151
|
Law ME, Corsino PE, Narayan S, Law BK. Cyclin-Dependent Kinase Inhibitors as Anticancer Therapeutics. Mol Pharmacol 2015; 88:846-52. [PMID: 26018905 DOI: 10.1124/mol.115.099325] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/27/2015] [Indexed: 12/20/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) have been considered promising drug targets for a number of years, but most CDK inhibitors have failed rigorous clinical testing. Recent studies demonstrating clear anticancer efficacy and reduced toxicity of CDK4/6 inhibitors such as palbociclib and multi-CDK inhibitors such as dinaciclib have rejuvenated the field. Favorable results with palbociclib and its recent U.S. Food and Drug Administration approval demonstrate that CDK inhibitors with narrow selectivity profiles can have clinical utility for therapy based on individual tumor genetics. A brief overview of results obtained with ATP-competitive inhibitors such as palbociclib and dinaciclib is presented, followed by a compilation of new avenues that have been pursued toward the development of novel, non-ATP-competitive CDK inhibitors. These creative ways to develop CDK inhibitors are presented along with crystal structures of these agents complexed with CDK2 to highlight differences in their binding sites and mechanisms of action. The recent successes of CDK inhibitors in the clinic, combined with the potential for structure-based routes to the development of non-ATP-competitive CDK inhibitors, and evidence that CDK inhibitors may have use in suppressing chromosomal instability and in synthetic lethal drug combinations inspire optimism that CDK inhibitors will become important weapons in the fight against cancer.
Collapse
Affiliation(s)
- Mary E Law
- Departments of Pharmacology and Therapeutics (M.E.L., P.E.C., B.K.L.), Anatomy and Cell Biology (S.N.), and the University of Florida Health Cancer Center (M.E.L., P.E.C., S.N., B.K.L.), University of Florida, Gainesville, Florida
| | - Patrick E Corsino
- Departments of Pharmacology and Therapeutics (M.E.L., P.E.C., B.K.L.), Anatomy and Cell Biology (S.N.), and the University of Florida Health Cancer Center (M.E.L., P.E.C., S.N., B.K.L.), University of Florida, Gainesville, Florida
| | - Satya Narayan
- Departments of Pharmacology and Therapeutics (M.E.L., P.E.C., B.K.L.), Anatomy and Cell Biology (S.N.), and the University of Florida Health Cancer Center (M.E.L., P.E.C., S.N., B.K.L.), University of Florida, Gainesville, Florida
| | - Brian K Law
- Departments of Pharmacology and Therapeutics (M.E.L., P.E.C., B.K.L.), Anatomy and Cell Biology (S.N.), and the University of Florida Health Cancer Center (M.E.L., P.E.C., S.N., B.K.L.), University of Florida, Gainesville, Florida
| |
Collapse
|
152
|
Dong Y, Kuang Q, Dai X, Li R, Wu Y, Leng W, Li Y, Li M. Improving the Understanding of Pathogenesis of Human Papillomavirus 16 via Mapping Protein-Protein Interaction Network. BIOMED RESEARCH INTERNATIONAL 2015; 2015:890381. [PMID: 25961044 PMCID: PMC4414230 DOI: 10.1155/2015/890381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 01/09/2023]
Abstract
The human papillomavirus 16 (HPV16) has high risk to lead various cancers and afflictions, especially, the cervical cancer. Therefore, investigating the pathogenesis of HPV16 is very important for public health. Protein-protein interaction (PPI) network between HPV16 and human was used as a measure to improve our understanding of its pathogenesis. By adopting sequence and topological features, a support vector machine (SVM) model was built to predict new interactions between HPV16 and human proteins. All interactions were comprehensively investigated and analyzed. The analysis indicated that HPV16 enlarged its scope of influence by interacting with human proteins as much as possible. These interactions alter a broad array of cell cycle progression. Furthermore, not only was HPV16 highly prone to interact with hub proteins and bottleneck proteins, but also it could effectively affect a breadth of signaling pathways. In addition, we found that the HPV16 evolved into high carcinogenicity on the condition that its own reproduction had been ensured. Meanwhile, this work will contribute to providing potential new targets for antiviral therapeutics and help experimental research in the future.
Collapse
Affiliation(s)
- Yongcheng Dong
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qifan Kuang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xu Dai
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Rong Li
- College of Computer Science, Sichuan University, Chengdu 610064, China
| | - Yiming Wu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weijia Leng
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yizhou Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
153
|
A novel CDK7 inhibitor of the Pyrazolotriazine class exerts broad-spectrum antiviral activity at nanomolar concentrations. Antimicrob Agents Chemother 2015; 59:2062-71. [PMID: 25624324 DOI: 10.1128/aac.04534-14] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Protein kinases represent central and multifunctional regulators of a balanced virus-host interaction. Cyclin-dependent protein kinase 7 (CDK7) plays crucial regulatory roles in cell cycle and transcription, both connected with the replication of many viruses. Previously, we developed a CDK7 inhibitor, LDC4297, that inhibits CDK7 in vitro in the nano-picomolar range. Novel data from a kinome-wide evaluation (>330 kinases profiled in vitro) demonstrate a kinase selectivity. Importantly, we provide first evidence for the antiviral potential of the CDK7 inhibitor LDC4297, i.e., in exerting a block of the replication of human cytomegalovirus (HCMV) in primary human fibroblasts at nanomolar concentrations (50% effective concentration, 24.5 ± 1.3 nM). As a unique feature compared to approved antiherpesviral drugs, inhibition occurred already at the immediate-early level of HCMV gene expression. The mode of antiviral action was considered multifaceted since CDK7-regulated cellular factors that are supportive of HCMV replication were substantially affected by the inhibitors. An effect of LDC4297 was identified in the interference with HCMV-driven inactivation of retinoblastoma protein (Rb), a regulatory step generally considered a hallmark of herpesviral replication. In line with this finding, a broad inhibitory activity of the drug could be demonstrated against a selection of human and animal herpesviruses and adenoviruses, whereas other viruses only showed intermediate drug sensitivity. Summarized, the CDK7 inhibitor LDC4297 is a promising candidate for further antiviral drug development, possibly offering new options for a comprehensive approach to antiviral therapy.
Collapse
|
154
|
Peyressatre M, Prével C, Pellerano M, Morris MC. Targeting cyclin-dependent kinases in human cancers: from small molecules to Peptide inhibitors. Cancers (Basel) 2015; 7:179-237. [PMID: 25625291 PMCID: PMC4381256 DOI: 10.3390/cancers7010179] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/12/2015] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinases (CDK/Cyclins) form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism. Constitutive or deregulated hyperactivity of these kinases due to amplification, overexpression or mutation of cyclins or CDK, contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases therefore constitute biomarkers of proliferation and attractive pharmacological targets for development of anticancer therapeutics. The structural features of several of these kinases have been elucidated and their molecular mechanisms of regulation characterized in depth, providing clues for development of drugs and inhibitors to disrupt their function. However, like most other kinases, they constitute a challenging class of therapeutic targets due to their highly conserved structural features and ATP-binding pocket. Notwithstanding, several classes of inhibitors have been discovered from natural sources, and small molecule derivatives have been synthesized through rational, structure-guided approaches or identified in high throughput screens. The larger part of these inhibitors target ATP pockets, but a growing number of peptides targeting protein/protein interfaces are being proposed, and a small number of compounds targeting allosteric sites have been reported.
Collapse
Affiliation(s)
- Marion Peyressatre
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - Camille Prével
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - Morgan Pellerano
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - May C Morris
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| |
Collapse
|
155
|
Kalatova B, Jesenska R, Hlinka D, Dudas M. Tripolar mitosis in human cells and embryos: occurrence, pathophysiology and medical implications. Acta Histochem 2015; 117:111-25. [PMID: 25554607 DOI: 10.1016/j.acthis.2014.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 01/08/2023]
Abstract
Tripolar mitosis is a specific case of cell division driven by typical molecular mechanisms of mitosis, but resulting in three daughter cells instead of the usual count of two. Other variants of multipolar mitosis show even more mitotic poles and are relatively rare. In nature, this phenomenon was frequently observed or suspected in multiple common cancers, infected cells, the placenta, and in early human embryos with impaired pregnancy-yielding potential. Artificial causes include radiation and various toxins. Here we combine several pieces of the most recent evidence for the existence of different types of multipolar mitosis in preimplantation embryos together with a detailed review of the literature. The related molecular and cellular mechanisms are discussed, including the regulation of centriole duplication, mitotic spindle biology, centromere functions, cell cycle checkpoints, mitotic autocorrection mechanisms, and the related complicating factors in healthy and affected cells, including post-mitotic cell-cell fusion often associated with multipolar cell division. Clinical relevance for oncology and embryo selection in assisted reproduction is also briefly discussed in this context.
Collapse
|
156
|
Li Z, Hao Y, Wang L, Xiang H, Zhou Z. Genome-wide identification and comprehensive analyses of the kinomes in four pathogenic microsporidia species. PLoS One 2014; 9:e115890. [PMID: 25549259 PMCID: PMC4280135 DOI: 10.1371/journal.pone.0115890] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022] Open
Abstract
Microsporidia have attracted considerable attention because they infect a wide range of hosts, from invertebrates to vertebrates, and cause serious human diseases and major economic losses in the livestock industry. There are no prospective drugs to counteract this pathogen. Eukaryotic protein kinases (ePKs) play a central role in regulating many essential cellular processes and are therefore potential drug targets. In this study, a comprehensive summary and comparative analysis of the protein kinases in four microsporidia–Enterocytozoon bieneusi, Encephalitozoon cuniculi, Nosema bombycis and Nosema ceranae–was performed. The results show that there are 34 ePKs and 4 atypical protein kinases (aPKs) in E. bieneusi, 29 ePKs and 6 aPKs in E. cuniculi, 41 ePKs and 5 aPKs in N. bombycis, and 27 ePKs and 4 aPKs in N. ceranae. These data support the previous conclusion that the microsporidian kinome is the smallest eukaryotic kinome. Microsporidian kinomes contain only serine-threonine kinases and do not contain receptor-like and tyrosine kinases. Many of the kinases related to nutrient and energy signaling and the stress response have been lost in microsporidian kinomes. However, cell cycle-, development- and growth-related kinases, which are important to parasites, are well conserved. This reduction of the microsporidian kinome is in good agreement with genome compaction, but kinome density is negatively correlated with proteome size. Furthermore, the protein kinases in each microsporidian genome are under strong purifying selection pressure. No remarkable differences in kinase family classification, domain features, gain and/or loss, and selective pressure were observed in these four species. Although microsporidia adapt to different host types, the coevolution of microsporidia and their hosts was not clearly reflected in the protein kinases. Overall, this study enriches and updates the microsporidian protein kinase database and may provide valuable information and candidate targets for the design of treatments for pathogenic diseases.
Collapse
Affiliation(s)
- Zhi Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Linling Wang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Heng Xiang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Zeyang Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
157
|
Stettler K, Li X, Sandrock B, Braga-Lagache S, Heller M, Dümbgen L, Suter B. A Drosophila XPD model links cell cycle coordination with neuro-development and suggests links to cancer. Dis Model Mech 2014; 8:81-91. [PMID: 25431422 PMCID: PMC4283652 DOI: 10.1242/dmm.016907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
XPD functions in transcription, DNA repair and in cell cycle control. Mutations in human XPD (also known as ERCC2) mainly cause three clinical phenotypes: xeroderma pigmentosum (XP), Cockayne syndrome (XP/CS) and trichothiodystrophy (TTD), and only XP patients have a high predisposition to developing cancer. Hence, we developed a fly model to obtain novel insights into the defects caused by individual hypomorphic alleles identified in human XP-D patients. This model revealed that the mutations that displayed the greatest in vivo UV sensitivity in Drosophila did not correlate with those that led to tumor formation in humans. Immunoprecipitations followed by targeted quantitative MS/MS analysis showed how different xpd mutations affected the formation or stability of different transcription factor IIH (TFIIH) subcomplexes. The XP mutants most clearly linked to high cancer risk, Xpd R683W and R601L, showed a reduced interaction with the core TFIIH and also an abnormal interaction with the Cdk-activating kinase (CAK) complex. Interestingly, these two XP alleles additionally displayed high levels of chromatin loss and free centrosomes during the rapid nuclear division phase of the Drosophila embryo. Finally, the xpd mutations showing defects in the coordination of cell cycle timing during the Drosophila embryonic divisions correlated with those human mutations that cause the neurodevelopmental abnormalities and developmental growth defects observed in XP/CS and TTD patients.
Collapse
Affiliation(s)
- Karin Stettler
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Xiaoming Li
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Björn Sandrock
- Department of Biology, Philipps-University Marburg, 35032 Marburg, Germany
| | | | - Manfred Heller
- Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Lutz Dümbgen
- Institute of Mathematical Statistics and Actuarial Science, University of Bern, 3012 Bern, Switzerland
| | - Beat Suter
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
158
|
Cicenas J, Kalyan K, Sorokinas A, Jatulyte A, Valiunas D, Kaupinis A, Valius M. Highlights of the Latest Advances in Research on CDK Inhibitors. Cancers (Basel) 2014; 6:2224-42. [PMID: 25349887 PMCID: PMC4276963 DOI: 10.3390/cancers6042224] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/30/2014] [Accepted: 10/14/2014] [Indexed: 11/16/2022] Open
Abstract
Uncontrolled proliferation is the hallmark of cancer and other proliferative disorders and abnormal cell cycle regulation is, therefore, common in these diseases. Cyclin-dependent kinases (CDKs) play a crucial role in the control of the cell cycle and proliferation. These kinases are frequently deregulated in various cancers, viral infections, neurodegenerative diseases, ischemia and some proliferative disorders. This led to a rigorous pursuit for small-molecule CDK inhibitors for therapeutic uses. Early efforts to block CDKs with nonselective CDK inhibitors led to little specificity and efficacy but apparent toxicity, but the recent advance of selective CDK inhibitors allowed the first successful efforts to target these kinases for the therapies of several diseases. Major ongoing efforts are to develop CDK inhibitors as monotherapies and rational combinations with chemotherapy and other targeted drugs.
Collapse
Affiliation(s)
- Jonas Cicenas
- CALIPHO Group, Swiss Institute of Bioinformatics, CMU-1, rue Michel Servet' Geneva 4 CH-1211, Switzerland.
| | | | | | | | | | - Algirdas Kaupinis
- Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius LT-08662, Lithuania.
| | - Mindaugas Valius
- Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius LT-08662, Lithuania.
| |
Collapse
|
159
|
Fluorescent biosensors for drug discovery new tools for old targets--screening for inhibitors of cyclin-dependent kinases. Eur J Med Chem 2014; 88:74-88. [PMID: 25314935 DOI: 10.1016/j.ejmech.2014.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 12/12/2022]
Abstract
Cyclin-dependent kinases play central roles in regulation of cell cycle progression, transcriptional regulation and other major biological processes such as neuronal differentiation and metabolism. These kinases are hyperactivated in most human cancers and constitute attractive pharmacological targets. A large number of ATP-competitive inhibitors of CDKs have been identified from natural substances, in high throughput screening assays, or through structure-guided approaches. Alternative strategies have been explored to target essential protein/protein interfaces and screen for allosteric inhibitors that trap inactive intermediates or prevent conformational activation. However this remains a major challenge given the highly conserved structural features of these kinases, and calls for new and alternative screening technologies. Fluorescent biosensors constitute powerful tools for the detection of biomolecules in complex biological samples, and are well suited to study dynamic processes and highlight molecular alterations associated with pathological disorders. They further constitute sensitive and selective tools which can be readily implemented to high throughput and high content screens in drug discovery programmes. Our group has developed fluorescent biosensors to probe cyclin-dependent kinases and gain insight into their molecular behaviour in vitro and in living cells. These tools provide a means of monitoring subtle alterations in the abundance and activity of CDK/Cyclins and can respond to compounds that interfere with the conformational dynamics of these kinases. In this review we discuss the different strategies which have been devised to target CDK/Cyclins, and describe the implementation of our CDK/Cyclin biosensors to develop HTS/HCS assays in view of identifying new classes of inhibitors for cancer therapeutics.
Collapse
|
160
|
Lam F, Abbas AY, Shao H, Teo T, Adams J, Li P, Bradshaw TD, Fischer PM, Walsby E, Pepper C, Chen Y, Ding J, Wang S. Targeting RNA transcription and translation in ovarian cancer cells with pharmacological inhibitor CDKI-73. Oncotarget 2014; 5:7691-704. [PMID: 25277198 PMCID: PMC4202154 DOI: 10.18632/oncotarget.2296] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/31/2014] [Indexed: 01/09/2023] Open
Abstract
Dysregulation of cellular transcription and translation is a fundamental hallmark of cancer. As CDK9 and Mnks play pivotal roles in the regulation of RNA transcription and protein synthesis, respectively, they are important targets for drug development. We herein report the cellular mechanism of a novel CDK9 inhibitor CDKI-73 in an ovarian cancer cell line (A2780). We also used shRNA-mediated CDK9 knockdown to investigate the importance of CDK9 in the maintenance of A2780 cells. This study revealed that CDKI-73 rapidly inhibited cellular CDK9 kinase activity and down-regulated the RNAPII phosphorylation. This subsequently caused a decrease in the eIF4E phosphorylation by blocking Mnk1 kinase activity. Consistently, CDK9 shRNA was also found to down-regulate the Mnk1 expression. Both CDKI-73 and CDK9 shRNA decreased anti-apoptotic proteins Mcl-1 and Bcl-2 and induced apoptosis. The study confirmed that CDK9 is required for cell survival and that ovarian cancer may be susceptible to CDK9 inhibition strategy. The data also implied a role of CDK9 in eIF4E-mediated translational control, suggesting that CDK9 may have important implication in the Mnk-eIF4E axis, the key determinants of PI3K/Akt/mTOR- and Ras/Raf/MAPK-mediated tumorigenic activity. As such, CDK9 inhibitor drug candidate CDKI-73 should have a major impact on these pathways in human cancers.
Collapse
Affiliation(s)
- Frankie Lam
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Abdullahi Y. Abbas
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Hao Shao
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Theodosia Teo
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Julian Adams
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Peng Li
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Tracey D. Bradshaw
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Peter M. Fischer
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Elisabeth Walsby
- Cardiff CLL Research Group, Institute of Cancer and Genetics, School of Medicine, Cardiff University, Health Park, Cardiff, United Kingdom
| | - Chris Pepper
- Cardiff CLL Research Group, Institute of Cancer and Genetics, School of Medicine, Cardiff University, Health Park, Cardiff, United Kingdom
| | - Yi Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Jian Ding
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Shudong Wang
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| |
Collapse
|
161
|
Abstract
CDKs (cyclin-dependent kinases) ensure directionality and fidelity of the eukaryotic cell division cycle. In a similar fashion, the transcription cycle is governed by a conserved subfamily of CDKs that phosphorylate Pol II (RNA polymerase II) and other substrates. A genetic model organism, the fission yeast Schizosaccharomyces pombe, has yielded robust models of cell-cycle control, applicable to higher eukaryotes. From a similar approach combining classical and chemical genetics, fundamental principles of transcriptional regulation by CDKs are now emerging. In the present paper, we review the current knowledge of each transcriptional CDK with respect to its substrate specificity, function in transcription and effects on chromatin modifications, highlighting the important roles of CDKs in ensuring quantity and quality control over gene expression in eukaryotes.
Collapse
|
162
|
Albert TK, Rigault C, Eickhoff J, Baumgart K, Antrecht C, Klebl B, Mittler G, Meisterernst M. Characterization of molecular and cellular functions of the cyclin-dependent kinase CDK9 using a novel specific inhibitor. Br J Pharmacol 2014; 171:55-68. [PMID: 24102143 DOI: 10.1111/bph.12408] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/22/2013] [Accepted: 08/11/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE The cyclin-dependent kinase CDK9 is an important therapeutic target but currently available inhibitors exhibit low specificity and/or narrow therapeutic windows. Here we have used a new highly specific CDK9 inhibitor, LDC000067 to interrogate gene control mechanisms mediated by CDK9. EXPERIMENTAL APPROACH The selectivity of LDC000067 was established in functional kinase assays. Functions of CDK9 in gene expression were assessed with in vitro transcription experiments, single gene analyses and genome-wide expression profiling. Cultures of mouse embryonic stem cells, HeLa cells, several cancer cell lines, along with cells from patients with acute myelogenous leukaemia were also used to investigate cellular responses to LDC000067. KEY RESULTS The selectivity of LDC000067 for CDK9 over other CDKs exceeded that of the known inhibitors flavopiridol and DRB. LDC000067 inhibited in vitro transcription in an ATP-competitive and dose-dependent manner. Gene expression profiling of cells treated with LDC000067 demonstrated a selective reduction of short-lived mRNAs, including important regulators of proliferation and apoptosis. Analysis of de novo RNA synthesis suggested a wide ranging positive role of CDK9. At the molecular and cellular level, LDC000067 reproduced effects characteristic of CDK9 inhibition such as enhanced pausing of RNA polymerase II on genes and, most importantly, induction of apoptosis in cancer cells. CONCLUSIONS AND IMPLICATIONS Our study provides a framework for the mechanistic understanding of cellular responses to CDK9 inhibition. LDC000067 represents a promising lead for the development of clinically useful, highly specific CDK9 inhibitors.
Collapse
Affiliation(s)
- T K Albert
- Institute of Molecular Tumor Biology (IMTB), Faculty of Medicine, Westfalian Wilhelms University Muenster (WWU), Muenster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Xu W, Amire-Brahimi B, Xie XJ, Huang L, Ji JY. All-atomic molecular dynamic studies of human CDK8: insight into the A-loop, point mutations and binding with its partner CycC. Comput Biol Chem 2014; 51:1-11. [PMID: 24754906 DOI: 10.1016/j.compbiolchem.2014.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 12/31/2022]
Abstract
The Mediator, a conserved multisubunit protein complex in eukaryotic organisms, regulates gene expression by bridging sequence-specific DNA-binding transcription factors to the general RNA polymerase II machinery. In yeast, Mediator complex is organized in three core modules (head, middle and tail) and a separable 'CDK8 submodule' consisting of four subunits including Cyclin-dependent kinase CDK8 (CDK8), Cyclin C (CycC), MED12, and MED13. The 3-D structure of human CDK8-CycC complex has been recently experimentally determined. To take advantage of this structure and the improved theoretical calculation methods, we have performed molecular dynamic simulations to study dynamics of CDK8 and two CDK8 point mutations (D173A and D189N), which have been identified in human cancers, with and without full length of the A-loop, as well as the binding between CDK8 and CycC. We found that CDK8 structure gradually loses two helical structures during the 50-ns molecular dynamic simulation, likely due to the presence of the full-length A-loop. In addition, our studies showed the hydrogen bond occupation of the CDK8 A-loop increases during the first 20-ns MD simulation and stays stable during the later 30-ns MD simulation. Four residues in the A-loop of CDK8 have high hydrogen bond occupation, while the rest residues have low or no hydrogen bond occupation. The hydrogen bond dynamic study of the A-loop residues exhibits three types of changes: increasing, decreasing, and stable. Furthermore, the 3-D structures of CDK8 point mutations D173A, D189N, T196A and T196D have been built by molecular modeling and further investigated by 50-ns molecular dynamic simulations. D173A has the highest average potential energy, while T196D has the lowest average potential energy, indicating that T196D is the most stable structure. Finally, we calculated theoretical binding energy of CDK8 and CycC by MM/PBSA and MM/GBSA methods, and the negative values obtained from both methods demonstrate stability of CDK8-CycC complex. Taken together, these analyses will improve our understanding of the exact functions of CDK8 and the interaction with its partner CycC.
Collapse
Affiliation(s)
- Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA.
| | - Benjamin Amire-Brahimi
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Liying Huang
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA.
| |
Collapse
|
164
|
Tsai TYC, Theriot JA, Ferrell JE. Changes in oscillatory dynamics in the cell cycle of early Xenopus laevis embryos. PLoS Biol 2014; 12:e1001788. [PMID: 24523664 PMCID: PMC3921120 DOI: 10.1371/journal.pbio.1001788] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022] Open
Abstract
During the early development of Xenopus laevis embryos, the first mitotic cell cycle is long (∼85 min) and the subsequent 11 cycles are short (∼30 min) and clock-like. Here we address the question of how the Cdk1 cell cycle oscillator changes between these two modes of operation. We found that the change can be attributed to an alteration in the balance between Wee1/Myt1 and Cdc25. The change in balance converts a circuit that acts like a positive-plus-negative feedback oscillator, with spikes of Cdk1 activation, to one that acts like a negative-feedback-only oscillator, with a shorter period and smoothly varying Cdk1 activity. Shortening the first cycle, by treating embryos with the Wee1A/Myt1 inhibitor PD0166285, resulted in a dramatic reduction in embryo viability, and restoring the length of the first cycle in inhibitor-treated embryos with low doses of cycloheximide partially rescued viability. Computations with an experimentally parameterized mathematical model show that modest changes in the Wee1/Cdc25 ratio can account for the observed qualitative changes in the cell cycle. The high ratio in the first cycle allows the period to be long and tunable, and decreasing the ratio in the subsequent cycles allows the oscillator to run at a maximal speed. Thus, the embryo rewires its feedback regulation to meet two different developmental requirements during early development.
Collapse
Affiliation(s)
- Tony Y.-C. Tsai
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Julie A. Theriot
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - James E. Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
165
|
Cross-talk of phosphorylation and prolyl isomerization of the C-terminal domain of RNA Polymerase II. Molecules 2014; 19:1481-511. [PMID: 24473209 PMCID: PMC4350670 DOI: 10.3390/molecules19021481] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/06/2014] [Accepted: 01/21/2014] [Indexed: 12/04/2022] Open
Abstract
Post-translational modifications of the heptad repeat sequences in the C-terminal domain (CTD) of RNA polymerase II (Pol II) are well recognized for their roles in coordinating transcription with other nuclear processes that impinge upon transcription by the Pol II machinery; and this is primarily achieved through CTD interactions with the various nuclear factors. The identification of novel modifications on new regulatory sites of the CTD suggests that, instead of an independent action for all modifications on CTD, a combinatorial effect is in operation. In this review we focus on two well-characterized modifications of the CTD, namely serine phosphorylation and prolyl isomerization, and discuss the complex interplay between the enzymes modifying their respective regulatory sites. We summarize the current understanding of how the prolyl isomerization state of the CTD dictates the specificity of writers (CTD kinases), erasers (CTD phosphatases) and readers (CTD binding proteins) and how that correlates to transcription status. Subtle changes in prolyl isomerization states cannot be detected at the primary sequence level, we describe the methods that have been utilized to investigate this mode of regulation. Finally, a general model of how prolyl isomerization regulates the phosphorylation state of CTD, and therefore transcription-coupled processes, is proposed.
Collapse
|
166
|
Casimiro MC, Velasco-Velázquez M, Aguirre-Alvarado C, Pestell RG. Overview of cyclins D1 function in cancer and the CDK inhibitor landscape: past and present. Expert Opin Investig Drugs 2014; 23:295-304. [PMID: 24387133 DOI: 10.1517/13543784.2014.867017] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Intensive efforts, over the last decade, have been made to inhibit the kinase activity of cyclins that act as mediators during cell-cycle progression. Activation of the cyclin D1 oncogene, often by amplification or rearrangement, is a major driver of multiple types of human tumors including breast and squamous cell cancers, B-cell lymphoma, myeloma and parathyroid adenoma. AREAS COVERED In this review, the authors summarize the activity of cyclins and cyclin-dependent kinases in cell-cycle progression and transcription. They focus on cyclin D1/CDK4/CDK6, a central mediator in the transition from G1 to S phase. Furthermore, the authors discuss the first generation of pan-cyclin-dependent kinase inhibitors that failed to meet expectation and discuss, in detail, the second generation of highly specific cyclin D1/CDK4/CDK6 inhibitors that are proving to be more efficacious. EXPERT OPINION The mechanism by which cyclin D1 drives tumorigenesis may be dependent on kinase and kinase-independent functions. Further evidence is necessary to delineate the roles of cyclin D1 in early pre-neoplastic lesions where its overexpression may promote genomic instability in a kinase-independent manner.
Collapse
Affiliation(s)
- Mathew C Casimiro
- Thomas Jefferson University & Hospital, Department of Cancer Biology , 233 South 10th Street, Philadelphia, PA 19107 , USA
| | | | | | | |
Collapse
|
167
|
Selective CDK9 inhibition overcomes TRAIL resistance by concomitant suppression of cFlip and Mcl-1. Cell Death Differ 2013; 21:491-502. [PMID: 24362439 PMCID: PMC3921597 DOI: 10.1038/cdd.2013.179] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/07/2013] [Accepted: 11/05/2013] [Indexed: 02/04/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in many cancer cells without causing toxicity in vivo. However, to date, TRAIL-receptor agonists have only shown limited therapeutic benefit in clinical trials. This can, most likely, be attributed to the fact that 50% of all cancer cell lines and most primary human cancers are TRAIL resistant. Consequently, future TRAIL-based therapies will require the addition of sensitizing agents that remove crucial blocks in the TRAIL apoptosis pathway. Here, we identify PIK-75, a small molecule inhibitor of the p110α isoform of phosphoinositide-3 kinase (PI3K), as an exceptionally potent TRAIL apoptosis sensitizer. Surprisingly, PI3K inhibition was not responsible for this activity. A kinome-wide in vitro screen revealed that PIK-75 strongly inhibits a panel of 27 kinases in addition to p110α. Within this panel, we identified cyclin-dependent kinase 9 (CDK9) as responsible for TRAIL resistance of cancer cells. Combination of CDK9 inhibition with TRAIL effectively induced apoptosis even in highly TRAIL-resistant cancer cells. Mechanistically, CDK9 inhibition resulted in downregulation of cellular FLICE-like inhibitory protein (cFlip) and Mcl-1 at both the mRNA and protein levels. Concomitant cFlip and Mcl-1 downregulation was required and sufficient for TRAIL sensitization by CDK9 inhibition. When evaluating cancer selectivity of TRAIL combined with SNS-032, the most selective and clinically used inhibitor of CDK9, we found that a panel of mostly TRAIL-resistant non-small cell lung cancer cell lines was readily killed, even at low concentrations of TRAIL. Primary human hepatocytes did not succumb to the same treatment regime, defining a therapeutic window. Importantly, TRAIL in combination with SNS-032 eradicated established, orthotopic lung cancer xenografts in vivo. Based on the high potency of CDK9 inhibition as a cancer cell-selective TRAIL-sensitizing strategy, we envisage the development of new, highly effective cancer therapies.
Collapse
|
168
|
Morishita J, Kang MJ, Fidelin K, Ryoo HD. CDK7 regulates the mitochondrial localization of a tail-anchored proapoptotic protein, Hid. Cell Rep 2013; 5:1481-8. [PMID: 24360962 DOI: 10.1016/j.celrep.2013.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/26/2013] [Accepted: 11/15/2013] [Indexed: 01/20/2023] Open
Abstract
The mitochondrial outer membrane is a major site of apoptosis regulation across phyla. Human and C. elegans Bcl-2 family proteins and Drosophila Hid require the C-terminal tail-anchored (TA) sequence in order to insert into the mitochondrial membrane, but it remains unclear whether cytosolic proteins actively regulate the mitochondrial localization of these proteins. Here, we report that the cdk7 complex regulates the mitochondrial localization of Hid and its ability to induce apoptosis. We identified cdk7 through an in vivo RNAi screen of genes required for cell death. Although CDK7 is best known for its role in transcription and cell-cycle progression, a hypomorphic cdk7 mutant suppressed apoptosis without impairing these other known functions. In this cdk7 mutant background, Hid failed to localize to the mitochondria and failed to bind to recombinant inhibitors of apoptosis (IAPs). These findings indicate that apoptosis is promoted by a newly identified function of CDK7, which couples the mitochondrial localization and IAP binding of Hid.
Collapse
Affiliation(s)
- Jun Morishita
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Min-Ji Kang
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Kevin Fidelin
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
169
|
Abstract
Structural studies of members of the CDK (cyclin-dependent protein kinase) family have made a significant contribution to our understanding of the regulation of protein kinases. The structure of monomeric unphosphorylated CDK2 was the first of an inactive protein kinase to be determined and, since then, structures of other members of the CDK family, alone, in complex with regulatory proteins and in differing phosphorylation states, have enhanced our understanding of the molecular mechanisms regulating protein kinase activity. Recently, our knowledge of the structural biology of the CDK family has been extended by determination of structures for members of the transcriptional CDK and CDK-like kinase branches of the extended family. We include these recent structures in the present review and consider them in the light of current models for CDK activation and regulation.
Collapse
|
170
|
Shao H, Shi S, Foley DW, Lam F, Abbas AY, Liu X, Huang S, Jiang X, Baharin N, Fischer PM, Wang S. Synthesis, structure–activity relationship and biological evaluation of 2,4,5-trisubstituted pyrimidine CDK inhibitors as potential anti-tumour agents. Eur J Med Chem 2013; 70:447-55. [DOI: 10.1016/j.ejmech.2013.08.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/27/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
|
171
|
Liu LY, Huang WJ, Lin RJ, Lin SY, Liang YC. N-Hydroxycinnamide Derivatives of Osthole Presenting Genotoxicity and Cytotoxicity against Human Colon Adenocarcinoma Cells in Vitro and in Vivo. Chem Res Toxicol 2013; 26:1683-91. [DOI: 10.1021/tx400271n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ling-Yu Liu
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- School
of Medical Laboratory Science and Biotechnology, College of Medical
Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jan Huang
- Graduate
Institute of Pharmacognosy Science, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ren-Jye Lin
- Department
of Primary Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Department
of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shyr-Yi Lin
- Department
of Primary Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Department
of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chih Liang
- School
of Medical Laboratory Science and Biotechnology, College of Medical
Science and Technology, Taipei Medical University, Taipei, Taiwan
- Traditional
Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
172
|
Kaliszczak M, Patel H, Kroll SHB, Carroll L, Smith G, Delaney S, Heathcote DA, Bondke A, Fuchter MJ, Coombes RC, Barrett AGM, Ali S, Aboagye EO. Development of a cyclin-dependent kinase inhibitor devoid of ABC transporter-dependent drug resistance. Br J Cancer 2013; 109:2356-67. [PMID: 24071597 PMCID: PMC3817326 DOI: 10.1038/bjc.2013.584] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/30/2013] [Accepted: 09/04/2013] [Indexed: 01/15/2023] Open
Abstract
Background: Cyclin-dependent kinases (CDKs) control cell cycle progression, RNA transcription and apoptosis, making them attractive targets for anticancer drug development. Unfortunately, CDK inhibitors developed to date have demonstrated variable efficacy. Methods: We generated drug-resistant cells by continuous low-dose exposure to a model pyrazolo[1,5-a]pyrimidine CDK inhibitor and investigated potential structural alterations for optimal efficacy. Results: We identified induction of the ATP-binding cassette (ABC) transporters, ABCB1 and ABCG2, in resistant cells. Assessment of features involved in the ABC transporter substrate specificity from a compound library revealed high polar surface area (>100 Å2) as a key determinant of transporter interaction. We developed ICEC-0782 that preferentially inhibited CDK2, CDK7 and CDK9 in the nanomolar range. The compound inhibited phosphorylation of CDK substrates and downregulated the short-lived proteins, Mcl-1 and cyclin D1. ICEC-0782 induced G2/M arrest and apoptosis. The permeability and cytotoxicity of ICEC-0782 were unaffected by ABC transporter expression. Following daily oral dosing, the compound inhibited growth of human colon HCT-116 and human breast MCF7 tumour xenografts in vivo by 84% and 94%, respectively. Conclusion: We identified a promising pyrazolo[1,5-a]pyrimidine compound devoid of ABC transporter interaction, highly suitable for further preclinical and clinical evaluation for the treatment of cancer.
Collapse
Affiliation(s)
- M Kaliszczak
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Schachter MM, Fisher RP. The CDK-activating kinase Cdk7: taking yes for an answer. Cell Cycle 2013; 12:3239-40. [PMID: 24036541 PMCID: PMC3885630 DOI: 10.4161/cc.26355] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Miriam Merzel Schachter
- Department of Structural and Chemical Biology; Graduate School of Biomedical Sciences; Icahn School of Medicine at Mount Sinai; New York, NY USA
| | | |
Collapse
|
174
|
A Cdk7-Cdk4 T-loop phosphorylation cascade promotes G1 progression. Mol Cell 2013; 50:250-60. [PMID: 23622515 DOI: 10.1016/j.molcel.2013.04.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/20/2013] [Accepted: 04/01/2013] [Indexed: 01/13/2023]
Abstract
Eukaryotic cell division is controlled by cyclin-dependent kinases (CDKs), which require phosphorylation by a CDK-activating kinase (CAK) for full activity. Chemical genetics uncovered requirements for the metazoan CAK Cdk7 in determining cyclin specificity and activation order of Cdk2 and Cdk1 during S and G2 phases. It was unknown if Cdk7 also activates Cdk4 and Cdk6 to promote passage of the restriction (R) point, when continued cell-cycle progression becomes mitogen independent, or if CDK-activating phosphorylation regulates G1 progression. Here we show that Cdk7 is a Cdk4- and Cdk6-activating kinase in human cells, required to maintain activity, not just to establish the active state, as is the case for Cdk1 and Cdk2. Activating phosphorylation of Cdk7 rises concurrently with that of Cdk4 as cells exit quiescence and accelerates Cdk4 activation in vitro. Therefore, mitogen signaling drives a CDK-activation cascade during G1 progression, and CAK might be rate-limiting for R point passage.
Collapse
|
175
|
Bisteau X, Paternot S, Colleoni B, Ecker K, Coulonval K, De Groote P, Declercq W, Hengst L, Roger PP. CDK4 T172 phosphorylation is central in a CDK7-dependent bidirectional CDK4/CDK2 interplay mediated by p21 phosphorylation at the restriction point. PLoS Genet 2013; 9:e1003546. [PMID: 23737759 PMCID: PMC3667761 DOI: 10.1371/journal.pgen.1003546] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/22/2013] [Indexed: 01/24/2023] Open
Abstract
Cell cycle progression, including genome duplication, is orchestrated by cyclin-dependent kinases (CDKs). CDK activation depends on phosphorylation of their T-loop by a CDK–activating kinase (CAK). In animals, the only known CAK for CDK2 and CDK1 is cyclin H-CDK7, which is constitutively active. Therefore, the critical activation step is dephosphorylation of inhibitory sites by Cdc25 phosphatases rather than unrestricted T-loop phosphorylation. Homologous CDK4 and CDK6 bound to cyclins D are master integrators of mitogenic/oncogenic signaling cascades by initiating the inactivation of the central oncosuppressor pRb and cell cycle commitment at the restriction point. Unlike the situation in CDK1 and CDK2 cyclin complexes, and in contrast to the weak but constitutive T177 phosphorylation of CDK6, we have identified the T-loop phosphorylation at T172 as the highly regulated step determining CDK4 activity. Whether both CDK4 and CDK6 phosphorylations are catalyzed by CDK7 remains unclear. To answer this question, we took a chemical-genetics approach by using analogue-sensitive CDK7(as/as) mutant HCT116 cells, in which CDK7 can be specifically inhibited by bulky adenine analogs. Intriguingly, CDK7 inhibition prevented activating phosphorylations of CDK4/6, but for CDK4 this was at least partly dependent on its binding to p21cip1. In response to CDK7 inhibition, p21-binding to CDK4 increased concomitantly with disappearance of the most abundant phosphorylation of p21, which we localized at S130 and found to be catalyzed by both CDK4 and CDK2. The S130A mutation of p21 prevented the activating CDK4 phosphorylation, and inhibition of CDK4/6 and CDK2 impaired phosphorylations of both p21 and p21-bound CDK4. Therefore, specific CDK7 inhibition revealed the following: a crucial but partly indirect CDK7 involvement in phosphorylation/activation of CDK4 and CDK6; existence of CDK4-activating kinase(s) other than CDK7; and novel CDK7-dependent positive feedbacks mediated by p21 phosphorylation by CDK4 and CDK2 to sustain CDK4 activation, pRb inactivation, and restriction point passage. In the cell cycle, duplication of all the cellular components and subsequent cell division are governed by a family of protein kinases associated with cyclins (CDKs). Related CDK4 and CDK6 bound to cyclins D are the first CDKs to be activated in response to cell proliferation signals. They thus play a central role in the cell multiplication decision, especially in most cancer cells in which CDK4 activity is highly deregulated. We have identified the activating T172 phosphorylation instead of cyclin D expression as the highly regulated step determining CDK4 activation. This finding contrasts with the prevalent view that the only identified metazoan CDK-activating kinase, CDK7, is constitutively active. By using human cells genetically engineered for specific chemical inhibition of CDK7, we found that CDK7 activity was indeed required for CDK4 activation. However, this dependence was conditioned by CDK4 binding to the CDK inhibitory protein p21, which increased in response to CDK7 inhibition. Further investigation revealed that CDK7 inhibition affects a major phosphorylation of p21, which we found to be required for CDK4 activation and performed by CDK4 itself and CDK2. Thus, depending on CDK7 activity, CDK4 and CDK2 facilitate CDK4 activation, generating novel positive feedbacks involved in the cell cycle decision.
Collapse
Affiliation(s)
- Xavier Bisteau
- WELBIO and Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Sabine Paternot
- WELBIO and Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Bianca Colleoni
- WELBIO and Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Karin Ecker
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Katia Coulonval
- WELBIO and Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe De Groote
- Department for Molecular Biomedical Research, VIB, and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wim Declercq
- Department for Molecular Biomedical Research, VIB, and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ludger Hengst
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Pierre P. Roger
- WELBIO and Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
- * E-mail:
| |
Collapse
|
176
|
Kouzine F, Wojtowicz D, Yamane A, Resch W, Kieffer-Kwon KR, Bandle R, Nelson S, Nakahashi H, Awasthi P, Feigenbaum L, Menoni H, Hoeijmakers J, Vermeulen W, Ge H, Przytycka TM, Levens D, Casellas R. Global regulation of promoter melting in naive lymphocytes. Cell 2013; 153:988-99. [PMID: 23706737 PMCID: PMC3684982 DOI: 10.1016/j.cell.2013.04.033] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 01/31/2013] [Accepted: 04/04/2013] [Indexed: 11/25/2022]
Abstract
Lymphocyte activation is initiated by a global increase in messenger RNA synthesis. However, the mechanisms driving transcriptome amplification during the immune response are unknown. By monitoring single-stranded DNA genome wide, we show that the genome of naive cells is poised for rapid activation. In G0, ∼90% of promoters from genes to be expressed in cycling lymphocytes are polymerase loaded but unmelted and support only basal transcription. Furthermore, the transition from abortive to productive elongation is kinetically limiting, causing polymerases to accumulate nearer to transcription start sites. Resting lymphocytes also limit the expression of the transcription factor IIH complex, including XPB and XPD helicases involved in promoter melting and open complex extension. To date, two rate-limiting steps have been shown to control global gene expression in eukaryotes: preinitiation complex assembly and polymerase pausing. Our studies identify promoter melting as a third key regulatory step and propose that this mechanism ensures a prompt lymphocyte response to invading pathogens.
Collapse
Affiliation(s)
- Fedor Kouzine
- Laboratory of Pathology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Damian Wojtowicz
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD 20894, USA
- Institute of Informatics, University of Warsaw, 02-098 Warsaw, Poland
| | - Arito Yamane
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wolfgang Resch
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Russell Bandle
- Laboratory of Pathology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steevenson Nelson
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hirotaka Nakahashi
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Parirokh Awasthi
- Science Applications International Corporation, NCI, Frederick, MD 21702, USA
| | - Lionel Feigenbaum
- Science Applications International Corporation, NCI, Frederick, MD 21702, USA
| | - Herve Menoni
- Department of Genetics, Biomedical Science, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | - Jan Hoeijmakers
- Department of Genetics, Biomedical Science, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | - Wim Vermeulen
- Department of Genetics, Biomedical Science, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | - Hui Ge
- Ascentgene, Inc., Rockville, MD 20850, USA
| | - Teresa M. Przytycka
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD 20894, USA
| | - David Levens
- Laboratory of Pathology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafael Casellas
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
- Center of Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
177
|
Abstract
Cyclin-dependent kinases (CDKs) play essential roles in cell proliferation and gene expression. Although distinct sets of CDKs work in cell division and transcription by RNA polymerase II (Pol II), they share a CDK-activating kinase (CAK), which is itself a CDK-Cdk7-in metazoans. Thus a unitary CDK network controls and may coordinate cycles of cell division and gene expression. Recent work reveals decisive roles for Cdk7 in both pathways. The CAK function of Cdk7 helps determine timing of activation and cyclin-binding preferences of different CDKs during the cell cycle. In the transcription cycle, Cdk7 is both an effector kinase, which phosphorylates Pol II and other proteins and helps establish promoter-proximal pausing; and a CAK for Cdk9 (P-TEFb), which releases Pol II from the pause. By governing the transition from initiation to elongation, Cdk7, Cdk9 and their substrates influence expression of genes important for developmental and cell-cycle decisions, and ensure co-transcriptional maturation of Pol II transcripts. Cdk7 engaged in transcription also appears to be regulated by phosphorylation within its own activation (T) loop. Here I review recent studies of CDK regulation in cell division and gene expression, and propose a model whereby mitogenic signals trigger a cascade of CDK T-loop phosphorylation that drives cells past the restriction (R) point, when continued cell-cycle progression becomes growth factor-independent. Because R-point control is frequently deregulated in cancer, the CAK-CDK pathway is an attractive target for chemical inhibition aimed at impeding the inappropriate commitment to cell division.
Collapse
|
178
|
Abstract
The chicken coloboma mutation exhibits features similar to human congenital developmental malformations such as ocular coloboma, cleft-palate, dwarfism, and polydactyly. The coloboma-associated region and encoded genes were investigated using advanced genomic, genetic, and gene expression technologies. Initially, the mutation was linked to a 990 kb region encoding 11 genes; the application of the genetic and genomic tools led to a reduction of the linked region to 176 kb and the elimination of 7 genes. Furthermore, bioinformatics analyses of capture array-next generation sequence data identified genetic elements including SNPs, insertions, deletions, gaps, chromosomal rearrangements, and miRNA binding sites within the introgressed causative region relative to the reference genome sequence. Coloboma-specific variants within exons, UTRs, and splice sites were studied for their contribution to the mutant phenotype. Our compiled results suggest three genes for future studies. The three candidate genes, SLC30A5 (a zinc transporter), CENPH (a centromere protein), and CDK7 (a cyclin-dependent kinase), are differentially expressed (compared to normal embryos) at stages and in tissues affected by the coloboma mutation. Of these genes, two (SLC30A5 and CENPH) are considered high-priority candidate based upon studies in other vertebrate model systems.
Collapse
Affiliation(s)
- Elizabeth A. Robb
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Parker B. Antin
- Department of Molecular and Cellular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Mary E. Delany
- Department of Animal Science, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
179
|
Abstract
The cell cycle of eukaryotic cells varies greatly from species to species and tissue to tissue. Since an erroneous control of the cell cycle can have disastrous consequences for cellular life, there are genetically programmed signals, so-called cell cycle checkpoints, which ensure that all events of each stage are completed before beginning the next phase. Among the numerous molecules involved in this process, the most important are the cyclin-dependent kinases (CDKs), proteins that are activated only when bound to cyclins (regulatory proteins with fluctuating concentrations). In general, more CDKs are overexpressed in cancer cells than in normal cells, which explains why cancer cells divide uncontrollably. Succeeding in modulating CDK activity with pharmacological agents could result in decreasing the abnormal proliferation rate of cancer cells. This review offers an overview of CDK-cyclin complexes in relation to different cell cycle phases, an analysis of CDK activation and inhibition of molecular mechanisms, and an extensive report, including clinical trials, regarding four new drugs acting as CDK modulators: alvocidib, P276-00, SNS-032 and seliciclib.
Collapse
|
180
|
Abstract
The cell cycle of eukaryotic cells varies greatly from species to species and tissue to tissue. Since an erroneous control of the cell cycle can have disastrous consequences for cellular life, there are genetically programmed signals, so-called cell cycle checkpoints, which ensure that all events of each stage are completed before beginning the next phase. Among the numerous molecules involved in this process, the most important are the cyclin-dependent kinases (CDKs), proteins that are activated only when bound to cyclins (regulatory proteins with fluctuating concentrations). In general, more CDKs are overexpressed in cancer cells than in normal cells, which explains why cancer cells divide uncontrollably. Succeeding in modulating CDK activity with pharmacological agents could result in decreasing the abnormal proliferation rate of cancer cells. This review offers an overview of CDK-cyclin complexes in relation to different cell cycle phases, an analysis of CDK activation and inhibition of molecular mechanisms, and an extensive report, including clinical trials, regarding four new drugs acting as CDK modulators: alvocidib, P276-00, SNS-032 and seliciclib.
Collapse
|
181
|
Shao H, Shi S, Huang S, Hole A, Abbas AY, Baumli S, Liu X, Lam F, Foley D, Fischer PM, Noble M, Endicott JA, Pepper C, Wang S. Substituted 4-(thiazol-5-yl)-2-(phenylamino)pyrimidines are highly active CDK9 inhibitors: synthesis, X-ray crystal structures, structure-activity relationship, and anticancer activities. J Med Chem 2013; 56:640-59. [PMID: 23301767 PMCID: PMC3579313 DOI: 10.1021/jm301475f] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer cells often have a high demand for antiapoptotic proteins in order to resist programmed cell death. CDK9 inhibition selectively targets survival proteins and reinstates apoptosis in cancer cells. We designed a series of 4-thiazol-2-anilinopyrimidine derivatives with functional groups attached to the C5-position of the pyrimidine or to the C4-thiazol moiety and investigated their effects on CDK9 potency and selectivity. One of the most selective compounds, 12u inhibits CDK9 with IC(50) = 7 nM and shows over 80-fold selectivity for CDK9 versus CDK2. X-ray crystal structures of 12u bound to CDK9 and CDK2 provide insights into the binding modes. This work, together with crystal structures of selected inhibitors in complex with both enzymes described in a companion paper, (34) provides a rationale for the observed SAR. 12u demonstrates potent anticancer activity against primary chronic lymphocytic leukemia cells with a therapeutic window 31- and 107-fold over those of normal B- and T-cells.
Collapse
Affiliation(s)
- Hao Shao
- School of Pharmacy and Centre
for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Shenhua Shi
- School of Pharmacy and Centre
for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Shiliang Huang
- School of Pharmacy and Centre
for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Alison
J. Hole
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Abdullahi Y. Abbas
- School of Pharmacy and Centre
for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Sonja Baumli
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Xiangrui Liu
- School of Pharmacy and Centre
for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Frankie Lam
- School of Pharmacy and Centre
for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
- Shool of Pharmacy and Medical
Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - David
W. Foley
- School of Pharmacy and Centre
for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Peter M. Fischer
- School of Pharmacy and Centre
for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Martin Noble
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
- Northern Institute for Cancer
Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Jane A. Endicott
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
- Northern Institute for Cancer
Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Chris Pepper
- Institute of Cancer and Genetics,
School of Medicine, Cardiff University,
Heath Park, Cardiff CF14 4XN, U.K
| | - Shudong Wang
- School of Pharmacy and Centre
for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
- Shool of Pharmacy and Medical
Sciences, University of South Australia, Adelaide, SA 5001, Australia
- Phone: +61883022372. E-mail:
| |
Collapse
|
182
|
Larochelle S, Amat R, Glover-Cutter K, Sansó M, Zhang C, Allen JJ, Shokat KM, Bentley DL, Fisher RP. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Nat Struct Mol Biol 2012; 19:1108-15. [PMID: 23064645 PMCID: PMC3746743 DOI: 10.1038/nsmb.2399] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 09/04/2012] [Indexed: 12/18/2022]
Abstract
Promoter-proximal pausing by RNA polymerase II (Pol II) ensures both gene-specific regulation and RNA quality control. Structural considerations suggested initiation factor eviction would be required for elongation factor engagement and pausing of transcription complexes. Here we show that selective inhibition of Cdk7—part of TFIIH—increases TFIIE retention, prevents DRB-sensitivity inducing factor (DSIF) recruitment and attenuates pausing in human cells. Pause release depends on Cdk9—cyclin T1 (P-TEFb); Cdk7 is also required for Cdk9-activating phosphorylation and Cdk9-dependent downstream events—Pol II carboxyl-terminal domain Ser2 phosphorylation and histone H2B ubiquitylation—in vivo. Cdk7 inhibition, moreover, impairs Pol II transcript 3′-end formation. Cdk7 thus acts through TFIIE and DSIF to establish and through P-TEFb to relieve barriers to elongation: incoherent feedforward that might create a window to recruit RNA-processing machinery. Therefore, cyclin-dependent kinases govern Pol II handoff from initiation to elongation factors and co-transcriptional RNA maturation.
Collapse
Affiliation(s)
- Stéphane Larochelle
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
TIAN YE, WAN HAN, TAN GUANG. Cell cycle-related kinase in carcinogenesis. Oncol Lett 2012; 4:601-606. [PMID: 23205069 PMCID: PMC3506610 DOI: 10.3892/ol.2012.828] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/24/2012] [Indexed: 12/16/2022] Open
Abstract
Cell cycle-related kinase (CCRK) is a novel protein kinase homologous to both cyclin-dependent kinase 7 (Cdk7) and Cak1p groups of CDK-activating kinase (CAK). CCRK activates Cdk2, which controls the cell-cycle progression by phosphorylating a threonine residue conserved in Cdk2. Previous studies have indicated that the CCRK protein levels were elevated by more than 1.5-fold in tumor tissue, and that the overexpression of CCRK is associated with poor prognosis of the patients. Moreover, recent studies have shown that CCRK is involved in the Wnt signaling pathway associated with the genesis and evolution of cancer. This review aims to systematically present the information currently available on CCRK obtained from in vitro and in vivo studies and highlight its significance to tumorigenesis.
Collapse
Affiliation(s)
- YE TIAN
- Department of General Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011,
P.R. China
| | - HAN WAN
- Department of General Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011,
P.R. China
| | - GUANG TAN
- Department of General Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011,
P.R. China
| |
Collapse
|
184
|
Devaiah BN, Singer DS. Cross-talk among RNA polymerase II kinases modulates C-terminal domain phosphorylation. J Biol Chem 2012; 287:38755-66. [PMID: 23027873 DOI: 10.1074/jbc.m112.412015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA polymerase II (Pol II) C-terminal domain (CTD) serves as a docking site for numerous proteins, bridging various nuclear processes to transcription. The recruitment of these proteins is mediated by CTD phospho-epitopes generated during transcription. The mechanisms regulating the kinases that establish these phosphorylation patterns on the CTD are not known. We report that three CTD kinases, CDK7, CDK9, and BRD4, engage in cross-talk, modulating their subsequent CTD phosphorylation. BRD4 phosphorylates PTEFb/CDK9 at either Thr-29 or Thr-186, depending on its relative abundance, which represses or activates CDK9 CTD kinase activity, respectively. Conversely, CDK9 phosphorylates BRD4 enhancing its CTD kinase activity. The CTD Ser-5 kinase CDK7 also interacts with and phosphorylates BRD4, potently inhibiting BRD4 kinase activity. Additionally, the three kinases regulate each other indirectly through the general transcription factor TAF7. An inhibitor of CDK9 and CDK7 CTD kinase activities, TAF7 also binds to BRD4 and inhibits its kinase activity. Each of these kinases phosphorylates TAF7, affecting its subsequent ability to inhibit the other two. Thus, a complex regulatory network governs Pol II CTD kinases.
Collapse
Affiliation(s)
- Ballachanda N Devaiah
- Experimental Immunology Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
185
|
Interaction of cyclin-dependent kinase 12/CrkRS with cyclin K1 is required for the phosphorylation of the C-terminal domain of RNA polymerase II. Mol Cell Biol 2012; 32:4691-704. [PMID: 22988298 DOI: 10.1128/mcb.06267-11] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CrkRS (Cdc2-related kinase, Arg/Ser), or cyclin-dependent kinase 12 (CKD12), is a serine/threonine kinase believed to coordinate transcription and RNA splicing. While CDK12/CrkRS complexes were known to phosphorylate the C-terminal domain (CTD) of RNA polymerase II (RNA Pol II), the cyclin regulating this activity was not known. Using immunoprecipitation and mass spectrometry, we identified a 65-kDa isoform of cyclin K (cyclin K1) in endogenous CDK12/CrkRS protein complexes. We show that cyclin K1 complexes isolated from mammalian cells contain CDK12/CrkRS but do not contain CDK9, a presumed partner of cyclin K. Analysis of extensive RNA-Seq data shows that the 65-kDa cyclin K1 isoform is the predominantly expressed form across numerous tissue types. We also demonstrate that CDK12/CrkRS is dependent on cyclin K1 for its kinase activity and that small interfering RNA (siRNA) knockdown of CDK12/CrkRS or cyclin K1 has similar effects on the expression of a luciferase reporter gene. Our data suggest that cyclin K1 is the primary cyclin partner for CDK12/CrkRS and that cyclin K1 is required to activate CDK12/CrkRS to phosphorylate the CTD of RNA Pol II. These properties are consistent with a role of CDK12/CrkRS in regulating gene expression through phosphorylation of RNA Pol II.
Collapse
|
186
|
Down-regulation of the PTTG1 proto-oncogene contributes to the melanoma suppressive effects of the cyclin-dependent kinase inhibitor PHA-848125. Biochem Pharmacol 2012; 84:598-611. [DOI: 10.1016/j.bcp.2012.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/01/2012] [Accepted: 06/04/2012] [Indexed: 01/15/2023]
|
187
|
Ganuza M, Santamaría D. Cdk7: open questions beyond the prevailing model. Cell Cycle 2012; 11:3519-20. [PMID: 22935708 PMCID: PMC3478293 DOI: 10.4161/cc.21888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
188
|
Phosphatase PPM1A negatively regulates P-TEFb function in resting CD4(+) T cells and inhibits HIV-1 gene expression. Retrovirology 2012; 9:52. [PMID: 22727189 PMCID: PMC3406988 DOI: 10.1186/1742-4690-9-52] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 06/22/2012] [Indexed: 11/16/2022] Open
Abstract
Background Processive elongation of the integrated HIV-1 provirus is dependent on recruitment of P-TEFb by the viral Tat protein to the viral TAR RNA element. P-TEFb kinase activity requires phosphorylation of Thr186 in the T-loop of the CDK9 subunit. In resting CD4+T cells, low levels of T-loop phosphorylated CDK9 are found, which increase significantly upon activation. This suggests that the phosphorylation status of the T-loop is actively regulated through the concerted actions of cellular proteins such as Ser/Thr phosphatases. We investigated the role of phosphatase PPM1A in regulating CDK9 T-loop phosphorylation and its effect on HIV-1 proviral transcription. Results We found that overexpression of PPM1A inhibits HIV-1 gene expression during viral infection and this required PPM1A catalytic function. Using an artificial CDK tethering system, we further found that PPM1A inhibits CDK9, but not CDK8 mediated activation of the HIV-1 LTR. SiRNA depletion of PPM1A in resting CD4+T cells increased the level of CDK9 T-loop phosphorylation and enhanced HIV-1 gene expression. We also observed that PPM1A protein levels are relatively high in resting CD4+T cells and are not up-regulated upon T cell activation. Conclusions Our results establish a functional link between HIV-1 replication and modulation of CDK9 T-loop phosphorylation by PPM1A. PPM1A represses HIV-1 gene expression by inhibiting CDK9 T-loop phosphorylation, thus reducing the amount of active P-TEFb available for recruitment to the viral LTR. We also infer that PPM1A enzymatic activity in resting and activated CD4+ T cells are likely regulated by as yet undefined factors.
Collapse
|
189
|
Abstract
The transcription initiation factor TFIIH is a remarkable protein complex that has a fundamental role in the transcription of protein-coding genes as well as during the DNA nucleotide excision repair pathway. The detailed understanding of how TFIIH functions to coordinate these two processes is also providing an explanation for the phenotypes observed in patients who bear mutations in some of the TFIIH subunits. In this way, studies of TFIIH have revealed tight molecular connections between transcription and DNA repair and have helped to define the concept of 'transcription diseases'.
Collapse
Affiliation(s)
- Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UdS, BP 163, 67404 Illkirch Cedex, C. U., Strasbourg, France.
| | | |
Collapse
|
190
|
Abstract
The cyclin-dependent kinases (Cdks) regulate many cellular processes, including the cell cycle, neuronal development, transcription, and posttranscriptional processing. To perform their functions, Cdks bind to specific cyclin subunits to form a functional and active cyclin/Cdk complex. This review is focused on Cyclin K, which was originally considered an alternative subunit of Cdk9, and on its newly identified partners, Cdk12 and Cdk13. We briefly summarize research devoted to each of these proteins. We also discuss the proteins' functions in the regulation of gene expression via the phosphorylation of serine 2 in the C-terminal domain of RNA polymerase II, contributions to the maintenance of genome stability, and roles in the onset of human disease and embryo development.
Collapse
Affiliation(s)
- Jiri Kohoutek
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic.
| | | |
Collapse
|
191
|
Ganuza M, Sáiz-Ladera C, Cañamero M, Gómez G, Schneider R, Blasco MA, Pisano D, Paramio JM, Santamaría D, Barbacid M. Genetic inactivation of Cdk7 leads to cell cycle arrest and induces premature aging due to adult stem cell exhaustion. EMBO J 2012; 31:2498-510. [PMID: 22505032 DOI: 10.1038/emboj.2012.94] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 03/20/2012] [Indexed: 01/09/2023] Open
Abstract
Cyclin-dependent kinase (Cdk)7, the catalytic subunit of the Cdk-activating kinase (CAK) complex has been implicated in the control of cell cycle progression and of RNA polymerase II (RNA pol II)-mediated transcription. Genetic inactivation of the Cdk7 locus revealed that whereas Cdk7 is completely dispensable for global transcription, is essential for the cell cycle via phosphorylation of Cdk1 and Cdk2. In vivo, Cdk7 is also indispensable for cell proliferation except during the initial stages of embryonic development. Interestingly, widespread elimination of Cdk7 in adult tissues with low proliferative indexes had no phenotypic consequences. However, ablation of conditional Cdk7 alleles in tissues with elevated cellular turnover led to the efficient repopulation of these tissues with Cdk7-expressing cells most likely derived from adult stem cells that may have escaped the inactivation of their targeted Cdk7 alleles. This process, a physiological attempt to maintain tissue homeostasis, led to the attrition of adult stem cell pools and to the appearance of age-related phenotypes, including telomere shortening and early death.
Collapse
Affiliation(s)
- Miguel Ganuza
- Experimental Oncology, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Moisan F, Laroche-Clary A, Auzanneau C, Ricard N, Pourquier P, Robert J, Le Morvan V. Deciphering the role of the ERCC2 gene polymorphism on anticancer drug sensitivity. Carcinogenesis 2012; 33:962-8. [DOI: 10.1093/carcin/bgs107] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
193
|
Ramakrishnan R, Rice AP. Cdk9 T-loop phosphorylation is regulated by the calcium signaling pathway. J Cell Physiol 2012; 227:609-17. [PMID: 21448926 DOI: 10.1002/jcp.22760] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Eukaryotic RNA polymerase II transcriptional elongation is a tightly regulated process and is dependent upon positive transcription elongation factor-b (P-TEFb). The core P-TEFb complex is composed of Cdk9 and Cyclin T and is essential for the expression of most protein coding genes. Cdk9 kinase function is dependent upon phosphorylation of Thr186 in its T-loop. In this study, we examined kinases and signaling pathways that influence Cdk9 T-loop phosphorylation. Using an RNAi screen in HeLa cells, we found that Cdk9 T-loop phosphorylation is regulated by Ca(2+)/calmodulin-dependent kinase 1D (CaMK1D). Using small molecules inhibitors in HeLa cells and primary CD4(+) T lymphocytes, we found that the Ca(2+) signaling pathway is required for Cdk9 T-loop phosphorylation. Inhibition of Ca(2+) signaling led to dephosphorylation of Thr186 on Cdk9. In reporter plasmid assays, inhibition of the Ca(2+) signaling pathway repressed the PCNA promoter and HIV-1 Tat transactivation of the HIV-1 LTR, but not HTLV-1 Tax transactivation of the HTLV-1 LTR, suggesting that perturbation of the Ca(2+) pathway and reduction of Cdk9 T-loop phosphorylation inhibits transcription units that have a rigorous requirement for P-TEFb function.
Collapse
Affiliation(s)
- Rajesh Ramakrishnan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
194
|
Fujii W, Nishimura T, Kano K, Sugiura K, Naito K. CDK7 and CCNH Are Components of CDK-Activating Kinase and Are Required for Meiotic Progression of Pig Oocytes1. Biol Reprod 2011; 85:1124-32. [DOI: 10.1095/biolreprod.111.091801] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
195
|
Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, Zheng H, Huang Y, Zhou Y, Wang S, Zhao GP, Liu X, St Leger RJ, Wang C. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol 2011; 12:R116. [PMID: 22112802 PMCID: PMC3334602 DOI: 10.1186/gb-2011-12-11-r116] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 11/10/2011] [Accepted: 11/23/2011] [Indexed: 01/10/2023] Open
Abstract
Background Species in the ascomycete fungal genus Cordyceps have been proposed to be the teleomorphs of Metarhizium species. The latter have been widely used as insect biocontrol agents. Cordyceps species are highly prized for use in traditional Chinese medicines, but the genes responsible for biosynthesis of bioactive components, insect pathogenicity and the control of sexuality and fruiting have not been determined. Results Here, we report the genome sequence of the type species Cordyceps militaris. Phylogenomic analysis suggests that different species in the Cordyceps/Metarhizium genera have evolved into insect pathogens independently of each other, and that their similar large secretomes and gene family expansions are due to convergent evolution. However, relative to other fungi, including Metarhizium spp., many protein families are reduced in C. militaris, which suggests a more restricted ecology. Consistent with its long track record of safe usage as a medicine, the Cordyceps genome does not contain genes for known human mycotoxins. We establish that C. militaris is sexually heterothallic but, very unusually, fruiting can occur without an opposite mating-type partner. Transcriptional profiling indicates that fruiting involves induction of the Zn2Cys6-type transcription factors and MAPK pathway; unlike other fungi, however, the PKA pathway is not activated. Conclusions The data offer a better understanding of Cordyceps biology and will facilitate the exploitation of medicinal compounds produced by the fungus.
Collapse
Affiliation(s)
- Peng Zheng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Węsierska-Gądek J, Kramer MP. The impact of multi-targeted cyclin-dependent kinase inhibition in breast cancer cells: clinical implications. Expert Opin Investig Drugs 2011; 20:1611-28. [PMID: 22017180 DOI: 10.1517/13543784.2011.628985] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The progression of the mammalian cell cycle is driven by the transient activation of complexes consisting of cyclins and cyclin-dependent kinases (CDKs). Loss of control over the cell cycle results in accelerated cell division and malignant transformation and can be caused by the upregulation of cyclins, the aberrant activation of CDKs or the inactivation of cellular CDK inhibitors. For these reasons, cell cycle regulators are regarded as very promising therapeutic targets for the treatment of human malignancies. AREAS COVERED This review covers the structures and anti-breast cancer activity of selected pharmacological pan-specific CDK inhibitors. Multi-targeted CDK inhibitors affect CDKs involved in the regulation of both cell cycle progression and transcriptional control. The inhibition of CDK7/CDK9 has a serious impact on the activity of RNA polymerase II; when its carboxy-terminal domain is unphosphorylated, it is unable to recruit the cofactors required for transcriptional elongation, resulting in a global transcriptional block. Multi-targeted inhibition of CDKs represses anti-apoptotic proteins and thus promotes the induction of apoptosis. Moreover, the inhibition of CDK7 in estrogen receptor (ER)-positive breast cancer cells prevents activating phosphorylation of ER-α. EXPERT OPINION These diverse modes of action make multi-targeted CDK inhibitors promising drugs for the treatment of breast cancers.
Collapse
Affiliation(s)
- Józefa Węsierska-Gądek
- Medical University of Vienna, Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Cell Cycle Regulation Group, Borschkegasse 8a, 1090 Vienna, Austria.
| | | |
Collapse
|
197
|
Xu W, Ji JY. Dysregulation of CDK8 and Cyclin C in tumorigenesis. J Genet Genomics 2011; 38:439-52. [PMID: 22035865 PMCID: PMC9792140 DOI: 10.1016/j.jgg.2011.09.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/05/2011] [Accepted: 09/06/2011] [Indexed: 01/23/2023]
Abstract
Appropriately controlled gene expression is fundamental for normal growth and survival of all living organisms. In eukaryotes, the transcription of protein-coding mRNAs is dependent on RNA polymerase II (Pol II). The multi-subunit transcription cofactor Mediator complex is proposed to regulate most, if not all, of the Pol II-dependent transcription. Here we focus our discussion on two subunits of the Mediator complex, cyclin-dependent kinase 8 (CDK8) and its regulatory partner Cyclin C (CycC), because they are either mutated or amplified in a variety of human cancers. CDK8 functions as an oncoprotein in melanoma and colorectal cancers, thus there are considerable interests in developing drugs specifically targeting the CDK8 kinase activity. However, to evaluate the feasibility of targeting CDK8 for cancer therapy and to understand how their dysregulation contributes to tumorigenesis, it is essential to elucidate the in vivo function and regulation of CDK8-CycC, which are still poorly understood in multi-cellular organisms. We summarize the evidence linking their dysregulation to various cancers and present our bioinformatics and computational analyses on the structure and evolution of CDK8. We also discuss the implications of these observations in tumorigenesis. Because most of the Mediator subunits, including CDK8 and CycC, are highly conserved during eukaryotic evolution, we expect that investigations using model organisms such as Drosophila will provide important insights into the function and regulation of CDK8 and CycC in different cellular and developmental contexts.
Collapse
Affiliation(s)
- Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
- Corresponding author: Tel: +1 979 845 6389, fax: +1 979 847 9481. (J.-Y. Ji)
| |
Collapse
|
198
|
Bartkowiak B, Mackellar AL, Greenleaf AL. Updating the CTD Story: From Tail to Epic. GENETICS RESEARCH INTERNATIONAL 2011; 2011:623718. [PMID: 22567360 PMCID: PMC3335468 DOI: 10.4061/2011/623718] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/10/2011] [Indexed: 12/03/2022]
Abstract
Eukaryotic RNA polymerase II (RNAPII) not only synthesizes mRNA but also coordinates transcription-related processes via its unique C-terminal repeat domain (CTD). The CTD is an RNAPII-specific protein segment consisting of repeating heptads with the consensus sequence Y1S2P3T4S5P6S7 that has been shown to be extensively post-transcriptionally modified in a coordinated, but complicated, manner. Recent discoveries of new modifications, kinases, and binding proteins have challenged previously established paradigms. In this paper, we examine results and implications of recent studies related to modifications of the CTD and the respective enzymes; we also survey characterizations of new CTD-binding proteins and their associated processes and new information regarding known CTD-binding proteins. Finally, we bring into focus new results that identify two additional CTD-associated processes: nucleocytoplasmic transport of mRNA and DNA damage and repair.
Collapse
Affiliation(s)
- Bartlomiej Bartkowiak
- Department of Biochemistry and Center for RNA Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
199
|
Abstract
The basic biology of the cell division cycle and its control by protein kinases was originally studied through genetic and biochemical studies in yeast and other model organisms. The major regulatory mechanisms identified in this pioneer work are conserved in mammals. However, recent studies in different cell types or genetic models are now providing a new perspective on the function of these major cell cycle regulators in different tissues. Here, we review the physiological relevance of mammalian cell cycle kinases such as cyclin-dependent kinases (Cdks), Aurora and Polo-like kinases, and mitotic checkpoint regulators (Bub1, BubR1, and Mps1) as well as other less-studied enzymes such as Cdc7, Nek proteins, or Mastl and their implications in development, tissue homeostasis, and human disease. Among these functions, the control of self-renewal or asymmetric cell division in stem/progenitor cells and the ability to regenerate injured tissues is a central issue in current research. In addition, many of these proteins play previously unexpected roles in metabolism, cardiovascular function, or neuron biology. The modulation of their enzymatic activity may therefore have multiple therapeutic benefits in human disease.
Collapse
Affiliation(s)
- Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre, Madrid, Spain.
| |
Collapse
|
200
|
Cicenas J, Valius M. The CDK inhibitors in cancer research and therapy. J Cancer Res Clin Oncol 2011; 137:1409-18. [DOI: 10.1007/s00432-011-1039-4] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/12/2011] [Indexed: 12/21/2022]
|