151
|
Drake KR, Kang M, Kenworthy AK. Nucleocytoplasmic distribution and dynamics of the autophagosome marker EGFP-LC3. PLoS One 2010; 5:e9806. [PMID: 20352102 PMCID: PMC2843706 DOI: 10.1371/journal.pone.0009806] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 02/28/2010] [Indexed: 01/07/2023] Open
Abstract
The process of autophagy involves the formation of autophagosomes, double-membrane structures that encapsulate cytosol. Microtubule-associated protein light chain 3 (LC3) was the first protein shown to specifically label autophagosomal membranes in mammalian cells, and subsequently EGFP-LC3 has become one of the most widely utilized reporters of autophagy. Although LC3 is currently thought to function primarily in the cytosol, the site of autophagosome formation, EGFP-LC3 often appears to be enriched in the nucleoplasm relative to the cytoplasm in published fluorescence images. However, the nuclear pool of EGFP-LC3 has not been specifically studied in previous reports, and mechanisms by which LC3 shuttles between the cytoplasm and nucleoplasm are currently unknown. In this study, we therefore investigated the regulation of the nucleo-cytoplasmic distribution of EGFP-LC3 in living cells. By quantitative fluorescence microscopy analysis, we demonstrate that soluble EGFP-LC3 is indeed enriched in the nucleus relative to the cytoplasm in two commonly studied cell lines, COS-7 and HeLa. Although LC3 contains a putative nuclear export signal (NES), inhibition of active nuclear export or mutation of the NES had no effect on the nucleo-cytoplasmic distribution of EGFP-LC3. Furthermore, FRAP analysis indicates that EGFP-LC3 undergoes limited passive nucleo-cytoplasmic transport under steady state conditions, and that the diffusional mobility of EGFP-LC3 was substantially slower in the nucleus and cytoplasm than predicted for a freely diffusing monomer. Induction of autophagy led to a visible decrease in levels of soluble EGFP-LC3 relative to autophagosome-bound protein, but had only modest effects on the nucleo-cytoplasmic ratio or diffusional mobility of the remaining soluble pools of EGFP-LC3. We conclude that the enrichment of soluble EGFP-LC3 in the nucleus is maintained independently of active nuclear export or induction of autophagy. Instead, incorporation of soluble EGFP-LC3 into large macromolecular complexes within both the cytoplasm and nucleus may prevent its rapid equilibrium between the two compartments.
Collapse
Affiliation(s)
- Kimberly R. Drake
- Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee, United States of America
| | - Minchul Kang
- Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee, United States of America
| | - Anne K. Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
152
|
López-Knowles E, Zardawi SJ, McNeil CM, Millar EKA, Crea P, Musgrove EA, Sutherland RL, O'Toole SA. Cytoplasmic localization of beta-catenin is a marker of poor outcome in breast cancer patients. Cancer Epidemiol Biomarkers Prev 2010; 19:301-9. [PMID: 20056651 DOI: 10.1158/1055-9965.epi-09-0741] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Beta-catenin is involved in cell adhesion through catenin-cadherin complexes and as a transcriptional regulator in the Wnt signaling pathway. Its deregulation is important in the genesis of a number of human malignancies, particularly colorectal cancer. A range of studies has been undertaken in breast cancer, with contradictory associations reported among beta-catenin expression, clinicopathologic variables, and disease outcome. We undertook an immunohistochemical study measuring the levels and subcellular localization of beta-catenin in 292 invasive ductal breast cancers with known treatment and outcome. No association with breast cancer-specific death was observed for cytoplasmic or membrane expression alone; however, a continuous score representing both locations (membrane minus cytoplasmic expression: MTC score) was associated with a worse outcome in univariate analysis (P = 0.004), and approached significance in a multivariate analysis model that included lymph node, progesterone receptor (PR), and HER2 status (P = 0.054). Therefore, the MTC score was used for further statistical analyses due to the importance of both the subcellular location and the levels of expression of beta-catenin. An association was identified between high cytoplasmic expression (low MTC score), and high tumor grade (P = 0.004), positive Ki67 (P = 0.005), negative estrogen receptor (ER) (P = 0.005), positive HER2 (P = 0.04) status, and an active phosphoinositide 3-kinase pathway (P = 0.005), measured as PIK3CA mutations (P = 0.05) or PTEN loss (P = 0.05). Low cytoplasmic expression (high MTC score) was associated with the luminal A subtype (P = 0.004). In conclusion, a low beta-catenin MTC score is associated with an adverse outcome in breast cancer, which may be of mechanistic significance in the disease process.
Collapse
Affiliation(s)
- Elena López-Knowles
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Wang L, Li H, Chen Q, Zhu T, Zhu H, Zheng L. Wnt signaling stabilizes the DIXDC1 protein through decreased ubiquitin-dependent degradation. Cancer Sci 2010; 101:700-6. [PMID: 20085589 PMCID: PMC11159438 DOI: 10.1111/j.1349-7006.2009.01448.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Wnt signaling plays key roles in development, cell growth, differentiation, polarity formation, neural development, and carcinogenesis. DIX Domain Containing 1 (DIXDC1), a novel component of the Wnt pathway, was recently cloned. DIXDC1 is the human homolog of Ccd1, a positive regulator of the Wnt signaling pathway during zebrafish neural patterning. Little has been known about DIXDC1 gene expression regulation. In the present study, we showed that the DIXDC1 protein was induced upon Wnt-3a stimulation, whereas the DIXDC1 mRNA level was not significantly increased after Wnt-3a treatment. Positive DIXDC1 staining was detected in colon cancer cells and was colocalized with beta-catenin staining. However, the DIXDC1 mRNA expression decreased in human colon cancer cells compared to the matched normal colon epithelial cells. Our further investigation showed that the DIXDC1 protein was degraded through the proteasome pathway, and the activation of canonical Wnt signaling decreased the ubiquitin-dependent degradation of both the ectopic and endogenous DIXDC1 protein. In order to explore the possible mechanism of the ubiquitination of DIXDC1, we found that the phosphorylation of DIXDC1 was inhibited by Wnt-3a. Collectively, these results indicate that canonical Wnt/beta-catenin pathway activation might upregulate DIXDC1 through a post-translational mechanism by inhibiting the ubiquitin-mediated degradation of the DIXDC1 protein.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
154
|
Wang W, Xue L, Wang P. Prognostic value of β-catenin, c-myc, and cyclin D1 expressions in patients with esophageal squamous cell carcinoma. Med Oncol 2010; 28:163-9. [PMID: 20143187 DOI: 10.1007/s12032-010-9436-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 01/25/2010] [Indexed: 12/11/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most frequently diagnosed malignant tumors in North China. We have identified that Wnt2/β-catenin pathway is activated in ESCC cells and sodium nitroprusside (SNP) and siRNA against β-catenin not only inhibit the expressions of β-catenin and its major downstream effectors including c-myc and cyclin D1 but induce cell cycle arrest and apoptosis. The purpose of the present study was to analyze the relationship between pathological parameters including invasion depth and lymph node metastasis and the expressions of β-catenin, c-myc, and cyclin D1 in order to evaluate their values of prognosis in patients with ESCC. The expressions of β-catenin, c-myc, and cyclin D1 were detected immunohistochemically in the resected cancer tissues from 40 patients with ESCC. The β-catenin expression was reduced in 22 (55.0%) patients, which was closely correlated with invasion depth (P = 0.023) and lymph node metastasis (P = 0.003). There was the positive c-myc expression in 21 (52.5%), which was significantly correlated with invasion depth (P = 0.009) and lymph node metastasis (P = 0.001). Furthermore, the results of survival rates analyzed by Kaplan-Meier curve revealed that patients with the reduced expression of β-catenin had a poorer prognosis than those with the preserved expression (P = 0.031), and patients with the positive expression of c-myc also had a significantly poorer prognosis than those with the negative expression (P = 0.008). These findings demonstrate that β-catenin pathway plays a crucial role in the progression of ESCC, suggesting that both β-catenin and c-myc may be used as markers for predicting the prognosis of patients with ESCC.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Tumor Molecular Surgery, The First Affiliated Hospital, Zhengzhou University, 1 Jianshedonglu Road, Zhengzhou, Henan 450052, China
| | | | | |
Collapse
|
155
|
Malnou CE, Brockly F, Favard C, Moquet-Torcy G, Piechaczyk M, Jariel-Encontre I. Heterodimerization with different Jun proteins controls c-Fos intranuclear dynamics and distribution. J Biol Chem 2010; 285:6552-62. [PMID: 20053986 DOI: 10.1074/jbc.m109.032680] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The c-Fos proto-oncogenic transcription factor defines a multigene family controlling many processes both at the cell and the whole organism level. To bind to its target AP-1/12-O-tetradecanoylphorbol-13-acetate-responsive element or cAMP-responsive element DNA sequences in gene promoters and exert its transcriptional part, c-Fos must heterodimerize with other bZip proteins, its best studied partners being the Jun proteins (c-Jun, JunB, and JunD). c-Fos expression is regulated at many transcriptional and post-transcriptional levels, yet little is known on how its localization is dynamically regulated in the cell. Here we have investigated its intranuclear mobility using fluorescence recovery after photobleaching, genetic, and biochemical approaches. Whereas monomeric c-Fos is highly mobile and distributed evenly with nucleolar exclusion in the nucleus, heterodimerization with c-Jun entails intranuclear redistribution and dramatic reduction in mobility of c-Fos caused by predominant association with the nuclear matrix independently of any binding to AP-1/12-O-tetradecanoylphorbol-13-acetate-responsive element or cAMP-responsive element sequences. In contrast to c-Jun, dimerization with JunB does not detectably affect c-Fos mobility. However, dimerization with JunB affects intranuclear distribution with significant differences in the localization of c-Fos.c-Jun and c-Fos.JunB dimers. Moreover, c-Jun and JunB exert comparable effects on another Fos family member, Fra-1. Thus, we report a novel regulation, i.e. differentially regulated intranuclear mobility and distribution of Fos proteins by their Jun partners, and suggest the existence of intranuclear storage sites for latent c-Fos.c-Jun AP-1 complexes. This may affect the numerous physiopathological functions these transcription factors control.
Collapse
Affiliation(s)
- Cécile E Malnou
- Institut de Génétique Moléculaire de Montpellier, UMR5535, CNRS, 1919 route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
156
|
Sun J, Wang D, Jin T. Insulin alters the expression of components of the Wnt signaling pathway including TCF-4 in the intestinal cells. Biochim Biophys Acta Gen Subj 2010; 1800:344-51. [PMID: 20056134 DOI: 10.1016/j.bbagen.2009.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 12/17/2009] [Accepted: 12/24/2009] [Indexed: 01/27/2023]
Abstract
BACKGROUND Epidemiological and experimental evidence that support the correlation between Type 2 diabetes mellitus (T2D) and increased risks of colorectal cancer formation have led us to hypothesize the existence of molecular crosstalk between insulin and canonical Wnt signaling pathways. Insulin was shown to stimulate Wnt target gene expression, utilizing the effector of the Wnt signaling pathway. Whether insulin affects expression of components of Wnt pathway has not been extensively examined. METHODS cDNA microarray was utilized to assess the effect of insulin on gene expression profile in the rat intestinal non-cancer IEC-6 cell line, followed by real-time RT-PCR, Western blotting and reporter gene analyses in intestinal cancer and non-cancer cells. RESULTS Insulin was shown to alter the expression of a dozen of Wnt pathway related genes including TCF-4 (=TCF7L2) and frizzled- (Fzd-4). The stimulatory effect of insulin on TCF-4 expression was then confirmed by real-time RT-PCR, Western blotting and luciferase reporter analyses, while the activation on Fzd-4 was confirmed by real-time PCR. GENERAL SIGNIFICANCE Our observations suggest that insulin may crosstalk with the Wnt signaling pathway in a multi-level fashion, involving insulin regulation of the expression of Wnt target genes, a Wnt receptor, as well as mediators of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Jane Sun
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Division of Cell and Molecular Biology, University Health Network, Canada
| | | | | |
Collapse
|
157
|
Contribution of the 15 amino acid repeats of truncated APC to beta-catenin degradation and selection of APC mutations in colorectal tumours from FAP patients. Oncogene 2009; 29:1663-71. [PMID: 19966865 DOI: 10.1038/onc.2009.447] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The adenomatous polyposis coli (APC) protein is a negative regulator of the mitogenic transcription factor beta-catenin by stimulating its proteasomal degradation. This involves several APC domains, including the binding sites for axin/conductin, the recently described beta-Catenin Inhibitory Domain (CID) and the third 20 amino acid repeat (20R3) that is a beta-catenin-binding site. The four 15 amino acid repeats (15R) and the 20R1 are also beta-catenin-binding sites, but their role in beta-catenin degradation has remained unclear. We show here that binding of beta-catenin to the 15R of APC is necessary and sufficient to target beta-catenin for degradation whereas binding to the 20R1 is neither necessary nor sufficient. The first 15R displays the highest affinity for beta-catenin in the 15R-20R1 module. Biallelic mutations of the APC gene lead tocolon cancer in familial adenomatous polyposis coli (FAP) and result in the synthesis of truncated products lacking domains involved in beta-catenin degradation but still having a minimal length. The analysis of the distribution of truncating mutations along the APC sequence in colorectal tumours from FAP patients revealed that the first 15R is one target of the positive selection of mutations that lead to tumour development.
Collapse
|
158
|
Vázquez-Iglesias L, Lostalé-Seijo I, Martínez-Costas J, Benavente J. Avian reovirus sigmaA localizes to the nucleolus and enters the nucleus by a nonclassical energy- and carrier-independent pathway. J Virol 2009; 83:10163-75. [PMID: 19640987 PMCID: PMC2747991 DOI: 10.1128/jvi.01080-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 07/16/2009] [Indexed: 12/24/2022] Open
Abstract
Avian reovirus sigmaA is a double-stranded RNA (dsRNA)-binding protein that has been shown to stabilize viral core particles and to protect the virus against the antiviral action of interferon. To continue with the characterization of this viral protein, we have investigated its intracellular distribution in avian cells. Most sigmaA accumulates into cytoplasmic viral factories of infected cells, and yet a significant fraction was detected in the nucleolus. The protein also localizes in the nucleolus of transfected cells, suggesting that nucleolar targeting is not facilitated by the viral infection or by viral factors. Assays performed in both intact cells and digitonin-permeabilized cells demonstrate that sigmaA is able to enter the nucleus via a nucleoporin-dependent nondiffusional mechanism that does not require added cytosolic factors or energy input. These results indicate that sigmaA by itself is able to penetrate into the nucleus using a process that is mechanistically different from the classical nuclear localization signal/importin pathway. On the other hand, two sigmaA arginines that are necessary for dsRNA binding are also required for nucleolar localization, suggesting that dsRNA-binding and nucleolar targeting are intimately linked properties of the viral protein.
Collapse
Affiliation(s)
- Lorena Vázquez-Iglesias
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
159
|
Abstract
Signaling by the Wnt family of secreted glycolipoproteins via the transcriptional coactivator beta-catenin controls embryonic development and adult homeostasis. Here we review recent progress in this so-called canonical Wnt signaling pathway. We discuss Wnt ligands, agonists, and antagonists, and their interactions with Wnt receptors. We also dissect critical events that regulate beta-catenin stability, from Wnt receptors to the cytoplasmic beta-catenin destruction complex, and nuclear machinery that mediates beta-catenin-dependent transcription. Finally, we highlight some key aspects of Wnt/beta-catenin signaling in human diseases including congenital malformations, cancer, and osteoporosis, and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Bryan T MacDonald
- F. M. Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
160
|
MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009. [PMID: 19619488 DOI: 10.1016/j.devcel] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Signaling by the Wnt family of secreted glycolipoproteins via the transcriptional coactivator beta-catenin controls embryonic development and adult homeostasis. Here we review recent progress in this so-called canonical Wnt signaling pathway. We discuss Wnt ligands, agonists, and antagonists, and their interactions with Wnt receptors. We also dissect critical events that regulate beta-catenin stability, from Wnt receptors to the cytoplasmic beta-catenin destruction complex, and nuclear machinery that mediates beta-catenin-dependent transcription. Finally, we highlight some key aspects of Wnt/beta-catenin signaling in human diseases including congenital malformations, cancer, and osteoporosis, and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Bryan T MacDonald
- F. M. Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
161
|
Abstract
Signaling by the Wnt family of secreted glycolipoproteins via the transcriptional coactivator beta-catenin controls embryonic development and adult homeostasis. Here we review recent progress in this so-called canonical Wnt signaling pathway. We discuss Wnt ligands, agonists, and antagonists, and their interactions with Wnt receptors. We also dissect critical events that regulate beta-catenin stability, from Wnt receptors to the cytoplasmic beta-catenin destruction complex, and nuclear machinery that mediates beta-catenin-dependent transcription. Finally, we highlight some key aspects of Wnt/beta-catenin signaling in human diseases including congenital malformations, cancer, and osteoporosis, and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Bryan T MacDonald
- F. M. Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
162
|
High frequency of down-regulation of E-cadherin detected in benign sporadic insulinomas by multiplex ligation-dependent probe amplification. Hum Pathol 2009; 40:1336-41. [DOI: 10.1016/j.humpath.2009.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/02/2009] [Accepted: 03/03/2009] [Indexed: 01/30/2023]
|
163
|
Yang B, Zeng WZ, Wu XL. Advances in research on the signaling pathways involved in activation and phenotypic transformation of hepatic stellate cells and their inhibitors. Shijie Huaren Xiaohua Zazhi 2009; 17:2283-2291. [DOI: 10.11569/wcjd.v17.i22.2283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a progressive pathologic process that involves deposition of excess extracellular matrix leading to distorted architecture and culminating in cirrhosis. It is believed that activation and phenotypic transformation of hepatic stellate cells (HSCs) play a central role in the development and resolution of liver fibrosis. Many cytokines and related signaling pathways are involved in the phenotypic transformation and proliferation of HSCs. In recent years, great advances have been made in the study of these signaling pathways and their specific inhibitors, thereby providing a new avenue for clinical therapy of liver fibrosis. However, as the mechanisms underlying the roles of these signaling pathways are very complicated, further intensive studies are still essential. In this article, we will review the advances in research on the signaling pathways involved in activation and phenotypic transformation of hepatic stellate cells and their inhibitors.
Collapse
|
164
|
Johnson M, Sharma M, Jamieson C, Henderson JM, Mok MT, Bendall L, Henderson BR. Regulation of β-catenin trafficking to the membrane in living cells. Cell Signal 2009; 21:339-48. [DOI: 10.1016/j.cellsig.2008.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 11/24/2022]
|
165
|
Abstract
The Wingless signaling pathway controls various developmental processes in both vertebrates and invertebrates. Here I probe the requirement for nuclear localization of APC2 and Axin in the Wg signal transduction pathway during embryonic development of Drosophila melanogaster. I find that nuclear localization of APC2 appears to be required, but Axin can block signaling when tethered to the membrane. These results support the model where Axin regulates Armadillo localization and activity in the cytoplasm.
Collapse
|
166
|
Abstract
Mutational inactivation of the tumor suppressor gene APC (Adenomatous polyposis coli) is thought to be an initiating step in the progression of the vast majority ofcolorectal cancers. Attempts to understand APC function have revealed more than a dozen binding partners as well as several subcellular localizations including at cell-cell junctions, associated with microtubules at the leading edge of migrating cells, at the apical membrane, in the cytoplasm and in the nucleus. The present chapter focuses on APC localization and functions in the nucleus. APC contains two classical nuclear localization signals, with a third domain that can enhance nuclear import. Along with two sets of nuclear export signals, the nuclear localization signals enable the large APC protein to shuttle between the nucleus and cytoplasm. Nuclear APC can oppose beta-catenin-mediated transcription. This down-regulation of nuclear beta-catenin activity by APC most likely involves nuclear sequestration of beta-catenin from the transcription complex as well as interaction of APC with transcription corepressor CtBP. Additional nuclear binding partners for APC include transcription factor activator protein AP-2alpha, nuclear export factor Crm1, protein tyrosine phosphatase PTP-BL and perhaps DNA itself. Interaction of APC with polymerase beta and PCNA, suggests a role for APC in DNA repair. The observation that increases in the cytoplasmic distribution of APC correlate with colon cancer progression suggests that disruption of these nuclear functions of APC plays an important role in cancer progression. APC prevalence in the cytoplasm of quiescent cells points to a potential function for nuclear APC in control of cell proliferation. Clear definition of APC's nuclear function(s) will expand the possibilities for early colorectal cancer diagnostics and therapeutics targeted to APC.
Collapse
|
167
|
Saegusa M, Hashimura M, Kuwata T, Hamano M, Watanabe J, Kawaguchi M, Okayasu I. Transcription factor Egr1 acts as an upstream regulator of beta-catenin signalling through up-regulation of TCF4 and p300 expression during trans-differentiation of endometrial carcinoma cells. J Pathol 2008; 216:521-32. [PMID: 18798221 DOI: 10.1002/path.2404] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The beta-catenin/TCF4/p300 pathway is involved in early signalling for trans-differentiation towards the morular phenotype of endometrial carcinoma cells, but little is known about the upstream regulators. Here we show that transcription factor early growth response 1 (Egr1) acts as an initial mediator through up-regulating the expression of TCF4 and p300. In an endometrial carcinoma cell line with abundant oestrogen receptor alpha, Egr1 expression at both mRNA and protein levels was significantly increased by serum and 17beta-oestradiol stimuli. Serum-stimulated cells also showed increased expression of TCF4 and p300, while inhibition of Egr1 by specific siRNAs resulted in decreased expression. Transfection of Egr1 led to transactivation of TCF4 as well as p300 genes, through specific binding to a promoter region, and thus in turn resulted in nuclear accumulation of beta-catenin mediated by the up-regulating TCF4. The overexpression also caused inhibition of beta-catenin/TCF4/p300-mediated transcription, probably through sequestration of p300. Egr1 promoter activity was increased by serum but not 17beta-oestradiol, in contrast to the marked repression associated with TCF4, p300, and Egr1 itself, indicating that the regulation involves several feedback loops. In clinical samples, cells immunopositive for nuclear Egr1, as well as beta-catenin and TCF4, were found to be sporadically distributed in glandular components of endometrial carcinoma with morules. A significant positive correlation between nuclear beta-catenin and TCF4 was observed, but no such link was evident for Egr1, probably due to the existence of negative feedback regulation. Together, these data indicate that Egr1 may participate in modulation of the beta-catenin/TCF4/p300 signalling pathway as an initial event during trans-differentiation of endometrial carcinoma cells, through its impact on several signalling networks.
Collapse
Affiliation(s)
- M Saegusa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
168
|
Brocardo M, Henderson BR. APC shuttling to the membrane, nucleus and beyond. Trends Cell Biol 2008; 18:587-96. [DOI: 10.1016/j.tcb.2008.09.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 09/13/2008] [Accepted: 09/16/2008] [Indexed: 11/29/2022]
|
169
|
Kohler EM, Chandra SHV, Behrens J, Schneikert J. -Catenin degradation mediated by the CID domain of APC provides a model for the selection of APC mutations in colorectal, desmoid and duodenal tumours. Hum Mol Genet 2008; 18:213-26. [DOI: 10.1093/hmg/ddn338] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
170
|
Hope C, Planutis K, Planutiene M, Moyer MP, Johal KS, Woo J, Santoso C, Hanson JA, Holcombe RF. Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: implications for colon cancer prevention. Mol Nutr Food Res 2008; 52 Suppl 1:S52-61. [PMID: 18504708 DOI: 10.1002/mnfr.200700448] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Resveratrol is a bioflavonoid which is known to inhibit cell proliferation and induce apoptosis in cancer cell lines at concentrations above 50 muM. It also has colon cancer prevention activity in mouse models and possibly in humans. We have examined the effects of low concentrations of resveratrol on a specific signaling pathway, the Wnt pathway, which is activated in over 85% of sporadic colon cancers. Two colon cancer (HT29 and RKO) and one normal mucosa-derived (NCM460) cell lines were utilized. Cell proliferation was not affected by resveratrol at < or =40 microM for HT29 and NCM460 and <20 microM for RKO though Wnt signal throughput, as measured by a reporter construct, was reduced in RKO and NCM460 at concentrations as low as 10 microM (p < 0.001). This effect was most easily appreciated following Wnt pathway stimulation with Wnt3a conditioned medium and LEF1 or LEF1/beta-catenin transfection. Resveratrol did not inhibit Wnt throughput in mutationally activated HT29. Low concentrations of resveratrol significantly decreased the amount and proportion of beta-catenin in the nucleus in RKO (p = 0.002) and reduced the expression of lgs and pygoI, regulators of beta-catenin localization, in all cells lines. Thus, at low concentrations, in the absence of effects on cell proliferation, resveratrol significantly inhibits Wnt signaling in colon-derived cells which do not have a basally activated Wnt pathway. This inhibitory effect may be due in part to regulation of intracellular beta-catenin localization.
Collapse
Affiliation(s)
- Christopher Hope
- Division of Hematology/Oncology and Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92868, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Bedel A, Nègre-Salvayre A, Heeneman S, Grazide MH, Thiers JC, Salvayre R, Maupas-Schwalm F. E-Cadherin/β-Catenin/T-Cell Factor Pathway Is Involved in Smooth Muscle Cell Proliferation Elicited by Oxidized Low-Density Lipoprotein. Circ Res 2008; 103:694-701. [DOI: 10.1161/circresaha.107.166405] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The E-cadherin/β-catenin/T-cell factor (Tcf) signaling pathway plays a crucial role in embryogenesis and carcinogenesis and has recently emerged in atherosclerosis. The aim of this work was to investigate whether this signaling pathway is involved in smooth muscle cell proliferation induced by oxidized low-density lipoprotein (LDL). In human aortic smooth muscle cells, mitogenic concentration of mildly oxidized LDL induced the activation of β-catenin, as assessed by the dissociation of the β-catenin/cadherin complex, and the concomitant rise of active β-catenin in the cytosol. The oxidized LDL–induced rise of active β-catenin required metalloproteinase activation, as well as epidermal growth factor receptor and Src signaling, as assessed by the use of pharmacological inhibitors and cells overexpressing a SrcK-inactive form. The concomitant phosphatidylinositol 3-kinase/Akt activation and glycogen synthase kinase 3-β phosphorylation induced the inhibition of the proteasomal degradation of β-catenin. Then active β-catenin associated with Tcf4 and translocated into the nucleus. This enhanced the expression of the cell cycle activator cyclin D1. This crucial role of β-catenin in the mitogenic effect of oxidized LDL was confirmed by silencing β-catenin by specific small interfering RNA that blocked DNA synthesis. Immunohistochemistry staining of stable and disrupted plaques from carotid endarterectomy sections showed a correlation between active β-catenin and Ki67, a proliferation marker, and a more intense staining in the smooth muscle cell layer surrounding the lipid core of disrupted plaques. In conclusion, the β-catenin pathway is required for the mitogenic effect of oxidized LDL on human aortic smooth muscle cells. This study highlights the putative important role of the E-cadherin/β-catenin/Tcf signaling pathway in atherosclerosis.
Collapse
Affiliation(s)
- Aurélie Bedel
- From the Institut National de la Santé et de la Recherche Médicale U858 (A.B., A.N.-S., M.-H.G., J.-C.T., R.S., F.M.-S.), Toulouse, France; Faculty of Medicine-Rangueil (A.B., A.N.-S., M.-H.G., J.-C.T., R.S., F.M.-S.), University Paul-Sabatier Toulouse III, Toulouse, France; and Department of Pathology (S.H.), Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands
| | - Anne Nègre-Salvayre
- From the Institut National de la Santé et de la Recherche Médicale U858 (A.B., A.N.-S., M.-H.G., J.-C.T., R.S., F.M.-S.), Toulouse, France; Faculty of Medicine-Rangueil (A.B., A.N.-S., M.-H.G., J.-C.T., R.S., F.M.-S.), University Paul-Sabatier Toulouse III, Toulouse, France; and Department of Pathology (S.H.), Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands
| | - Sylvia Heeneman
- From the Institut National de la Santé et de la Recherche Médicale U858 (A.B., A.N.-S., M.-H.G., J.-C.T., R.S., F.M.-S.), Toulouse, France; Faculty of Medicine-Rangueil (A.B., A.N.-S., M.-H.G., J.-C.T., R.S., F.M.-S.), University Paul-Sabatier Toulouse III, Toulouse, France; and Department of Pathology (S.H.), Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands
| | - Marie-Hélène Grazide
- From the Institut National de la Santé et de la Recherche Médicale U858 (A.B., A.N.-S., M.-H.G., J.-C.T., R.S., F.M.-S.), Toulouse, France; Faculty of Medicine-Rangueil (A.B., A.N.-S., M.-H.G., J.-C.T., R.S., F.M.-S.), University Paul-Sabatier Toulouse III, Toulouse, France; and Department of Pathology (S.H.), Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands
| | - Jean-Claude Thiers
- From the Institut National de la Santé et de la Recherche Médicale U858 (A.B., A.N.-S., M.-H.G., J.-C.T., R.S., F.M.-S.), Toulouse, France; Faculty of Medicine-Rangueil (A.B., A.N.-S., M.-H.G., J.-C.T., R.S., F.M.-S.), University Paul-Sabatier Toulouse III, Toulouse, France; and Department of Pathology (S.H.), Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands
| | - Robert Salvayre
- From the Institut National de la Santé et de la Recherche Médicale U858 (A.B., A.N.-S., M.-H.G., J.-C.T., R.S., F.M.-S.), Toulouse, France; Faculty of Medicine-Rangueil (A.B., A.N.-S., M.-H.G., J.-C.T., R.S., F.M.-S.), University Paul-Sabatier Toulouse III, Toulouse, France; and Department of Pathology (S.H.), Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands
| | - Françoise Maupas-Schwalm
- From the Institut National de la Santé et de la Recherche Médicale U858 (A.B., A.N.-S., M.-H.G., J.-C.T., R.S., F.M.-S.), Toulouse, France; Faculty of Medicine-Rangueil (A.B., A.N.-S., M.-H.G., J.-C.T., R.S., F.M.-S.), University Paul-Sabatier Toulouse III, Toulouse, France; and Department of Pathology (S.H.), Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands
| |
Collapse
|
172
|
Somorjai IML, Martinez-Arias A. Wingless signalling alters the levels, subcellular distribution and dynamics of Armadillo and E-cadherin in third instar larval wing imaginal discs. PLoS One 2008; 3:e2893. [PMID: 18682750 PMCID: PMC2483348 DOI: 10.1371/journal.pone.0002893] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 07/09/2008] [Indexed: 11/18/2022] Open
Abstract
Background Armadillo, the Drosophila orthologue of vertebrate ß-catenin, plays a dual role as the key effector of Wingless/Wnt1 signalling, and as a bridge between E-Cadherin and the actin cytoskeleton. In the absence of ligand, Armadillo is phosphorylated and targeted to the proteasome. Upon binding of Wg to its receptors, the “degradation complex” is inhibited; Armadillo is stabilised and enters the nucleus to transcribe targets. Methodology/Principal Findings Although the relationship between signalling and adhesion has been extensively studied, few in vivo data exist concerning how the “transcriptional” and “adhesive” pools of Armadillo are regulated to orchestrate development. We have therefore addressed how the subcellular distribution of Armadillo and its association with E-Cadherin change in larval wing imaginal discs, under wild type conditions and upon signalling. Using confocal microscopy, we show that Armadillo and E-Cadherin are spatio-temporally regulated during development, and that a punctate species becomes concentrated in a subapical compartment in response to Wingless. In order to further dissect this phenomenon, we overexpressed Armadillo mutants exhibiting different levels of activity and stability, but retaining E-Cadherin binding. ArmS10 displaces endogenous Armadillo from the AJ and the basolateral membrane, while leaving E-Cadherin relatively undisturbed. Surprisingly, ΔNArm1–155 caused displacement of both Armadillo and E-Cadherin, results supported by our novel method of quantification. However, only membrane-targeted Myr-ΔNArm1–155 produced comparable nuclear accumulation of Armadillo and signalling to ArmS10. These experiments also highlighted a row of cells at the A/P boundary depleted of E-Cadherin at the AJ, but containing actin. Conclusions/Significance Taken together, our results provide in vivo evidence for a complex non-linear relationship between Armadillo levels, subcellular distribution and Wingless signalling. Moreover, this study highlights the importance of Armadillo in regulating the subcellular distribution of E-Cadherin
Collapse
|
173
|
de la Roche M, Worm J, Bienz M. The function of BCL9 in Wnt/beta-catenin signaling and colorectal cancer cells. BMC Cancer 2008; 8:199. [PMID: 18627596 PMCID: PMC2478683 DOI: 10.1186/1471-2407-8-199] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 07/15/2008] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Most cases of colorectal cancer are initiated by hyperactivation of the Wnt/beta-catenin pathway due to mutations in the APC tumour suppressor, or in beta-catenin itself. A recently discovered component of this pathway is Legless, which is essential for Wnt-induced transcription during Drosophila development. Limited functional information is available for its two mammalian relatives, BCL9 and B9L/BCL9-2: like Legless, these proteins bind to beta-catenin, and RNAi-mediated depletion of B9L/BCL9-2 has revealed that this protein is required for efficient beta-catenin-mediated transcription in mammalian cell lines. No loss-of-function data are available for BCL9. METHODS We have used overexpression of dominant-negative forms of BCL9, and RNAi-mediated depletion, to study its function in human cell lines with elevated Wnt pathway activity, including colorectal cancer cells. RESULTS We found that BCL9 is required for efficient beta-catenin-mediated transcription in Wnt-stimulated HEK 293 cells, and in the SW480 colorectal cancer cell line whose Wnt pathway is active due to APC mutation. Dominant-negative mutants of BCL9 indicated that its function depends not only on its beta-catenin ligand, but also on an unknown ligand of its C-terminus. Finally, we show that BCL9 and B9L are both Wnt-inducible genes, hyperexpressed in colorectal cancer cell lines, indicating that they are part of a positive feedback loop. CONCLUSION BCL9 is required for efficient beta-catenin-mediated transcription in human cell lines whose Wnt pathway is active, including colorectal cancer cells, indicating its potential as a drug target in colorectal cancer.
Collapse
Affiliation(s)
- Marc de la Roche
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| | | | | |
Collapse
|
174
|
Abstract
Since the first Wnt gene was identified in 1982, the functions and mechanisms of Wnt signaling have been extensively studied. Wnt signaling is conserved from invertebrates to vertebrates and regulates early embryonic development as well as the homeostasis of adult tissues. In addition, both embryonic stem cells and adult stem cells are regulated by Wnt signaling. Deregulation of Wnt signaling is associated with many human diseases, particularly cancers. In this review, we will discuss in detail the functions of many components involved in the Wnt signal transduction pathway. Then, we will explore what is known about the role of Wnt signaling in stem cells and cancers.
Collapse
Affiliation(s)
- Xi Chen
- Sealy Center for Cancer Cell Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555-1048, USA
| | | | | | | |
Collapse
|
175
|
Li FQ, Mofunanya A, Harris K, Takemaru KI. Chibby cooperates with 14-3-3 to regulate beta-catenin subcellular distribution and signaling activity. ACTA ACUST UNITED AC 2008; 181:1141-54. [PMID: 18573912 PMCID: PMC2442201 DOI: 10.1083/jcb.200709091] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
β-Catenin functions in both cell–cell adhesion and as a transcriptional coactivator in the canonical Wnt pathway. Nuclear accumulation of β-catenin is the hallmark of active Wnt signaling and is frequently observed in human cancers. Although β-catenin shuttles in and out of the nucleus, the molecular mechanisms underlying its translocation remain poorly understood. Chibby (Cby) is an evolutionarily conserved molecule that inhibits β-catenin–mediated transcriptional activation. Here, we identified 14-3-3ε and 14-3-3ζ as Cby-binding partners using affinity purification/mass spectrometry. 14-3-3 proteins specifically recognize serine 20 within the 14-3-3–binding motif of Cby when phosphorylated by Akt kinase. Notably, 14-3-3 binding results in sequestration of Cby into the cytoplasm. Moreover, Cby and 14-3-3 form a stable tripartite complex with β-catenin, causing β-catenin to partition into the cytoplasm. Our results therefore suggest a novel paradigm through which Cby acts in concert with 14-3-3 proteins to facilitate nuclear export of β-catenin, thereby antagonizing β-catenin signaling.
Collapse
Affiliation(s)
- Feng-Qian Li
- Department of Pharmacological Sciences and 2Graduate Program in Genetics, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.
| | | | | | | |
Collapse
|
176
|
Nair M, Nagamori I, Sun P, Mishra DP, Rhéaume C, Li B, Sassone-Corsi P, Dai X. Nuclear regulator Pygo2 controls spermiogenesis and histone H3 acetylation. Dev Biol 2008; 320:446-55. [PMID: 18614164 DOI: 10.1016/j.ydbio.2008.05.553] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 05/28/2008] [Accepted: 05/28/2008] [Indexed: 11/16/2022]
Abstract
Mammalian spermiogenesis, a process where haploid male germ cells differentiate to become mature spermatozoa, entails dramatic morphological and biochemical changes including remodeling of the germ cell chromatin. Proteins that contain one or more plant homeodomain (PHD) fingers have been implicated in the regulation of chromatin structure and function. Pygopus 2 (Pygo2) belongs to a family of evolutionarily conserved PHD finger proteins thought to act as co-activators of Wnt signaling effector complexes composed of beta-catenin and LEF/TCF transcription factor. Here we analyze mice containing hypomorphic alleles of pygopus 2 (Pygo2 or mpygo2) and uncover a beta-catenin-independent involvement of the Pygo2 protein in spermiogenesis. Pygo2 is expressed in elongating spermatids at stages when chromatin remodeling occurs, and block of Pygo2 function leads to spermiogenesis arrest and consequent infertility. Analysis of spermiogenesis in Pygo2 mutants reveals reduced expression of select post-meiotic genes including protamines, transition protein 2, and H1fnt, all of which are required for germ cell chromatin condensation, and drastically altered pattern of histone H3 hyperacetylation. These findings suggest that Pygo2 is involved in the chromatin remodeling events that lead to nuclear compaction of male germ cells.
Collapse
Affiliation(s)
- Mahalakshmi Nair
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Jessen S, Gu B, Dai X. Pygopus and the Wnt signaling pathway: a diverse set of connections. Bioessays 2008; 30:448-56. [PMID: 18404694 DOI: 10.1002/bies.20757] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Identification of Pygopus in Drosophila as a dedicated component of the Wg (fly homolog of mammalian Wnt) signaling cascade initiated many inquiries into the mechanism of its function. Surprisingly, the nearly exclusive role for Pygopus in Wg signal transduction in flies is not seen in mice, where Pygopus appears to have both Wnt-related and Wnt-independent functions. This review addresses the initial findings of Pygopus as a Wg/Wnt co-activator in light of recent data from both fly and mammalian studies. We compare and contrast the developmental phenotypes of pygopus mutants to those characterized for known Wg/Wnt transducers and explore the data regarding a role for mammalian Pygopus 2 in tumorigenesis. We further analyze the roles of the two conserved domains of Pygopus proteins in transcription, and propose a model for the molecular mechanism of Pygopus function in both Wg/Wnt signaling and Wnt-independent transcriptional regulation.
Collapse
Affiliation(s)
- Shannon Jessen
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | | | | |
Collapse
|
178
|
Dehner M, Hadjihannas M, Weiske J, Huber O, Behrens J. Wnt signaling inhibits Forkhead box O3a-induced transcription and apoptosis through up-regulation of serum- and glucocorticoid-inducible kinase 1. J Biol Chem 2008; 283:19201-10. [PMID: 18487207 DOI: 10.1074/jbc.m710366200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In human cancers, mutations in components of the Wnt signaling pathway lead to beta-catenin stabilization and result in augmented gene transcription. HCT116 colon cancer cells carry stabilizing mutations in beta-catenin and exhibit an elevated activation of Wnt signaling. To clarify the role of an overactive Wnt signaling, we used DNA microarray analysis to search for genes whose expression is up-regulated after knockdown of the wild type adenomatous polyposis coli (APC) tumor suppressor in HCT116 cells, which further enhances Wnt signaling activation. Serum and glucocorticoid-inducible kinase 1 (SGK1) was among the most up-regulated genes following APC knockdown through small interfering RNA. Up-regulation of SGK1 in response to small interfering RNA against APC was inhibited by concomitant knockdown of beta-catenin. Quantitative real time reverse transcription-PCR, Western blot, and chromatin immunoprecipitation analyses confirmed that SGK1 is a direct beta-catenin target gene. SGK1 negatively regulates the pro-apoptotic transcription factor Forkhead box O3a (FoxO3a) via phosphorylation and exclusion from the nucleus. We show that Wnt signaling activation results in FoxO3a exclusion from the nucleus and inhibits expression of FoxO3a target genes. Importantly, FoxO3a mutants that fail to be phosphorylated and therefore are regulated by SGK1 are not influenced by activation of Wnt signaling. In line, knockdown of SGK1 relieves the effects of Wnt signaling on FoxO3a localization and FoxO3a-dependent transcription. Finally, we show that induction of Wnt signaling inhibits FoxO3a-induced apoptosis. Collectively our results indicate that evasion of apoptosis is another feature employed by an overactive Wnt signaling.
Collapse
Affiliation(s)
- Manuel Dehner
- Department of Experimental Medicine II, Nikolaus-Fiebiger-Center for Molecular Medicine, University of Erlangen, Glueckstrasse 6, 91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
179
|
Stemmer V, de Craene B, Berx G, Behrens J. Snail promotes Wnt target gene expression and interacts with beta-catenin. Oncogene 2008; 27:5075-80. [PMID: 18469861 DOI: 10.1038/onc.2008.140] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The transcription factor snail represses epithelial gene expression and thereby promotes epithelial-mesenchymal transitions (EMT) and tumor invasion. The Wnt/beta-catenin pathway is also involved in EMT and was shown to activate snail. Here, we demonstrate that snail increases Wnt reporter gene activity induced by beta-catenin, LRP6 or dishevelled, and also promotes transcription activated by GAL4-beta-catenin fusion proteins. Snail mutants lacking the transcriptional repressor domain also stimulate beta-catenin-dependent transcription indicating that downregulation of snail target genes is not required for this activity. Snail interacts with beta-catenin in immunoprecipitation experiments at its N-terminus, which is required for activation by snail. In colorectal cancer cell lines, overexpression of snail leads to increased expression of Wnt target genes, whereas downregulation of endogenous snail by siRNA reduces target gene expression. Our data indicate a positive feedback stimulation of the Wnt pathway by activation of snail.
Collapse
Affiliation(s)
- V Stemmer
- Nikolaus-Fiebiger-Center for Molecular Medicine, University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | |
Collapse
|
180
|
Wu X, Tu X, Joeng KS, Hilton MJ, Williams DA, Long F. Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling. Cell 2008; 133:340-53. [PMID: 18423204 DOI: 10.1016/j.cell.2008.01.052] [Citation(s) in RCA: 382] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 10/12/2007] [Accepted: 01/30/2008] [Indexed: 02/06/2023]
Abstract
Canonical Wnt signaling critically regulates cell fate and proliferation in development and disease. Nuclear localization of beta-catenin is indispensable for canonical Wnt signaling; however, the mechanisms governing beta-catenin nuclear localization are not well understood. Here we demonstrate that nuclear accumulation of beta-catenin in response to Wnt requires Rac1 activation. The role of Rac1 depends on phosphorylation of beta-catenin at Ser191 and Ser605, which is mediated by JNK2 kinase. Mutations of these residues significantly affect Wnt-induced beta-catenin nuclear accumulation. Genetic ablation of Rac1 in the mouse embryonic limb bud ectoderm disrupts canonical Wnt signaling and phenocopies deletion of beta-catenin in causing severe truncations of the limb. Finally, Rac1 interacts genetically with beta-catenin and Dkk1 in controlling limb outgrowth. Together these results uncover Rac1 activation and subsequent beta-catenin phosphorylation as a hitherto uncharacterized mechanism controlling canonical Wnt signaling and may provide additional targets for therapeutic intervention of this important pathway.
Collapse
Affiliation(s)
- Ximei Wu
- Department of Medicine, Washington University Medical School, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
181
|
Kohler EM, Derungs A, Daum G, Behrens J, Schneikert J. Functional definition of the mutation cluster region of adenomatous polyposis coli in colorectal tumours. Hum Mol Genet 2008; 17:1978-87. [PMID: 18387968 DOI: 10.1093/hmg/ddn095] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The mutation cluster region (MCR) of adenomatous polyposis coli (APC) is located within the central part of the open reading frame, overlapping with the region encoding the 20 amino acid repeats (20R) that are beta-catenin-binding sites. Each mutation in the MCR leads to the synthesis of a truncated APC product expressed in a colorectal tumour. The MCR extends from the 3' border of the first 20R coding region to approximately the middle of the third 20R coding region, reflecting both positive and negative selections of the N- and C-terminal halves of the APC protein in colon cancer cells, respectively. In contrast, the second 20R escapes selection and can be either included or excluded from the truncated APC products found in colon cancer cells. To specify the functional outcome of the selection of the mutations, we investigated the beta-catenin binding capacity of the first three 20R in N-terminal APC fragments. We found in co-immunoprecipitation and intracellular co-localization experiments that the second 20R is lacking any beta-catenin binding activity. Similarly, we also show that the tumour-associated truncations abolish the interaction of beta-catenin with the third 20R. Thus, our data provide a functional definition of the MCR: the APC fragments typical of colon cancer are selected for the presence of a single functional 20R, the first one, and are therefore equivalent relative to beta-catenin binding.
Collapse
Affiliation(s)
- Eva Maria Kohler
- Nikolaus-Fiebiger-Center for Molecular Medicine, University Erlangen-Nürnberg, Glückstrasse 6, 91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
182
|
Relationship between expression of beta-catenin and VEGFs (VEGFA, VEGF-C), VEGF receptors-2 (VEGFR-2) in medulloblastoma. Chin J Cancer Res 2008. [DOI: 10.1007/s11670-008-0044-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
183
|
McCartney BM, Näthke IS. Cell regulation by the Apc protein Apc as master regulator of epithelia. Curr Opin Cell Biol 2008; 20:186-93. [PMID: 18359618 DOI: 10.1016/j.ceb.2008.02.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/08/2008] [Accepted: 02/08/2008] [Indexed: 01/12/2023]
Abstract
The adenomatous polyposis coli (Apc) protein participates in many of the fundamental cellular processes that govern epithelial tissues: Apc is directly involved in regulating the availability of beta-catenin for transcriptional de-repression of Tcf/LEF transcription factors, it contributes to the stability of microtubules in interphase and mitosis, and has an impact on the dynamics of F-actin. Thus Apc contributes directly and/or indirectly to proliferation, differentiation, migration, and apoptosis. This particular multifunctionality can explain why disruption of Apc is especially detrimental for the epithelium of the gut, where Apc mutations are common in most cancers. We summarise recent data that shed light on the molecular mechanisms involved in the different functions of Apc.
Collapse
Affiliation(s)
- Brooke M McCartney
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue, Pittsburgh, PA, USA
| | | |
Collapse
|
184
|
Jonckheere N, Mayes E, Shih HP, Li B, Lioubinski O, Dai X, Sander M. Analysis of mPygo2 mutant mice suggests a requirement for mesenchymal Wnt signaling in pancreatic growth and differentiation. Dev Biol 2008; 318:224-35. [PMID: 18452912 DOI: 10.1016/j.ydbio.2008.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 02/10/2008] [Accepted: 03/03/2008] [Indexed: 10/22/2022]
Abstract
Pygopus has recently been identified in Drosophila as an essential component of the nuclear complex required for canonical Wnt signaling. Here, we have investigated the role of the mammalian pygopus ortholog, mPygo2, in pancreas development. We show that a null mutation of mPygo2 in mice causes pancreas hypoplasia due to decreased progenitor cell proliferation after embryonic day (e) 12.5. During the same time window, mPygo2-deficient embryos begin to display a reduction in endocrine progenitors and consequently a decrease in islet endocrine cell mass. Consistent with its function after e12.5, late-developing endocrine cell types, such as beta, delta and PP cells, are specifically reduced, while the earlier-forming alpha cells develop normally. We find canonical Wnt signaling to be predominantly active in the mesenchyme at the time when mPygo2 is required and demonstrate the dependence of Wnt signal transduction on mPygo2. Furthermore, conditional deletion of mPygo2(flox) allele in the pancreatic epithelium does not phenocopy the defects in mPygo2-null mutants. Since mPygo2 is expressed in the pancreatic mesenchyme and the role of the mesenchyme in epithelial progenitor cell expansion is well documented, our findings suggest an indirect role for mPygo2 in epithelial growth and differentiation through regulation of mesenchymal signals. Together, our data suggest a previously unappreciated role for mesenchymal Wnt signaling in regulating pancreatic organ growth and cell differentiation.
Collapse
Affiliation(s)
- Nicolas Jonckheere
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697-2300, USA
| | | | | | | | | | | | | |
Collapse
|
185
|
Daugherty RL, Gottardi CJ. Phospho-regulation of Beta-catenin adhesion and signaling functions. Physiology (Bethesda) 2008; 22:303-9. [PMID: 17928543 DOI: 10.1152/physiol.00020.2007] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Beta-catenin plays a critical structural role in cadherin-based adhesions and is also an essential co-activator of Wnt-mediated gene expression. The degree to which beta-catenin participates in these two functions is dictated by the availability of beta-catenin binding partners, and an emerging theme is that these binding interactions are regulated by phosphorylation. Inputs from various cell-signaling events can therefore impact beta-catenin function, which may be necessary for the finely tuned adhesive and signaling responses required for tissue morphogenesis.
Collapse
Affiliation(s)
- Rebecca Leadem Daugherty
- The Integrated Graduate Program in the Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | | |
Collapse
|
186
|
Abstract
Immunodetection of beta-catenin accumulation in the nucleus is the most direct and reliable method to determine the intensity and the spatial/temporal patterns of Wnt-dependent signaling activity. Due to the large size of the Xenopus embryo, staining must be done on sections. We present here a simple protocol to prepare cryosections and produce high-quality images of the early embryo using immunofluorescence. We also provide comments on various conceptual and technical issues from fixation to image collection, which may assist in optimizing immunodetection in embryos and tissues beyond the specific scope of beta-catenin localization.
Collapse
|
187
|
Kajiguchi T, Chung EJ, Lee S, Stine A, Kiyoi H, Naoe T, Levis MJ, Neckers L, Trepel JB. FLT3 regulates beta-catenin tyrosine phosphorylation, nuclear localization, and transcriptional activity in acute myeloid leukemia cells. Leukemia 2007; 21:2476-84. [PMID: 17851558 DOI: 10.1038/sj.leu.2404923] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deregulated accumulation of nuclear beta-catenin enhances transcription of beta-catenin target genes and promotes malignant transformation. Recently, acute myeloid leukemia (AML) cells with activating mutations of FMS-like tyrosine kinase-3 (FLT3) were reported to display elevated beta-catenin-dependent nuclear signaling. Tyrosine phosphorylation of beta-catenin has been shown to promote its nuclear localization. Here, we examined the causal relationship between FLT3 activity and beta-catenin nuclear localization. Compared to cells with wild-type FLT3 (FLT3-WT), cells with the FLT3 internal tandem duplication (FLT3-ITD) and tyrosine kinase domain mutation (FLT3-TKD) had elevated levels of tyrosine-phosphorylated beta-catenin. Although beta-catenin was localized mainly in the cytoplasm in FLT3-WT cells, it was primarily nuclear in FLT3-ITD cells. Treatment with FLT3 kinase inhibitors or FLT3 silencing with RNAi decreased beta-catenin tyrosine phosphorylation and nuclear localization. Conversely, treatment of FLT3-WT cells with FLT3 ligand increased tyrosine phosphorylation and nuclear accumulation of beta-catenin. Endogenous beta-catenin co-immunoprecipitated with endogenous activated FLT3, and recombinant activated FLT3 directly phosphorylated recombinant beta-catenin. Finally, FLT3 inhibitor decreased tyrosine phosphorylation of beta-catenin in leukemia cells obtained from FLT3-ITD-positive AML patients. These data demonstrate that FLT3 activation induces beta-catenin tyrosine phosphorylation and nuclear localization, and thus suggest a mechanism for the association of FLT3 activation and beta-catenin oncogeneic signaling in AML.
Collapse
Affiliation(s)
- T Kajiguchi
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Tang LY, Deng N, Wang LS, Dai J, Wang ZL, Jiang XS, Li SJ, Li L, Sheng QH, Wu DQ, Li L, Zeng R. Quantitative phosphoproteome profiling of Wnt3a-mediated signaling network: indicating the involvement of ribonucleoside-diphosphate reductase M2 subunit phosphorylation at residue serine 20 in canonical Wnt signal transduction. Mol Cell Proteomics 2007; 6:1952-67. [PMID: 17693683 DOI: 10.1074/mcp.m700120-mcp200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complexity of canonical Wnt signaling comes not only from the numerous components but also from multiple post-translational modifications. Protein phosphorylation is one of the most common modifications that propagates signals from extracellular stimuli to downstream effectors. To investigate the global phosphorylation regulation and uncover novel phosphoproteins at the early stages of canonical Wnt signaling, HEK293 cells were metabolically labeled with two stable isotopic forms of lysine and were stimulated for 0, 1, or 30 min with purified Wnt3a. After phosphoprotein enrichment and LC-MS/MS analysis, 1057 proteins were identified in all three time points. In total 287 proteins showed a 1.5-fold or greater change in at least one time point. In addition to many known Wnt signaling transducers, other phosphoproteins were identified and quantitated, implicating their involvement in canonical Wnt signaling. k-Means clustering analysis showed dynamic patterns for the differential phosphoproteins. Profile pattern and interaction network analysis of the differential phosphoproteins implicated the possible roles for those unreported components in Wnt signaling. Moreover 100 unique phosphorylation sites were identified, and 54 of them were quantitated in the three time points. Site-specific phosphopeptide quantitation revealed that Ser-20 phosphorylation on RRM2 increased upon 30-min Wnt3a stimulation. Further studies with mutagenesis, the Wnt reporter gene assay, and RNA interference indicated that RRM2 functioned downstream of beta-catenin as an inhibitor of Wnt signaling and that Ser-20 phosphorylation of RRM2 counteracted its inhibition effect. Our systematic profiling of dynamic phosphorylation changes responding to Wnt3a stimulation not only presented a comprehensive phosphorylation network regulated by canonical Wnt signaling but also found novel molecules and phosphorylation involved in Wnt signaling.
Collapse
Affiliation(s)
- Liu-Ya Tang
- State Key Laboratory of Molecular Biology, Shangai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Huang S, Shetty P, Robertson SM, Lin R. Binary cell fate specification duringC. elegansembryogenesis driven by reiterated reciprocal asymmetry of TCF POP-1 and its coactivatorβ-catenin SYS-1. Development 2007; 134:2685-95. [PMID: 17567664 DOI: 10.1242/dev.008268] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
C. elegans embryos exhibit an invariant lineage comprised primarily of a stepwise binary diversification of anterior-posterior (A-P)blastomere identities. This binary cell fate specification requires input from both the Wnt and MAP kinase signaling pathways. The nuclear level of the TCF protein POP-1 is lowered in all posterior cells. We show here that theβ-catenin SYS-1 also exhibits reiterated asymmetry throughout multiple A-P divisions and that this asymmetry is reciprocal to that of POP-1. Furthermore, we show that SYS-1 functions as a coactivator for POP-1, and that the SYS-1-to-POP-1 ratio appears critical for both the anterior and posterior cell fates. A high ratio drives posterior cell fates, whereas a low ratio drives anterior cell fates. We show that the SYS-1 and POP-1 asymmetries are regulated independently, each by a subset of genes in the Wnt/MAP kinase pathways. We propose that two genetic pathways, one increasing SYS-1 and the other decreasing POP-1 levels, robustly elevate the SYS-1-to-POP-1 ratio in the posterior cell, thereby driving A-P differential cell fates.
Collapse
Affiliation(s)
- Shuyi Huang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
190
|
Li B, Rhéaume C, Teng A, Bilanchone V, Munguia JE, Hu M, Jessen S, Piccolo S, Waterman ML, Dai X. Developmental phenotypes and reduced Wnt signaling in mice deficient for pygopus 2. Genesis 2007; 45:318-25. [PMID: 17458864 DOI: 10.1002/dvg.20299] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Canonical Wnt signaling involves complex intracellular events culminating in the stabilization of beta-catenin, which enters the nucleus and binds to LEF/TCF transcription factors to stimulate gene expression. Pygopus was identified as a genetic modifier of Wg (Wnt homolog) signaling in Drosophila, and encodes a PHD domain protein that associates with the beta-catenin/LEF/TCF complex. Two murine pygopus paralogs, mpygo1 and mpygo2, have been identified, but their roles in development and Wnt signaling remain elusive. In this study, we report that ablation of mpygo2 expression in mice causes defects in morphogenesis of both ectodermally and endodermally derived tissues, including brain, eyes, hair follicles, and lung. However, no gross abnormality was observed in embryonic intestine. Using a BAT-gal reporter, we found Wnt signaling at most body sites to be reduced in the absence of mpygo2. Taken together, our studies show for the first time that mpygo2 deletion affects embryonic development of some but not all Wnt-requiring tissues.
Collapse
Affiliation(s)
- Boan Li
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Herington JL, Bi J, Martin JD, Bany BM. β-Catenin (CTNNB1) in the Mouse Uterus During Decidualization and the Potential Role of Two Pathways in Regulating Its Degradation. J Histochem Cytochem 2007; 55:963-74. [PMID: 17533218 DOI: 10.1369/jhc.7a7199.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
β-catenin plays a role in cell adhesion and as a transcriptional coactivator. Its levels are regulated in cells by controlling its degradation through ubiquitination by two different E3 ligase complexes. One complex contains β-transducing repeat containing (BTRC) protein, which binds to β-catenin when phosphorylated on specific (S33 and S37) residues, whereas the other involves calcyclin-binding protein (CACYBP). The aim of this study was to determine the localization and levels of total and active (S33/S37-dephosphorylated) β-catenin in the pregnant mouse uteri and those undergoing artificially stimulated decidualization. These two forms of β-catenin were localized almost exclusively to the endometrial epithelia just prior to the onset of implantation. Although this localization continued after the onset of implantation, there were less epithelial cells present in areas of the uterus undergoing decidualization. Rather, there was a progressive increase in β-catenin localization in endometrial stromal cells undergoing decidualization in the anti-mesometrial and, to a lesser extent, in the mesometrial regions. The presence of a conceptus was not required for the changes in localization seen in the pregnant uterus because similar findings were also seen in uteri undergoing artificially stimulated decidualization. Finally, overall levels of total, active (S33 and S37 dephosphorylated), and phosphorylated (S33/S37/T42) β-catenin protein and the steady-state levels of calcyclin-binding protein mRNA changed in the uterus during decidualization. The result of this study shows the changing localization and levels of β-catenin in the mouse uterus during decidualization. Further, the results suggest potential roles for both the BTRC and CACYBP E3 ligase mechanisms of β-catenin ubiquitination in the uterus during decidualization.
Collapse
Affiliation(s)
- Jennifer L Herington
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | | | | | | |
Collapse
|
192
|
Schwab KR, Patterson LT, Hartman HA, Song N, Lang RA, Lin X, Potter SS. Pygo1 and Pygo2 roles in Wnt signaling in mammalian kidney development. BMC Biol 2007; 5:15. [PMID: 17425782 PMCID: PMC1858683 DOI: 10.1186/1741-7007-5-15] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 04/10/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pygopus gene of Drosophila encodes an essential component of the Armadillo (beta-catenin) transcription factor complex of canonical Wnt signaling. To better understand the functions of Pygopus-mediated canonical Wnt signaling in kidney development, targeted mutations were made in the two mammalian orthologs, Pygo1 and Pygo2. RESULTS Each mutation deleted >80% of the coding sequence, including the critical PHD domain, and almost certainly resulted in null function. Pygo2 homozygous mutants, with rare exception, died shortly after birth, with a phenotype including lens agenesis, growth retardation, altered kidney development, and in some cases exencephaly and cleft palate. Pygo1 homozygous mutants, however, were viable and fertile, with no detectable developmental defects. Double Pygo1/Pygo2 homozygous mutants showed no apparent synergy in phenotype severity. The BAT-gal transgene reporter of canonical Wnt signaling showed reduced levels of expression in Pygo1-/-/Pygo2-/- mutants, with tissue-specific variation in degree of diminution. The Pygo1 and Pygo2 genes both showed widespread expression in the developing kidney, with raised levels in the stromal cell compartment. Confocal analysis of the double mutant kidneys showed disturbance of both the ureteric bud and metanephric mesenchyme-derived compartments. Branching morphogenesis of the ureteric bud was altered, with expanded tips and reduced tip density, probably contributing to the smaller size of the mutant kidney. In addition, there was an expansion of the zone of condensed mesenchyme capping the ureteric bud. Nephron formation, however, proceeded normally. Microarray analysis showed changed expression of several genes, including Cxcl13, Slc5a2, Klk5, Ren2 and Timeless, which represent candidate Wnt targets in kidney development. CONCLUSION The mammalian Pygopus genes are required for normal branching morphogenesis of the ureteric bud during kidney development. Nevertheless, the relatively mild phenotype observed in the kidney, as well as other organ systems, indicates a striking evolutionary divergence of Pygopus function between mammals and Drosophila. In mammals, the Pygo1/Pygo2 genes are not absolutely required for canonical Wnt signaling in most developing systems, but rather function as quantitative transducers, or modulators, of Wnt signal intensity.
Collapse
Affiliation(s)
- Kristopher R Schwab
- Division of Developmental Biology, Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Larry T Patterson
- Division of Nephrology, Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Heather A Hartman
- Division of Nephrology, Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Ni Song
- Division of Ophthalmology, Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Richard A Lang
- Division of Ophthalmology, Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Xinhua Lin
- Division of Developmental Biology, Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - S Steven Potter
- Division of Developmental Biology, Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
193
|
Seo E, Jho EH. Axin-independent phosphorylation of APC controls beta-catenin signaling via cytoplasmic retention of beta-catenin. Biochem Biophys Res Commun 2007; 357:81-6. [PMID: 17418091 DOI: 10.1016/j.bbrc.2007.03.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 03/13/2007] [Indexed: 02/05/2023]
Abstract
It has been shown that accumulation of free beta-catenin leads to mobility shift of adenomatous polyposis coli (APC) protein and that Axin facilitates this process. Here we show that the beta-catenin-mediated mobility shift of APC is due to phosphorylation of two domains of APC by casein kinase 1epsilon/glycogen synthase kinase 3beta and unknown kinase(s), respectively. Interestingly, our results suggest that this process does not require Axin. The phosphorylated APC showed higher affinity to beta-catenin in vivo, and fragments of APC containing the phosphorylated domains can inhibit beta-catenin/Tcf-mediated reporter activity regardless of their ability to reduce the level of beta-catenin. From our data we propose a new role of APC: accumulation of excessive cytoplasmic beta-catenin induces phosphorylation of APC and the phosphorylated APC retains beta-catenin in cytoplasm to prevent excessive beta-catenin signaling. The retained beta-catenin in cytoplasm by APC may be down-regulated by Axin 2, which is induced by beta-catenin/Tcf signaling.
Collapse
Affiliation(s)
- Eunjeong Seo
- The University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743, Republic of Korea
| | | |
Collapse
|
194
|
Tsuji T, Sheehy N, Gautier VW, Hayakawa H, Sawa H, Hall WW. The nuclear import of the human T lymphotropic virus type I (HTLV-1) tax protein is carrier- and energy-independent. J Biol Chem 2007; 282:13875-83. [PMID: 17344183 DOI: 10.1074/jbc.m611629200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
HTLV-1 is the etiologic agent of the adult T cell leukemialymphoma (ATLL). The viral regulatory protein Tax plays a central role in leukemogenesis as a transcriptional transactivator of both viral and cellular gene expression, and this requires Tax activity in both the cytoplasm and the nucleus. In the present study, we have investigated the mechanisms involved in the nuclear localization of Tax. Employing a GFP fusion expression system and a range of Tax mutants, we could confirm that the N-terminal 60 amino acids, and specifically residues within the zinc finger motif in this region, are important for nuclear localization. Using an in vitro nuclear import assay, it could be demonstrated that the transportation of Tax to the nucleus required neither energy nor carrier proteins. Specific and direct binding between Tax and p62, a nucleoporin with which the importin beta family of proteins have been known to interact was also observed. The nuclear import activity of wild type Tax and its mutants and their binding affinity for p62 were also clearly correlated, suggesting that the entry of Tax into the nucleus involves a direct interaction with nucleoporins within the nuclear pore complex (NPC). The nuclear export of Tax was also shown to be carrier independent. It could be also demonstrated that Tax it self may have a carrier function and that the NF-kappaB subunit p65 could be imported into the nucleus by Tax. These studies suggest that Tax could alter the nucleocytoplasmic distribution of cellular proteins, and this could contribute to the deregulation of cellular processes observed in HTLV-1 infection.
Collapse
Affiliation(s)
- Takahiro Tsuji
- Centre for Research in Infectious Disease, School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
195
|
de la Roche M, Bienz M. Wingless-independent association of Pygopus with dTCF target genes. Curr Biol 2007; 17:556-61. [PMID: 17320388 DOI: 10.1016/j.cub.2007.01.063] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 01/25/2007] [Accepted: 01/25/2007] [Indexed: 11/16/2022]
Abstract
The Wnt signaling pathway controls numerous cell fates during animal development. Its inappropriate activity can lead to cancer in many human tissues. A key effector of the canonical Wnt pathway is beta-catenin (or Drosophila Armadillo), a highly unstable phosphorylated protein that shuttles rapidly between nucleus and cytoplasm. Wnt signaling inhibits its phosphorylation and degradation; this allows it to associate with TCF/LEF factors bound to Wnt target genes and to stimulate their transcription by recruiting chromatin modifying and remodeling factors. The transcriptional activity of Armadillo/beta-catenin also depends on Pygopus (Pygo), a nuclear protein with which it associates through the Legless/BCL9 adaptor. It has been proposed that Pygo associates with TCF target genes during Wnt signaling through Armadillo and Legless to recruit a transcriptional coactivator through its Nbox motif. Here, we report that Pygo is associated constitutively with dTCF target genes in Drosophila salivary glands and tissue-culture cells. Our evidence indicates that this association depends on dTCF and on the Nbox motif of Pygo, but not on Legless. We thus propose an alternative model according to which Pygo functions at the onset of Wnt signaling, or at low signaling levels, to capture Armadillo at dTCF target genes, thus enabling the interaction between Armadillo and dTCF and, consequently, the Armadillo-mediated recruitment of transcriptional coactivators.
Collapse
Affiliation(s)
- Marc de la Roche
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, United Kingdom
| | | |
Collapse
|
196
|
Couffinhal T, Dufourcq P, Duplàa C. Beta-catenin nuclear activation: common pathway between Wnt and growth factor signaling in vascular smooth muscle cell proliferation? Circ Res 2007; 99:1287-9. [PMID: 17158343 DOI: 10.1161/01.res.0000253139.82251.31] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
197
|
Parker DS, Blauwkamp T, Cadigan KM. Wnt/β‐catenin‐mediated transcriptional regulation. WNT SIGNALING IN EMBRYONIC DEVELOPMENT 2007. [DOI: 10.1016/s1574-3349(06)17001-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
198
|
He B, Jablons DM. Wnt signaling in stem cells and lung cancer. ERNST SCHERING FOUNDATION SYMPOSIUM PROCEEDINGS 2007:27-58. [PMID: 17939294 DOI: 10.1007/2789_2007_043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Wnt signal transduction pathway plays important roles during embryo development, regulating cell proliferation and survival of immature cells. However, its improper function can lead to harmful consequences for humans, such as aberrant cell proliferation and, therefore, cancer. Increasing evidence suggests that stem cells may be the source of mutant cells that cause cancers to develop and proliferate. Wnt signaling has been shown to promote self-renewal in both gut epithelial and hematopoietic stem cells (HSCs) and to trigger critical pathways in carcinogenesis. Although the function of stem cells in solid tumor development is unclear, the Wnt pathway's role in determining the fate and self-renewal potential of cancer stem cells suggests a critical role in carcinogenesis. The development of new inhibitors, such as antibodies or small molecules, to inhibit this pathway may be of great therapeutic utility against cancer.
Collapse
Affiliation(s)
- B He
- Department of Surgery, University of California San Francisco Cancer Center, 1600 Divisadero Street, Box 1724, 94143-1724 San Francisco, USA.
| | | |
Collapse
|
199
|
Schneikert J, Grohmann A, Behrens J. Truncated APC regulates the transcriptional activity of beta-catenin in a cell cycle dependent manner. Hum Mol Genet 2006; 16:199-209. [PMID: 17189293 DOI: 10.1093/hmg/ddl464] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Most colon cancer cells express truncated versions of the tumour suppressor Adenomatous Polyposis Coli (APC). These molecules are selected during tumourigenesis for impaired beta-catenin degrading activity. In this study, we describe that truncated APC can still control the activity of beta-catenin in colon cancer cell lines via its first 20 amino acid repeat. First, we show that both endogenous and ectopically expressed truncated APC molecules can bind to beta-catenin. Second, reduction of the levels of truncated APC by RNA interference increases the activity of a beta-catenin-dependent reporter gene and stimulates the expression of the beta-catenin target gene AXIN2/conductin. This occurs without alterations of the amounts of cytosolic beta-catenin. Conversely, ectopic expression of truncated APC decreases beta-catenin-dependent transcription without affecting the intensity of immunofluorescence staining of beta-catenin in transfected cells. Third, we reveal that the APC level increases when cells reach the G1-S boundary during cell cycle progression. Simultaneously, the amount of beta-catenin bound to APC increases and the transcriptional activity of beta-catenin drops in an APC-dependent manner. Again, this occurs independently of the amounts of either total or phosphorylated cytosolic beta-catenin. Together, these results indicate that truncated APC controls the ability of beta-catenin to activate transcription. As we also show that the inhibition involves the first 20 amino acid repeat of APC, our data suggest that colon cancer cells retain a truncated APC molecule containing at least the first 20 amino acid repeat to modulate the transcriptional activity of beta-catenin in a cell cycle-dependent manner.
Collapse
Affiliation(s)
- Jean Schneikert
- Nikolaus-Fiebiger-Center for Molecular Medicine, University Erlangen-Nürnberg, Glückstrasse 6, 91054 Erlangen, Germany
| | | | | |
Collapse
|
200
|
Sampietro J, Dahlberg CL, Cho US, Hinds TR, Kimelman D, Xu W. Crystal structure of a beta-catenin/BCL9/Tcf4 complex. Mol Cell 2006; 24:293-300. [PMID: 17052462 DOI: 10.1016/j.molcel.2006.09.001] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 08/10/2006] [Accepted: 09/01/2006] [Indexed: 10/24/2022]
Abstract
The canonical Wnt pathway plays critical roles in embryonic development, stem cell growth, and tumorigenesis. Stimulation of the Wnt pathway leads to the association of beta-catenin with Tcf and BCL9 in the nucleus, resulting in the transactivation of Wnt target genes. We have determined the crystal structure of a beta-catenin/BCL9/Tcf-4 triple complex at 2.6 A resolution. Our studies reveal that the beta-catenin binding site of BCL9 is distinct from that of most other beta-catenin partners and forms a good target for developing drugs that block canonical Wnt/beta-catenin signaling. The BCL9 beta-catenin binding domain (CBD) forms an alpha helix that binds to the first armadillo repeat of beta-catenin, which can be mutated to prevent beta-catenin binding to BCL9 without affecting cadherin or alpha-catenin binding. We also demonstrate that beta-catenin Y142 phosphorylation, which has been proposed to regulate BCL9-2 binding, does not directly affect the interaction of beta-catenin with either BCL9 or BCL9-2.
Collapse
Affiliation(s)
- James Sampietro
- Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|