151
|
Addison JB, Koontz C, Fugett JH, Creighton CJ, Chen D, Farrugia MK, Padon RR, Voronkova MA, McLaughlin SL, Livengood RH, Lin CC, Ruppert JM, Pugacheva EN, Ivanov AV. KAP1 promotes proliferation and metastatic progression of breast cancer cells. Cancer Res 2014; 75:344-55. [PMID: 25421577 DOI: 10.1158/0008-5472.can-14-1561] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
KAP1 (TRIM28) is a transcriptional regulator in embryonic development that controls stem cell self-renewal, chromatin organization, and the DNA damage response, acting as an essential corepressor for KRAB family zinc finger proteins (KRAB-ZNF). To gain insight into the function of this large gene family, we developed an antibody that recognizes the conserved zinc fingers linker region (ZnFL) in multiple KRAB-ZNF. Here, we report that the expression of many KRAB-ZNF along with active SUMOlyated KAP1 is elevated widely in human breast cancers. KAP1 silencing in breast cancer cells reduced proliferation and inhibited the growth and metastasis of tumor xenografts. Conversely, KAP1 overexpression stimulated cell proliferation and tumor growth. In cells where KAP1 was silenced, we identified multiple downregulated genes linked to tumor progression and metastasis, including EREG/epiregulin, PTGS2/COX2, MMP1, MMP2, and CD44, along with downregulation of multiple KRAB-ZNF proteins. KAP1-dependent stabilization of KRAB-ZNF required direct interactions with KAP1. Together, our results show that KAP1-mediated stimulation of multiple KRAB-ZNF contributes to the growth and metastasis of breast cancer.
Collapse
Affiliation(s)
- Joseph B Addison
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Colton Koontz
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - James H Fugett
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas
| | - Dongquan Chen
- Division of Preventive Medicine and UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mark K Farrugia
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Renata R Padon
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Maria A Voronkova
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Sarah L McLaughlin
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Ryan H Livengood
- Department of Pathology, West Virginia University, Morgantown, West Virginia
| | - Chen-Chung Lin
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - J Michael Ruppert
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Elena N Pugacheva
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Alexey V Ivanov
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
152
|
Wingender E, Schoeps T, Haubrock M, Dönitz J. TFClass: a classification of human transcription factors and their rodent orthologs. Nucleic Acids Res 2014; 43:D97-102. [PMID: 25361979 PMCID: PMC4383905 DOI: 10.1093/nar/gku1064] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
TFClass aims at classifying eukaryotic transcription factors (TFs) according to their DNA-binding domains (DBDs). For this, a classification schema comprising four generic levels (superclass, class, family and subfamily) was defined that could accommodate all known DNA-binding human TFs. They were assigned to their (sub-)families as instances at two different levels, the corresponding TF genes and individual gene products (protein isoforms). In the present version, all mouse and rat orthologs have been linked to the human TFs, and the mouse orthologs have been arranged in an independent ontology. Many TFs were assigned with typical DNA-binding patterns and positional weight matrices derived from high-throughput in-vitro binding studies. Predicted TF binding sites from human gene upstream sequences are now also attached to each human TF whenever a PWM was available for this factor or one of his paralogs. TFClass is freely available at http://tfclass.bioinf.med.uni-goettingen.de/ through a web interface and for download in OBO format.
Collapse
Affiliation(s)
- Edgar Wingender
- Institute of Bioinformatics, University Medical Center Göttingen, Georg August University, D-37077 Göttingen, Germany geneXplain GmbH, D-38302 Wolfenbüttel, Germany
| | - Torsten Schoeps
- Institute of Bioinformatics, University Medical Center Göttingen, Georg August University, D-37077 Göttingen, Germany
| | - Martin Haubrock
- Institute of Bioinformatics, University Medical Center Göttingen, Georg August University, D-37077 Göttingen, Germany
| | - Jürgen Dönitz
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Georg August University, D-37077 Göttingen, Germany
| |
Collapse
|
153
|
Han D, Zhang C, Fan WJ, Pan WJ, Feng DM, Qu SL, Jiang ZS. Myocardial ischemic preconditioning upregulated protein 1(Mipu1):zinc finger protein 667 - a multifunctional KRAB/C2H2 zinc finger protein. ACTA ACUST UNITED AC 2014; 48:1-5. [PMID: 25493376 PMCID: PMC4288486 DOI: 10.1590/1414-431x20144029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/23/2014] [Indexed: 11/22/2022]
Abstract
Myocardial ischemic preconditioning upregulated protein 1 (Mipu1) is a newly discovered upregulated gene produced in rats during the myocardial ischemic preconditioning process. Mipu1 cDNA contains a 1824-base pair open reading frame and encodes a 608 amino acid protein with an N-terminal Krüppel-associated box (KRAB) domain and classical zinc finger C2H2 motifs in the C-terminus. Mipu1 protein is located in the cell nucleus. Recent studies found that Mipu1 has a protective effect on the ischemia-reperfusion injury of heart, brain, and other organs. As a nuclear factor, Mipu1 may perform its protective function through directly transcribing and repressing the expression of proapoptotic genes to repress cell apoptosis. In addition, Mipu1 also plays an important role in regulating the gene expression of downstream inflammatory mediators by inhibiting the activation of activator protein-1 and serum response element.
Collapse
Affiliation(s)
- D Han
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province, PR China
| | - C Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province, PR China
| | - W J Fan
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province, PR China
| | - W J Pan
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province, PR China
| | - D M Feng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province, PR China
| | - S L Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province, PR China
| | - Z S Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province, PR China
| |
Collapse
|
154
|
Liu H, Chang LH, Sun Y, Lu X, Stubbs L. Deep vertebrate roots for mammalian zinc finger transcription factor subfamilies. Genome Biol Evol 2014; 6:510-25. [PMID: 24534434 PMCID: PMC3971581 DOI: 10.1093/gbe/evu030] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While many vertebrate transcription factor (TF) families are conserved, the C2H2 zinc finger (ZNF) family stands out as a notable exception. In particular, novel ZNF gene types have arisen, duplicated, and diverged independently throughout evolution to yield many lineage-specific TF genes. This evolutionary dynamic not only raises many intriguing questions but also severely complicates identification of those ZNF genes that remain functionally conserved. To address this problem, we searched for vertebrate “DNA binding orthologs” by mining ZNF loci from eight sequenced genomes and then aligning the patterns of DNA-binding amino acids, or “fingerprints,” extracted from the encoded ZNF motifs. Using this approach, we found hundreds of lineage-specific genes in each species and also hundreds of orthologous groups. Most groups of orthologs displayed some degree of fingerprint divergence between species, but 174 groups showed fingerprint patterns that have been very rigidly conserved. Focusing on the dynamic KRAB-ZNF subfamily—including nearly 400 human genes thought to possess potent KRAB-mediated epigenetic silencing activities—we found only three genes conserved between mammals and nonmammalian groups. These three genes, members of an ancient familial cluster, encode an unusual KRAB domain that functions as a transcriptional activator. Evolutionary analysis confirms the ancient provenance of this activating KRAB and reveals the independent expansion of KRAB-ZNFs in every vertebrate lineage. Most human ZNF genes, from the most deeply conserved to the primate-specific genes, are highly expressed in immune and reproductive tissues, indicating that they have been enlisted to regulate evolutionarily divergent biological traits.
Collapse
Affiliation(s)
- Hui Liu
- Center for Biophysics and Computational Biology, University of Illinois, Urbana
| | | | | | | | | |
Collapse
|
155
|
Ma AN, Wang H, Guo R, Wang YX, Li W, Cui J, Wang G, Hoffman AR, Hu JF. Targeted gene suppression by inducing de novo DNA methylation in the gene promoter. Epigenetics Chromatin 2014; 7:20. [PMID: 25184003 PMCID: PMC4150861 DOI: 10.1186/1756-8935-7-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 08/01/2014] [Indexed: 11/16/2022] Open
Abstract
Background Targeted gene silencing is an important approach in both drug development and basic research. However, the selection of a potent suppressor has become a significant hurdle to implementing maximal gene inhibition for this approach. We attempted to construct a ‘super suppressor’ by combining the activities of two suppressors that function through distinct epigenetic mechanisms. Results Gene targeting vectors were constructed by fusing a GAL4 DNA-binding domain with a epigenetic suppressor, including CpG DNA methylase Sss1, histone H3 lysine 27 methylase vSET domain, and Kruppel-associated suppression box (KRAB). We found that both Sss1 and KRAB suppressors significantly inhibited the expression of luciferase and copGFP reporter genes. However, the histone H3 lysine 27 methylase vSET did not show significant suppression in this system. Constructs containing both Sss1 and KRAB showed better inhibition than either one alone. In addition, we show that KRAB suppressed gene expression by altering the histone code, but not DNA methylation in the gene promoter. Sss1, on the other hand, not only induced de novo DNA methylation and recruited Heterochromatin Protein 1 (HP1a), but also increased H3K27 and H3K9 methylation in the promoter. Conclusions Epigenetic studies can provide useful data for the selection of suppressors in constructing therapeutic vectors for targeted gene silencing.
Collapse
Affiliation(s)
- Ai-Niu Ma
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.,Stanford University Medical School, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Hong Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.,Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, 519 Dongminzhu Blvd, Changchun 130021, China
| | - Rui Guo
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.,Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, 519 Dongminzhu Blvd, Changchun 130021, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Li
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, 519 Dongminzhu Blvd, Changchun 130021, China
| | - Jiuwei Cui
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, 519 Dongminzhu Blvd, Changchun 130021, China
| | - Guanjun Wang
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, 519 Dongminzhu Blvd, Changchun 130021, China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Ji-Fan Hu
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, 519 Dongminzhu Blvd, Changchun 130021, China.,Stanford University Medical School, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| |
Collapse
|
156
|
Vandevenne M, O'Connell MR, Helder S, Shepherd NE, Matthews JM, Kwan AH, Segal DJ, Mackay JP. Engineering Specificity Changes on a RanBP2 Zinc Finger that Binds Single-Stranded RNA. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
157
|
Vandevenne M, O'Connell MR, Helder S, Shepherd NE, Matthews JM, Kwan AH, Segal DJ, Mackay JP. Engineering specificity changes on a RanBP2 zinc finger that binds single-stranded RNA. Angew Chem Int Ed Engl 2014; 53:7848-52. [PMID: 25044781 DOI: 10.1002/anie.201402980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Indexed: 12/13/2022]
Abstract
The realization that gene transcription is much more pervasive than previously thought and that many diverse RNA species exist in simple as well as complex organisms has triggered efforts to develop functionalized RNA-binding proteins (RBPs) that have the ability to probe and manipulate RNA function. Previously, we showed that the RanBP2-type zinc finger (ZF) domain is a good candidate for an addressable single-stranded-RNA (ssRNA) binding domain that can recognize ssRNA in a modular and specific manner. In the present study, we successfully engineered a sequence specificity change onto this ZF scaffold by using a combinatorial approach based on phage display. This work constitutes a foundation from which a set of RanBP2 ZFs might be developed that is able to recognize any given RNA sequence.
Collapse
Affiliation(s)
- Marylène Vandevenne
- School of Molecular Bioscience, University of Sydney, Sydney, N.S.W 2006 (Australia)
| | | | | | | | | | | | | | | |
Collapse
|
158
|
The functional significance of common polymorphisms in zinc finger transcription factors. G3-GENES GENOMES GENETICS 2014; 4:1647-55. [PMID: 24970883 PMCID: PMC4169156 DOI: 10.1534/g3.114.012195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Variants that alter the DNA-binding specificity of transcription factors could affect the specificity for and expression of potentially many target genes, as has been observed in several tumor-derived mutations. Here we examined if such trans expression quantitative trait loci (trans-eQTLs) could similarly result from common genetic variants. We chose to focus on the Cys2-His2 class of zinc finger transcription factors because they are the most abundant superfamily of transcription factors in human and have well-characterized DNA binding interactions. We identified 430 SNPs that cause missense substitutions in the DNA-contacting residues. Fewer common missense SNPs were found at DNA-contacting residues compared with non-DNA-contacting residues (P = 0.00006), consistent with possible functional selection against SNPs at DNA-contacting positions. Functional predictions based on zinc finger transcription factor (ZNF) DNA binding preferences also suggested that many common substitutions could potentially alter binding specificity. However, Hardy-Weinberg Equilibrium analysis and examination of seven orthologs within the primate lineage failed to find evidence of trans-eQTLs associated with the DNA-contacting positions or evidence of a different selection pressure on a contemporary and evolutionary timescales. The overall conclusion was that common SNPs that alter the DNA-contacting residues of these factors are unlikely to produce strong trans-eQTLs, consistent with the observations by others that trans-eQTLs in humans tend to be few and weak. Some rare SNPs might alter specificity and remained rare due to purifying selection. The study also underscores the need for large-scale eQTLs mapping efforts that might provide experimental evidence for SNPs that alter the choice of transcription factor binding sites.
Collapse
|
159
|
Kambouris M, Maroun RC, Ben-Omran T, Al-Sarraj Y, Errafii K, Ali R, Boulos H, Curmi PA, El-Shanti H. Mutations in zinc finger 407 [ZNF407] cause a unique autosomal recessive cognitive impairment syndrome. Orphanet J Rare Dis 2014; 9:80. [PMID: 24907849 PMCID: PMC4070100 DOI: 10.1186/1750-1172-9-80] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 05/29/2014] [Indexed: 01/14/2023] Open
Abstract
Background A consanguineous Arab family is affected by an apparently novel autosomal recessive disorder characterized by cognitive impairment, failure-to-thrive, hypotonia and dysmorphic features including bilateral ptosis and epicanthic folds, synophrys, midface hypoplasia, downturned mouth corners, thin upper vermillion border and prominent ears, bilateral 5th finger camptodactyly, bilateral short 4th metatarsal bones, and limited knee mobility bilaterally. Methods The family was studied by homozygosity mapping, candidate gene mutation screening and whole Exome Next Generation Sequencing of a single affected member to identify the offending gene and mutation. The mutated gene product was studied by structural bioinformatics methods. Results A damaging c.C5054G mutation affecting an evolutionary highly conserved amino acid p.S1685W was identified in the ZNF407 gene at 18q23. The Serine to Tryptophane mutation affects two of the three ZNF407 isoforms and is located in the last third of the protein, in a linker peptide adjoining two zinc-finger domains. Structural analyses of this mutation shows disruption of an H-bond that locks the relative spatial position of the two fingers, leading to a higher flexibility of the linker and thus to a decreased probability of binding to the target DNA sequence essentially eliminating the functionality of downstream domains and interfering with the expression of various genes under ZNF407 control during fetal brain development. Conclusions ZNF407 is a transcription factor with an essential role in brain development. When specific and limited in number homozygosity intervals exist that harbor the offending gene in consanguineous families, Whole Exome Sequencing of a single affected individual is an efficient approach to gene mapping and mutation identification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hatem El-Shanti
- Qatar Biomedical Research Institute, Medical Genetics Center, 69 Lusail Street, West Bay Area, P,O, Box: 33123, Doha, Qatar.
| |
Collapse
|
160
|
Heger P, Wiehe T. New tools in the box: An evolutionary synopsis of chromatin insulators. Trends Genet 2014; 30:161-71. [DOI: 10.1016/j.tig.2014.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/19/2023]
|
161
|
Is there a telltale RH fingerprint in zinc fingers that recognizes methylated CpG dinucleotides? Trends Biochem Sci 2014; 38:421-2. [PMID: 23992945 DOI: 10.1016/j.tibs.2013.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/31/2013] [Accepted: 06/07/2013] [Indexed: 01/28/2023]
|
162
|
Abstract
The ability of adaptive immune system to protect higher vertebrates from pathogens resides in the ability of B and T cells to express different antigen specific receptors and to respond to different threats by activating distinct differentiation and/or activation pathways. In the past 10 years, the major role of epigenetics in controlling molecular mechanisms responsible for these peculiar features and, more in general, for lymphocyte development has become evident. KRAB-ZFPs is the widest family of mammalian transcriptional repressors, which function through the recruitment of the co-factor KRAB-Associated Protein 1 (KAP1) that in turn engages histone modifiers inducing heterochromatin formation. Although most of the studies on KRAB proteins have been performed in embryonic cells, more recent reports highlighted a relevant role for these proteins also in adult tissues. This article will review the role of KRAB-ZFP and KAP1 in the epigenetic control of mouse and human adaptive immune cells.
Collapse
|
163
|
Gupta A, Christensen RG, Bell HA, Goodwin M, Patel RY, Pandey M, Enuameh MS, Rayla AL, Zhu C, Thibodeau-Beganny S, Brodsky MH, Joung JK, Wolfe SA, Stormo GD. An improved predictive recognition model for Cys(2)-His(2) zinc finger proteins. Nucleic Acids Res 2014; 42:4800-12. [PMID: 24523353 PMCID: PMC4005693 DOI: 10.1093/nar/gku132] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 11/17/2022] Open
Abstract
Cys(2)-His(2) zinc finger proteins (ZFPs) are the largest family of transcription factors in higher metazoans. They also represent the most diverse family with regards to the composition of their recognition sequences. Although there are a number of ZFPs with characterized DNA-binding preferences, the specificity of the vast majority of ZFPs is unknown and cannot be directly inferred by homology due to the diversity of recognition residues present within individual fingers. Given the large number of unique zinc fingers and assemblies present across eukaryotes, a comprehensive predictive recognition model that could accurately estimate the DNA-binding specificity of any ZFP based on its amino acid sequence would have great utility. Toward this goal, we have used the DNA-binding specificities of 678 two-finger modules from both natural and artificial sources to construct a random forest-based predictive model for ZFP recognition. We find that our recognition model outperforms previously described determinant-based recognition models for ZFPs, and can successfully estimate the specificity of naturally occurring ZFPs with previously defined specificities.
Collapse
Affiliation(s)
- Ankit Gupta
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan G. Christensen
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Heather A. Bell
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Mathew Goodwin
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Ronak Y. Patel
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Manishi Pandey
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Metewo Selase Enuameh
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Amy L. Rayla
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Cong Zhu
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Stacey Thibodeau-Beganny
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael H. Brodsky
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - J. Keith Joung
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Scot A. Wolfe
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Gary D. Stormo
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
164
|
The B-subdomain of the Xenopus laevis XFIN KRAB-AB domain is responsible for its weaker transcriptional repressor activity compared to human ZNF10/Kox1. PLoS One 2014; 9:e87609. [PMID: 24498343 PMCID: PMC3912051 DOI: 10.1371/journal.pone.0087609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/23/2013] [Indexed: 12/12/2022] Open
Abstract
The Krüppel-associated box (KRAB) domain interacts with the nuclear hub protein TRIM28 to initiate or mediate chromatin-dependent processes like transcriptional repression, imprinting or suppression of endogenous retroviruses. The prototype KRAB domain initially identified in ZNF10/KOX1 encompasses two subdomains A and B that are found in hundreds of zinc finger transcription factors studied in human and murine genomes. Here we demonstrate for the first time transcriptional repressor activity of an amphibian KRAB domain. After sequence correction, the updated KRAB-AB domain of zinc finger protein XFIN from the frog Xenopus laevis was found to confer transcriptional repression in reporter assays in Xenopus laevis A6 kidney cells as well as in human HeLa, but not in the minnow Pimephales promelas fish cell line EPC. Binding of the XFIN KRAB-AB domain to human TRIM28 was demonstrated in a classical co-immunoprecipitation approach and visualized in a single-cell compartmentalization assay. XFIN-AB displayed reduced potency in repression as well as lower strength of interaction with TRIM28 compared to ZNF10 KRAB-AB. KRAB-B subdomain swapping between the two KRAB domains indicated that it was mainly the KRAB-B subdomain of XFIN that was responsible for its lower capacity in repression and binding to human TRIM28. In EPC fish cells, ZNF10 and XFIN KRAB repressor activity could be partially restored to low levels by adding exogenous human TRIM28. In contrast to XFIN, we did not find any transcriptional repression activity for the KRAB-like domain of human PRDM9 in HeLa cells. PRDM9 is thought to harbor an evolutionary older domain related to KRAB whose homologs even occur in invertebrates. Our results support the notion that functional bona fide KRAB domains which confer transcriptional repression and interact with TRIM28 most likely co-evolved together with TRIM28 at the beginning of tetrapode evolution.
Collapse
|
165
|
Lupo A, Cesaro E, Montano G, Zurlo D, Izzo P, Costanzo P. KRAB-Zinc Finger Proteins: A Repressor Family Displaying Multiple Biological Functions. Curr Genomics 2013; 14:268-78. [PMID: 24294107 PMCID: PMC3731817 DOI: 10.2174/13892029113149990002] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/23/2022] Open
Abstract
Zinc finger proteins containing the Kruppel associated box (KRAB-ZFPs) constitute the largest individual family of transcriptional repressors encoded by the genomes of higher organisms. KRAB domain, positioned at the NH2 terminus of the KRAB-ZFPs, interacts with a scaffold protein, KAP-1, which is able to recruit various transcriptional factors causing repression of genes to which KRAB ZFPs bind. The relevance of such repression is reflected in the large number of the KRAB zinc finger protein genes in the human genome. However, in spite of their numerical abundance little is currently known about the gene targets and the physiological functions of KRAB- ZFPs. However, emerging evidence links the transcriptional repression mediated by the KRAB-ZFPs to cell proliferation, differentiation, apoptosis and cancer. Moreover, the fact that KRAB containing proteins are vertebrate-specific suggests that they have evolved recently, and that their key roles lie in some aspects of vertebrate development. In this review, we will briefly discuss some regulatory functions of the KRAB-ZFPs in different physiological and pathological states, thus contributing to better understand their biological roles.
Collapse
Affiliation(s)
- Angelo Lupo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", Via S. Pansini 5, 80131 Napoli, Italy; ; Dipartimento di Scienze per la Biologia, la Geologia e l'Ambiente, Facoltà di Scienze, Università del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | | | | | | | | | | |
Collapse
|
166
|
Chowdhury S, Bandholz AM, Parkash S, Dyack S, Rideout AL, Leppig KA, Thiese H, Wheeler PG, Tsang M, Ballif BC, Shaffer LG, Torchia BS, Ellison JW, Rosenfeld JA. Phenotypic and molecular characterization of 19q12q13.1 deletions: a report of five patients. Am J Med Genet A 2013; 164A:62-9. [PMID: 24243649 DOI: 10.1002/ajmg.a.36201] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/25/2013] [Indexed: 12/17/2022]
Abstract
A syndrome associated with 19q13.11 microdeletions has been proposed based on seven previous cases that displayed developmental delay, intellectual disability, speech disturbances, pre- and post-natal growth retardation, microcephaly, ectodermal dysplasia, and genital malformations in males. A 324-kb critical region was previously identified as the smallest region of overlap (SRO) for this syndrome. To further characterize this microdeletion syndrome, we present five patients with deletions within 19q12q13.12 identified using a whole-genome oligonucleotide microarray. Patients 1 and 2 possess deletions overlapping the SRO, and Patients 3-5 have deletions proximal to the SRO. Patients 1 and 2 share significant phenotypic overlap with previously reported cases, providing further definition of the 19q13.11 microdeletion syndrome phenotype, including the first presentation of ectrodactyly in the syndrome. Patients 3-5, whose features include developmental delay, growth retardation, and feeding problems, support the presence of dosage-sensitive genes outside the SRO that may contribute to the abnormal phenotypes observed in this syndrome. Multiple genotype-phenotype correlations outside the SRO are explored, including further validation of the deletion of WTIP as a candidate for male hypospadias observed in this syndrome. We postulate that unique patient-specific deletions within 19q12q13.1 may explain the phenotypic variability observed in this emerging contiguous gene deletion syndrome.
Collapse
Affiliation(s)
- Shimul Chowdhury
- Providence Sacred Heart Medical Center, Molecular Diagnostics, Spokane, Washington
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Persikov AV, Rowland EF, Oakes BL, Singh M, Noyes MB. Deep sequencing of large library selections allows computational discovery of diverse sets of zinc fingers that bind common targets. Nucleic Acids Res 2013; 42:1497-508. [PMID: 24214968 PMCID: PMC3919609 DOI: 10.1093/nar/gkt1034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Cys2His2 zinc finger (ZF) is the most frequently found sequence-specific DNA-binding domain in eukaryotic proteins. The ZF's modular protein-DNA interface has also served as a platform for genome engineering applications. Despite decades of intense study, a predictive understanding of the DNA-binding specificities of either natural or engineered ZF domains remains elusive. To help fill this gap, we developed an integrated experimental-computational approach to enrich and recover distinct groups of ZFs that bind common targets. To showcase the power of our approach, we built several large ZF libraries and demonstrated their excellent diversity. As proof of principle, we used one of these ZF libraries to select and recover thousands of ZFs that bind several 3-nt targets of interest. We were then able to computationally cluster these recovered ZFs to reveal several distinct classes of proteins, all recovered from a single selection, to bind the same target. Finally, for each target studied, we confirmed that one or more representative ZFs yield the desired specificity. In sum, the described approach enables comprehensive large-scale selection and characterization of ZF specificities and should be a great aid in furthering our understanding of the ZF domain.
Collapse
Affiliation(s)
- Anton V Persikov
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA, Department of Computer Science, Princeton University, Princeton, NJ 08544, USA and Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
168
|
The KRAB zinc finger protein RSL1 modulates sex-biased gene expression in liver and adipose tissue to maintain metabolic homeostasis. Mol Cell Biol 2013; 34:221-32. [PMID: 24190968 DOI: 10.1128/mcb.00875-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Krüppel-associated box zinc finger proteins (KRAB-ZFPs) are a huge family of vertebrate-specific repressors that modify gene expression in an epigenetic manner. Despite a well-defined repression mechanism, few biological roles or gene targets of KRAB-ZFP are known. Regulator of sex-limitation 1 (RSL1) is a mouse KRAB-ZFP that enforces male-predominant expression in the liver, affecting body mass and pubertal timing. Here we show that female but not male Rsl1(-/-) mice gain more weight than wild-type mice on a high-fat diet (HFD) and that key liver and white adipose tissue (WAT) metabolic genes are altered in both Rsl1(-/-) sexes in response to dietary stress. Expression profiling of Rsl1-sensitive genes in liver and WAT indicates that RSL1 accentuates sex-biased gene expression in liver but greatly diminishes it in WAT. RSL1 expression solely in liver is sufficient to limit diet-induced weight gain and suppress lipogenic genes in WAT, indicating that RSL1 balances metabolism via liver-to-adipose-tissue communication. RSL1's effects on adult physiology exemplify a significant modulatory capacity of KRAB-ZFPs, in the absence of which there is widespread metabolic dysregulation. This ability to buffer against gene expression noise, coupled with extensive individual genetic variation, highlights the enormous potential of KRAB-Zfp genes as candidate risk factors for complex diseases.
Collapse
|
169
|
Takikawa S, Wang X, Ray C, Vakulenko M, Bell FT, Li X. Human and mouse ZFP57 proteins are functionally interchangeable in maintaining genomic imprinting at multiple imprinted regions in mouse ES cells. Epigenetics 2013; 8:1268-79. [PMID: 24135613 DOI: 10.4161/epi.26544] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Genomic imprinting is a common epigenetic phenomenon in mammals. Dysregulation of genomic imprinting has been implicated in a variety of human diseases. ZFP57 is a master regulator in genomic imprinting. Loss of ZFP57 causes loss of DNA methylation imprint at multiple imprinted regions in mouse embryos, as well as in embryonic stem (ES) cells. Similarly, mutations in human ZFP57 result in hypomethylation at many imprinted regions and are associated with transient neonatal diabetes and other human diseases. Mouse and human Zfp57 genes are located in the same syntenic block. However, mouse and human ZFP57 proteins only display about 50% sequence identity with different number of zinc fingers. It is not clear if they share similar mechanisms in maintaining genomic imprinting. Here we report that mouse and human ZFP57 proteins are functionally interchangeable. Expression of exogenous wild-type human ZFP57 could maintain DNA methylation imprint at three imprinted regions in mouse ES cells in the absence of endogenous mouse ZFP57. However, mutant human ZFP57 proteins containing the mutations found in human patients could not substitute for endogenous mouse ZFP57 in maintaining genomic imprinting in ES cells. Like mouse ZFP57, human ZFP57 and its mutant proteins could bind to mouse KAP1, the universal cofactor for KRAB zinc finger proteins, in mouse ES cells. Thus, we conclude that mouse and human ZFP57 are orthologs despite relatively low sequence identity and mouse ES cell system that we had established before is a valuable system for functional analyses of wild-type and mutant human ZFP57 proteins.
Collapse
Affiliation(s)
- Sachiko Takikawa
- Black Family Stem Cell Institute; Department of Developmental and Regenerative Biology; Department of Oncological Sciences; Graduate School of Biological Sciences; Icahn School of Medicine at Mount Sinai; New York, NY USA
| | - Xin Wang
- Black Family Stem Cell Institute; Department of Developmental and Regenerative Biology; Department of Oncological Sciences; Graduate School of Biological Sciences; Icahn School of Medicine at Mount Sinai; New York, NY USA
| | - Chelsea Ray
- Black Family Stem Cell Institute; Department of Developmental and Regenerative Biology; Department of Oncological Sciences; Graduate School of Biological Sciences; Icahn School of Medicine at Mount Sinai; New York, NY USA
| | - Max Vakulenko
- Black Family Stem Cell Institute; Department of Developmental and Regenerative Biology; Department of Oncological Sciences; Graduate School of Biological Sciences; Icahn School of Medicine at Mount Sinai; New York, NY USA
| | - Fong T Bell
- Black Family Stem Cell Institute; Department of Developmental and Regenerative Biology; Department of Oncological Sciences; Graduate School of Biological Sciences; Icahn School of Medicine at Mount Sinai; New York, NY USA
| | - Xiajun Li
- Black Family Stem Cell Institute; Department of Developmental and Regenerative Biology; Department of Oncological Sciences; Graduate School of Biological Sciences; Icahn School of Medicine at Mount Sinai; New York, NY USA
| |
Collapse
|
170
|
Bernard D, Bédard M, Bilodeau J, Lavigne P. Structural and dynamical characterization of the Miz-1 zinc fingers 5-8 by solution-state NMR. JOURNAL OF BIOMOLECULAR NMR 2013; 57:103-116. [PMID: 23975355 DOI: 10.1007/s10858-013-9770-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/06/2013] [Indexed: 06/02/2023]
Abstract
Myc-interacting zinc finger protein-1 (Miz-1) is a BTB/POZ transcription factor that activates the transcription of cytostatic genes, such as p15(INK4B) or p21(CIP1). The C-terminus of Miz-1 contains 13 consensus C2H2 zinc finger domains (ZF). ZFs 1-4 have been shown to interact with SMAD3/4, while the remaining ZFs are expected to bind the promoters of target genes. We have noted unusual features in ZF 5 and the linker between ZFs 5 and 6. Indeed, a glutamate is found instead of the conserved basic residue two positions before the second zinc-coordinating histidine on the ZF 5 helix, and the linker sequence is DTDKE in place of the classical TGEKP sequence. In a canonical ββα fold, such unusual primary structure elements should cause severe electrostatic repulsions. In this context, we have characterized the structure and the dynamics of a Miz-1 construct comprising ZFs 5-8 (Miz 5-8) by solution-state NMR. Whilst ZFs 5, 7 and 8 were shown to adopt the classical ββα fold for C2H2 ZFs, the number of long-range NOEs was insufficient to define a classical fold for ZF 6. We show by using (15)N-relaxation dispersion experiments that this lack of NOEs is due to the presence of extensive motions on the μs-ms timescale. Since this negatively charged region would have to be located near the phosphodiester backbone in a DNA complex, we propose that in addition to promoting conformational searches, it could serve as a hinge region to keep ZFs 1-4 away from DNA.
Collapse
Affiliation(s)
- David Bernard
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | | | | | | |
Collapse
|
171
|
Ishiuchi T, Torres-Padilla ME. Towards an understanding of the regulatory mechanisms of totipotency. Curr Opin Genet Dev 2013; 23:512-8. [DOI: 10.1016/j.gde.2013.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/26/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
|
172
|
Colombo J, Provazzi PJS, Calmon MF, Pires LC, Rodrigues NC, Petl P, Fossey MA, de Souza FP, Canduri F, Rahal P. Expression, purification and molecular analysis of the human ZNF706 protein. Biol Proced Online 2013; 15:10. [PMID: 24060497 PMCID: PMC3848911 DOI: 10.1186/1480-9222-15-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/14/2013] [Indexed: 01/14/2023] Open
Abstract
Background The ZNF706 gene encodes a protein that belongs to the zinc finger family of proteins and was found to be highly expressed in laryngeal cancer, making the structure and function of ZNF706 worthy of investigation. In this study, we expressed and purified recombinant human ZNF706 that was suitable for structural analysis in Escherichia coli BL21(DH3). Findings ZNF706 mRNA was extracted from a larynx tissue sample, and cDNA was ligated into a cloning vector using the TOPO method. ZNF706 protein was expressed according to the E. coli expression system procedures and was purified using a nickel-affinity column. The structural qualities of recombinant ZNF706 and quantification alpha, beta sheet, and other structures were obtained by spectroscopy of circular dichroism. ZNF706's structural modeling showed that it is composed of α-helices (28.3%), β-strands (19.4%), and turns (20.9%), in agreement with the spectral data from the dichroism analysis. Conclusions We used circular dichroism and molecular modeling to examine the structure of ZNF706. The results suggest that human recombinant ZNF706 keeps its secondary structures and is appropriate for functional and structural studies. The method of expressing ZNF706 protein used in this study can be used to direct various functional and structural studies that will contribute to the understanding of its function as well as its relationship with other biological molecules and its putative role in carcinogenesis.
Collapse
Affiliation(s)
- Jucimara Colombo
- Department of Biology, São Paulo State University - UNESP, CEP: 15054-000, São José do Rio Preto /SP, Brazil
| | | | - Marilia Freitas Calmon
- Department of Biology, São Paulo State University - UNESP, CEP: 15054-000, São José do Rio Preto /SP, Brazil
| | - Lilian Campos Pires
- Department of Biology, São Paulo State University - UNESP, CEP: 15054-000, São José do Rio Preto /SP, Brazil
| | - Nathália Campos Rodrigues
- Institute of Chemistry of São Carlos, Department of Chemistry and Molecular Physics, University of São Paulo - USP, CEP: 13560-970, São Carlos /SP, Brazil
| | - Paulo Petl
- Department of Biology, São Paulo State University - UNESP, CEP: 15054-000, São José do Rio Preto /SP, Brazil
| | - Marcelo Andrés Fossey
- Department of Physics, São Paulo State University - UNESP, CEP: 15054-000, São José do Rio Preto /SP, Brazil
| | - Fátima Pereira de Souza
- Department of Physics, São Paulo State University - UNESP, CEP: 15054-000, São José do Rio Preto /SP, Brazil
| | - Fernanda Canduri
- Institute of Chemistry of São Carlos, Department of Chemistry and Molecular Physics, University of São Paulo - USP, CEP: 13560-970, São Carlos /SP, Brazil
| | - Paula Rahal
- Department of Biology, São Paulo State University - UNESP, CEP: 15054-000, São José do Rio Preto /SP, Brazil
| |
Collapse
|
173
|
Zhang W, Edwards A, Fan W, Fang Z, Deininger P, Zhang K. Inferring the expression variability of human transposable element-derived exons by linear model analysis of deep RNA sequencing data. BMC Genomics 2013; 14:584. [PMID: 23984937 PMCID: PMC3765721 DOI: 10.1186/1471-2164-14-584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/13/2013] [Indexed: 12/14/2022] Open
Abstract
Background The exonization of transposable elements (TEs) has proven to be a significant mechanism for the creation of novel exons. Existing knowledge of the retention patterns of TE exons in mRNAs were mainly established by the analysis of Expressed Sequence Tag (EST) data and microarray data. Results This study seeks to validate and extend previous studies on the expression of TE exons by an integrative statistical analysis of high throughput RNA sequencing data. We collected 26 RNA-seq datasets spanning multiple tissues and cancer types. The exon-level digital expressions (indicating retention rates in mRNAs) were quantified by a double normalized measure, called the rescaled RPKM (Reads Per Kilobase of exon model per Million mapped reads). We analyzed the distribution profiles and the variability (across samples and between tissue/disease groups) of TE exon expressions, and compared them with those of other constitutive or cassette exons. We inferred the effects of four genomic factors, including the location, length, cognate TE family and TE nucleotide proportion (RTE, see Methods section) of a TE exon, on the exons’ expression level and expression variability. We also investigated the biological implications of an assembly of highly-expressed TE exons. Conclusion Our analysis confirmed prior studies from the following four aspects. First, with relatively high expression variability, most TE exons in mRNAs, especially those without exact counterparts in the UCSC RefSeq (Reference Sequence) gene tables, demonstrate low but still detectable expression levels in most tissue samples. Second, the TE exons in coding DNA sequences (CDSs) are less highly expressed than those in 3′ (5′) untranslated regions (UTRs). Third, the exons derived from chronologically ancient repeat elements, such as MIRs, tend to be highly expressed in comparison with those derived from younger TEs. Fourth, the previously observed negative relationship between the lengths of exons and the inclusion levels in transcripts is also true for exonized TEs. Furthermore, our study resulted in several novel findings. They include: (1) for the TE exons with non-zero expression and as shown in most of the studied biological samples, a high TE nucleotide proportion leads to their lower retention rates in mRNAs; (2) the considered genomic features (i.e. a continuous variable such as the exon length or a category indicator such as 3′UTR) influence the expression level and the expression variability (CV) of TE exons in an inverse manner; (3) not only the exons derived from Alu elements but also the exons from the TEs of other families were preferentially established in zinc finger (ZNF) genes.
Collapse
Affiliation(s)
- Wensheng Zhang
- Department of Computer Science, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA.
| | | | | | | | | | | |
Collapse
|
174
|
Seetharam A, Stuart GW. A study on the distribution of 37 well conserved families of C2H2 zinc finger genes in eukaryotes. BMC Genomics 2013; 14:420. [PMID: 23800006 PMCID: PMC3701560 DOI: 10.1186/1471-2164-14-420] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 06/19/2013] [Indexed: 12/17/2022] Open
Abstract
Background The C2H2 zinc-finger (ZNF) containing gene family is one of the largest and most complex gene families in metazoan genomes. These genes are known to exist in almost all eukaryotes, and they constitute a major subset of eukaryotic transcription factors. The genes of this family usually occur as clusters in genomes and are thought to have undergone a massive expansion in vertebrates by multiple tandem duplication events (BMC Evol Biol 8:176, 2008). Results In this study, we combined two popular approaches for homolog detection, Reciprocal Best Hit (RBH) (Proc Natl Acad Sci USA 95:6239–6244, 1998) and Hidden–Markov model (HMM) profiles search (Bioinformatics 14:755-763, 1998), on a diverse set of complete genomes of 124 eukaryotic species ranging from excavates to humans to identify all detectable members of 37 C2H2 ZNF gene families. We succeeded in identifying 3,890 genes as distinct members of 37 C2H2 gene families. These 37 families are distributed among the eukaryotes as progressive additions of gene blocks with increasing complexity of the organisms. The first block featuring the protists had 7 families, the second block featuring plants had 2 families, the third block featuring the fungi had 2 families (one of which was also present in plants) and the final block consisted of metazoans with 25 families. Among the metazoans, the simpler unicellular metazoans had just 15 of the 25 families while most of the bilaterians had all 25 families making up a total of 37 families. Multiple potential examples of lineage-specific gene duplications and gene losses were also observed. Conclusions Our hybrid approach combines features of the both RBH and HMM methods for homolog detection. This largely automated technique is much faster than manual methods and is able to detect homologs accurately and efficiently among a diverse set of organisms. Our analysis of the 37 evolutionarily conserved C2H2 ZNF gene families revealed a stepwise appearance of ZNF families, agreeing well with the phylogenetic relationship of the organisms compared and their presumed stepwise increase in complexity (Science 300:1694, 2003).
Collapse
Affiliation(s)
- Arun Seetharam
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA.
| | | |
Collapse
|
175
|
Vinogradov AE. Density peaks of paralog pairs in human and mouse genomes. Gene 2013; 527:55-61. [PMID: 23751307 DOI: 10.1016/j.gene.2013.05.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/10/2013] [Accepted: 05/12/2013] [Indexed: 11/30/2022]
Abstract
Paralog gene trees, which reflect the increase of genomic complexity in the evolution, can be complicated and ambiguous. A simpler complementary approach is analysis of density distribution of paralog pairs. It can reveal general features of genome evolution, which may be hidden in the forest of gene trees. It is known that distribution of human paralog pairs along the axis of protein divergence between pair members forms two main peaks. Here I show that there are three main peaks in the mouse genome. Thus, the multimodality of paralog pair distribution seems to be a fundamental feature of mammalian genomes. Despite the great diversity of domains presented in small amounts or in multidomain architectures with a few predominant domains, both in human and mouse the first peak consists mostly of gene pairs with zinc finger domains or olfactory receptor domain. In the mouse the olfactory receptor predominates, which stipulates the three-peak distribution (since in the olfactory receptors the second peak is closer to the first peak than in other genes). The mammalian-wide zinc finger orthologs are biased towards the second peak. Thus, the marsupial orthologs are nearly absent in the first peak of human and mouse. The gene pairs in the first peak show a lower ratio of nonsynonymous to synonymous substitutions, which suggests that their evolution is more constrained. The plausible explanation is that they are in subfunctionalization state (partition of initial function of ancestral gene), whereas the second peak contains gene pairs that are already in neofunctionalization state (acquiring of novel functions). These data suggest that the adaptive radiation of mammals was accompanied by a burst of duplication of zinc finger genes, which are located in the first (most recent) peak of paralog pairs.
Collapse
|
176
|
Billings T, Parvanov ED, Baker CL, Walker M, Paigen K, Petkov PM. DNA binding specificities of the long zinc-finger recombination protein PRDM9. Genome Biol 2013; 14:R35. [PMID: 23618393 PMCID: PMC4053984 DOI: 10.1186/gb-2013-14-4-r35] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/24/2013] [Indexed: 12/13/2022] Open
Abstract
Background Meiotic recombination ensures proper segregation of homologous chromosomes and creates genetic variation. In many organisms, recombination occurs at limited sites, termed 'hotspots', whose positions in mammals are determined by PR domain member 9 (PRDM9), a long-array zinc-finger and chromatin-modifier protein. Determining the rules governing the DNA binding of PRDM9 is a major issue in understanding how it functions. Results Mouse PRDM9 protein variants bind to hotspot DNA sequences in a manner that is specific for both PRDM9 and DNA haplotypes, and that in vitro binding parallels its in vivo biological activity. Examining four hotspots, three activated by Prdm9Cst and one activated by Prdm9Dom2, we found that all binding sites required the full array of 11 or 12 contiguous fingers, depending on the allele, and that there was little sequence similarity between the binding sites of the three Prdm9Cst activated hotspots. The binding specificity of each position in the Hlx1 binding site, activated by Prdm9Cst, was tested by mutating each nucleotide to its three alternatives. The 31 positions along the binding site varied considerably in the ability of alternative bases to support binding, which also implicates a role for additional binding to the DNA phosphate backbone. Conclusions These results, which provide the first detailed mapping of PRDM9 binding to DNA and, to our knowledge, the most detailed analysis yet of DNA binding by a long zinc-finger array, make clear that the binding specificities of PRDM9, and possibly other long-array zinc-finger proteins, are unusually complex.
Collapse
|
177
|
Rowe HM, Friedli M, Offner S, Verp S, Mesnard D, Marquis J, Aktas T, Trono D. De novo DNA methylation of endogenous retroviruses is shaped by KRAB-ZFPs/KAP1 and ESET. Development 2013; 140:519-29. [PMID: 23293284 DOI: 10.1242/dev.087585] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endogenous retroviruses (ERVs) undergo de novo DNA methylation during the first few days of mammalian embryogenesis, although the factors that control the targeting of this process are largely unknown. We asked whether KAP1 (KRAB-associated protein 1) is involved in this mechanism because of its previously defined role in maintaining the silencing of ERVs through the histone methyltransferase ESET and histone H3 lysine 9 trimethylation. Here, we demonstrate that introduced ERV sequences are sufficient to direct rapid de novo methylation of a flanked promoter in embryonic stem (ES) cells. This mechanism requires the presence of an ERV sequence-recognizing KRAB zinc-finger protein (ZFP) and both KAP1 and ESET. Furthermore, this process can also take place on a strong cellular promoter and leads to methylation signatures that are subsequently maintained in vivo throughout embryogenesis. Finally, we show that methylation of ERVs residing in the genome is affected by knockout of KAP1 in early embryos. KRAB-ZFPs, KAP1 and ESET are thus likely to be responsible for the early embryonic instatement of stable epigenetic marks at ERV-containing loci.
Collapse
Affiliation(s)
- Helen M Rowe
- School of Life Sciences and Frontiers in Genetics Program, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Enuameh MS, Asriyan Y, Richards A, Christensen RG, Hall VL, Kazemian M, Zhu C, Pham H, Cheng Q, Blatti C, Brasefield JA, Basciotta MD, Ou J, McNulty JC, Zhu LJ, Celniker SE, Sinha S, Stormo GD, Brodsky MH, Wolfe SA. Global analysis of Drosophila Cys₂-His₂ zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants. Genome Res 2013; 23:928-40. [PMID: 23471540 PMCID: PMC3668361 DOI: 10.1101/gr.151472.112] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cys2-His2 zinc finger proteins (ZFPs) are the largest group of transcription factors in higher metazoans. A complete characterization of these ZFPs and their associated target sequences is pivotal to fully annotate transcriptional regulatory networks in metazoan genomes. As a first step in this process, we have characterized the DNA-binding specificities of 129 zinc finger sets from Drosophila using a bacterial one-hybrid system. This data set contains the DNA-binding specificities for at least one encoded ZFP from 70 unique genes and 23 alternate splice isoforms representing the largest set of characterized ZFPs from any organism described to date. These recognition motifs can be used to predict genomic binding sites for these factors within the fruit fly genome. Subsets of fingers from these ZFPs were characterized to define their orientation and register on their recognition sequences, thereby allowing us to define the recognition diversity within this finger set. We find that the characterized fingers can specify 47 of the 64 possible DNA triplets. To confirm the utility of our finger recognition models, we employed subsets of Drosophila fingers in combination with an existing archive of artificial zinc finger modules to create ZFPs with novel DNA-binding specificity. These hybrids of natural and artificial fingers can be used to create functional zinc finger nucleases for editing vertebrate genomes.
Collapse
Affiliation(s)
- Metewo Selase Enuameh
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Rowe HM, Kapopoulou A, Corsinotti A, Fasching L, Macfarlan TS, Tarabay Y, Viville S, Jakobsson J, Pfaff SL, Trono D. TRIM28 repression of retrotransposon-based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells. Genome Res 2013; 23:452-61. [PMID: 23233547 PMCID: PMC3589534 DOI: 10.1101/gr.147678.112] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/06/2012] [Indexed: 02/03/2023]
Abstract
TRIM28 is critical for the silencing of endogenous retroviruses (ERVs) in embryonic stem (ES) cells. Here, we reveal that an essential impact of this process is the protection of cellular gene expression in early embryos from perturbation by cis-acting activators contained within these retroelements. In TRIM28-depleted ES cells, repressive chromatin marks at ERVs are replaced by histone modifications typical of active enhancers, stimulating transcription of nearby cellular genes, notably those harboring bivalent promoters. Correspondingly, ERV-derived sequences can repress or enhance expression from an adjacent promoter in transgenic embryos depending on their TRIM28 sensitivity in ES cells. TRIM28-mediated control of ERVs is therefore crucial not just to prevent retrotransposition, but more broadly to safeguard the transcriptional dynamics of early embryos.
Collapse
Affiliation(s)
- Helen M. Rowe
- School of Life Sciences and Frontiers in Genetics Program, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Adamandia Kapopoulou
- School of Life Sciences and Frontiers in Genetics Program, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Swiss Bioinformatics Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andrea Corsinotti
- School of Life Sciences and Frontiers in Genetics Program, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Liana Fasching
- Wallenberg Neuroscience Center, Lund University, BMC A11, 221 84 Lund, Sweden
| | - Todd S. Macfarlan
- Gene Expression Laboratory and the Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Yara Tarabay
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, BP10142, Illkirch Cedex, France
| | - Stéphane Viville
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, BP10142, Illkirch Cedex, France
| | - Johan Jakobsson
- Wallenberg Neuroscience Center, Lund University, BMC A11, 221 84 Lund, Sweden
| | - Samuel L. Pfaff
- Gene Expression Laboratory and the Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Didier Trono
- School of Life Sciences and Frontiers in Genetics Program, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
180
|
Global and stage specific patterns of Krüppel-associated-box zinc finger protein gene expression in murine early embryonic cells. PLoS One 2013; 8:e56721. [PMID: 23451074 PMCID: PMC3579818 DOI: 10.1371/journal.pone.0056721] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/14/2013] [Indexed: 01/24/2023] Open
Abstract
Highly coordinated transcription networks orchestrate the self-renewal of pluripotent stem cell and the earliest steps of mammalian development. KRAB-containing zinc finger proteins represent the largest group of transcription factors encoded by the genomes of higher vertebrates including mice and humans. Together with their putatively universal cofactor KAP1, they have been implicated in events as diverse as the silencing of endogenous retroelements, the maintenance of imprinting and the pluripotent self-renewal of embryonic stem cells, although the genomic targets and specific functions of individual members of this gene family remain largely undefined. Here, we first generated a list of Ensembl-annotated KRAB-containing genes encoding the mouse and human genomes. We then defined the transcription levels of these genes in murine early embryonic cells. We found that the majority of KRAB-ZFP genes are expressed in mouse pluripotent stem cells and other early progenitors. However, we also identified distinctively cell- or stage-specific patterns of expression, some of which are pluripotency-restricted. Finally, we determined that individual KRAB-ZFP genes exhibit highly distinctive modes of expression, even when grouped in genomic clusters, and that these cannot be correlated with the presence of prototypic repressive or activating chromatin marks. These results pave the way to delineating the role of specific KRAB-ZFPs in early embryogenesis.
Collapse
|
181
|
Vandevenne M, Jacques DA, Artuz C, Nguyen CD, Kwan AHY, Segal DJ, Matthews JM, Crossley M, Guss JM, Mackay JP. New insights into DNA recognition by zinc fingers revealed by structural analysis of the oncoprotein ZNF217. J Biol Chem 2013; 288:10616-27. [PMID: 23436653 DOI: 10.1074/jbc.m112.441451] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Classical zinc fingers (ZFs) are one of the most abundant and best characterized DNA-binding domains. Typically, tandem arrays of three or more ZFs bind DNA target sequences with high affinity and specificity, and the mode of DNA recognition is sufficiently well understood that tailor-made ZF-based DNA-binding proteins can be engineered. We have shown previously that a two-zinc finger unit found in the transcriptional coregulator ZNF217 recognizes DNA but with an affinity and specificity that is lower than other ZF arrays. To investigate the basis for these differences, we determined the structure of a ZNF217-DNA complex. We show that although the overall position of the ZFs on the DNA closely resembles that observed for other ZFs, the side-chain interaction pattern differs substantially from the canonical model. The structure also reveals the presence of two methyl-π interactions, each featuring a tyrosine contacting a thymine methyl group. To our knowledge, interactions of this type have not previously been described in classical ZF-DNA complexes. Finally, we investigated the sequence specificity of this two-ZF unit and discuss how ZNF217 might discriminate its target DNA sites in the cell.
Collapse
Affiliation(s)
- Marylène Vandevenne
- School of Molecular Bioscience, University of Sydney, New South Wales, 2006 Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Ngondo-Mbongo RP, Myslinski E, Aster JC, Carbon P. Modulation of gene expression via overlapping binding sites exerted by ZNF143, Notch1 and THAP11. Nucleic Acids Res 2013; 41:4000-14. [PMID: 23408857 PMCID: PMC3627581 DOI: 10.1093/nar/gkt088] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
ZNF143 is a zinc-finger protein involved in the transcriptional regulation of both coding and non-coding genes from polymerase II and III promoters. Our study deciphers the genome-wide regulatory role of ZNF143 in relation with the two previously unrelated transcription factors Notch1/ICN1 and thanatos-associated protein 11 (THAP11) in several human and murine cells. We show that two distinct motifs, SBS1 and SBS2, are associated to ZNF143-binding events in promoters of >3000 genes. Without co-occupation, these sites are also bound by Notch1/ICN1 in T-lymphoblastic leukaemia cells as well as by THAP11, a factor involved in self-renewal of embryonic stem cells. We present evidence that ICN1 binding overlaps with ZNF143 binding events at the SBS1 and SBS2 motifs, whereas the overlap occurs only at SBS2 for THAP11. We demonstrate that the three factors modulate expression of common target genes through the mutually exclusive occupation of overlapping binding sites. The model we propose predicts that the binding competition between the three factors controls biological processes such as rapid cell growth of both neoplastic and stem cells. Overall, our study establishes a novel relationship between ZNF143, THAP11 and ICN1 and reveals important insights into ZNF143-mediated gene regulation.
Collapse
Affiliation(s)
- Richard Patryk Ngondo-Mbongo
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France
| | | | | | | |
Collapse
|
183
|
Gifford WD, Pfaff SL, Macfarlan TS. Transposable elements as genetic regulatory substrates in early development. Trends Cell Biol 2013; 23:218-26. [PMID: 23411159 DOI: 10.1016/j.tcb.2013.01.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/17/2012] [Accepted: 01/03/2013] [Indexed: 01/07/2023]
Abstract
The abundance and ancient origins of transposable elements (TEs) in eukaryotic genomes has spawned research into the potential symbiotic relationship between these elements and their hosts. In this review, we introduce the diversity of TEs, discuss how distinct classes are uniquely regulated in development, and describe how they appear to have been coopted for the purposes of gene regulation and the orchestration of a number of processes during early embryonic development. Although young, active TEs play an important role in somatic tissues and evolution, we focus mostly on the contributions of the older, fixed elements in mammalian genomes. We also discuss major challenges inherent in the study of TEs and contemplate future experimental approaches to further investigate how they coordinate developmental processes.
Collapse
Affiliation(s)
- Wesley D Gifford
- Gene Expression Laboratory and the Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
184
|
Morgan AA, Rubenstein E. Proline: the distribution, frequency, positioning, and common functional roles of proline and polyproline sequences in the human proteome. PLoS One 2013; 8:e53785. [PMID: 23372670 PMCID: PMC3556072 DOI: 10.1371/journal.pone.0053785] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/05/2012] [Indexed: 11/19/2022] Open
Abstract
Proline is an anomalous amino acid. Its nitrogen atom is covalently locked within a ring, thus it is the only proteinogenic amino acid with a constrained phi angle. Sequences of three consecutive prolines can fold into polyproline helices, structures that join alpha helices and beta pleats as architectural motifs in protein configuration. Triproline helices are participants in protein-protein signaling interactions. Longer spans of repeat prolines also occur, containing as many as 27 consecutive proline residues. Little is known about the frequency, positioning, and functional significance of these proline sequences. Therefore we have undertaken a systematic bioinformatics study of proline residues in proteins. We analyzed the distribution and frequency of 687,434 proline residues among 18,666 human proteins, identifying single residues, dimers, trimers, and longer repeats. Proline accounts for 6.3% of the 10,882,808 protein amino acids. Of all proline residues, 4.4% are in trimers or longer spans. We detected patterns that influence function based on proline location, spacing, and concentration. We propose a classification based on proline-rich, polyproline-rich, and proline-poor status. Whereas singlet proline residues are often found in proteins that display recurring architectural patterns, trimers or longer proline sequences tend be associated with the absence of repetitive structural motifs. Spans of 6 or more are associated with DNA/RNA processing, actin, and developmental processes. We also suggest a role for proline in Kruppel-type zinc finger protein control of DNA expression, and in the nucleation and translocation of actin by the formin complex.
Collapse
Affiliation(s)
- Alexander A. Morgan
- Department of Biochemistry and Genome Technology Center, Stanford University Medical School, Stanford, California, United States of America
| | - Edward Rubenstein
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
185
|
Abstract
DNA methylation is an epigenetic mark that is essential for the development of mammals; it is frequently altered in diseases ranging from cancer to psychiatric disorders. The presence of DNA methylation attracts specialized methyl-DNA binding factors that can then recruit chromatin modifiers. These methyl-CpG binding proteins (MBPs) have key biological roles and can be classified into three structural families: methyl-CpG binding domain (MBD), zinc finger, and SET and RING finger-associated (SRA) domain. The structures of MBD and SRA proteins bound to methylated DNA have been previously determined and shown to exhibit two very different modes of methylated DNA recognition. The last piece of the puzzle has been recently revealed by the structural resolution of two different zinc finger proteins, Kaiso and ZFP57, in complex with methylated DNA. These structures show that the two methyl-CpG binding zinc finger proteins adopt differential methyl-CpG binding modes. Nonetheless, there are similarities with the MBD proteins suggesting some commonalities in methyl-CpG recognition across the various MBP domains. These fresh insights have consequences for the analysis of the many other zinc finger proteins present in the genome, and for the biology of methyl-CpG binding zinc finger proteins.
Collapse
|
186
|
Razin SV, Borunova VV, Maksimenko OG, Kantidze OL. Cys2His2 zinc finger protein family: classification, functions, and major members. BIOCHEMISTRY (MOSCOW) 2013; 77:217-26. [PMID: 22803940 DOI: 10.1134/s0006297912030017] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cys2His2 (C2H2)-type zinc fingers are widespread DNA binding motifs in eukaryotic transcription factors. Zinc fingers are short protein motifs composed of two or three β-layers and one α-helix. Two cysteine and two histidine residues located in certain positions bind zinc to stabilize the structure. Four other amino acid residues localized in specific positions in the N-terminal region of the α-helix participate in DNA binding by interacting with hydrogen donors and acceptors exposed in the DNA major groove. The number of zinc fingers in a single protein can vary over a wide range, thus enabling variability of target DNA sequences. Besides DNA binding, zinc fingers can also provide protein-protein and RNA-protein interactions. For the most part, proteins containing the C2H2-type zinc fingers are trans regulators of gene expression that play an important role in cellular processes such as development, differentiation, and suppression of malignant cell transformation (oncosuppression).
Collapse
Affiliation(s)
- S V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | |
Collapse
|
187
|
Fletcher AJ, Towers GJ. Inhibition of retroviral replication by members of the TRIM protein family. Curr Top Microbiol Immunol 2013; 371:29-66. [PMID: 23686231 DOI: 10.1007/978-3-642-37765-5_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The TRIM protein family is emerging as a central component of mammalian antiviral innate immunity. Beginning with the identification of TRIM5α as a mammalian post-entry restriction factor against retroviruses, to the repeated observation that many TRIMs ubiquitinate and regulate signaling pathways, the past decade has witnessed an intense research effort to understand how TRIM proteins influence immunity. The list of viral families targeted directly or indirectly by TRIM proteins has grown to include adenoviruses, hepadnaviruses, picornaviruses, flaviviruses, orthomyxoviruses, paramyxoviruses, herpesviruses, rhabdoviruses and arenaviruses. We have come to appreciate how, through intense bouts of positive selection, some TRIM genes have been honed into species-specific restriction factors. Similarly, in the case of TRIMCyp, we are beginning to understand how viruses too have mutated to evade restriction, suggesting that TRIM and viruses have coevolved for millions of years of primate evolution. Recently, TRIM5α returned to the limelight when it was shown to trigger the expression of antiviral genes upon recognition of an incoming virus, a paradigm shift that demonstrated that restriction factors make excellent pathogen sensors. However, it remains unclear how many of ~100 human TRIM genes are antiviral, despite the expression of many of these genes being upregulated by interferon and upon viral infection. TRIM proteins do not conform to one type of antiviral mechanism, reflecting the diversity of viruses they target. Moreover, the cofactors of restriction remain largely enigmatic. The control of retroviral replication remains an important medical subject and provides a useful backdrop for reviewing how TRIM proteins act to repress viral replication.
Collapse
Affiliation(s)
- Adam J Fletcher
- MRC Centre for Medical Molecular Virology, University College, London, UK.
| | | |
Collapse
|
188
|
Nowick K, Carneiro M, Faria R. A prominent role of KRAB-ZNF transcription factors in mammalian speciation? Trends Genet 2012; 29:130-9. [PMID: 23253430 DOI: 10.1016/j.tig.2012.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/01/2012] [Accepted: 11/15/2012] [Indexed: 12/29/2022]
Abstract
The mechanisms of speciation have been one of the most debated topics in evolutionary biology. Among all reproductive barriers, postzygotic reproductive isolation is perhaps the one that has attracted the most attention from geneticists. Despite remarkable advances in the identification of loci involved in Drosophila speciation, little is known about the genes, functions, and biochemical interactions of the molecules underlying hybrid sterility and inviability in mammals. Here, we discuss the main evolutionary and molecular features that make transcription factors (TFs), especially the family of zinc finger proteins with a Krüppel-associated box domain (KRAB-ZNF), strong candidates to play an important role in postzygotic reproductive isolation. Motivated by the recent identification of the gene encoding PR domain zinc finger protein 9 (Prdm9; a KRAB-ZNF gene) as the first hybrid sterility gene identified in mammals, we further propose integrative approaches to study KRAB-ZNF genes with the main goal of characterizing the molecular pathways and interactions involved in hybrid incompatibilities.
Collapse
Affiliation(s)
- Katja Nowick
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany.
| | | | | |
Collapse
|
189
|
White SN, Mousel MR, Herrmann-Hoesing LM, Reynolds JO, Leymaster KA, Neibergs HL, Lewis GS, Knowles DP. Genome-wide association identifies multiple genomic regions associated with susceptibility to and control of ovine lentivirus. PLoS One 2012; 7:e47829. [PMID: 23082221 PMCID: PMC3474742 DOI: 10.1371/journal.pone.0047829] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/17/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Like human immunodeficiency virus (HIV), ovine lentivirus (OvLV) is macrophage-tropic and causes lifelong infection. OvLV infects one quarter of U.S. sheep and induces pneumonia and body condition wasting. There is no vaccine to prevent OvLV infection and no cost-effective treatment for infected animals. However, breed differences in prevalence and proviral concentration have indicated a genetic basis for susceptibility to OvLV. A recent study identified TMEM154 variants in OvLV susceptibility. The objective here was to identify additional loci associated with odds and/or control of OvLV infection. METHODOLOGY/PRINCIPAL FINDINGS This genome-wide association study (GWAS) included 964 sheep from Rambouillet, Polypay, and Columbia breeds with serological status and proviral concentration phenotypes. Analytic models accounted for breed and age, as well as genotype. This approach identified TMEM154 (nominal P=9.2×10(-7); empirical P=0.13), provided 12 additional genomic regions associated with odds of infection, and provided 13 regions associated with control of infection (all nominal P<1 × 10(-5)). Rapid decline of linkage disequilibrium with distance suggested many regions included few genes each. Genes in regions associated with odds of infection included DPPA2/DPPA4 (empirical P=0.006), and SYTL3 (P=0.051). Genes in regions associated with control of infection included a zinc finger cluster (ZNF192, ZSCAN16, ZNF389, and ZNF165; P=0.001), C19orf42/TMEM38A (P=0.047), and DLGAP1 (P=0.092). CONCLUSIONS/SIGNIFICANCE These associations provide targets for mutation discovery in sheep susceptibility to OvLV. Aside from TMEM154, these genes have not been associated previously with lentiviral infection in any species, to our knowledge. Further, data from other species suggest functional hypotheses for future testing of these genes in OvLV and other lentiviral infections. Specifically, SYTL3 binds and may regulate RAB27A, which is required for enveloped virus assembly of human cytomegalovirus. Zinc finger transcription factors have been associated with positive selection for repression of retroviral replication. DLGAP1 binds and may regulate DLG1, a known regulator of HIV infectivity.
Collapse
Affiliation(s)
- Stephen N White
- Animal Disease Research Unit, Agricultural Research Service, U. S. Department of Agriculture, Pullman, Washington, USA.
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Targeted disruption in mice of a neural stem cell-maintaining, KRAB-Zn finger-encoding gene that has rapidly evolved in the human lineage. PLoS One 2012; 7:e47481. [PMID: 23071813 PMCID: PMC3468564 DOI: 10.1371/journal.pone.0047481] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 09/17/2012] [Indexed: 11/19/2022] Open
Abstract
Understanding the genetic basis of the physical and behavioral traits that separate humans from other primates is a challenging but intriguing topic. The adaptive functions of the expansion and/or reduction in human brain size have long been explored. From a brain transcriptome project we have identified a KRAB-Zn finger protein-encoding gene (M003-A06) that has rapidly evolved since the human-chimpanzee separation. Quantitative RT-PCR analysis of different human tissues indicates that M003-A06 expression is enriched in the human fetal brain in addition to the fetal heart. Furthermore, analysis with use of immunofluorescence staining, neurosphere culturing and Western blotting indicates that the mouse ortholog of M003-A06, Zfp568, is expressed mainly in the embryonic stem (ES) cells and fetal as well as adult neural stem cells (NSCs). Conditional gene knockout experiments in mice demonstrates that Zfp568 is both an NSC maintaining- and a brain size-regulating gene. Significantly, molecular genetic analyses show that human M003-A06 consists of 2 equilibrated allelic types, H and C, one of which (H) is human-specific. Combined contemporary genotyping and database mining have revealed interesting genetic associations between the different genotypes of M003-A06 and the human head sizes. We propose that M003-A06 is likely one of the genes contributing to the uniqueness of the human brain in comparison to other higher primates.
Collapse
|
191
|
Quenneville S, Turelli P, Bojkowska K, Raclot C, Offner S, Kapopoulou A, Trono D. The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development. Cell Rep 2012; 2:766-73. [PMID: 23041315 DOI: 10.1016/j.celrep.2012.08.043] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/18/2012] [Accepted: 08/14/2012] [Indexed: 01/02/2023] Open
Abstract
De novo DNA methylation is an essential aspect of the epigenetic reprogramming that takes place during early development, yet factors responsible for its instatement at particular genomic loci are poorly defined. Here, we demonstrate that the KRAB-ZFP-mediated recruitment of KAP1 to DNA in embryonic stem cells (ESCs) induces cytosine methylation. This process is preceded by H3K9 trimethylation, and genome-wide analyses reveal that it spreads over short distances from KAP1-binding sites so as to involve nearby CpG islands. In sharp contrast, in differentiated cells, KRAB/KAP1-induced heterochromatin formation does not lead to DNA methylation. Correspondingly, the methylation status of CpG islands in the adult mouse liver correlates with their proximity to KAP1-binding sites in ESCs, not in hepatocytes. Therefore, KRAB-ZFPs and their cofactor KAP1 are in part responsible for the establishment during early embryogenesis of site-specific DNA methylation patterns that are maintained through development.
Collapse
Affiliation(s)
- Simon Quenneville
- School of Life Sciences and Frontiers in Genetics Program, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
192
|
Gupta SK, Rai AK, Kanwar SS, Sharma TR. Comparative analysis of zinc finger proteins involved in plant disease resistance. PLoS One 2012; 7:e42578. [PMID: 22916136 PMCID: PMC3419713 DOI: 10.1371/journal.pone.0042578] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 07/10/2012] [Indexed: 11/19/2022] Open
Abstract
A meta-analysis was performed to understand the role of zinc finger domains in proteins of resistance (R) genes cloned from different crops. We analyzed protein sequences of seventy R genes of various crops in which twenty six proteins were found to have zinc finger domains along with nucleotide binding sites - leucine rice repeats (NBS-LRR) domains. We identified thirty four zinc finger domains in the R proteins of nine crops and were grouped into 19 types of zinc fingers. The size of individual zinc finger domain within the R genes varied from 11 to 84 amino acids, whereas the size of proteins containing these domains varied from 263 to 1305 amino acids. The biophysical analysis revealed that molecular weight of Pi54 zinc finger was lowest whereas the highest one was found in rice Pib zinc finger named as Transposes Transcription Factor (TTF). The instability (R(2) =0.95) and the aliphatic (R(2) =0.94) indices profile of zinc finger domains follows the polynomial distribution pattern. The pairwise identity analysis showed that the Lin11, Isl-1 & Mec-3 (LIM) zinc finger domain of rice blast resistance protein pi21 have 12.3% similarity with the nuclear transcription factor, X-box binding-like 1 (NFX) type zinc finger domain of Pi54 protein. For the first time, we reported that Pi54 (Pi-k(h)-Tetep), a rice blast resistance (R) protein have a small zinc finger domain of NFX type located on the C-terminal in between NBS and LRR domains of the R-protein. Compositional analysis depicted by the helical wheel diagram revealed the presence of a hydrophobic region within this domain which might help in exposing the LRR region for a possible R-Avr interaction. This domain is unique among all other cloned plant disease resistance genes and might play an important role in broad-spectrum nature of rice blast resistance gene Pi54.
Collapse
Affiliation(s)
- Santosh Kumar Gupta
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, India
- Department of Biotechnology, Himachal Pradesh University, Summer-Hill, Shimla, India
| | - Amit Kumar Rai
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, India
- Department of Biotechnology, Himachal Pradesh University, Summer-Hill, Shimla, India
| | - Shamsher Singh Kanwar
- Department of Biotechnology, Himachal Pradesh University, Summer-Hill, Shimla, India
| | - Tilak R. Sharma
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
193
|
Santoni de Sio FR, Barde I, Offner S, Kapopoulou A, Corsinotti A, Bojkowska K, Genolet R, Thomas JH, Luescher IF, Pinschewer D, Harris N, Trono D. KAP1 regulates gene networks controlling T-cell development and responsiveness. FASEB J 2012; 26:4561-75. [PMID: 22872677 DOI: 10.1096/fj.12-206177] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chromatin remodeling at specific genomic loci controls lymphoid differentiation. Here, we investigated the role played in this process by Kruppel-associated box (KRAB)-associated protein 1 (KAP1), the universal cofactor of KRAB-zinc finger proteins (ZFPs), a tetrapod-restricted family of transcriptional repressors. T-cell-specific Kap1-deleted mice displayed a significant expansion of immature thymocytes, imbalances in CD4(+)/CD8(+) cell ratios, and altered responses to TCR and TGFβ stimulation when compared to littermate KAP1 control mice. Transcriptome and chromatin studies revealed that KAP1 binds T-cell-specific cis-acting regulatory elements marked by the H3K9me3 repressive mark and enriched in Ikaros/NuRD complexes. Also, KAP1 directly controls the expression of several genes involved in TCR and cytokine signaling. Among these, regulation of FoxO1 seems to play a major role in this system. Likely responsible for tethering KAP1 to at least part of its genomic targets, a small number of KRAB-ZFPs are selectively expressed in T-lymphoid cells. These results reveal the so far unsuspected yet important role of KAP1-mediated epigenetic regulation in T-lymphocyte differentiation and activation.
Collapse
|
194
|
Kino T, Pavlatou MG, Moraitis AG, Nemery RL, Raygada M, Stratakis CA. ZNF764 haploinsufficiency may explain partial glucocorticoid, androgen, and thyroid hormone resistance associated with 16p11.2 microdeletion. J Clin Endocrinol Metab 2012; 97:E1557-66. [PMID: 22577170 PMCID: PMC3410270 DOI: 10.1210/jc.2011-3493] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Nuclear hormone receptors exert their transcriptional effects through shared cofactor molecules; thus, defects in such intermediate proteins may be associated with multiple hormone resistance. Microdeletion of small chromosomal segments results in hereditary or sporadic diseases by affecting expression of residing genes. OBJECTIVES We describe a 7-yr-old boy with partial resistance to glucocorticoids, thyroid hormones, and possibly androgens. He was diagnosed as being in the autism spectrum disorder and had developmental delay and several facial morphological manifestations. We explored genes responsible for multiple hormone resistance of this case. RESULTS We found in this patient an approximately 1.1-Mb heterozygous 16p11.2 microdeletion, which included an approximately 500-kb unique deletion along with the common, previously reported approximately 600-kb 16p11.2 microdeletion. The small interfering RNA-based screening revealed that knockdown of ZNF764, which is located in the deleted segment unique to our case, significantly reduced glucocorticoid-, androgen-, and thyroid hormone-induced transcriptional activity of their responsive genes in HeLa cells, whereas its overexpression enhanced their transcriptional activity. The activities of the estrogen and progesterone receptors, cAMP response element-binding protein, and p53 were not affected in these cells. ZNF764 (zinc finger protein 764) expression was reduced in the patient's peripheral blood mononuclear cells, whereas exogenously supplemented ZNF764 recovered responsiveness to glucocorticoids in the patient's Epstein-Barr virus-transformed lymphocytes. The effect of ZNF764 on the glucocorticoid receptor transcriptional activity was mediated through cooperation with a general nuclear hormone receptor coactivator, transcriptional intermediary factor 1. CONCLUSIONS ZNF764 haploinsufficiency caused by microdeletion may be responsible for the partial multiple hormone resistance observed in our patient. ZNF764 appears to be involved in glucocorticoid, androgen, and thyroid hormone action.
Collapse
Affiliation(s)
- Tomoshige Kino
- Unit on Molecular Hormone Actio, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1109, USA.
| | | | | | | | | | | |
Collapse
|
195
|
The KRAB zinc finger protein RSL1 regulates sex- and tissue-specific promoter methylation and dynamic hormone-responsive chromatin configuration. Mol Cell Biol 2012; 32:3732-42. [PMID: 22801370 DOI: 10.1128/mcb.00615-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over 400 Krüppel-associated box zinc finger proteins (KRAB-ZFPs) are encoded in mammalian genomes. While KRAB-ZFPs strongly repress transcription in vitro, little is known about their biological function or gene targets in vivo. Regulator of sex limitation 1 (Rsl1), one of the first KRAB-Zfp genes assigned a physiological role, accentuates sex-biased liver gene expression, most dramatically for mouse sex-limited protein (Slp), which provides an in vivo reporter of KRAB-ZFP function. Slp is induced in males in the liver and kidney by growth hormone (GH) and androgen, respectively. In the liver but not kidney, the Rsl1 genotype correlates with methylation of a CpG dinucleotide in the Slp promoter that is demethylated at puberty. RSL1 binds 2 kb upstream of the Slp promoter, both in vitro and in vivo, within an enhancer containing response elements for STAT5b. Chromatin immunoprecipitation (ChIP) assays demonstrate that RSL1 recruits KAP1/TRIM28, the corepressor for KRAB action in vitro, to this enhancer. Slp induction requires rapid cycling of STAT5b in chromatin. Remarkably, RSL1 simultaneously binds adjacent to STAT5b with a reciprocal binding pattern that limits hormonal response. These experiments demonstrate a surprisingly dynamic interplay between a hormonal activator, STAT5b, and a KRAB-ZFP repressor and provide unique insights into KRAB-ZFP epigenetic mechanisms.
Collapse
|
196
|
Groner AC, Tschopp P, Challet L, Dietrich JE, Verp S, Offner S, Barde I, Rodriguez I, Hiiragi T, Trono D. The Krüppel-associated box repressor domain can induce reversible heterochromatization of a mouse locus in vivo. J Biol Chem 2012; 287:25361-9. [PMID: 22605343 DOI: 10.1074/jbc.m112.350884] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The study of chromatin and its regulators is key to understanding and manipulating transcription. We previously exploited the Krüppel-associated box (KRAB) transcriptional repressor domain, present in hundreds of vertebrate-specific zinc finger proteins, to assess the effect of its binding to gene bodies. These experiments revealed that the ectopic and doxycycline (dox)-controlled tet repressor KRAB fusion protein (tTRKRAB) can induce reversible and long-range silencing of cellular promoters. Here, we extend this system to in vivo applications and use tTRKRAB to achieve externally controllable repression of an endogenous mouse locus. We employed lentiviral-mediated transgenesis with promoterless TetO-containing gene traps to engineer a mouse line where the endogenous kinesin family member 2A (Kif2A) promoter drives a YFP reporter gene. When these mice were crossed to animals expressing the TetO-binding tTRKRAB repressor, this regulator was recruited to the Kif2A locus, and YFP expression was reduced. This effect was reversed when dox was given to embryos or adult mice, demonstrating that the cellular Kif2A promoter was only silenced upon repressor binding. Molecular analyses confirmed that tTRKRAB induced transcriptional repression through the spread of H3K9me3-containing heterochromatin, without DNA methylation of the trapped Kif2A promoter. Therefore, we demonstrate that targeting of tTRKRAB to a gene body in vivo results in reversible transcriptional repression through the spreading of facultative heterochromatin. This finding not only sheds light on KRAB-mediated transcriptional processes, but also suggests approaches for the externally controllable and reversible modulation of chromatin and transcription in vivo.
Collapse
Affiliation(s)
- Anna C Groner
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Chu SW, Noyes MB, Christensen RG, Pierce BG, Zhu LJ, Weng Z, Stormo GD, Wolfe SA. Exploring the DNA-recognition potential of homeodomains. Genome Res 2012; 22:1889-98. [PMID: 22539651 PMCID: PMC3460184 DOI: 10.1101/gr.139014.112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The recognition potential of most families of DNA-binding domains (DBDs) remains relatively unexplored. Homeodomains (HDs), like many other families of DBDs, display limited diversity in their preferred recognition sequences. To explore the recognition potential of HDs, we utilized a bacterial selection system to isolate HD variants, from a randomized library, that are compatible with each of the 64 possible 3' triplet sites (i.e., TAANNN). The majority of these selections yielded sets of HDs with overrepresented residues at specific recognition positions, implying the selection of specific binders. The DNA-binding specificity of 151 representative HD variants was subsequently characterized, identifying HDs that preferentially recognize 44 of these target sites. Many of these variants contain novel combinations of specificity determinants that are uncommon or absent in extant HDs. These novel determinants, when grafted into different HD backbones, produce a corresponding alteration in specificity. This information was used to create more explicit HD recognition models, which can inform the prediction of transcriptional regulatory networks for extant HDs or the engineering of HDs with novel DNA-recognition potential. The diversity of recovered HD recognition sequences raises important questions about the fitness barrier that restricts the evolution of alternate recognition modalities in natural systems.
Collapse
Affiliation(s)
- Stephanie W Chu
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Shibata M, Blauvelt KE, Liem KF, García-García MJ. TRIM28 is required by the mouse KRAB domain protein ZFP568 to control convergent extension and morphogenesis of extra-embryonic tissues. Development 2012; 138:5333-43. [PMID: 22110054 DOI: 10.1242/dev.072546] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
TRIM28 is a transcriptional regulator that is essential for embryonic development and is implicated in a variety of human diseases. The roles of TRIM28 in distinct biological processes are thought to depend on its interaction with factors that determine its DNA target specificity. However, functional evidence linking TRIM28 to specific co-factors is scarce. chatwo, a hypomorphic allele of Trim28, causes embryonic lethality and defects in convergent extension and morphogenesis of extra-embryonic tissues. These phenotypes are remarkably similar to those of mutants in the Krüppel-associated box (KRAB) zinc finger protein ZFP568, providing strong genetic evidence that ZFP568 and TRIM28 control morphogenesis through a common molecular mechanism. We determined that chatwo mutations decrease TRIM28 protein stability and repressive activity, disrupting both ZFP568-dependent and ZFP568-independent roles of TRIM28. These results, together with the analysis of embryos bearing a conditional inactivation of Trim28 in embryonic-derived tissues, revealed that TRIM28 is differentially required by ZFP568 and other factors during the early stages of mouse embryogenesis. In addition to uncovering novel roles of TRIM28 in convergent extension and morphogenesis of extra-embryonic tissues, our characterization of chatwo mutants demonstrates that KRAB domain proteins are essential to determine some of the biological functions of TRIM28.
Collapse
Affiliation(s)
- Maho Shibata
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Road, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
199
|
Turkarslan S, Reiss DJ, Gibbins G, Su WL, Pan M, Bare JC, Plaisier CL, Baliga NS. Niche adaptation by expansion and reprogramming of general transcription factors. Mol Syst Biol 2011; 7:554. [PMID: 22108796 PMCID: PMC3261711 DOI: 10.1038/msb.2011.87] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/25/2011] [Indexed: 02/01/2023] Open
Abstract
Numerous lineage-specific expansions of the transcription factor B (TFB) family in archaea suggests an important role for expanded TFBs in encoding environment-specific gene regulatory programs. Given the characteristics of hypersaline lakes, the unusually large numbers of TFBs in halophilic archaea further suggests that they might be especially important in rapid adaptation to the challenges of a dynamically changing environment. Motivated by these observations, we have investigated the implications of TFB expansions by correlating sequence variations, regulation, and physical interactions of all seven TFBs in Halobacterium salinarum NRC-1 to their fitness landscapes, functional hierarchies, and genetic interactions across 2488 experiments covering combinatorial variations in salt, pH, temperature, and Cu stress. This systems analysis has revealed an elegant scheme in which completely novel fitness landscapes are generated by gene conversion events that introduce subtle changes to the regulation or physical interactions of duplicated TFBs. Based on these insights, we have introduced a synthetically redesigned TFB and altered the regulation of existing TFBs to illustrate how archaea can rapidly generate novel phenotypes by simply reprogramming their TFB regulatory network.
Collapse
Affiliation(s)
| | - David J Reiss
- Baliga Lab, Institute for Systems Biology, Seattle, WA, USA
| | | | - Wan Lin Su
- Baliga Lab, Institute for Systems Biology, Seattle, WA, USA
| | - Min Pan
- Baliga Lab, Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Nitin S Baliga
- Baliga Lab, Institute for Systems Biology, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Department of Biology, Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| |
Collapse
|
200
|
Abstract
SCAN is a protein domain frequently found at the N termini of proteins encoded by mammalian tandem zinc finger (ZF) genes, whose structure is known to be similar to that of retroviral gag capsid domains and whose multimerization has been proposed as a model for retroviral assembly. We report that the SCAN domain is derived from the C-terminal portion of the gag capsid (CA) protein from the Gmr1-like family of Gypsy/Ty3-like retrotransposons. On the basis of sequence alignments and phylogenetic distributions, we show that the ancestral host SCAN domain (ESCAN for extended SCAN) was exapted from a full-length CA gene from a Gmr1-like retrotransposon at or near the root of the tetrapod animal branch. A truncated variant of ESCAN that corresponds to the annotated SCAN domain arose shortly thereafter and appears to be the only form extant in mammals. The Anolis lizard has a large number of tandem ZF genes with N-terminal ESCAN or SCAN domains. We predict DNA binding sites for all Anolis ESCAN-ZF and SCAN-ZF proteins and demonstrate several highly significant matches to Anolis Gmr1-like sequences, suggesting that at least some of these proteins target retroelements. SCAN is known to mediate protein dimerization, and the CA protein multimerizes to form the core retroviral and retrotransposon capsid structure. We speculate that the SCAN domain originally functioned to target host ZF proteins to retroelement capsids.
Collapse
|