151
|
Staley C, Kaiser T, Khoruts A. Clinician Guide to Microbiome Testing. Dig Dis Sci 2018; 63:3167-3177. [PMID: 30267172 DOI: 10.1007/s10620-018-5299-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023]
Abstract
Recent recognition that the intestinal microbiome plays potential roles in the pathogenesis of multiple common diseases has led to a growing interest in personalized microbiome analysis among clinical investigators and patients. Permissibility of direct access testing has allowed the emergence of commercial companies offering microbiome analysis to patients seeking to gain a better understanding of their symptoms and disease conditions. In turn, physicians are often asked to help with interpretation of such tests or even requested by their patients to order them. Therefore, physicians need to have a basic understanding of the current state of microbiome science. This review examines how the perspective of microbial ecology, which is fundamental to understanding the microbiome, updates the classical version of the germ theory of disease. We provide the essential vocabulary of microbiome science and describe its current limitations. We look forward to the future when microbiome diagnostics may live up to its potential of becoming integral to clinical care that will become increasingly individualized, and microbiome analysis may become incorporated into that future paradigm. However, we caution patients and providers that the current microbiome tests, given the state of knowledge and technology, do not provide much value in clinical decisions. Considerable research remains to be carried out to make this objective a reality.
Collapse
Affiliation(s)
- Christopher Staley
- Department of Surgery, University of Minnesota, MMC 195, 420 Delaware St. SE, Minneapolis, MN, 55455, USA. .,Biotechnology Institute, University of Minnesota, St. Paul, MN, USA.
| | - Thomas Kaiser
- Department of Surgery, University of Minnesota, MMC 195, 420 Delaware St. SE, Minneapolis, MN, 55455, USA.,Biotechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Alexander Khoruts
- Biotechnology Institute, University of Minnesota, St. Paul, MN, USA.,Division of Gastroenterology, Department of Medicine, University of Minnesota, 2101 6th Street S.E.; Room 3-184, Wallin Biomedical Sciences Building, Minneapolis, MN, 55414, USA
| |
Collapse
|
152
|
Jenkins TP, Formenti F, Castro C, Piubelli C, Perandin F, Buonfrate D, Otranto D, Griffin JL, Krause L, Bisoffi Z, Cantacessi C. A comprehensive analysis of the faecal microbiome and metabolome of Strongyloides stercoralis infected volunteers from a non-endemic area. Sci Rep 2018; 8:15651. [PMID: 30353019 PMCID: PMC6199319 DOI: 10.1038/s41598-018-33937-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/05/2018] [Indexed: 02/08/2023] Open
Abstract
Data from recent studies support the hypothesis that infections by human gastrointestinal (GI) helminths impact, directly and/or indirectly, on the composition of the host gut microbial flora. However, to the best of our knowledge, these studies have been conducted in helminth-endemic areas with multi-helminth infections and/or in volunteers with underlying gut disorders. Therefore, in this study, we explore the impact of natural mono-infections by the human parasite Strongyloides stercoralis on the faecal microbiota and metabolic profiles of a cohort of human volunteers from a non-endemic area of northern Italy (S+), pre- and post-anthelmintic treatment, and compare the findings with data obtained from a cohort of uninfected controls from the same geographical area (S-). Analyses of bacterial 16S rRNA high-throughput sequencing data revealed increased microbial alpha diversity and decreased beta diversity in the faecal microbial profiles of S+ subjects compared to S-. Furthermore, significant differences in the abundance of several bacterial taxa were observed between samples from S+ and S- subjects, and between S+ samples collected pre- and post-anthelmintic treatment. Faecal metabolite analysis detected marked increases in the abundance of selected amino acids in S+ subjects, and of short chain fatty acids in S- subjects. Overall, our work adds valuable knowledge to current understanding of parasite-microbiota associations and will assist future mechanistic studies aimed to unravel the causality of these relationships.
Collapse
Affiliation(s)
- Timothy P Jenkins
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Fabio Formenti
- Centre for Tropical Diseases, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar, Verona, Italy
| | - Cecilia Castro
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Chiara Piubelli
- Centre for Tropical Diseases, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar, Verona, Italy
| | - Francesca Perandin
- Centre for Tropical Diseases, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar, Verona, Italy
| | - Dora Buonfrate
- Centre for Tropical Diseases, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar, Verona, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Lutz Krause
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Zeno Bisoffi
- Centre for Tropical Diseases, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
153
|
Xu M, Jiang Z, Huang W, Yin J, Ou S, Jiang Y, Meng L, Cao S, Yu A, Cao J, Shen Y. Altered Gut Microbiota Composition in Subjects Infected With Clonorchis sinensis. Front Microbiol 2018; 9:2292. [PMID: 30323795 PMCID: PMC6172334 DOI: 10.3389/fmicb.2018.02292] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/07/2018] [Indexed: 12/29/2022] Open
Abstract
Clonorchiasis is an infectious disease caused by helminths of Clonorchis sinensis (C. sinensis). The adult parasite mainly inhabits the bile duct and gall bladder, and results in various complications to the hepatobiliary system. The amount of bile secreted into the intestine is reduced in cases of C. sinensis infection, which may alter the pH of the gut and decrease the amount of surfactant protein D released from the gallbladder. However, the impact of parasitic infection on the human gut microbiome remains unclear. To this end, we examined the gut microbiota composition in 47 modified Kato–Katz thick smear-positive (egg-positive) volunteers and 42 healthy controls from five rural communities. Subjects were grouped into four sub-populations based on age and infection status. High-throughput 16S rRNA gene sequencing revealed significant changes in alpha diversity between EP1 and EN1. The beta diversity showed alterations between C. sinensis-infected subjects and healthy controls. In C. sinensis infected patients, we found the significant reduction of certain taxa, such as Bacteroides and anti-inflammatory Bifidobacterium (P < 0.05). Bacteroides, a predominant gut bacteria in healthy populations, was negatively correlated with the number of C. sinensis eggs per gram (EPG, r = −0.37, P adjust < 0.01 in 20–60 years old group; r = −0.64, P adjust = 0.04 in the 60+ years old group). What’s more, the reduction in the abundance of Bifidobacterium, a common probiotic, was decreased particularly in the 60 + years old group (r = −0.50, P = 0.04). The abundance of Dorea, a potentially pro-inflammatory microbe, was higher in infected subjects than in healthy individuals (P < 0.05). Variovorax was a unique bacteria that was only detected in infected subjects. These results clearly demonstrate the significant influence of C. sinensis infection on the human gut microbiota and provided new insights into the control, prevention, diagnosis, and clinical study of clonorchiasis through the human gut microbiota.
Collapse
Affiliation(s)
- Meng Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Zhihua Jiang
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Wen Huang
- Tengxian Center for Disease Control and Prevention, Tengxian, China
| | - Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Shen Ou
- Tengxian Center for Disease Control and Prevention, Tengxian, China
| | - Yanyan Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Liyu Meng
- Tengxian Center for Disease Control and Prevention, Tengxian, China
| | - Shengkui Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Aiping Yu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| |
Collapse
|
154
|
Zuo T, Ng SC. The Gut Microbiota in the Pathogenesis and Therapeutics of Inflammatory Bowel Disease. Front Microbiol 2018; 9:2247. [PMID: 30319571 PMCID: PMC6167487 DOI: 10.3389/fmicb.2018.02247] [Citation(s) in RCA: 356] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
In the twenty first century, the changing epidemiology of inflammatory bowel disease (IBD) globally with increasing disease incidence across many countries relates to the altered gut microbiota, due to a combinatorial effect of environmental factors, human immune responses and genetics. IBD is a gastrointestinal disease associated with a gut microbial dysbiosis, including an expansion of facultative anaerobic bacteria of the family Enterobacteriaceae. Advances in high-throughput sequencing enable us to entangle the gut microbiota in human health and IBD beyond the gut bacterial microbiota, expanding insights into the mycobiota, virobiota and helminthes. Caudovirales (viruses) and Basidiomycota, Ascomycota, and Candida albicans (fungi) are revealed to be increased in IBD. The deconvolution of the gut microbiota in IBD lays the basis for unveiling the roles of these various gut microbiota components in IBD pathogenesis and being conductive to instructing on future IBD diagnosis and therapeutics. Here we comprehensively elucidate the alterations in the gut microbiota in IBD, discuss the effect of diets in the gut microbiota in relation to IBD, and illustrate the potential of manipulation of gut microbiota for IBD therapeutics. The therapeutic strategy of antibiotics, prebiotics, probiotics and fecal microbiota transplantation will benefit the effective application of precision microbiome manipulation in IBD.
Collapse
Affiliation(s)
- Tao Zuo
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Faculty of Medicine, Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew C. Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Faculty of Medicine, Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
155
|
McSorley HJ, Chayé MAM, Smits HH. Worms: Pernicious parasites or allies against allergies? Parasite Immunol 2018; 41:e12574. [PMID: 30043455 PMCID: PMC6585781 DOI: 10.1111/pim.12574] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/14/2022]
Abstract
Type 2 immune responses are most commonly associated with allergy and helminth parasite infections. Since the discovery of Th1 and Th2 immune responses more than 30 years ago, models of both allergic disease and helminth infections have been useful in characterizing the development, effector mechanisms and pathological consequences of type 2 immune responses. The observation that some helminth infections negatively correlate with allergic and inflammatory disease led to a large field of research into parasite immunomodulation. However, it is worth noting that helminth parasites are not always benign infections, and that helminth immunomodulation can have stimulatory as well as suppressive effects on allergic responses. In this review, we will discuss how parasitic infections change host responses, the consequences for bystander immunity and how this interaction influences clinical symptoms of allergy.
Collapse
Affiliation(s)
- Henry J McSorley
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mathilde A M Chayé
- Department of Parasitology, Leiden Immunology of Parasitic Infections Group, Leiden University Medical Centre, ZA Leiden, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden Immunology of Parasitic Infections Group, Leiden University Medical Centre, ZA Leiden, The Netherlands
| |
Collapse
|
156
|
Saltykova IV, Petrov VA, Brindley PJ. Opisthorchiasis and the Microbiome. ADVANCES IN PARASITOLOGY 2018; 102:1-23. [PMID: 30442306 DOI: 10.1016/bs.apar.2018.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The liver flukes Opisthorchis viverrini, O. felineus, and Clonorchis sinensis are closely related fish-borne trematodes endemic in East Asia, Eurasia, and Siberia. Following ingestion, the parasites locate to the biliary tree, where chronic infection frequently leads to cholangiocarcinoma (CCA). Infection with C. sinensis or O. viverrini is classified as a Group 1 carcinogen by the International Agency for Research on Cancer. Infection with O. felineus may also be carcinogenic. The mechanism(s) by which infection with these liver flukes culminates in CCA remain elusive, although they are likely to be multi-factorial. Not yet well studied is the influence of opisthorchiasis on the microbiome of the host despite reports that helminth parasites are capable of affecting the microbiome, potentially modulating gastrointestinal inflammation in response to the appearance of pathogenic strains of bacteria. Here, we review recent findings related to opisthorchiasis and the microbiome and related issues. In the hamster, a tractable model of infection with liver fluke and of infection-induced biliary morbidity and CCA, infection with O. viverrini perturbs the microbiome of the gastrointestinal tract, including increasing numbers of Lachnospiraceae, Ruminococcaceae, Lactobacillaceae, and others, while decreasing Porphyromonadaceae, Erysipelotrichaceae, and Eubacteriaceae. In addition, a complex microbial community associates with the parasites within the biliary tree, including Helicobacter pylori and related bacteria. Moreover, higher rates of infection with Helicobacter occur in Thailand in persons with opisthorchiasis in a liver fluke infection intensity-dependent manner. Experimental infection of hamsters with Opisthorchis felineus results in increased alpha diversity of the microbiota diversity in the biliary tract. In humans, infection with O. felineus modifies the composition of the biliary microbiome, with increasing numbers of species of Klebsiella, Aggregatibacter, Lactobacillus, Treponema, and others. Several phylotypes of Archaea occurred solely in bile from persons infected with O. felineus.
Collapse
Affiliation(s)
- Irina V Saltykova
- Siberian State Medical University, Central Research Laboratory, Tomsk, Russian Federation
| | - Vyacheslav A Petrov
- Siberian State Medical University, Central Research Laboratory, Tomsk, Russian Federation
| | - Paul J Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
157
|
Jenkins TP, Peachey LE, Ajami NJ, MacDonald AS, Hsieh MH, Brindley PJ, Cantacessi C, Rinaldi G. Schistosoma mansoni infection is associated with quantitative and qualitative modifications of the mammalian intestinal microbiota. Sci Rep 2018; 8:12072. [PMID: 30104612 PMCID: PMC6089957 DOI: 10.1038/s41598-018-30412-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022] Open
Abstract
In spite of the extensive contribution of intestinal pathology to the pathophysiology of schistosomiasis, little is known of the impact of schistosome infection on the composition of the gut microbiota of its mammalian host. Here, we characterised the fluctuations in the composition of the gut microbial flora of the small and large intestine, as well as the changes in abundance of individual microbial species, of mice experimentally infected with Schistosoma mansoni with the goal of identifying microbial taxa with potential roles in the pathophysiology of infection and disease. Bioinformatic analyses of bacterial 16S rRNA gene data revealed an overall reduction in gut microbial alpha diversity, alongside a significant increase in microbial beta diversity characterised by expanded populations of Akkermansia muciniphila (phylum Verrucomicrobia) and lactobacilli, in the gut microbiota of S. mansoni-infected mice when compared to uninfected control animals. These data support a role of the mammalian gut microbiota in the pathogenesis of hepato-intestinal schistosomiasis and serves as a foundation for the design of mechanistic studies to unravel the complex relationships amongst parasitic helminths, gut microbiota, pathophysiology of infection and host immunity.
Collapse
Affiliation(s)
- Timothy P Jenkins
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Laura E Peachey
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew S MacDonald
- Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
| | - Michael H Hsieh
- Biomedical Research Institute, Rockville, Maryland, USA
- Department of Urology, School of Medicine and Health Sciences, George Washington University, Washington, USA
- Children's National Health System, Washington, District of Columbia, USA
| | - Paul J Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, 20037, USA.
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK.
| | - Gabriel Rinaldi
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, 20037, USA.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
| |
Collapse
|
158
|
Martin I, Djuardi Y, Sartono E, Rosa BA, Supali T, Mitreva M, Houwing-Duistermaat JJ, Yazdanbakhsh M. Dynamic changes in human-gut microbiome in relation to a placebo-controlled anthelminthic trial in Indonesia. PLoS Negl Trop Dis 2018; 12:e0006620. [PMID: 30091979 PMCID: PMC6084808 DOI: 10.1371/journal.pntd.0006620] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Microbiome studies suggest the presence of an interaction between the human gut microbiome and soil-transmitted helminth. Upon deworming, a complex interaction between the anthelminthic drug, helminths and microbiome composition might occur. To dissect this, we analyse the changes that take place in the gut bacteria profiles in samples from a double blind placebo controlled trial conducted in an area endemic for soil transmitted helminths in Indonesia. METHODS Either placebo or albendazole were given every three months for a period of one and a half years. Helminth infection was assessed before and at 3 months after the last treatment round. In 150 subjects, the bacteria were profiled using the 454 pyrosequencing. Statistical analysis was performed cross-sectionally at pre-treatment to assess the effect of infection, and at post-treatment to determine the effect of infection and treatment on microbiome composition using the Dirichlet-multinomial regression model. RESULTS At a phylum level, at pre-treatment, no difference was seen in microbiome composition in terms of relative abundance between helminth-infected and uninfected subjects and at post-treatment, no differences were found in microbiome composition between albendazole and placebo group. However, in subjects who remained infected, there was a significant difference in the microbiome composition of those who had received albendazole and placebo. This difference was largely attributed to alteration of Bacteroidetes. Albendazole was more effective against Ascaris lumbricoides and hookworms but not against Trichuris trichiura, thus in those who remained infected after receiving albendazole, the helminth composition was dominated by T. trichiura. DISCUSSION We found that overall, albendazole does not affect the microbiome composition. However, there is an interaction between treatment and helminths as in subjects who received albendazole and remained infected there was a significant alteration in Bacteroidetes. This helminth-albendazole interaction needs to be studied further to fully grasp the complexity of the effect of deworming on the microbiome. TRIAL REGISTRATION ISRCTN Registy, ISRCTN83830814.
Collapse
Affiliation(s)
- Ivonne Martin
- Department of Mathematics, Faculty of Information Technology and Science, Parahyangan Catholic University, Bandung, Indonesia
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
| | - Yenny Djuardi
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Erliyani Sartono
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Bruce A. Rosa
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Taniawati Supali
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Makedonka Mitreva
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
159
|
Yang S, Gao X, Meng J, Zhang A, Zhou Y, Long M, Li B, Deng W, Jin L, Zhao S, Wu D, He Y, Li C, Liu S, Huang Y, Zhang H, Zou L. Metagenomic Analysis of Bacteria, Fungi, Bacteriophages, and Helminths in the Gut of Giant Pandas. Front Microbiol 2018; 9:1717. [PMID: 30108570 PMCID: PMC6080571 DOI: 10.3389/fmicb.2018.01717] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/10/2018] [Indexed: 11/13/2022] Open
Abstract
To obtain full details of gut microbiota, including bacteria, fungi, bacteriophages, and helminths, in giant pandas (GPs), we created a comprehensive microbial genome database and used metagenomic sequences to align against the database. We delineated a detailed and different gut microbiota structures of GPs. A total of 680 species of bacteria, 198 fungi, 185 bacteriophages, and 45 helminths were found. Compared with 16S rRNA sequencing, the dominant bacterium phyla not only included Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria but also Cyanobacteria and other eight phyla. Aside from Ascomycota, Basidiomycota, and Glomeromycota, Mucoromycota, and Microsporidia were the dominant fungi phyla. The bacteriophages were predominantly dsDNA Myoviridae, Siphoviridae, Podoviridae, ssDNA Inoviridae, and Microviridae. For helminths, phylum Nematoda was the dominant. In addition to previously described parasites, another 44 species of helminths were found in GPs. Also, differences in abundance of microbiota were found between the captive, semiwild, and wild GPs. A total of 1,739 genes encoding cellulase, β-glucosidase, and cellulose β-1,4-cellobiosidase were responsible for the metabolism of cellulose, and 128,707 putative glycoside hydrolase genes were found in bacteria/fungi. Taken together, the results indicated not only bacteria but also fungi, bacteriophages, and helminths were diverse in gut of giant pandas, which provided basis for the further identification of role of gut microbiota. Besides, metagenomics revealed that the bacteria/fungi in gut of GPs harbor the ability of cellulose and hemicellulose degradation.
Collapse
Affiliation(s)
- Shengzhi Yang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xin Gao
- Department of Nutrition and Food Science, University of Maryland, College Park, College Park, MD, United States
| | - Jianghong Meng
- Department of Nutrition and Food Science, University of Maryland, College Park, College Park, MD, United States
| | - Anyun Zhang
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Yingmin Zhou
- The China Conservation and Research Center for the Giant Panda, Wolong, China
| | - Mei Long
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Bei Li
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Wenwen Deng
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lei Jin
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Siyue Zhao
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Daifu Wu
- The China Conservation and Research Center for the Giant Panda, Wolong, China
| | - Yongguo He
- The China Conservation and Research Center for the Giant Panda, Wolong, China
| | - Caiwu Li
- The China Conservation and Research Center for the Giant Panda, Wolong, China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Yan Huang
- The China Conservation and Research Center for the Giant Panda, Wolong, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), Wolong, China
| | - Hemin Zhang
- The China Conservation and Research Center for the Giant Panda, Wolong, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), Wolong, China
| | - Likou Zou
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
160
|
Abstract
In the 21st century, urbanization represents a major demographic shift in developed and developing countries. Rapid urbanization in the developing world has been associated with an increasing incidence of several autoimmune diseases, including IBD. Patients with IBD exhibit a decrease in the diversity and richness of the gut microbiota, while urbanization attenuates the gut microbial diversity and might have a role in the pathogenesis of IBD. Environmental exposures during urbanization, including Westernization of diet, increased antibiotic use, pollution, improved hygiene status and early-life microbial exposure, have been shown to affect the gut microbiota. The disparate patterns of the gut microbiota composition in rural and urban areas offer an opportunity to understand the contribution of a 'rural microbiome' in potentially protecting against the development of IBD. This Perspective discusses the effect of urbanization and its surrogates on the gut microbiome (bacteriome, virome, mycobiome and helminths) in both human health and IBD and how such changes might be associated with the development of IBD.
Collapse
|
161
|
Brosschot TP, Reynolds LA. The impact of a helminth-modified microbiome on host immunity. Mucosal Immunol 2018; 11:1039-1046. [PMID: 29453411 DOI: 10.1038/s41385-018-0008-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 02/04/2023]
Abstract
Intestinal helminths have well-characterized modulatory effects on mammalian immune pathways. Ongoing helminth infection has been associated with both the suppression of allergies and an altered susceptibility to microbial infections. Enteric helminths share a niche with the intestinal microbiota, and the presence of helminths alters the microbiota composition and the metabolic signature of the host. Recent studies have demonstrated that the helminth-modified intestinal microbiome has the capacity to modify host immune responses even in the absence of live helminth infection. This article discusses the mechanisms by which helminths modify the intestinal microbiome of mammals, and reviews the evidence for a helminth-modified microbiome directly influencing host immunity during infectious and inflammatory diseases. Understanding the multifaceted mechanisms that underpin helminth immunomodulation will pave the way for novel therapies to combat infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Tara P Brosschot
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Lisa A Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
162
|
Rapin A, Harris NL. Helminth-Bacterial Interactions: Cause and Consequence. Trends Immunol 2018; 39:724-733. [PMID: 29941203 DOI: 10.1016/j.it.2018.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/22/2018] [Accepted: 06/02/2018] [Indexed: 01/16/2023]
Abstract
Intestinal helminths, along with mutualistic microbes, have cohabited the intestine of mammals throughout evolution. Interactions between helminths, bacteria, and their mammalian hosts may shape not only host-helminth and host-microbiome interactions, but also the relationship between helminths and the microbiome. This 'ménage à trois' situation may not be completely balanced in that it may favor either the host or the parasite, possibly at the cost of the other partner. Similarly, helminths may favor the establishment of a particular microbiome with either positive or negative consequences for the overall health and well-being of the host. Recent studies indicate that infection with intestinal helminths can and does impact the intestinal microbiome, with important consequences for each partner in this tripartite relationship.
Collapse
Affiliation(s)
- Alexis Rapin
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nicola L Harris
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC, Australia.
| |
Collapse
|
163
|
The benign helminth Hymenolepis diminuta ameliorates chemically induced colitis in a rat model system. Parasitology 2018; 145:1324-1335. [DOI: 10.1017/s0031182018000896] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractThe tapeworm Hymenolepis diminuta is a model for the impact of helminth colonization on the mammalian immune system and a candidate therapeutic agent for immune mediated inflammatory diseases (IMIDs). In mice, H. diminuta protects against models of inflammatory colitis by inducing a strong type 2 immune response that is activated to expel the immature worm. Rats are the definitive host of H. diminuta, and are colonized stably and over long time periods without harming the host. Rats mount a mild type 2 immune response to H. diminuta colonization, but this response does not generally ameliorate colitis. Here we investigate the ability of different life cycle stages of H. diminuta to protect rats against a model of colitis induced through application of the haptenizing agent dinitrobenzene sulphonic acid (DNBS) directly to the colon, and monitor rat clinical health, systemic inflammation measured by TNFα and IL-1β, and the gut microbiota. We show that immature H. diminuta induces a type 2 response as measured by increased IL-4, IL-13 and IL-10 expression, but does not protect against colitis. In contrast, rats colonized with mature H. diminuta and challenged with severe colitis (two applications of DNBS) have lower inflammation and less severe clinical symptoms. This effect is not related the initial type 2 immune response. The gut microbiota is disrupted during colitis and does not appear to play an overt role in H. diminuta-mediated protection.
Collapse
|
164
|
Abstract
Approximately one-sixth of the worlds' population is infected with helminths and this class of parasite takes a major toll on domestic livestock. The majority of species of parasitic helminth that infect mammals live in the gut (the only niche for tapeworms) where they contact the hosts' epithelial cells. Here, the helminth-intestinal epithelial interface is reviewed in terms of the impact on, and regulation of epithelial barrier function, both intrinsic (epithelial permeability) and extrinsic (mucin, bacterial peptides, commensal bacteria) elements of the barrier. The data available on direct effects of helminths on epithelial permeability are scant, fragmentary and pales in comparison with knowledge of mobilization of immune reactions and effector cells in response to helminth parasites and how these impact intestinal barrier function. The interaction of helminth-host and helminth-host-bacteria is an important determinant of gut form and function and precisely defining these interactions will radically alter our understanding of normal gut physiology and pathophysiological reactions, revealing new approaches to infection with parasitic helminths, bacterial pathogens and idiopathic auto-inflammatory disease.
Collapse
Affiliation(s)
- Derek M McKay
- a Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology , Snyder Institute of Chronic Disease, Cumming School of Medicine, University of Calgary , Calgary , Alberta , Canada
| | - Adam Shute
- a Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology , Snyder Institute of Chronic Disease, Cumming School of Medicine, University of Calgary , Calgary , Alberta , Canada
| | - Fernando Lopes
- a Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology , Snyder Institute of Chronic Disease, Cumming School of Medicine, University of Calgary , Calgary , Alberta , Canada
| |
Collapse
|
165
|
Leung JM, Graham AL, Knowles SCL. Parasite-Microbiota Interactions With the Vertebrate Gut: Synthesis Through an Ecological Lens. Front Microbiol 2018; 9:843. [PMID: 29867790 PMCID: PMC5960673 DOI: 10.3389/fmicb.2018.00843] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/12/2018] [Indexed: 12/14/2022] Open
Abstract
The vertebrate gut teems with a large, diverse, and dynamic bacterial community that has pervasive effects on gut physiology, metabolism, and immunity. Under natural conditions, these microbes share their habitat with a similarly dynamic community of eukaryotes (helminths, protozoa, and fungi), many of which are well-known parasites. Both parasites and the prokaryotic microbiota can dramatically alter the physical and immune landscape of the gut, creating ample opportunities for them to interact. Such interactions may critically alter infection outcomes and affect overall host health and disease. For instance, parasite infection can change how a host interacts with its bacterial flora, either driving or protecting against dysbiosis and inflammatory disease. Conversely, the microbiota can alter a parasite's colonization success, replication, and virulence, shifting it along the parasitism-mutualism spectrum. The mechanisms and consequences of these interactions are just starting to be elucidated in an emergent transdisciplinary area at the boundary of microbiology and parasitology. However, heterogeneity in experimental designs, host and parasite species, and a largely phenomenological and taxonomic approach to synthesizing the literature have meant that common themes across studies remain elusive. Here, we use an ecological perspective to review the literature on interactions between the prokaryotic microbiota and eukaryotic parasites in the vertebrate gut. Using knowledge about parasite biology and ecology, we discuss mechanisms by which they may interact with gut microbes, the consequences of such interactions for host health, and how understanding parasite-microbiota interactions may lead to novel approaches in disease control.
Collapse
Affiliation(s)
- Jacqueline M Leung
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | | |
Collapse
|
166
|
Korte SW, Franklin CL, Dorfmeyer RA, Ericsson AC. Effects of Fenbendazole-impregnated Feed and Topical Moxidectin during Quarantine on the Gut Microbiota of C57BL/6 Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2018; 57:229-235. [PMID: 29784074 PMCID: PMC5966229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/09/2017] [Accepted: 12/13/2017] [Indexed: 06/08/2023]
Abstract
To protect the biosecurity of research rodent colonies, research institutions frequently require a quarantine period for live animals transferred into their facilities. Quarantine practices often include antibiotic and antiparasitic treatment with drugs such as fenbendazole and macrolide lactones. The influence of these compounds on the resident gut microbiota of mice is unknown, and any effects might subsequently affect model reproducibility. To test the influence of standard quarantine procedures on the composition of the microbiota, C57BL/6 mice, purchased from 2 different commercial suppliers, were randomly assigned to treatment groups (n = 12) by vendor and treated with fenbendazole-supplemented feed, topical moxidectin, both treatments, or no treatment (control), according to our institution's standard treatment regimen and duration. Feces were collected on arrival, immediately after completing the 8-wk treatment, and at 2 and 4 wk after treatment. Fecal DNA was extracted, sequenced, and analyzed to compare the changes in the microbiota of treated and control groups. Although significant main effects of time and treatment and interactions between those variables were detected in comparisons of richness, α-diversity, and β-diversity, the effect sizes associated with any particular treatment were consistently much smaller than that associated with acclimation to a new facility in the absence of any quarantine treatments. This outcome, along with the visual evaluation of principal coordinate analysis based on multiple similarity indices, suggests that time or institution plays a larger role in alterations of the murine gut microbiota than do quarantine treatments on its composition.
Collapse
Affiliation(s)
- Scott W Korte
- Office of Animal Resources, University of Missouri, Columbia, Missouri
| | - Craig L Franklin
- Metagenomics Center, Mutant Mouse Resource and Research Center, Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Rebecca A Dorfmeyer
- Mutant Mouse Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Aaron C Ericsson
- Metagenomics Center, Mutant Mouse Resource and Research Center, Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri;,
| |
Collapse
|
167
|
Associations between Gut Microbiota and Common Luminal Intestinal Parasites. Trends Parasitol 2018; 34:369-377. [DOI: 10.1016/j.pt.2018.02.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 02/08/2023]
|
168
|
Revaiah PC, Kochhar R, Rana SV, Berry N, Ashat M, Dhaka N, Rami Reddy Y, Sinha SK. Risk of small intestinal bacterial overgrowth in patients receiving proton pump inhibitors versus proton pump inhibitors plus prokinetics. JGH OPEN 2018; 2:47-53. [PMID: 30483563 PMCID: PMC6206996 DOI: 10.1002/jgh3.12045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/08/2018] [Accepted: 01/31/2018] [Indexed: 12/17/2022]
Abstract
Background and Aim Intestinal dysmotility is considered a risk factor for small intestinal bacterial overgrowth (SIBO). Prokinetics improve intestinal motility and are often prescribed with proton pump inhibitors (PPIs) in patients with gastroesophageal reflux disease (GERD) and/or functional dyspepsia. The present study aimed to evaluate the prevalence of SIBO and the orocecal transit time (OCTT) in patients taking PPI compared with those taking PPI plus prokinetics. Methods The study is a single‐center, cross‐sectional study. Enrolled patients (with age > 12 years) were divided into two groups: patients taking PPIs for more than 3 months (Group A) and those taking PPIs with prokinetics for more than 3 months (Group B) for various indications. Lactulose breath test (LBT) for OCTT and glucose breath test (GBT) for SIBO were conducted for all patients. Results Of the 147 enrolled patients, SIBO was documented in 13.2% patients in Group A versus 1.8% in Group B, P = 0.018. Median OCTT in Group A was 130 (105–160) min compared with 120 (92.5–147.5) min in Group B (P = 0.010). Median OCTT among SIBO‐positive patients was 160 (140–172.5) min compared with SIBO‐negative patients, where it was 120 (103.75–150) min (P = 0.002). The duration and type of PPI used were not associated with the occurrence of SIBO in our study. Conclusion The use of prokinetics in patients on PPI may reduce the risk of SIBO by enhancing intestinal motility and may reduce SIBO risk associated with long‐term PPI use.
Collapse
Affiliation(s)
- Pruthvi C Revaiah
- Department of Medicine Postgraduate Institute of Medical Education and Research Chandigarh India
| | - Rakesh Kochhar
- Department of Gastroenterology Postgraduate Institute of Medical Education and Research Chandigarh India
| | - Surinder V Rana
- Department of Gastroenterology Postgraduate Institute of Medical Education and Research Chandigarh India
| | - Neha Berry
- Department of Gastroenterology Postgraduate Institute of Medical Education and Research Chandigarh India
| | - Munish Ashat
- Department of Gastroenterology Postgraduate Institute of Medical Education and Research Chandigarh India
| | - Narendra Dhaka
- Department of Gastroenterology Postgraduate Institute of Medical Education and Research Chandigarh India
| | - Y Rami Reddy
- Department of Gastroenterology Postgraduate Institute of Medical Education and Research Chandigarh India
| | - Saroj K Sinha
- Department of Gastroenterology Postgraduate Institute of Medical Education and Research Chandigarh India
| |
Collapse
|
169
|
Clark A, Sallé G, Ballan V, Reigner F, Meynadier A, Cortet J, Koch C, Riou M, Blanchard A, Mach N. Strongyle Infection and Gut Microbiota: Profiling of Resistant and Susceptible Horses Over a Grazing Season. Front Physiol 2018; 9:272. [PMID: 29618989 PMCID: PMC5871743 DOI: 10.3389/fphys.2018.00272] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/08/2018] [Indexed: 12/20/2022] Open
Abstract
Gastrointestinal strongyles are a major threat to horses' health and welfare. Given that strongyles inhabit the same niche as the gut microbiota, they may interact with each other. These beneficial or detrimental interactions are unknown in horses and could partly explain contrasted susceptibility to infection between individuals. To address these questions, an experimental pasture trial with 20 worm-free female Welsh ponies (10 susceptible (S) and 10 resistant (R) to parasite infection) was implemented for 5 months. Fecal egg counts (FEC), hematological and biochemical data, body weight and gut microbiological composition were studied in each individual after 0, 24, 43, 92 and 132 grazing days. R and S ponies displayed divergent immunological profiles and slight differences in microbiological composition under worm-free conditions. After exposure to natural infection, the predicted R ponies exhibited lower FEC after 92 and 132 grazing days, and maintained higher levels of circulating monocytes and eosinophils, while lymphocytosis persisted in S ponies. Although the overall gut microbiota diversity and structure remained similar during the parasite infection between the two groups, S ponies exhibited a reduction of bacteria such as Ruminococcus, Clostridium XIVa and members of the Lachnospiraceae family, which may have promoted a disruption of mucosal homeostasis at day 92. In line with this hypothesis, an increase in pathobionts such as Pseudomonas and Campylobacter together with changes in several predicted immunological pathways, including pathogen sensing, lipid metabolism, and activation of signal transduction that are critical for the regulation of immune system and energy homeostasis were observed in S relative to R ponies. Moreover, S ponies displayed an increase in protozoan concentrations at day 92, suggesting that strongyles and protozoa may contribute to each other's success in the equine intestines. It could also be that S individuals favor the increase of these carbohydrate-degrading microorganisms to enhance the supply of nutrients needed to fight strongyle infection. Overall, this study provides a foundation to better understand the mechanisms that underpin the relationship between equines and natural strongyle infection. The profiling of horse immune response and gut microbiota should contribute to the development of novel biomarkers for strongyle infection.
Collapse
Affiliation(s)
- Allison Clark
- Department of Health Science, Open University of Catalonia, Barcelona, Spain
| | - Guillaume Sallé
- UMR 1282, Institut National de la Recherche Agronomique, Infectiologie et Santé Publique, Université François-Rabelais, Nouzilly, France
| | - Valentine Ballan
- UMR 1313, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Fabrice Reigner
- UEPAO 1297, Institut National de la Recherche Agronomique, Unité Expérimentale de Physiologie Animale de l'Orfrasière, Nouzilly, France
| | - Annabelle Meynadier
- UMR 1388, Institut National de la Recherche Agronomique, GenPhySE, Toulouse, France
| | - Jacques Cortet
- UMR 1282, Institut National de la Recherche Agronomique, Infectiologie et Santé Publique, Université François-Rabelais, Nouzilly, France
| | - Christine Koch
- UMR 1282, Institut National de la Recherche Agronomique, Infectiologie et Santé Publique, Université François-Rabelais, Nouzilly, France
| | - Mickaël Riou
- UE-1277, Institut National de la Recherche Agronomique, Plate-Forme d'Infectiologie Expérimentale, Nouzilly, France
| | - Alexandra Blanchard
- UMR 1282, Institut National de la Recherche Agronomique, Infectiologie et Santé Publique, Université François-Rabelais, Nouzilly, France.,Pancosma SA, Geneva, Switzerland
| | - Núria Mach
- UMR 1313, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
170
|
San-Juan-Vergara H, Zurek E, Ajami NJ, Mogollon C, Peña M, Portnoy I, Vélez JI, Cadena-Cruz C, Diaz-Olmos Y, Hurtado-Gómez L, Sanchez-Sit S, Hernández D, Urruchurtu I, Di-Ruggiero P, Guardo-García E, Torres N, Vidal-Orjuela O, Viasus D, Petrosino JF, Cervantes-Acosta G. A Lachnospiraceae-dominated bacterial signature in the fecal microbiota of HIV-infected individuals from Colombia, South America. Sci Rep 2018; 8:4479. [PMID: 29540734 PMCID: PMC5852036 DOI: 10.1038/s41598-018-22629-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 02/05/2018] [Indexed: 02/08/2023] Open
Abstract
HIV infection has a tremendous impact on the immune system's proper functioning. The mucosa-associated lymphoid tissue (MALT) is significantly disarrayed during HIV infection. Compositional changes in the gut microbiota might contribute to the mucosal barrier disruption, and consequently to microbial translocation. We performed an observational, cross-sectional study aimed at evaluating changes in the fecal microbiota of HIV-infected individuals from Colombia. We analyzed the fecal microbiota of 37 individuals via 16S rRNA gene sequencing; 25 HIV-infected patients and 12 control (non-infected) individuals, which were similar in body mass index, age, gender balance and socioeconomic status. To the best of our knowledge, no such studies have been conducted in Latin American countries. Given its compositional nature, microbiota data were normalized and transformed using Aitchison's Centered Log-Ratio. Overall, a change in the network structure in HIV-infected patients was revealed by using the SPIEC-EASI MB tool. Genera such as Blautia, Dorea, Yersinia, Escherichia-Shigella complex, Staphylococcus, and Bacteroides were highly relevant in HIV-infected individuals. Differential abundance analysis by both sparse Partial Least Square-Discriminant Analysis and Random Forest identified a greater abundance of Lachnospiraceae-OTU69, Blautia, Dorea, Roseburia, and Erysipelotrichaceae in HIV-infected individuals. We show here, for the first time, a predominantly Lachnospiraceae-based signature in HIV-infected individuals.
Collapse
Affiliation(s)
| | - Eduardo Zurek
- División de Ingenierías, Fundación Universidad del Norte, Barranquilla, Colombia
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Mario Peña
- División Ciencias de la Salud, Fundación Universidad del Norte, Barranquilla, Colombia
| | - Ivan Portnoy
- División de Ingenierías, Fundación Universidad del Norte, Barranquilla, Colombia
| | - Jorge I Vélez
- División de Ingenierías, Fundación Universidad del Norte, Barranquilla, Colombia
| | - Christian Cadena-Cruz
- División Ciencias de la Salud, Fundación Universidad del Norte, Barranquilla, Colombia
| | - Yirys Diaz-Olmos
- División Ciencias de la Salud, Fundación Universidad del Norte, Barranquilla, Colombia
| | - Leidy Hurtado-Gómez
- División Ciencias de la Salud, Fundación Universidad del Norte, Barranquilla, Colombia
| | - Silvana Sanchez-Sit
- Maestría en Estadística Aplicada, Universidad del Norte, Barranquilla, Colombia
| | | | | | | | | | | | - Oscar Vidal-Orjuela
- División Ciencias de la Salud, Fundación Universidad del Norte, Barranquilla, Colombia
| | - Diego Viasus
- División Ciencias de la Salud, Fundación Universidad del Norte, Barranquilla, Colombia
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
171
|
Schneeberger PHH, Coulibaly JT, Panic G, Daubenberger C, Gueuning M, Frey JE, Keiser J. Investigations on the interplays between Schistosoma mansoni, praziquantel and the gut microbiome. Parasit Vectors 2018. [PMID: 29530088 PMCID: PMC5848565 DOI: 10.1186/s13071-018-2739-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Schistosomiasis is a neglected tropical disease burdening millions of people. One drug, praziquantel, is currently used for treatment and control. Clinically relevant drug resistance has not yet been described, but there is considerable heterogeneity in treatment outcomes, ranging from cure to only moderate egg reduction rates. The objectives of this study are to investigate potential worm-induced dysbacteriosis of the gut microbiota and to assess whether a specific microbiome profile could influence praziquantel response. Methods Using V3 and V4 regions of 16S rRNA genes, we screened the gut microbiota of 34 Schistosoma mansoni infected and uninfected children from Côte d’Ivoire. From each infected child one pre-treatment, one 24-hour and one 21-day follow-up sample after administering 60 mg/kg praziquantel or placebo, were collected. Results Overall taxonomic profiling and diversity indicators were found to be close to a “healthy” gut structure in all children. Slight overall compositional changes were observed between S. mansoni-infected and non-infected children. Praziquantel treatment was not linked to a major shift in the gut taxonomic profiles, thus reinforcing the good safety profile of the drug by ruling out off-targets effects on the gut microbes.16S rRNA gene of the Fusobacteriales order was significantly more abundant in cured individuals, both at baseline and 24 hours post-treatment. A real-time qPCR confirmed the over-abundance of Fusobacterium spp. in cured children. Fusobacterium spp. abundance could also be correlated with treatment induced S. mansoni egg-reduction. Conclusions Our study suggests that neither a S. mansoni infection nor praziquantel administration triggers a significant effect on the microbial composition and that a higher abundance of Fusobacterium spp., before treatment, is associated with higher efficacy of praziquantel in the treatment of S. mansoni infections. Trial registration International Standard Randomised Controlled Trial, number ISRCTN15280205. Electronic supplementary material The online version of this article (10.1186/s13071-018-2739-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pierre H H Schneeberger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Jean T Coulibaly
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Unité de Formation et de Recherche Biosciences, Université Felix Houphouët-Boigny, Abidjan, Côte d'Ivoire.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Gordana Panic
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Morgan Gueuning
- Department of Methods Development and Analytics, Agroscope, Wädenswil, Switzerland
| | - Jürg E Frey
- Department of Methods Development and Analytics, Agroscope, Wädenswil, Switzerland
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
172
|
Rosa BA, Supali T, Gankpala L, Djuardi Y, Sartono E, Zhou Y, Fischer K, Martin J, Tyagi R, Bolay FK, Fischer PU, Yazdanbakhsh M, Mitreva M. Differential human gut microbiome assemblages during soil-transmitted helminth infections in Indonesia and Liberia. MICROBIOME 2018; 6:33. [PMID: 29486796 PMCID: PMC6389212 DOI: 10.1186/s40168-018-0416-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/26/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND The human intestine and its microbiota is the most common infection site for soil-transmitted helminths (STHs), which affect the well-being of ~ 1.5 billion people worldwide. The complex cross-kingdom interactions are not well understood. RESULTS A cross-sectional analysis identified conserved microbial signatures positively or negatively associated with STH infections across Liberia and Indonesia, and longitudinal samples analysis from a double-blind randomized trial showed that the gut microbiota responds to deworming but does not transition closer to the uninfected state. The microbiomes of individuals able to self-clear the infection had more alike microbiome assemblages compared to individuals who remained infected. One bacterial taxon (Lachnospiracae) was negatively associated with infection in both countries, and 12 bacterial taxa were significantly associated with STH infection in both countries, including Olsenella (associated with reduced gut inflammation), which also significantly reduced in abundance following clearance of infection. Microbial community gene abundances were also affected by deworming. Functional categories identified as associated with STH infection included arachidonic acid metabolism; arachidonic acid is the precursor for pro-inflammatory leukotrienes that threaten helminth survival, and our findings suggest that some modulation of arachidonic acid activity in the STH-infected gut may occur through the increase of arachidonic acid metabolizing bacteria. CONCLUSIONS For the first time, we identify specific members of the gut microbiome that discriminate between moderately/heavily STH-infected and non-infected states across very diverse geographical regions using two different statistical methods. We also identify microbiome-encoded biological functions associated with the STH infections, which are associated potentially with STH survival strategies, and changes in the host environment. These results provide a novel insight of the cross-kingdom interactions in the human gut ecosystem by unlocking the microbiome assemblages at taxonomic, genetic, and functional levels so that advances towards key mechanistic studies can be made.
Collapse
Affiliation(s)
- Bruce A. Rosa
- McDonnell Genome Institute, Washington University, St. Louis, MO 63108 USA
| | - Taniawati Supali
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Lincoln Gankpala
- Public Health and Medical Research, National Public Health Institute of Liberia, Charlesville, Liberia
| | - Yenny Djuardi
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Erliyani Sartono
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yanjiao Zhou
- Microbial Genomics, The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | - Kerstin Fischer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO USA
| | - John Martin
- McDonnell Genome Institute, Washington University, St. Louis, MO 63108 USA
| | - Rahul Tyagi
- McDonnell Genome Institute, Washington University, St. Louis, MO 63108 USA
| | - Fatorma K. Bolay
- Public Health and Medical Research, National Public Health Institute of Liberia, Charlesville, Liberia
| | - Peter U. Fischer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO USA
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University, St. Louis, MO 63108 USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO USA
| |
Collapse
|
173
|
Booth M, Clements A. Neglected Tropical Disease Control - The Case for Adaptive, Location-specific Solutions. Trends Parasitol 2018; 34:272-282. [PMID: 29500033 DOI: 10.1016/j.pt.2018.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 02/07/2023]
Abstract
The world is experiencing environmental and social change at an unprecedented rate, with the effects being felt at local, regional, and international scales. This phenomenon may disrupt interventions against neglected tropical diseases (NTDs) that operate on the basis of linear scaling and 'one-size-fits-all'. Here we argue that investment in field-based data collection and building modelling capacity is required; that it is important to consider unintended consequences of interventions; that inferences can be drawn from wildlife ecology; and that interventions should become more location-specific. Collectively, these ideas underpin the development of adaptive decision-support tools that are sufficiently flexible to address emerging issues within the Anthropocene.
Collapse
Affiliation(s)
- Mark Booth
- Faculty of Medical Sciences, Newcastle University, UK.
| | - Archie Clements
- Research School of Population Health, Australian National University, Australia
| |
Collapse
|
174
|
Peachey LE, Molena RA, Jenkins TP, Di Cesare A, Traversa D, Hodgkinson JE, Cantacessi C. The relationships between faecal egg counts and gut microbial composition in UK Thoroughbreds infected by cyathostomins. Int J Parasitol 2018; 48:403-412. [PMID: 29432771 PMCID: PMC5946844 DOI: 10.1016/j.ijpara.2017.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/23/2017] [Accepted: 11/26/2017] [Indexed: 12/31/2022]
Abstract
We profiled the faecal microbial communities of horses with cyathostomin infections, pre- and post-anthelmintic treatment. Methanomicrobia and Dehalobacterium were expanded in the microbiota of horses with low cyathostomin faecal egg counts. A reduction in TM7 and an expansion in Adlercreutzia followed anthelmintic treatment in horses with high faecal egg counts. Novel intervention strategies against cyathostomins based on the manipulation of the gut flora may be developed.
A growing body of evidence, particularly in humans and rodents, supports the existence of a complex network of interactions occurring between gastrointestinal (GI) helminth parasites and the gut commensal bacteria, with substantial effects on both host immunity and metabolic potential. However, little is known of the fundamental biology of such interactions in other animal species; nonetheless, given the considerable economic losses associated with GI parasites, particularly in livestock and equines, as well as the global threat of emerging anthelmintic resistance, further explorations of the complexities of host-helminth-microbiota interactions in these species are needed. This study characterises the composition of the equine gut commensal flora associated with the presence, in faecal samples, of low (Clow) and high (Chigh) numbers of eggs of an important group of GI parasites (i.e. the cyathostomins), prior to and following anthelmintic treatment. High-throughput sequencing of bacterial 16S rRNA amplicons and associated bioinformatics and statistical analyses of sequence data revealed strong clustering according to faecal egg counts (P = 0.003). A trend towards increased populations of Methanomicrobia (class) and Dehalobacterium (genus) was observed in Clow in comparison with Chigh. Anthelmintic treatment in Chigh was associated with a significant reduction of the bacterial Phylum TM7 14 days post-ivermectin administration, as well as a transient expansion of Adlercreutzia spp. at 2 days post-treatment. This study provides a first known insight into the discovery of the intimate mechanisms governing host-parasite-microbiota interactions in equines, and sets a basis for the development of novel, biology-based intervention strategies against equine GI helminths based on the manipulation of the commensal gut flora.
Collapse
Affiliation(s)
- L E Peachey
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, United Kingdom.
| | - R A Molena
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, United Kingdom
| | - T P Jenkins
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, United Kingdom
| | - A Di Cesare
- Faculty of Veterinary Medicine, University of Teramo, Teramo, 64100, Italy
| | - D Traversa
- Faculty of Veterinary Medicine, University of Teramo, Teramo, 64100, Italy
| | - J E Hodgkinson
- Department of Infection Biology, University of Liverpool, Leahurst, Neston CH64 7TE, United Kingdom
| | - C Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, United Kingdom.
| |
Collapse
|
175
|
Tang MS, Bowcutt R, Loke P. Assessing the Mouse Intestinal Microbiota in Settings of Type-2 Immune Responses. Methods Mol Biol 2018; 1799:359-370. [PMID: 29956164 DOI: 10.1007/978-1-4939-7896-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The microbial communities that reside within the mammalian host play important roles in the development of a robust host immune system. With the advent of sequencing technology and barcoding strategy of the bacterial 16S ribosomal RNA (rRNA) gene, microbiota studies are becoming more economical but also more important in many immunology studies. Here, we described a representative study protocol to characterize how the microbiota changes during an intestinal helminth infection, with emphasis on subtle aspects of the experimental design that are critical for data interpretation.
Collapse
Affiliation(s)
- Mei San Tang
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Rowann Bowcutt
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
- UCB Celltech, Slough, UK
| | - P'ng Loke
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
176
|
Partida-Rodríguez O, Serrano-Vázquez A, Nieves-Ramírez ME, Moran P, Rojas L, Portillo T, González E, Hernández E, Finlay BB, Ximenez C. Human Intestinal Microbiota: Interaction Between Parasites and the Host Immune Response. Arch Med Res 2017; 48:690-700. [PMID: 29290328 DOI: 10.1016/j.arcmed.2017.11.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023]
Abstract
The human gut is a highly complex ecosystem with an extensive microbial community, and the influence of the intestinal microbiota reaches the entire host organism. For example, the microbiome regulates fat storage, stimulates or renews epithelial cells, and influences the development and maturation of the brain and the immune system. Intestinal microbes can protect against infection by pathogenic bacteria, viruses, fungi and parasites. Hence, the maintenance of homeostasis between the gut microbiota and the rest of the body is crucial for health, with dysbiosis affecting disease. This review focuses on intestinal protozoa, especially those still representing a public health problem in Mexico, and their interactions with the microbiome and the host. The decrease in prevalence of intestinal helminthes in humans left a vacant ecological niche that was quickly occupied by protozoa. Although the mechanisms governing the interaction between intestinal microbiota and protozoa are poorly understood, it is known that the composition of the intestinal bacterial populations modulates the progression of protozoan infection and the outcome of parasitic disease. Most reports on the complex interactions between intestinal bacteria, protozoa and the immune system emphasize the protective role of the microbiota against protozoan infection. Insights into such protection may facilitate the manipulation of microbiota components to prevent and treat intestinal protozoan infections. Here we discuss recent findings about the immunoregulatory effect of intestinal microbiota with regards to intestinal colonization by protozoa, focusing on infections by Entamoeba histolytica, Blastocystis spp, Giardia duodenalis, Toxoplasma gondii and Cryptosporidium parvum. The possible consequences of the microbiota on parasitic, allergic and autoimmune disorders are also considered.
Collapse
Affiliation(s)
- Oswaldo Partida-Rodríguez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México; Michael Smith Laboratories, University of Brithish Columbia, Vancouver, Canada
| | - Angélica Serrano-Vázquez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Miriam E Nieves-Ramírez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Patricia Moran
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Liliana Rojas
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Tobias Portillo
- Unidad de Bioinformática, Bioestadística y Biología Computacional. Red de Apoyo a la Investigación Científica, Universidad Nacional Autónoma de México, Instituto Nacional De Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Enrique González
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Eric Hernández
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - B Brett Finlay
- Michael Smith Laboratories, University of Brithish Columbia, Vancouver, Canada
| | - Cecilia Ximenez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
177
|
Harris NL, Loke P. Recent Advances in Type-2-Cell-Mediated Immunity: Insights from Helminth Infection. Immunity 2017; 47:1024-1036. [DOI: 10.1016/j.immuni.2017.11.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 12/18/2022]
|
178
|
Preventive Trichuris suis ova (TSO) treatment protects immunocompetent rabbits from DSS colitis but may be detrimental under conditions of immunosuppression. Sci Rep 2017; 7:16500. [PMID: 29184071 PMCID: PMC5705695 DOI: 10.1038/s41598-017-16287-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/09/2017] [Indexed: 01/03/2023] Open
Abstract
Trichuris suis ova (TSO) have been tested for therapeutic application in inflammatory bowel diseases (IBD) yet understanding of the underlying mechanisms and safety in an immunocompromised host is limited due to lack of a suitable animal model. We used a recently established rabbit model of dextran sodium sulphate (DSS) induced colitis to study the efficacy, mechanisms and safety of TSO therapy in immunocompetent and immunosuppressed animals. TSO treatment prevented the DSS induced weight loss, delayed the onset of DSS induced symptoms by 2 days and significantly reduced the disease activity (DAI). TSO treatment protected caecal histology and prevented the colitis-associated loss in faecal microbiota diversity. Mainly the transcriptome of lamina propria mononuclear cells (LPMC) was affected by TSO treatment, showing dampened innate and adaptive inflammatory responses. The protective effect of TSO was lost in immunosuppressed rabbits, where TSO exacerbated colitis. Our data show that preventive TSO treatment ameliorates colitis severity in immunocompetent rabbits, modulates LPMC immune responses and reduces faecal dysbiosis. In contrast, the same TSO treatment exacerbates colitis in immunosuppressed animals. Our data provide further evidence for a therapeutic effect of TSO in IBD, yet caution is required with regard to TSO treatment in immunosuppressed patients.
Collapse
|
179
|
Wu Z, Wang L, Tang Y, Sun X. Parasite-Derived Proteins for the Treatment of Allergies and Autoimmune Diseases. Front Microbiol 2017; 8:2164. [PMID: 29163443 PMCID: PMC5682104 DOI: 10.3389/fmicb.2017.02164] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/20/2017] [Indexed: 12/26/2022] Open
Abstract
The morbidity associated with atopic diseases and immune dysregulation disorders such as asthma, food allergies, multiple sclerosis, atopic dermatitis, type 1 diabetes mellitus, and inflammatory bowel disease has been increasing all around the world over the past few decades. Although the roles of non-biological environmental factors and genetic factors in the etiopathology have been particularly emphasized, they do not fully explain the increase; for example, genetic factors in a population change very gradually. Epidemiological investigation has revealed that the increase also parallels a decrease in infectious diseases, especially parasitic infections. Thus, the reduced prevalence of parasitic infections may be another important reason for immune dysregulation. Parasites have co-evolved with the human immune system for a long time. Some parasite-derived immune-evasion molecules have been verified to reduce the incidence and harmfulness of atopic diseases in humans by modulating the immune response. More importantly, some parasite-derived products have been shown to inhibit the progression of inflammatory diseases and consequently alleviate their symptoms. Thus, parasites, and especially their products, may have potential applications in the treatment of autoimmune diseases. In this review, the potential of parasite-derived products and their analogs for use in the treatment of atopic diseases and immune dysregulation is summarized.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Yanlai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| |
Collapse
|
180
|
Marzano V, Mancinelli L, Bracaglia G, Del Chierico F, Vernocchi P, Di Girolamo F, Garrone S, Tchidjou Kuekou H, D’Argenio P, Dallapiccola B, Urbani A, Putignani L. "Omic" investigations of protozoa and worms for a deeper understanding of the human gut "parasitome". PLoS Negl Trop Dis 2017; 11:e0005916. [PMID: 29095820 PMCID: PMC5667730 DOI: 10.1371/journal.pntd.0005916] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human gut has been continuously exposed to a broad spectrum of intestinal organisms, including viruses, bacteria, fungi, and parasites (protozoa and worms), over millions of years of coevolution, and plays a central role in human health. The modern lifestyles of Western countries, such as the adoption of highly hygienic habits, the extensive use of antimicrobial drugs, and increasing globalisation, have dramatically altered the composition of the gut milieu, especially in terms of its eukaryotic “citizens.” In the past few decades, numerous studies have highlighted the composition and role of human intestinal bacteria in physiological and pathological conditions, while few investigations exist on gut parasites and particularly on their coexistence and interaction with the intestinal microbiota. Studies of the gut “parasitome” through “omic” technologies, such as (meta)genomics, transcriptomics, proteomics, and metabolomics, are herein reviewed to better understand their role in the relationships between intestinal parasites, host, and resident prokaryotes, whether pathogens or commensals. Systems biology–based profiles of the gut “parasitome” under physiological and severe disease conditions can indeed contribute to the control of infectious diseases and offer a new perspective of omics-assisted tropical medicine.
Collapse
Affiliation(s)
- Valeria Marzano
- Human Microbiome Unit, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Livia Mancinelli
- Laboratory Medicine, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Giorgia Bracaglia
- Laboratory Medicine, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | | | - Pamela Vernocchi
- Human Microbiome Unit, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | | | - Stefano Garrone
- Laboratory Medicine, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | | | - Patrizia D’Argenio
- Pediatric Immuno-infectivology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Andrea Urbani
- Institute of Biochemistry and Biochemical Clinic, Faculty of Medicine and Surgery–Policlinico A. Gemelli, Catholic University of Sacred Heart, Rome, Italy
- Proteomic and Metabonomic Unit, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Lorenza Putignani
- Human Microbiome Unit, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
- Parasitology Unit, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
- * E-mail:
| |
Collapse
|
181
|
Microbial community and ovine host response varies with early and late stages of Haemonchus contortus infection. Vet Res Commun 2017; 41:263-277. [PMID: 29098532 DOI: 10.1007/s11259-017-9698-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/17/2017] [Indexed: 01/07/2023]
Abstract
The interactions between gastric microbiota, ovine host, and Haemonchus contortus portray the ovine gastric environment as a complex ecosystem, where all factors play a pertinent role in fine-tuning each other and in haemeostasis. We delineated the impact of early and late Haemonchus infection on abomasal and ruminal microbial community, as well as the ovine host. Twelve, parasite-naive lambs were divided into four groups, 7 days post-infection (dpi) and time-matched uninfected-control groups; 50 dpi and time-matched uninfected control groups were used for the experiment. Six sheep were inoculated with 5000 H. contortus infective larvae and followed for 7 or 50 days with their corresponding uninfected-control ones. Ovine abomasal tissues were collected for histological analysis and gastric fluids were collected for PH value measurements, microbial community isolation and Illumina MiSeq platform and bioinformatic analysis. Our results showed that Haemonchus infection increased the abomasal gastric pH (P = 0.05) and resulted in necrotizing and inflammatory changes that were more severe during acute infection. Furthermore, infection increased the abomasal bacterial load and decreased the ruminal microbiome. A 7-day infection of sheep with H. contortus significantly altered approximately 98% and 94% of genera in the abomasal and ruminal bacterial profile, respectively (P = 0.04-0.05). However, the approximate altered genera 50 days after infection in the ovine abomasal and ruminal microbiome were about 62% and 69%, correspondingly (P = 0.04-0.05) with increase in some bacteria and decrease in others. Overall, these results indicate that Haemonchus infection plays a crucial role in shaping stomach microbial community composition, and diversity.
Collapse
|
182
|
A polyphenol-enriched diet and Ascaris suum infection modulate mucosal immune responses and gut microbiota composition in pigs. PLoS One 2017; 12:e0186546. [PMID: 29028844 PMCID: PMC5640243 DOI: 10.1371/journal.pone.0186546] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are a class of bioactive plant secondary metabolites that are thought to have beneficial effects on gut health, such as modulation of mucosal immune and inflammatory responses and regulation of parasite burdens. Here, we examined the interactions between a polyphenol-rich diet supplement and infection with the enteric nematode Ascaris suum in pigs. Pigs were fed either a basal diet or the same diet supplemented with grape pomace (GP), an industrial by-product rich in polyphenols such as oligomeric proanthocyanidins. Half of the animals in each group were then inoculated with A. suum for 14 days to assess parasite establishment, acquisition of local and systemic immune responses and effects on the gut microbiome. Despite in vitro anthelmintic activity of GP-extracts, numbers of parasite larvae in the intestine were not altered by GP-supplementation. However, the bioactive diet significantly increased numbers of eosinophils induced by A. suum infection in the duodenum, jejunum and ileum, and modulated gene expression in the jejunal mucosa of infected pigs. Both GP-supplementation and A. suum infection induced significant and apparently similar changes in the composition of the prokaryotic gut microbiota, and both also decreased concentrations of isobutyric and isovaleric acid (branched-chain short chain fatty acids) in the colon. Our results demonstrate that while a polyphenol-enriched diet in pigs may not directly influence A. suum establishment, it significantly modulates the subsequent host response to helminth infection. Our results suggest an influence of diet on immune function which may potentially be exploited to enhance immunity to helminths.
Collapse
|
183
|
Impact of Enterobius vermicularis infection and mebendazole treatment on intestinal microbiota and host immune response. PLoS Negl Trop Dis 2017; 11:e0005963. [PMID: 28945752 PMCID: PMC5629029 DOI: 10.1371/journal.pntd.0005963] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/05/2017] [Accepted: 09/13/2017] [Indexed: 12/14/2022] Open
Abstract
Background Previous studies on the association of enterobiasis and chronic inflammatory diseases have revealed contradictory results. The interaction of Enterobius vermicularis infection in particular with gut microbiota and induced immune responses has never been thoroughly examined. Methodology/Findings In order to answer the question of whether exposure to pinworm and mebendazole can shift the intestinal microbial composition and immune responses, we recruited 109 (30 pinworm-negative, 79 pinworm-infected) first and fourth grade primary school children in Taichung, Taiwan, for a gut microbiome study and an intestinal cytokine and SIgA analysis. In the pinworm-infected individuals, fecal samples were collected again at 2 weeks after administration of 100 mg mebendazole. Gut microbiota diversity increased after Enterobius infection, and it peaked after administration of mebendazole. At the phylum level, pinworm infection and mebendazole deworming were associated with a decreased relative abundance of Fusobacteria and an increased proportion of Actinobacteria. At the genus level, the relative abundance of the probiotic Bifidobacterium increased after enterobiasis and mebendazole treatment. The intestinal SIgA level was found to be lower in the pinworm-infected group, and was elevated in half of the mebendazole-treated group. A higher proportion of pre-treatment Salmonella spp. was associated with a non-increase in SIgA after mebendazole deworming treatment. Conclusions/Significance Childhood exposure to pinworm plus mebendazole is associated with increased bacterial diversity, an increased abundance of Actinobacteria including the probiotic Bifidobacterium, and a decreased proportion of Fusobacteria. The gut SIgA level was lower in the pinworm-infected group, and was increased in half of the individuals after mebendazole deworming treatment. Whether human pinworm infection plus mebendazole deworming treatment can shift intestinal microbiota to a composition that is beneficial to the host and influence their mucosal immune response is currently unclear. In a cohort of 109 primary school children, we discovered that Enterobius vermicularis infection is associated with increased intestinal microbial diversity, a lowered relative abundance of Fusobacteria and an enriched proportion of Actinobacteria, including the probiotic Bifidobacterium. Mebendazole deworming was found to be correlated with a further increase in bacterial diversity. However, lower gut SIgA levels were detected in the pinworm infected group, and they were increased in only half of the subjects after mebendazole treatment.
Collapse
|
184
|
Jenkins TP, Rathnayaka Y, Perera PK, Peachey LE, Nolan MJ, Krause L, Rajakaruna RS, Cantacessi C. Infections by human gastrointestinal helminths are associated with changes in faecal microbiota diversity and composition. PLoS One 2017; 12:e0184719. [PMID: 28892494 PMCID: PMC5593201 DOI: 10.1371/journal.pone.0184719] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Investigations of the impact that patent infections by soil-transmitted gastrointestinal nematode parasites exert on the composition of the host gut commensal flora are attracting growing interest by the scientific community. However, information collected to date varies across experiments, and further studies are needed to identify consistent relationships between parasites and commensal microbial species. Here, we explore the qualitative and quantitative differences between the microbial community profiles of cohorts of human volunteers from Sri Lanka with patent infection by one or more parasitic nematode species (H+), as well as that of uninfected subjects (H-) and of volunteers who had been subjected to regular prophylactic anthelmintic treatment (Ht). High-throughput sequencing of the bacterial 16S rRNA gene, followed by bioinformatics and biostatistical analyses of sequence data revealed no significant differences in alpha diversity (Shannon) and richness between groups (P = 0.65, P = 0.13 respectively); however, beta diversity was significantly increased in H+ and Ht when individually compared to H-volunteers (P = 0.04). Among others, bacteria of the families Verrucomicrobiaceae and Enterobacteriaceae showed a trend towards increased abundance in H+, whereas the Leuconostocaceae and Bacteroidaceae showed a relative increase in H- and Ht respectively. Our findings add valuable knowledge to the vast, and yet little explored, research field of parasite—microbiota interactions and will provide a basis for the elucidation of the role such interactions play in pathogenic and immune-modulatory properties of parasitic nematodes in both human and animal hosts.
Collapse
Affiliation(s)
- Timothy P. Jenkins
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yasara Rathnayaka
- Department of Zoology, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - Laura E. Peachey
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Matthew J. Nolan
- Royal Veterinary College, University of London, North Mymms, United Kingdom
| | - Lutz Krause
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Australia
| | | | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
185
|
Chabé M, Lokmer A, Ségurel L. Gut Protozoa: Friends or Foes of the Human Gut Microbiota? Trends Parasitol 2017; 33:925-934. [PMID: 28870496 DOI: 10.1016/j.pt.2017.08.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/17/2017] [Accepted: 08/11/2017] [Indexed: 12/18/2022]
Abstract
The importance of the gut microbiota for human health has sparked a strong interest in the study of the factors that shape its composition and diversity. Despite the growing evidence suggesting that helminths and protozoa significantly interact with gut bacteria, gut microbiome studies remain mostly focused on prokaryotes and on populations living in industrialized countries that typically have a low parasite burden. We argue that protozoa, like helminths, represent an important factor to take into account when studying the gut microbiome, and that their presence - especially considering their long coevolutionary history with humans - may be beneficial. From this perspective, we examine the relationship between the protozoa and their hosts, as well as their relevance for public health.
Collapse
Affiliation(s)
- Magali Chabé
- University of Lille, CNRS, Inserm, CHU de Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Ana Lokmer
- UMR 7206 Eco-anthropologie et ethnobiologie, CNRS - MNHN - Paris Diderot University - Sorbonne Paris Cité, Paris, France
| | - Laure Ségurel
- UMR 7206 Eco-anthropologie et ethnobiologie, CNRS - MNHN - Paris Diderot University - Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
186
|
Wegener Parfrey L, Jirků M, Šíma R, Jalovecká M, Sak B, Grigore K, Jirků Pomajbíková K. A benign helminth alters the host immune system and the gut microbiota in a rat model system. PLoS One 2017; 12:e0182205. [PMID: 28771620 PMCID: PMC5542714 DOI: 10.1371/journal.pone.0182205] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 07/16/2017] [Indexed: 12/26/2022] Open
Abstract
Helminths and bacteria are major players in the mammalian gut ecosystem and each influences the host immune system and health. Declines in helminth prevalence and bacterial diversity appear to play a role in the dramatic rise of immune mediated inflammatory diseases (IMIDs) in western populations. Helminths are potent modulators of immune system and their reintroduction is a promising therapeutic avenue for IMIDs. However, the introduction of helminths represents a disturbance for the host and it is important to understand the impact of helminth reintroduction on the host, including the immune system and gut microbiome. We tested the impact of a benign tapeworm, Hymenolepis diminuta, in a rat model system. We find that H. diminuta infection results in increased interleukin 10 gene expression in the beginning of the prepatent period, consistent with induction of a type 2 immune response. We also find induction of humoral immunity during the patent period, shown here by increased IgA in feces. Further, we see an immuno-modulatory effect in the small intestine and spleen in patent period, as measured by reductions in tissue immune cells. We observed shifts in microbiota community composition during the patent period (beta-diversity) in response to H. diminuta infection. However, these compositional changes appear to be minor; they occur within families and genera common to both treatment groups. There was no change in alpha diversity. Hymenolepis diminuta is a promising model for helminth therapy because it establishes long-term, stable colonization in rats and modulates the immune system without causing bacterial dysbiosis. These results suggest that the goal of engineering a therapeutic helminth that can safely manipulate the mammalian immune system without disrupting the rest of the gut ecosystem is in reach.
Collapse
Affiliation(s)
- Laura Wegener Parfrey
- Departments of Botany and Zoology, University of British Columbia, Vancouver, Canada.,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, Canada
| | - Milan Jirků
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Radek Šíma
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Marie Jalovecká
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Bohumil Sak
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Karina Grigore
- Departments of Botany and Zoology, University of British Columbia, Vancouver, Canada
| | - Kateřina Jirků Pomajbíková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
187
|
Peachey LE, Jenkins TP, Cantacessi C. This Gut Ain’t Big Enough for Both of Us. Or Is It? Helminth–Microbiota Interactions in Veterinary Species. Trends Parasitol 2017; 33:619-632. [DOI: 10.1016/j.pt.2017.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 01/25/2023]
|
188
|
Mach N, Foury A, Kittelmann S, Reigner F, Moroldo M, Ballester M, Esquerré D, Rivière J, Sallé G, Gérard P, Moisan MP, Lansade L. The Effects of Weaning Methods on Gut Microbiota Composition and Horse Physiology. Front Physiol 2017; 8:535. [PMID: 28790932 PMCID: PMC5524898 DOI: 10.3389/fphys.2017.00535] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
Weaning has been described as one of the most stressful events in the life of horses. Given the importance of the interaction between the gut-brain axis and gut microbiota under stress, we evaluated (i) the effect of two different weaning methods on the composition of gut microbiota across time and (ii) how the shifts of gut microbiota composition after weaning affect the host. A total of 34 foals were randomly subjected to a progressive (P) or an abrupt (A) weaning method. In the P method, mares were separated from foals at progressively increasing intervals every day, starting from five min during the fourth week prior to weaning and ending with 6 h during the last week before weaning. In the A method, mares and foals were never separated prior to weaning (0 d). Different host phenotypes and gut microbiota composition were studied across 6 age strata (days -30, 0, 3, 5, 7, and 30 after weaning) by 16S rRNA gene sequencing. Results revealed that the beneficial species belonging to Prevotella, Paraprevotella, and Ruminococcus were more abundant in the A group prior to weaning compared to the P group, suggesting that the gut microbiota in the A cohort was better adapted to weaning. Streptococcus, on the other hand, showed the opposite pattern after weaning. Fungal loads, which are thought to increase the capacity for fermenting the complex polysaccharides from diet, were higher in P relative to A. Beyond the effects of weaning methods, maternal separation at weaning markedly shifted the composition of the gut microbiota in all foals, which fell into three distinct community types at 3 days post-weaning. Most genera in community type 2 (i.e., Eubacterium, Coprococcus, Clostridium XI, and Blautia spp.) were negatively correlated with salivary cortisol levels, but positively correlated with telomere length and N-butyrate production. Average daily gain was also greater in the foals harboring a community type 2 microbiota. Therefore, community type 2 is likely to confer better stress response adaptation following weaning. This study identified potential microbial biomarkers that could predict the likelihood for physiological adaptations to weaning in horses, although causality remains to be addressed.
Collapse
Affiliation(s)
- Núria Mach
- UMR 1313, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Aline Foury
- UMR 1286, Institut National de la Recherche Agronomique, Université Bordeaux, Nutrition et Neurobiologie IntégréeBordeaux, France
| | - Sandra Kittelmann
- AgResearch Ltd, Grasslands Research CentrePalmerston North, New Zealand
| | - Fabrice Reigner
- UMR 1282, Institut National de la Recherche Agronomique, Infectiologie et Santé PubliqueNouzilly, France
| | - Marco Moroldo
- UMR 1313, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Maria Ballester
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries, Torre MarimonCaldes de Montbui, Spain
| | - Diane Esquerré
- UMR 444, Institut National de la Recherche Agronomique, Plateforme GETCastanet-Tolosan, France
| | - Julie Rivière
- UMR 1313, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Guillaume Sallé
- UMR 1282, Institut National de la Recherche Agronomique, Infectiologie et Santé PubliqueNouzilly, France
| | - Philippe Gérard
- UMR 1319, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Marie-Pierre Moisan
- UMR 1286, Institut National de la Recherche Agronomique, Université Bordeaux, Nutrition et Neurobiologie IntégréeBordeaux, France
| | - Léa Lansade
- PRC, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, IFCE, Université de ToursNouzilly, France
| |
Collapse
|
189
|
Aivelo T, Norberg A. Parasite-microbiota interactions potentially affect intestinal communities in wild mammals. J Anim Ecol 2017; 87:438-447. [DOI: 10.1111/1365-2656.12708] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/08/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Tuomas Aivelo
- Institute of Biotechnology; University of Helsinki; Helsinki Finland
| | - Anna Norberg
- Mathematical Biology Group; Metapopulation Research Centre; Department of Biosciences; University of Helsinki; Helsinki Finland
| |
Collapse
|
190
|
Heitlinger E, Ferreira SCM, Thierer D, Hofer H, East ML. The Intestinal Eukaryotic and Bacterial Biome of Spotted Hyenas: The Impact of Social Status and Age on Diversity and Composition. Front Cell Infect Microbiol 2017; 7:262. [PMID: 28670573 PMCID: PMC5472691 DOI: 10.3389/fcimb.2017.00262] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/02/2017] [Indexed: 01/24/2023] Open
Abstract
In mammals, two factors likely to affect the diversity and composition of intestinal bacteria (bacterial microbiome) and eukaryotes (eukaryome) are social status and age. In species in which social status determines access to resources, socially dominant animals maintain better immune processes and health status than subordinates. As high species diversity is an index of ecosystem health, the intestinal biome of healthier, socially dominant animals should be more diverse than those of subordinates. Gradual colonization of the juvenile intestine after birth predicts lower intestinal biome diversity in juveniles than adults. We tested these predictions on the effect of: (1) age (juvenile/adult) and (2) social status (low/high) on bacterial microbiome and eukaryome diversity and composition in the spotted hyena (Crocuta crocuta), a highly social, female-dominated carnivore in which social status determines access to resources. We comprehensively screened feces from 35 individually known adult females and 7 juveniles in the Serengeti ecosystem for bacteria and eukaryotes, using a set of 48 different amplicons (4 for bacterial 16S, 44 for eukaryote 18S) in a multi-amplicon sequencing approach. We compared sequence abundances to classical coprological egg or oocyst counts. For all parasite taxa detected in more than six samples, the number of sequence reads significantly predicted the number of eggs or oocysts counted, underscoring the value of an amplicon sequencing approach for quantitative measurements of parasite load. In line with our predictions, our results revealed a significantly less diverse microbiome in juveniles than adults and a significantly higher diversity of eukaryotes in high-ranking than low-ranking animals. We propose that free-ranging wildlife can provide an intriguing model system to assess the adaptive value of intestinal biome diversity for both bacteria and eukaryotes.
Collapse
Affiliation(s)
- Emanuel Heitlinger
- Research Group Ecology and Evolution of Molecular Parasite Host Interactions, Leibniz Institute for Zoo and Wildlife ResearchBerlin, Germany.,Institute for Biology, Molecular Parasitology, Humboldt UniversityBerlin, Germany
| | - Susana C M Ferreira
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife ResearchBerlin, Germany
| | - Dagmar Thierer
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife ResearchBerlin, Germany
| | - Heribert Hofer
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife ResearchBerlin, Germany
| | - Marion L East
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife ResearchBerlin, Germany
| |
Collapse
|
191
|
Williams AR, Dige A, Rasmussen TK, Hvas CL, Dahlerup JF, Iversen L, Stensvold CR, Agnholt J, Nejsum P. Immune responses and parasitological observations induced during probiotic treatment with medicinal Trichuris suis ova in a healthy volunteer. Immunol Lett 2017; 188:32-37. [PMID: 28602842 DOI: 10.1016/j.imlet.2017.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/26/2022]
Abstract
Ingestion of eggs (ova) of the porcine nematode parasite Trichuris suis (TSO) may reduce the severity of autoimmune disorders, however the development of TSO treatment as a useful therapy for autoimmune diseases is hampered by a lack of knowledge on the development of the parasite and the nature of the local immune responses in humans. Here, we used colonoscopy to investigate the development of T. suis and related mucosal and systemic immune responses during TSO treatment in an intestinally healthy male volunteer. TSO treatment induced T. suis-specific serum antibodies, a transient blood eosinophilia, and increases in IFNγ+ and IL4+ cells within the circulating CD4+ T-cell population. Increased expression of genes encoding cytokines (IL4, IL10, IL17 and TGF-β), and transcription factors (FOXP3, GATA3 and RORC) were apparent in the ascending and transverse colon (the predilection site of the worms), whereas only limited changes in gene expression were observed proximally (ileum) and distally (descending colon) to the infected tissue. We further show that T. suis is able to colonise the human colon, with a number of worms developing to a similar size and morphology observed in the natural pig host, and a small number of unembryonated eggs were passed in the faeces, indicating patent infection. Notably, the volunteer experienced a substantial improvement in psoriasis during the course of TSO treatment. Thus, TSO treatment induced a mixed Th1/Th2/T regulatory response at the local site of infection, which was also reflected to some extent in the peripheral circulation. These results, together with the first definitive observations that T. suis can mature to adult size and reproduce in humans, shed new light on the interaction between the human immune system and probiotic helminth treatment, which should facilitate further development of this novel therapeutic option.
Collapse
Affiliation(s)
- Andrew R Williams
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Anders Dige
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Tue Kruse Rasmussen
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark; Department of Rheumatology, Aarhus University Hospital, Denmark
| | - Christian L Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Jens F Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - C Rune Stensvold
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Jørgen Agnholt
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
192
|
Acharya A, Chan Y, Kheur S, Kheur M, Gopalakrishnan D, Watt RM, Mattheos N. Salivary microbiome of an urban Indian cohort and patterns linked to subclinical inflammation. Oral Dis 2017; 23:926-940. [PMID: 28383789 DOI: 10.1111/odi.12676] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/19/2016] [Accepted: 03/16/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To profile salivary microbiomes of an urban-living, healthy Indian cohort and explore associations with proinflammatory status. METHODS Fifty-one clinically healthy Indian subjects' salivary microbiomes were analyzed using 16S rRNA Illumina MiSeq sequencing. Community distribution was compared with salivary data from the Human Microbiome Project (HMP). Indian subjects were clustered using microbiome-based "partitioning along medoids" (PAM), and relationships of interleukin-1 beta levels with community composition were analyzed. RESULTS Indian subjects presented higher phylogenetic diversity than HMP. Several taxa associated with traditional societies gut microbiomes (Bacteroidales, Paraprevotellaceae, and Spirochaetaceae) were raised. Bifidobacteriaceae and Lactobacillaceae were approximately fourfold greater. A PAM cluster enriched in several Proteobacteria, Actinobacteria, and Bacilli taxa and having almost twofold higher Prevotella to Bacteroides ratio showed significant overrepresentation of subjects within the highest quartile of salivary interleukin-1 beta levels. Abiotrophia, Anaerobacillus, Micrococcus, Aggregatibacter, Halomonas, Propionivivrio, Paracoccus, Mannhemia, unclassified Bradyrhizobiaceae, and Caulobacteraceae were each significant indicators of presence in the highest interleukin-1 beta quartile. 2 OTUs representing Lactobacillus fermentum and Cardiobacterium hominis significantly correlated with interleukin-1 beta levels. CONCLUSION The salivary microbiome of this urban-dwelling Indian cohort differed significantly from that of a well-studied Western cohort. Specific community patterns were putatively associated with subclinical inflammation levels.
Collapse
Affiliation(s)
- A Acharya
- Faculty of Dentistry, The University of Hong Kong, Hong Kong.,Dr. D Y Patil Dental College and Hospital, Pune, India
| | - Y Chan
- Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - S Kheur
- Dr. D Y Patil Dental College and Hospital, Pune, India
| | - M Kheur
- M.A Rangoonwalla Dental College and Hospital, Pune, India
| | | | - R M Watt
- Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - N Mattheos
- Faculty of Dentistry, The University of Hong Kong, Hong Kong
| |
Collapse
|
193
|
Surendar J, Indulekha K, Hoerauf A, Hübner MP. Immunomodulation by helminths: Similar impact on type 1 and type 2 diabetes? Parasite Immunol 2017; 39. [PMID: 27862000 DOI: 10.1111/pim.12401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/04/2016] [Indexed: 12/19/2022]
Abstract
The incidence of both type 1 (T1D) and type 2 diabetes (T2D) is drastically increasing, and it is predicted that the global prevalence of diabetes will reach almost 600 million cases by 2035. Even though the pathogenesis of both types of diabetes is distinct, the immune system is actively involved in both forms of the disease. Genetic and environmental factors determine the risk to develop T1D. On the other hand, sedentary life style, surplus of food intake and other lifestyle changes contribute to the increase of T2D incidence. Improved sanitation with high-quality medical treatment is such an environmental factor that has led to a continuous reduction of infectious diseases including helminth infections over the past decades. Recently, a growing body of evidence has implicated a negative association between helminth infections and diabetes in humans as well as animal models. In this review, we discuss studies that have provided evidence for the beneficial impact of helminth infections on T1D and T2D. Possible mechanisms are presented by which helminths prevent T1D onset by mitigating pancreatic inflammation and confer protection against T2D by improving insulin sensitivity, alleviating inflammation, augmenting browning of adipose tissue and improving lipid metabolism and insulin signalling.
Collapse
Affiliation(s)
- J Surendar
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - K Indulekha
- LIMES Institute, Membrane Biology & Lipid Biochemistry, University of Bonn, Bonn, Germany
| | - A Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - M P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
194
|
Hamilton MK, Ronveaux CC, Rust BM, Newman JW, Hawley M, Barile D, Mills DA, Raybould HE. Prebiotic milk oligosaccharides prevent development of obese phenotype, impairment of gut permeability, and microbial dysbiosis in high fat-fed mice. Am J Physiol Gastrointest Liver Physiol 2017; 312:G474-G487. [PMID: 28280143 PMCID: PMC5451559 DOI: 10.1152/ajpgi.00427.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 01/31/2023]
Abstract
Microbial dysbiosis and increased intestinal permeability are targets for prevention or reversal of weight gain in high-fat (HF) diet-induced obesity (DIO). Prebiotic milk oligosaccharides (MO) have been shown to benefit the host intestine but have not been used in DIO. We hypothesized that supplementation with bovine MO would prevent the deleterious effect of HF diet on the gut microbiota and intestinal permeability and attenuate development of the obese phenotype. C57BL/6 mice were fed a control diet, HF (40% fat/kcal), or HF + prebiotic [6%/kg bovine milk oligosaccharides (BMO) or inulin] for 1, 3, or 6 wk. Gut microbiota and intestinal permeability were assessed in the ileum, cecum, and colon. Addition of BMO to the HF diet significantly attenuated weight gain, decreased adiposity, and decreased caloric intake; inulin supplementation also lowered weight gain and adiposity, but this did not reach significance. BMO and inulin completely abolished the HF diet-induced increase in paracellular and transcellular permeability in the small and large intestine. Both BMO and inulin increased abundance of beneficial microbes Bifidobacterium and Lactobacillus in the ileum. However, inulin supplementation altered phylogenetic diversity and decreased species richness. We conclude that addition of BMO to the HF diet completely prevented increases in intestinal permeability and microbial dysbiosis and was partially effective to prevent weight gain in DIO.NEW & NOTEWORTHY This study provides the first report of the effects of prebiotic bovine milk oligosaccharides on the host phenotype of high-fat diet-induced obesity in mice.
Collapse
Affiliation(s)
- M Kristina Hamilton
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, California
| | - Charlotte C Ronveaux
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, California
| | - Bret M Rust
- Department of Nutrition, University of California Davis, Davis, California
- National Institutes of Health West Coast Metabolomics Center, University of California Davis, Davis, California
| | - John W Newman
- Department of Nutrition, University of California Davis, Davis, California
- National Institutes of Health West Coast Metabolomics Center, University of California Davis, Davis, California
- Obesity and Metabolism Research Unit, United States Department of Agriculture Davis, Western Human Nutrition Research Center, Davis, California
| | - Melissa Hawley
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, California
| | - Daniela Barile
- Department of Food Science and Technology, University of California Davis, Davis, California
- Foods for Health Institute, University of California Davis, Davis, California; and
| | - David A Mills
- Department of Food Science and Technology, University of California Davis, Davis, California
- Foods for Health Institute, University of California Davis, Davis, California; and
| | - Helen E Raybould
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, California;
| |
Collapse
|
195
|
Midha A, Schlosser J, Hartmann S. Reciprocal Interactions between Nematodes and Their Microbial Environments. Front Cell Infect Microbiol 2017; 7:144. [PMID: 28497029 PMCID: PMC5406411 DOI: 10.3389/fcimb.2017.00144] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/07/2017] [Indexed: 01/07/2023] Open
Abstract
Parasitic nematode infections are widespread in nature, affecting humans as well as wild, companion, and livestock animals. Most parasitic nematodes inhabit the intestines of their hosts living in close contact with the intestinal microbiota. Many species also have tissue migratory life stages in the absence of severe systemic inflammation of the host. Despite the close coexistence of helminths with numerous microbes, little is known concerning these interactions. While the environmental niche is considerably different, the free-living nematode Caenorhabditis elegans (C. elegans) is also found amongst a diverse microbiota, albeit on decaying organic matter. As a very well characterized model organism that has been intensively studied for several decades, C. elegans interactions with bacteria are much more deeply understood than those of their parasitic counterparts. The enormous breadth of understanding achieved by the C. elegans research community continues to inform many aspects of nematode parasitology. Here, we summarize what is known regarding parasitic nematode-bacterial interactions while comparing and contrasting this with information from work in C. elegans. This review highlights findings concerning responses to bacterial stimuli, antimicrobial peptides, and the reciprocal influences between nematodes and their environmental bacteria. Furthermore, the microbiota of nematodes as well as alterations in the intestinal microbiota of mammalian hosts by helminth infections are discussed.
Collapse
Affiliation(s)
- Ankur Midha
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Josephine Schlosser
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
196
|
Affiliation(s)
- B. Guigas
- Department of Parasitology; Leiden University Medical Center; Leiden the Netherlands
- Department of Molecular Cell Biology; Leiden University Medical Center; Leiden the Netherlands
| |
Collapse
|
197
|
Slingerland AE, Schwabkey Z, Wiesnoski DH, Jenq RR. Clinical Evidence for the Microbiome in Inflammatory Diseases. Front Immunol 2017; 8:400. [PMID: 28446909 PMCID: PMC5388779 DOI: 10.3389/fimmu.2017.00400] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/21/2017] [Indexed: 12/11/2022] Open
Abstract
Clinical evidence is accumulating for a role of the microbiome in contributing to or modulating severity of inflammatory diseases. These studies can be organized by various organ systems involved, as well as type of study approach utilized, whether investigators compared the microbiome of cases versus controls, followed patients longitudinally, or intervened with antibiotics, prebiotics, or bacterial introduction. In this review, we summarize the clinical evidence supporting the microbiome as an important mechanism in the onset and maintenance of inflammation.
Collapse
Affiliation(s)
- Ann E Slingerland
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zaker Schwabkey
- Department of Genomic Medicine, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Diana H Wiesnoski
- Department of Genomic Medicine, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert R Jenq
- Department of Genomic Medicine, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Stem Cell Transplantation Cellular Therapy, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
198
|
Silverman JD, Washburne AD, Mukherjee S, David LA. A phylogenetic transform enhances analysis of compositional microbiota data. eLife 2017; 6:e21887. [PMID: 28198697 PMCID: PMC5328592 DOI: 10.7554/elife.21887] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/13/2017] [Indexed: 12/17/2022] Open
Abstract
Surveys of microbial communities (microbiota), typically measured as relative abundance of species, have illustrated the importance of these communities in human health and disease. Yet, statistical artifacts commonly plague the analysis of relative abundance data. Here, we introduce the PhILR transform, which incorporates microbial evolutionary models with the isometric log-ratio transform to allow off-the-shelf statistical tools to be safely applied to microbiota surveys. We demonstrate that analyses of community-level structure can be applied to PhILR transformed data with performance on benchmarks rivaling or surpassing standard tools. Additionally, by decomposing distance in the PhILR transformed space, we identified neighboring clades that may have adapted to distinct human body sites. Decomposing variance revealed that covariation of bacterial clades within human body sites increases with phylogenetic relatedness. Together, these findings illustrate how the PhILR transform combines statistical and phylogenetic models to overcome compositional data challenges and enable evolutionary insights relevant to microbial communities.
Collapse
Affiliation(s)
- Justin D Silverman
- Program in Computational Biology and Bioinformatics, Duke University, Durham, United States
- Medical Scientist Training Program, Duke University, Durham, United States
- Center for Genomic and Computational Biology, Duke University, Durham, United States
| | - Alex D Washburne
- Nicholas School of the Environment, Duke University, Durham, United States
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, United States
| | - Sayan Mukherjee
- Program in Computational Biology and Bioinformatics, Duke University, Durham, United States
- Department of Statistical Science, Duke University, Durham, United States
- Department of Mathematics, Duke University, Durham, United States
- Department of Biostatistics and Bioinformatics, Duke University, Durham, United States
- Department of Computer Science, Duke University, Durham, United States
| | - Lawrence A David
- Program in Computational Biology and Bioinformatics, Duke University, Durham, United States
- Center for Genomic and Computational Biology, Duke University, Durham, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, United States
| |
Collapse
|
199
|
McFarlane AJ, McSorley HJ, Davidson DJ, Fitch PM, Errington C, Mackenzie KJ, Gollwitzer ES, Johnston CJC, MacDonald AS, Edwards MR, Harris NL, Marsland BJ, Maizels RM, Schwarze J. Enteric helminth-induced type I interferon signaling protects against pulmonary virus infection through interaction with the microbiota. J Allergy Clin Immunol 2017; 140:1068-1078.e6. [PMID: 28196762 DOI: 10.1016/j.jaci.2017.01.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 01/05/2017] [Accepted: 01/18/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Helminth parasites have been reported to have beneficial immunomodulatory effects in patients with allergic and autoimmune conditions and detrimental consequences in patients with tuberculosis and some viral infections. Their role in coinfection with respiratory viruses is not clear. OBJECTIVE Here we investigated the effects of strictly enteric helminth infection with Heligmosomoides polygyrus on respiratory syncytial virus (RSV) infection in a mouse model. METHODS A murine helminth/RSV coinfection model was developed. Mice were infected by means of oral gavage with 200 stage 3 H polygyrus larvae. Ten days later, mice were infected intranasally with either RSV or UV-inactivated RSV. RESULTS H polygyrus-infected mice showed significantly less disease and pulmonary inflammation after RSV infection associated with reduced viral load. Adaptive immune responses, including TH2 responses, were not essential because protection against RSV was maintained in Rag1-/- and Il4rα-/- mice. Importantly, H polygyrus infection upregulated expression of type I interferons and interferon-stimulated genes in both the duodenum and lung, and its protective effects were lost in both Ifnar1-/- and germ-free mice, revealing essential roles for type I interferon signaling and microbiota in H polygyrus-induced protection against RSV. CONCLUSION These data demonstrate that a strictly enteric helminth infection can have remote protective antiviral effects in the lung through induction of a microbiota-dependent type I interferon response.
Collapse
Affiliation(s)
- Amanda J McFarlane
- MRC-Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom; Child Life and Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Henry J McSorley
- MRC-Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom; Child Life and Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Donald J Davidson
- MRC-Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul M Fitch
- MRC-Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom; Child Life and Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Claire Errington
- National Health Service Lothian, Simpson Centre for Reproductive Health, Edinburgh, United Kingdom
| | - Karen J Mackenzie
- MRC-Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Eva S Gollwitzer
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Lausanne, Switzerland
| | - Chris J C Johnston
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew S MacDonald
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom
| | - Michael R Edwards
- Airway Disease Infection Section, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma and Centre for Respiratory Infection, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nicola L Harris
- Global Health Institute, École Polytechnique, Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Benjamin J Marsland
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Lausanne, Switzerland
| | - Rick M Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Jürgen Schwarze
- MRC-Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom; Child Life and Health, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
200
|
Weingarden AR, Vaughn BP. Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease. Gut Microbes 2017; 8:238-252. [PMID: 28609251 PMCID: PMC5479396 DOI: 10.1080/19490976.2017.1290757] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex set of diseases that lead to chronic inflammation in the gastrointestinal tract. Although the etiology of IBD is not fully understood, it is well-known that the intestinal microbiota is associated with the development and maintenance of IBD. Manipulation of the gut microbiota, therefore, may represent a target for IBD therapy. Fecal microbiota transplantation (FMT), where fecal microbiota from a healthy donor is transplanted into a patient's GI tract, is already a successful therapy for Clostridium difficile infection. FMT is currently being explored as a potential therapy for IBD as well. In this review, the associations between the gut microbiota and IBD and the emerging data on FMT for IBD will be discussed.
Collapse
Affiliation(s)
- Alexa R. Weingarden
- Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, Minneapolis, MN, USA
| | - Byron P. Vaughn
- Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, Minneapolis, MN, USA,CONTACT Byron P. Vaughn 420 Delaware street SE, MMC36, Minneapolis, MN 55455
| |
Collapse
|