis. Exp Cell Res 2012; 318:753-67. [PMID: 22300583 DOI: 10.1016/j.yexcr.2012.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 01/11/2012] [Accepted: 01/15/2012] [Indexed: 12/19/2022]
Abstract
Cell migration is a common cellular process in angiogenesis and tumor metastasis. Rudhira/BCAS3 (Breast Cancer Amplified Sequence 3) is a conserved protein expressed in the embryonic vasculature and malignant tumors. Here, we show for the first time that Rudhira plays an active role in directional cell migration. Rudhira depletion in endothelial cells inhibits Matrigel-induced tube formation and retards healing of wounded cell monolayers. We demonstrate that during wound healing, Rudhira rapidly re-localizes and promotes Cdc42 activation and recruitment to the leading edge of migrating cells. Rudhira deficient cells show impaired downstream signaling of Cdc42 leading to dramatic changes in actin organization and classic cell polarity defects such as loss of microtubule organizing center (MTOC) and Golgi re-orientation. Biochemical assays and co-localization studies show that Rudhira interacts with microtubules as well as intermediate filaments. Thus, Rudhira could control directional cell migration and angiogenesis by facilitating crosstalk between cytoskeletal elements.
Collapse
Affiliation(s)
- Mamta Jain
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | | | | |
Collapse
|
174
|
Aloj G, Giardino G, Valentino L, Maio F, Gallo V, Esposito T, Naddei R, Cirillo E, Pignata C. Severe Combined Immunodeficiences: New and Old Scenarios. Int Rev Immunol 2012; 31:43-65. [DOI: 10.3109/08830185.2011.644607] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
175
|
Sévajol M, Reiser JB, Chouquet A, Pérard J, Ayala I, Gans P, Kleman JP, Housset D. The C-terminal polyproline-containing region of ELMO contributes to an increase in the life-time of the ELMO-DOCK complex. Biochimie 2011; 94:823-8. [PMID: 22177965 DOI: 10.1016/j.biochi.2011.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
Abstract
The eukaryotic Engulfment and CellMotility (ELMO) proteins form an evolutionary conserved family of key regulators which play a central role in Rho-dependent biological processes such as engulfment and cell motility/migration. ELMO proteins interact with a subset of Downstream of Crk (DOCK) family members, a new type of guanine exchange factors (GEF) for Rac and cdc42 GTPases. The physiological function of DOCK is to facilitate actin remodeling, a process which occurs only in presence of ELMO. Several studies have determined that the last 200 C-terminal residues of ELMO1 and the first 180 N-terminal residues of DOCK180 are responsible for the ELMO-DOCK interaction. However, the precise role of the different domains and motifs identified in these regions has remained elusive. Divergent functional, biochemical and structural data have been reported regarding the contribution of the C-terminal end of ELMO, comprising its polyproline motif, and of the DOCK SH3 domain. In the present study, we have investigated the contribution of the C-terminal end of ELMO1 to the interaction between ELMO1 and the SH3 domain of DOCK180 using nuclear magnetic resonance spectroscopy and surface plasmon resonance. Our data presented here demonstrate the ability of the SH3 domain of DOCK180 to interact with ELMO1, regardless of the presence of the polyproline-containing C-terminal end. However, the presence of the polyproline region leads to a significant increase in the half-life of the ELMO1-DOCK180 complex, along with a moderate increase on the affinity.
Collapse
Affiliation(s)
- Marion Sévajol
- Immune response to pathogens and altered-self group, Institut de Biologie Structurale Jean-Pierre Ebel, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Université Joseph Fourier-Grenoble 1, 41, rue Jules Horowitz, F-38027 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Czugala M, Karolak JA, Nowak DM, Polakowski P, Pitarque J, Molinari A, Rydzanicz M, Bejjani BA, Yue BYJT, Szaflik JP, Gajecka M. Novel mutation and three other sequence variants segregating with phenotype at keratoconus 13q32 susceptibility locus. Eur J Hum Genet 2011; 20:389-97. [PMID: 22045297 DOI: 10.1038/ejhg.2011.203] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Keratoconus (KTCN), a non-inflammatory corneal disorder characterized by stromal thinning, represents a major cause of corneal transplantations. Genetic and environmental factors have a role in the etiology of this complex disease. Previously reported linkage analysis revealed that chromosomal region 13q32 is likely to contain causative gene(s) for familial KTCN. Consequently, we have chosen eight positional candidate genes in this region: MBNL1, IPO5, FARP1, RNF113B, STK24, DOCK9, ZIC5 and ZIC2, and sequenced all of them in 51 individuals from Ecuadorian KTCN families and 105 matching controls. The mutation screening identified one mutation and three sequence variants showing 100% segregation under a dominant model with KTCN phenotype in one large Ecuadorian family. These substitutions were found in three different genes: c.2262A>C (p.Gln754His) and c.720+43A>G in DOCK9; c.2377-132A>C in IPO5 and c.1053+29G>C in STK24. PolyPhen analyses predicted that c.2262A>C (Gln754His) is possibly damaging for the protein function and structure. Our results suggest that c.2262A>C (p.Gln754His) mutation in DOCK9 may contribute to the KTCN phenotype in the large KTCN-014 family.
Collapse
Affiliation(s)
- Marta Czugala
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32,Poznan, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
The atypical Guanine-nucleotide exchange factor, dock7, negatively regulates schwann cell differentiation and myelination. J Neurosci 2011; 31:12579-92. [PMID: 21880919 DOI: 10.1523/jneurosci.2738-11.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In development of the peripheral nervous system, Schwann cells proliferate, migrate, and ultimately differentiate to form myelin sheath. In all of the myelination stages, Schwann cells continuously undergo morphological changes; however, little is known about their underlying molecular mechanisms. We previously cloned the dock7 gene encoding the atypical Rho family guanine-nucleotide exchange factor (GEF) and reported the positive role of Dock7, the target Rho GTPases Rac/Cdc42, and the downstream c-Jun N-terminal kinase in Schwann cell migration (Yamauchi et al., 2008). We investigated the role of Dock7 in Schwann cell differentiation and myelination. Knockdown of Dock7 by the specific small interfering (si)RNA in primary Schwann cells promotes dibutyryl cAMP-induced morphological differentiation, indicating the negative role of Dock7 in Schwann cell differentiation. It also results in a shorter duration of activation of Rac/Cdc42 and JNK, which is the negative regulator of myelination, and the earlier activation of Rho and Rho-kinase, which is the positive regulator of myelination. To obtain the in vivo evidence, we generated Dock7 short hairpin (sh)RNA transgenic mice. They exhibited a decreased expression of Dock7 in the sciatic nerves and enhanced myelin thickness, consistent with in vitro observation. The effects of the in vivo knockdown on the signals to Rho GTPases are similar to those of the in vitro knockdown. Collectively, the signaling through Dock7 negatively regulates Schwann cell differentiation and the onset of myelination, demonstrating the unexpected role of Dock7 in the interplay between Schwann cell migration and myelination.
Collapse
|
178
|
Patel M, Chiang TC, Tran V, Lee FJS, Côté JF. The Arf family GTPase Arl4A complexes with ELMO proteins to promote actin cytoskeleton remodeling and reveals a versatile Ras-binding domain in the ELMO proteins family. J Biol Chem 2011; 286:38969-79. [PMID: 21930703 DOI: 10.1074/jbc.m111.274191] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The prototypical DOCK protein, DOCK180, is an evolutionarily conserved Rac regulator and is indispensable during processes such as cell migration and myoblast fusion. The biological activity of DOCK180 is tightly linked to its binding partner ELMO. We previously reported that autoinhibited ELMO proteins regulate signaling from this pathway. One mechanism to activate the ELMO-DOCK180 complex appears to be the recruitment of this complex to the membrane via the Ras-binding domain (RBD) of ELMO. In the present study, we aimed to identify novel ELMO-interacting proteins to further define the molecular events capable of controlling ELMO recruitment to the membrane. To do so, we performed two independent interaction screens: one specifically interrogated an active GTPase library while the other probed a brain cDNA library. Both methods converged on Arl4A, an Arf-related GTPase, as a specific ELMO interactor. Biochemically, Arl4A is constitutively GTP-loaded, and our binding assays confirm that both wild-type and constitutively active forms of the GTPase associate with ELMO. Mechanistically, we report that Arl4A binds the ELMO RBD and acts as a membrane localization signal for ELMO. In addition, we report that membrane targeting of ELMO via Arl4A promotes cytoskeletal reorganization including membrane ruffling and stress fiber disassembly via an ELMO-DOCK1800-Rac signaling pathway. We conclude that ELMO is capable of interacting with GTPases from Rho and Arf families, leading to the conclusion that ELMO contains a versatile RBD. Furthermore, via binding of an Arf family GTPase, the ELMO-DOCK180 is uniquely positioned at the membrane to activate Rac signaling and remodel the actin cytoskeleton.
Collapse
Affiliation(s)
- Manishha Patel
- Institut de Recherches Cliniques de Montréal, Québec H2W 1R7, Canada
| | | | | | | | | |
Collapse
|
179
|
Patel M, Pelletier A, Côté JF. Opening up on ELMO regulation: New insights into the control of Rac signaling by the DOCK180/ELMO complex. Small GTPases 2011; 2:268-275. [PMID: 22292130 DOI: 10.4161/sgtp.2.5.17716] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/12/2011] [Indexed: 11/19/2022] Open
Abstract
GTPases are central hubs for directing cytoskeletal reorganization and cell migration. The DOCK family enforces positive regulation of certain GTPases, leading to their activation in discrete areas of the cell. ELMO, a well-known DOCK180 binding partner, has been cast with the role of potentiating DOCK180-mediated Rac activation. Exactly how ELMO contributes to Rac signaling is only beginning to be understood. Here, we discuss our most recent research investigating ELMO regulation of the DOCK180/Rac pathway. Interestingly, we found that ELMO is autoinhibited via intramolecular contacts at basal levels and we explore the novel domains that we identified at the heart of the auto-regulatory switch. We propose that the closed ELMO molecule masks protein-protein interfaces or domains with novel uncharacterized function; cell stimulation and GTPase binding to ELMO is proposed to activate (open) the protein and/or target the ELMO/DOCK180 complex to the cell membrane. In this manner, promiscuous signaling/activity downstream of ELMO/DOCK180 can be controlled for both spatially and temporally. Additionally, we report new data highlighting that DOCK proteins can form heterodimers, and we discuss possible mechanisms that could be implicated in controlling the ELMO activation state.
Collapse
Affiliation(s)
- Manishha Patel
- Institut de Recherches Cliniques de Montréal (IRCM); Montréal, Canada
| | | | | |
Collapse
|
180
|
Shaheen R, Faqeih E, Sunker A, Morsy H, Al-Sheddi T, Shamseldin H, Adly N, Hashem M, Alkuraya. F. Recessive mutations in DOCK6, encoding the guanidine nucleotide exchange factor DOCK6, lead to abnormal actin cytoskeleton organization and Adams-Oliver syndrome. Am J Hum Genet 2011; 89:328-33. [PMID: 21820096 DOI: 10.1016/j.ajhg.2011.07.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/13/2011] [Accepted: 07/17/2011] [Indexed: 12/26/2022] Open
Abstract
Adams-Oliver syndrome (AOS) is defined by the combination of aplasia cutis congenita (ACC) and terminal transverse limb defects (TTLD). It is usually inherited as an autosomal-dominant trait, but autosomal-recessive inheritance has also been documented. In an individual with autosomal-recessive AOS, we combined autozygome analysis with exome sequencing to identify a homozygous truncating mutation in dedicator of cytokinesis 6 gene (DOCK6) which encodes an atypical guanidine exchange factor (GEF) known to activate two members of the Rho GTPase family: Cdc42 and Rac1. Another homozygous truncating mutation was identified upon targeted sequencing of DOCK6 in an unrelated individual with AOS. Consistent with the established role of Cdc42 and Rac1 in the organization of the actin cytoskeleton, we demonstrate a cellular phenotype typical of a defective actin cytoskeleton in patient cells. These findings, combined with a Dock6 expression profile that is consistent with an AOS phenotype as well as the very recent demonstration of dominant mutations of ARHGAP31 in AOS, establish Cdc42 and Rac1 as key molecules in the pathogenesis of AOS and suggest that other regulators of these Rho GTPase proteins might be good candidates in the quest to define the genetic spectrum of this genetically heterogeneous condition.
Collapse
|
181
|
Calvo F, Sanz-Moreno V, Agudo-Ibáñez L, Wallberg F, Sahai E, Marshall CJ, Crespo P. RasGRF suppresses Cdc42-mediated tumour cell movement, cytoskeletal dynamics and transformation. Nat Cell Biol 2011; 13:819-26. [PMID: 21685891 DOI: 10.1038/ncb2271] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 04/28/2011] [Indexed: 01/03/2023]
Abstract
Individual tumour cells move in three-dimensional environments with either a rounded or an elongated 'mesenchymal' morphology. These two modes of movement are tightly regulated by Rho family GTPases: elongated movement requires activation of Rac1, whereas rounded/amoeboid movement engages specific Cdc42 and Rho signalling pathways. In siRNA screens targeting the genes encoding guanine nucleotide exchange factors (GEFs), we found that the Ras GEF RasGRF2 regulates conversion between elongated- and rounded-type movement. RasGRF2 suppresses rounded movement by inhibiting the activation of Cdc42 independently of its capacity to activate Ras. RasGRF2 and RasGRF1 directly bind to Cdc42, outcompeting Cdc42 GEFs, thereby preventing Cdc42 activation. By this mechanism, RasGRFs regulate other Cdc42-mediated cellular processes such as the formation of actin spikes, transformation and invasion in vitro and in vivo. These results demonstrate a role for RasGRF GEFs as negative regulators of Cdc42 activation.
Collapse
Affiliation(s)
- Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas-IDICAN-Universidad de Cantabria, Departamento de Biología Molecular, Facultad de Medicina, Santander, 39011, Cantabria, Spain
| | | | | | | | | | | | | |
Collapse
|
182
|
Kulkarni K, Yang J, Zhang Z, Barford D. Multiple factors confer specific Cdc42 and Rac protein activation by dedicator of cytokinesis (DOCK) nucleotide exchange factors. J Biol Chem 2011; 286:25341-51. [PMID: 21613211 DOI: 10.1074/jbc.m111.236455] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DOCK (dedicator of cytokinesis) guanine nucleotide exchange factors (GEFs) activate the Rho-family GTPases Rac and Cdc42 to control cell migration, morphogenesis, and phagocytosis. The DOCK A and B subfamilies activate Rac, whereas the DOCK D subfamily activates Cdc42. Nucleotide exchange is catalyzed by a conserved DHR2 domain (DOCK(DHR2)). Although the molecular basis for DOCK(DHR2)-mediated GTPase activation has been elucidated through structures of a DOCK9(DHR2)-Cdc42 complex, the factors determining recognition of specific GTPases are unknown. To understand the molecular basis for DOCK-GTPase specificity, we have determined the crystal structure of DOCK2(DHR2) in complex with Rac1. DOCK2(DHR2) and DOCK9(DHR2) exhibit similar tertiary structures and homodimer interfaces and share a conserved GTPase-activating mechanism. Multiple structural differences between DOCK2(DHR2) and DOCK9(DHR2) account for their selectivity toward Rac1 and Cdc42. Key determinants of selectivity of Cdc42 and Rac for their cognate DOCK(DHR2) are a Phe or Trp residue within β3 (residue 56) and the ability of DOCK proteins to exploit differences in the GEF-induced conformational changes of switch 1 dependent on a divergent residue at position 27. DOCK proteins, therefore, differ from DH-PH GEFs that select their cognate GTPases through recognition of structural differences within the β2/β3 strands.
Collapse
Affiliation(s)
- Kiran Kulkarni
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom
| | | | | | | |
Collapse
|
183
|
Vives V, Laurin M, Cres G, Larrousse P, Morichaud Z, Noel D, Côté JF, Blangy A. The Rac1 exchange factor Dock5 is essential for bone resorption by osteoclasts. J Bone Miner Res 2011; 26:1099-110. [PMID: 21542010 PMCID: PMC4640905 DOI: 10.1002/jbmr.282] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Osteoporosis, which results from excessive bone resorption by osteoclasts, is the major cause of morbidity for elder people. Identification of clinically relevant regulators is needed to develop novel therapeutic strategies. Rho GTPases have essential functions in osteoclasts by regulating actin dynamics. This is of particular importance because actin cytoskeleton is essential to generate the sealing zone, an osteoclast-specific structure ultimately mediating bone resorption. Here we report that the atypical Rac1 exchange factor Dock5 is necessary for osteoclast function both in vitro and in vivo. We discovered that establishment of the sealing zone and consequently osteoclast resorbing activity in vitro require Dock5. Mechanistically, our results suggest that osteoclasts lacking Dock5 have impaired adhesion that can be explained by perturbed Rac1 and p130Cas activities. Consistent with these functional assays, we identified a novel small-molecule inhibitor of Dock5 capable of hindering osteoclast resorbing activity. To investigate the in vivo relevance of these findings, we studied Dock5(-/-) mice and found that they have increased trabecular bone mass with normal osteoclast numbers, confirming that Dock5 is essential for bone resorption but not for osteoclast differentiation. Taken together, our findings characterize Dock5 as a regulator of osteoclast function and as a potential novel target to develop antiosteoporotic treatments.
Collapse
Affiliation(s)
- Virginie Vives
- Montpellier Universities 1 and 2, CRBM, Montpellier, France
- CNRS, UMR5237, Montpellier, France
| | - Mélanie Laurin
- Institut de Recherches Cliniques de Montréal, Université de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Gaelle Cres
- Montpellier Universities 1 and 2, CRBM, Montpellier, France
- CNRS, UMR5237, Montpellier, France
| | - Pauline Larrousse
- Montpellier Universities 1 and 2, CRBM, Montpellier, France
- CNRS, UMR5237, Montpellier, France
| | | | | | - Jean-François Côté
- Institut de Recherches Cliniques de Montréal, Université de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Anne Blangy
- Montpellier Universities 1 and 2, CRBM, Montpellier, France
- CNRS, UMR5237, Montpellier, France
| |
Collapse
|
184
|
Human and mouse DOCK10 splicing isoforms with alternative first coding exon usage are differentially expressed in T and B lymphocytes. Hum Immunol 2011; 72:531-7. [PMID: 21514340 DOI: 10.1016/j.humimm.2011.03.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 03/01/2011] [Accepted: 03/31/2011] [Indexed: 12/30/2022]
Abstract
DOCK10 is a member of the dedicator of cytokinesis (DOCK) family of Rho GTPase activators preferentially expressed in lymphocytes. In this paper, we analyzed DOCK10 mRNA diversity produced because of alternative splicing. Alternative first coding exon usage led to 2 main protein-coding transcripts, DOCK10.1 and DOCK10.2. Full-length cDNA clones of both isoforms were obtained from both normal human peripheral blood mononuclear cells and mouse spleen for the first time for human DOCK10.1, mouse DOCK10.1, and mouse DOCK10.2. Human and mouse DOCK10.1 clones corresponded to the protein coding assemblies provided by the National Center for Biotechnology Information as Reference Sequences for DOCK10. Our analysis especially focused on human cDNA clones, of which 63% were alternatively spliced forms involving diverse exons and introns. DOCK10.1 expression was enriched in normal T cells, and DOCK10.2 expression was enriched in normal B cells and chronic lymphocytic leukemia (CLL) B cells. Both isoforms were upregulated in response to interleukin-4 in B cells, both normal and CLL, but not in T cells. Our data suggest that cell-specific mechanisms regulate expression of the alternative first exon variants of DOCK10 in vertebrates.
Collapse
|
185
|
Yamada SI, Yanamoto S, Kawasaki G, Rokutanda S, Yonezawa H, Kawakita A, Nemoto TK. Overexpression of CRKII increases migration and invasive potential in oral squamous cell carcinoma. Cancer Lett 2011; 303:84-91. [PMID: 21339045 DOI: 10.1016/j.canlet.2011.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 12/14/2010] [Accepted: 01/05/2011] [Indexed: 11/29/2022]
Abstract
CT10 regulator of kinase (CRK) was originally identified as an oncogene product of v-CRK in a CT10 chicken retrovirus system. Overexpression of CRKII has been reported in several human cancers. CRKII regulates cell migration, morphogenesis, invasion, phagocytosis, and survival; however, the underlying mechanisms are not well understood. In the present study, we evaluated the possibility of CRKII as an appropriate molecular target for cancer gene therapy. The expression of CRKII in 71 primary oral squamous cell carcinomas and 10 normal oral mucosal specimens was determined immunohistochemically, and the correlation of CRKII overexpression with clinicopathological factors was evaluated. Overexpression of CRKII was detected in 41 of 70 oral squamous cell carcinomas, the frequency being more significant than in normal oral mucosa. In addition, CRKII overexpression was more frequent in higher-grade cancers according to the T classification, N classification, and invasive pattern. Moreover, RNAi-mediated suppression of CRKII expression reduced the migration and invasion potential of an oral squamous cell carcinoma cell line, OSC20. Downregulation of CRKII expression also reduced the expression of Dock180, p130Cas, and Rac1, and the actin-associated scaffolding protein cortactin. These results indicate that the overexpression of CRKII is tightly associated with an aggressive phenotype of oral squamous cell carcinoma. Therefore, we propose that CRKII could be a potential molecular target of gene therapy by RNAi-targeting in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Shin-Ichi Yamada
- Department of Oral and Maxillofacial Surgery, Unit of Translational Medicine, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Japan.
| | | | | | | | | | | | | |
Collapse
|
186
|
Biersmith B, Liu Z, Bauman K, Geisbrecht ER. The DOCK protein sponge binds to ELMO and functions in Drosophila embryonic CNS development. PLoS One 2011; 6:e16120. [PMID: 21283588 PMCID: PMC3026809 DOI: 10.1371/journal.pone.0016120] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 12/08/2010] [Indexed: 12/15/2022] Open
Abstract
Cell morphogenesis, which requires rearrangement of the actin cytoskeleton, is
essential to coordinate the development of tissues such as the musculature and
nervous system during normal embryonic development. One class of signaling
proteins that regulate actin cytoskeletal rearrangement is the evolutionarily
conserved CDM (C. elegansCed-5, human DOCK180,
DrosophilaMyoblast city, or Mbc) family of proteins, which function
as unconventional guanine nucleotide exchange factors for the small GTPase Rac.
This CDM-Rac protein complex is sufficient for Rac activation, but is enhanced
upon the association of CDM proteins with the ELMO/Ced-12 family of proteins. We
identified and characterized the role of Drosophila Sponge
(Spg), the vertebrate DOCK3/DOCK4 counterpart as an ELMO-interacting protein.
Our analysis shows Spg mRNA and protein is expressed in the visceral musculature
and developing nervous system, suggesting a role for Spg in later embryogenesis.
As maternal null mutants of spg die early in development, we
utilized genetic interaction analysis to uncover the role of Spg in central
nervous system (CNS) development. Consistent with its role in ELMO-dependent
pathways, we found genetic interactions with spg and
elmo mutants exhibited aberrant axonal defects. In
addition, our data suggests Ncad may be responsible for recruiting Spg to the
membrane, possibly in CNS development. Our findings not only characterize the
role of a new DOCK family member, but help to further understand the role of
signaling downstream of N-cadherin in neuronal development.
Collapse
Affiliation(s)
- Bridget Biersmith
- Division of Cell Biology and Biophysics, School of Biological Sciences,
University of Missouri, Kansas City, Missouri, United States of
America
- Ph.D. Program, School of Biological Sciences, University of Missouri,
Kansas City, Missouri, United States of America
| | - Ze Liu
- Division of Cell Biology and Biophysics, School of Biological Sciences,
University of Missouri, Kansas City, Missouri, United States of
America
- Ph.D. Program, School of Biological Sciences, University of Missouri,
Kansas City, Missouri, United States of America
| | - Kenneth Bauman
- Division of Cell Biology and Biophysics, School of Biological Sciences,
University of Missouri, Kansas City, Missouri, United States of
America
| | - Erika R. Geisbrecht
- Division of Cell Biology and Biophysics, School of Biological Sciences,
University of Missouri, Kansas City, Missouri, United States of
America
- * E-mail:
| |
Collapse
|
187
|
Wu X, Ramachandran S, Lin MCJ, Cerione RA, Erickson JW. A minimal Rac activation domain in the unconventional guanine nucleotide exchange factor Dock180. Biochemistry 2011; 50:1070-80. [PMID: 21033699 DOI: 10.1021/bi100971y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Guanine nucleotide exchange factors (GEFs) activate Rho GTPases by catalyzing the exchange of bound GDP for GTP, thereby resulting in downstream effector recognition. Two metazoan families of GEFs have been described: Dbl-GEF family members that share conserved Dbl homology (DH) and Pleckstrin homology (PH) domains and the more recently described Dock180 family members that share little sequence homology with the Dbl family and are characterized by conserved Dock homology regions 1 and 2 (DHR-1 and -2, respectively). While extensive characterization of the Dbl family has been performed, less is known about how Dock180 family members act as GEFs, with only a single X-ray structure having recently been reported for the Dock9-Cdc42 complex. To learn more about the mechanisms used by the founding member of the family, Dock180, to act as a Rac-specific GEF, we set out to identify and characterize its limit functional GEF domain. A C-terminal portion of the DHR-2 domain, composed of approximately 300 residues (designated as Dock180(DHR-2c)), is shown to be necessary and sufficient for robust Rac-specific GEF activity both in vitro and in vivo. We further show that Dock180(DHR-2c) binds to Rac in a manner distinct from that of Rac-GEFs of the Dbl family. Specifically, Ala(27) and Trp(56) of Rac appear to provide a bipartite binding site for the specific recognition of Dock180(DHR-2c), whereas for Dbl family Rac-GEFs, Trp(56) of Rac is the sole primary determinant of GEF specificity. On the basis of our findings, we are able to define the core of Dock180 responsible for its Rac-GEF activity as well as highlight key recognition sites that distinguish different Dock180 family members and determine their corresponding GTPase specificities.
Collapse
Affiliation(s)
- Xin Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | | | | | | | | |
Collapse
|
188
|
Vigil D, Cherfils J, Rossman KL, Der CJ. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer 2010; 10:842-57. [PMID: 21102635 PMCID: PMC3124093 DOI: 10.1038/nrc2960] [Citation(s) in RCA: 597] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is now considerable and increasing evidence for a causal role for aberrant activity of the Ras superfamily of small GTPases in human cancers. These GTPases function as GDP-GTP-regulated binary switches that control many fundamental cellular processes. A common mechanism of GTPase deregulation in cancer is the deregulated expression and/or activity of their regulatory proteins, guanine nucleotide exchange factors (GEFs) that promote formation of the active GTP-bound state and GTPase-activating proteins (GAPs) that return the GTPase to its GDP-bound inactive state. In this Review, we assess the association of GEFs and GAPs with cancer and their druggability for cancer therapeutics.
Collapse
Affiliation(s)
- Dominico Vigil
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Department of Pharmacology, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
189
|
Patel M, Margaron Y, Fradet N, Yang Q, Wilkes B, Bouvier M, Hofmann K, Côté JF. An evolutionarily conserved autoinhibitory molecular switch in ELMO proteins regulates Rac signaling. Curr Biol 2010; 20:2021-7. [PMID: 21035343 DOI: 10.1016/j.cub.2010.10.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/09/2010] [Accepted: 10/07/2010] [Indexed: 11/28/2022]
Abstract
Dedicator of cytokinesis (DOCK) proteins are guanine nucleotide exchange factors (GEFs) controlling the activity of Rac1/Cdc42 during migration, phagocytosis, and myoblast fusion [1-4]. Engulfment and cell motility (ELMO) proteins bind a subset of DOCK members and are emerging as critical regulators of Rac signaling [5-10]. Although formation of a DOCK180/ELMO complex is not essential for Rac1 activation, ELMO mutants deficient in binding to DOCK180 are unable to promote cytoskeleton remodeling [11]. How ELMO regulates signaling through DOCK GEFs is poorly understood. Here, we identify an autoinhibitory switch in ELMO presenting homology to a regulatory unit described for Dia formins. One part of the switch, composed of a Ras-binding domain (RBD) and Armadillo repeats, is positioned N-terminally while the other is housed in the C terminus. We demonstrate interaction between these fragments, suggesting autoinhibition of ELMO. Using a bioluminescence resonance energy transfer biosensor, we establish that ELMO undergoes conformational changes upon disruption of autoinhibition. We found that engagement of ELMO to RhoG, or with DOCK180, promotes the relief of autoinhibition in ELMO. Functionally, we found that ELMO mutants with impaired autoregulatory activity promote cell elongation. These results demonstrate an unsuspected level of regulation for Rac1 signaling via autoinhibition of ELMO.
Collapse
Affiliation(s)
- Manishha Patel
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, PQ H2W 1R7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM. Mechanical integration of actin and adhesion dynamics in cell migration. Annu Rev Cell Dev Biol 2010; 26:315-33. [PMID: 19575647 DOI: 10.1146/annurev.cellbio.011209.122036] [Citation(s) in RCA: 716] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Directed cell migration is a physical process that requires dramatic changes in cell shape and adhesion to the extracellular matrix. For efficient movement, these processes must be spatiotemporally coordinated. To a large degree, the morphological changes and physical forces that occur during migration are generated by a dynamic filamentous actin (F-actin) cytoskeleton. Adhesion is regulated by dynamic assemblies of structural and signaling proteins that couple the F-actin cytoskeleton to the extracellular matrix. Here, we review current knowledge of the dynamic organization of the F-actin cytoskeleton in cell migration and the regulation of focal adhesion assembly and disassembly with an emphasis on how mechanical and biochemical signaling between these two systems regulate the coordination of physical processes in cell migration.
Collapse
Affiliation(s)
- Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
191
|
Jia Y, Asai A, Sakabe I, Maruyama M. Rat monoclonal antibodies against new guanine nucleotide exchange factor, mouse Zizimin2. Hybridoma (Larchmt) 2010; 29:205-9. [PMID: 20568994 DOI: 10.1089/hyb.2009.0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We recently isolated and identified Zizimin2 as a functional factor that is highly expressed in murine splenic germinal center B cell after immunization with T-cell-dependent antigen. Zizimin2 was revealed that it is a new family member of Dock (dedicator of cytokinesis), Dock11, which was the guanine nucleotide exchange factor for Cdc42, the Rho family of low molecular weight GTPases. However, neither the molecular function of Zizimin2 in the acquired immunity nor the physiological role in decrease of immunological activity along with aging has been known. To facilitate the further analysis of physiological function of this molecule, we have established rat monoclonal antibodies (MAbs) against mouse Zizimin2 protein. Recombinant His-tagged partial mouse Zizimin2 protein was expressed in Escherichia coli, purified, and applied as an antigen for immunization. The desired hybridomas were selected by the recombinant Zizimin2 protein coated enzyme-linked immunosorbent assay screening, and we generated stable hybridoma cell lines that produced the antibody against murine Zizimin2 protein. We determined their isotypes and further examined capability or availability in immunoblotting, immunoprecipitation, or immunofluorescence microscopy. Here we demonstrated the several appropriate antibodies for immunoblotting and immunofluorescence microscopy. These MAbs should therefore be very useful tools for study of the characterization of the Zizimin2 protein and the understanding of the biological function of Zizimin2-mediated immunosenescence.
Collapse
Affiliation(s)
- Yanjun Jia
- Department of Mechanism of Aging Research Institute, National Center for Geriatrics and Gerontology, Obu-city, Aichi, Japan
| | | | | | | |
Collapse
|
192
|
Sanematsu F, Hirashima M, Laurin M, Takii R, Nishikimi A, Kitajima K, Ding G, Noda M, Murata Y, Tanaka Y, Masuko S, Suda T, Meno C, Côté JF, Nagasawa T, Fukui Y. DOCK180 is a Rac activator that regulates cardiovascular development by acting downstream of CXCR4. Circ Res 2010; 107:1102-5. [PMID: 20829512 DOI: 10.1161/circresaha.110.223388] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE During embryogenesis, the CXC chemokine ligand (CXCL)12 acts on endothelial cells to control cardiac development and angiogenesis. Although biological functions of CXCL12 are exerted in part through activation of the small GTPase Rac, the pathway leading from its receptor CXC chemokine receptor (CXCR)4 to Rac activation remains to be determined. OBJECTIVE DOCK180 (dedicator of cytokinesis), an atypical Rac activator, has been implicated in various cellular functions. Here, we examined the role of DOCK180 in cardiovascular development. METHODS AND RESULTS DOCK180 associates with ELMO (engulfment and cell motility) through the N-terminal region containing a Src homology 3 domain. We found that targeted deletion of the Src homology 3 domain of DOCK180 in mice leads to embryonic lethality with marked reduction of DOCK180 expression at the protein level. These mutant mice, as well as DOCK180-deficient mice, exhibited multiple cardiovascular abnormalities resembling those seen in CXCR4-deficient mice. In DOCK180 knocked down endothelial cells, CXCL12-induced Rac activation was impaired, resulting in a marked reduction of cell motility. CONCLUSIONS These results suggest that DOCK180 links CXCR4 signaling to Rac activation to control endothelial cell migration during cardiovascular development.
Collapse
Affiliation(s)
- Fumiyuki Sanematsu
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Genetic variants in SLC9A9 are associated with measures of attention-deficit/hyperactivity disorder symptoms in families. Psychiatr Genet 2010; 20:73-81. [PMID: 20032819 DOI: 10.1097/ypg.0b013e3283351209] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE A family was previously identified that cosegregates a pericentric inversion, inv(3)(p14 : q21), with an early-onset developmental condition, characterized by impulsive behavior and intellectual deficit. The inversion breakpoints lie within DOCK3 and SLC9A9 at the p-arm and q-arm, respectively. Based on this report, these genes were selected to be evaluated in a family-based attention-deficit/hyperactivity disorder (AD/HD) association study. METHODS Conners' Parent (CPRS) and Teacher (CTRS) Rating Scales of AD/HD symptoms and Conners' Continuous Performance Test (CPT) measures were collected and a minimal number of tagging single-nucleotide polymorphisms (SNPs) in each gene were selected for analysis. Analyses were performed on families who met research criteria for AD/HD. Using the program, QTDT, each tagging SNP was tested for association with T-scores from the Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV) subscales according to the CTRS and CPRS, and five CPT measures. RESULTS After adjusting for multiple testing, a SNP in the 3' UTR of SLC9A9, rs1046706, remained significantly associated (false discovery rate, q value <0.05) with scores on the DSM-IV hyperactive-impulsive and total symptom subscales according to the CTRS and errors of commission on the CPT. In addition, an intronic SLC9A9 SNP, rs2360867, remained significantly associated with errors of commission. CONCLUSION Our results suggest that SLC9A9 may be related to hyperactive-impulsive symptoms in AD/HD and the disruption of SLC9A9 may be responsible for the behavioral phenotype observed in the inversion family. The association with SLC9A9 is particularly interesting as it was recently implicated in a genome-wide association study for AD/HD. Further investigation of the role of SLC9A9 in AD/HD and other behavioral disorders is warranted.
Collapse
|
194
|
Zhang D, Aravind L. Identification of novel families and classification of the C2 domain superfamily elucidate the origin and evolution of membrane targeting activities in eukaryotes. Gene 2010; 469:18-30. [PMID: 20713135 DOI: 10.1016/j.gene.2010.08.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/02/2010] [Accepted: 08/05/2010] [Indexed: 10/19/2022]
Abstract
Eukaryotes contain an elaborate membrane system, which bounds the cell itself, nuclei, organelles and transient intracellular structures, such as vesicles. The emergence of this system was marked by an expansion of a number of structurally distinct classes of lipid-binding domains that could throw light on the early evolution of eukaryotic membranes. The C2 domain is a useful model to understand these events because it is one of the most prevalent eukaryotic lipid-binding domains deployed in diverse functional contexts. Most studies have concentrated on C2 domains prototyped by those in protein kinase C (PKC-C2) isoforms that bind lipid in a calcium-dependent manner. While two other distinct families of C2 domains, namely those in PI3K-C2 and PTEN-C2 are also recognized, a complete picture of evolutionary relationships within the C2 domain superfamily is lacking. We systematically studied this superfamily using sequence profile searches, phylogenetic and phyletic-pattern analysis and structure-prediction. Consequently, we identified several distinct families of C2 domains including those respectively typified by C2 domains in the Aida (axin interactor, dorsalization associated) proteins, B9 proteins (e.g. Mks1 (Xbx-7), Stumpy (Tza-1) and Tza-2) involved in centrosome migration and ciliogenesis, Dock180/Zizimin proteins which are Rac/CDC42 GDP exchange factors, the EEIG1/Sym-3, EHBP1 and plant RPG/PMI1 proteins involved in endocytotic recycling and organellar positioning and an apicomplexan family. We present evidence that the last eukaryotic common ancestor (LECA) contained at least 10 C2 domains belonging to 6 well-defined families. Further, we suggest that this pre-LECA diversification was linked to the emergence of several quintessentially eukaryotic structures, such as membrane repair and vesicular trafficking system, anchoring of the actin and tubulin cytoskeleton to the plasma and vesicular membranes, localization of small GTPases to membranes and lipid-based signal transduction. Subsequent lineage-specific expansions of Zizimin-type C2 domains and functionally linked CDC42/Rac GTPases occurred independently in eukaryotes that evolved active amoeboid motility. While two lipid-binding regions are likely to be shared by majority of C2 domains, the actual constellation of lipid-binding residues (predominantly basic) are distinct in each family potentially reflective of the functional and biochemical diversity of these domains. Importantly, we show that the calcium-dependent membrane interaction is a derived feature limited to the PKC-C2 domains. Our identification of novel C2 domains offers new insights into interaction between both the microtubular and microfilament cytoskeleton and cellular membranes.
Collapse
Affiliation(s)
- Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | |
Collapse
|
195
|
Hiramoto-Yamaki N, Takeuchi S, Ueda S, Harada K, Fujimoto S, Negishi M, Katoh H. Ephexin4 and EphA2 mediate cell migration through a RhoG-dependent mechanism. ACTA ACUST UNITED AC 2010; 190:461-77. [PMID: 20679435 PMCID: PMC2922637 DOI: 10.1083/jcb.201005141] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ephexin4 is a RhoG-specific guanine nucleotide exchange factor that interacts with the EphA2 receptor in breast cancer cells. EphA2, a member of the Eph receptor family, is frequently overexpressed in a variety of human cancers, including breast cancers, and promotes cancer cell motility and invasion independently of its ligand ephrin stimulation. In this study, we identify Ephexin4 as a guanine nucleotide exchange factor (GEF) for RhoG that interacts with EphA2 in breast cancer cells, and knockdown and rescue experiments show that Ephexin4 acts downstream of EphA2 to promote ligand-independent breast cancer cell migration and invasion toward epidermal growth factor through activation of RhoG. The activation of RhoG recruits its effector ELMO2 and a Rac GEF Dock4 to form a complex with EphA2 at the tips of cortactin-rich protrusions in migrating breast cancer cells. In addition, the Dock4-mediated Rac activation is required for breast cancer cell migration. Our findings reveal a novel link between EphA2 and Rac activation that contributes to the cell motility and invasiveness of breast cancer cells.
Collapse
Affiliation(s)
- Nao Hiramoto-Yamaki
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
196
|
van Helden SFG, Hordijk PL. Podosome regulation by Rho GTPases in myeloid cells. Eur J Cell Biol 2010; 90:189-97. [PMID: 20573421 DOI: 10.1016/j.ejcb.2010.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/17/2010] [Accepted: 05/22/2010] [Indexed: 01/16/2023] Open
Abstract
Myeloid cells form a first line of defense against infections. They migrate from the circulation to the infected tissues by adhering to and subsequently crossing the vascular wall. This process requires precise control and proper regulation of these interactions with the environment is therefore crucial. Podosomes are the most prominent adhesion structures in myeloid cells. Podosomes control both the adhesive and migratory properties of myeloid cells and the regulation of podosomes is key to the proper functioning of these cells. Here we discuss the regulation of podosomes by Rho GTPases, well known regulators of adhesion and migration, focusing on myeloid cells. In addition, the regulation of podosomes by GTPase regulators such as GEFs and GAPs, as well as the effects of some Rho GTPase effector pathways, will be discussed.
Collapse
Affiliation(s)
- Suzanne F G van Helden
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.
| | | |
Collapse
|
197
|
Haralalka S, Abmayr SM. Myoblast fusion in Drosophila. Exp Cell Res 2010; 316:3007-13. [PMID: 20580706 DOI: 10.1016/j.yexcr.2010.05.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
Abstract
The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process [1-4]. With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.
Collapse
Affiliation(s)
- Shruti Haralalka
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | | |
Collapse
|
198
|
Abstract
During murine peri-implantation development, the egg cylinder forms from a solid cell mass by the apoptotic removal of inner cells that do not contact the basement membrane (BM) and the selective survival of the epiblast epithelium, which does. The signaling pathways that mediate this fundamental biological process are largely unknown. Here we demonstrate that Rac1 ablation in embryonic stem cell-derived embryoid bodies (EBs) leads to massive apoptosis of epiblast cells in contact with the BM. Expression of wild-type Rac1 in the mutant EBs rescues the BM-contacting epiblast, while expression of a constitutively active Rac1 additionally blocks the apoptosis of inner cells and cavitation, indicating that the spatially regulated activation of Rac1 is required for epithelial cyst formation. We further show that Rac1 is activated through integrin-mediated recruitment of the Crk-DOCK180 complex and mediates BM-dependent epiblast survival through activating the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. Our results reveal a signaling cascade triggered by cell-BM interactions essential for epithelial morphogenesis.
Collapse
|
199
|
Hope H, Schmauch C, Arkowitz RA, Bassilana M. The Candida albicans ELMO homologue functions together with Rac1 and Dck1, upstream of the MAP Kinase Cek1, in invasive filamentous growth. Mol Microbiol 2010; 76:1572-90. [PMID: 20444104 DOI: 10.1111/j.1365-2958.2010.07186.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulation of Rho G-proteins is critical for cytoskeletal organization and cell morphology in all eukaryotes. In the human opportunistic pathogen Candida albicans, Rac1 and its activator Dck1, a member of the CED5, Dock180, myoblast city family of guanine nucleotide exchange factors, are required for the budding to filamentous transition during invasive growth. We show that Lmo1, a protein with similarity to human ELMO1, is necessary for invasive filamentous growth, similar to Rac1 and Dck1. Furthermore, Rac1, Dck1 and Lmo1 are required for cell wall integrity, as the deletion mutants are sensitive to cell wall perturbing agents, but not to oxidative or osmotic stresses. The region of Lmo1 encompassing the ELMO and PH-like domains is sufficient for its function. Both Rac1 and Dck1 can bind Lmo1. Overexpression of a number of protein kinases in the rac1, dck1 and lmo1 deletion mutants indicates that Rac1, Dck1 and Lmo1 function upstream of the mitogen-activated protein kinases Cek1 and Mkc1, linking invasive filamentous growth to cell wall integrity. We conclude that the requirement of ELMO/CED12 family members for Rac1 function is conserved from fungi to humans.
Collapse
Affiliation(s)
- Hannah Hope
- Institute of Developmental Biology and Cancer, CNRS UMR 6543, Université de Nice - Sophia Antipolis, Faculté des Sciences-Parc Valrose, 06108 Nice Cedex 2, France
| | | | | | | |
Collapse
|
200
|
Premkumar L, Bobkov AA, Patel M, Jaroszewski L, Bankston LA, Stec B, Vuori K, Côté JF, Liddington RC. Structural basis of membrane targeting by the Dock180 family of Rho family guanine exchange factors (Rho-GEFs). J Biol Chem 2010; 285:13211-22. [PMID: 20167601 PMCID: PMC2857062 DOI: 10.1074/jbc.m110.102517] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 02/15/2010] [Indexed: 02/02/2023] Open
Abstract
The Dock180 family of atypical Rho family guanine nucleotide exchange factors (Rho-GEFs) regulate a variety of processes involving cellular or subcellular polarization, including cell migration and phagocytosis. Each contains a Dock homology region-1 (DHR-1) domain that is required to localize its GEF activity to a specific membrane compartment where levels of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) are up-regulated by the local activity of PtdIns 3-kinase. Here we define the structural and energetic bases of phosphoinositide specificity by the DHR-1 domain of Dock1 (a GEF for Rac1), and show that DHR-1 utilizes a C2 domain scaffold and surface loops to create a basic pocket on its upper surface for recognition of the PtdIns(3,4,5)P(3) head group. The pocket has many of the characteristics of those observed in pleckstrin homology domains. We show that point mutations in the pocket that abolish phospholipid binding in vitro ablate the ability of Dock1 to induce cell polarization, and propose a model that brings together recent mechanistic and structural studies to rationalize the central role of DHR-1 in dynamic membrane targeting of the Rho-GEF activity of Dock180.
Collapse
Affiliation(s)
| | - Andrey A. Bobkov
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037 and
| | - Manishha Patel
- the
Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, Québec H2W1R7, Canada
| | - Lukasz Jaroszewski
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037 and
| | | | - Boguslaw Stec
- From the
Infectious and Inflammatory Disease Center and
| | - Kristiina Vuori
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037 and
| | - Jean-Francois Côté
- the
Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, Québec H2W1R7, Canada
| | | |
Collapse
|