151
|
Sabin AP, Ferrieri P, Kline S. Mycobacterium abscessus Complex Infections in Children: A Review. Curr Infect Dis Rep 2017; 19:46. [PMID: 28983867 PMCID: PMC5821427 DOI: 10.1007/s11908-017-0597-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Infections in children with Mycobacterium abscessus complex represent a particular challenge for clinicians. Increasing incidence of these infections worldwide has necessitated focused attention to improve both diagnostic as well as treatment modalities. Published medical literature was reviewed, with emphasis on material published in the past 5 years. RECENT FINDINGS Increasing availability of new diagnostic tools, such as matrix-assisted laser desorption ionization-time of flight mass spectrometry and custom PCRs, has provided unique insights into the subspecies within the complex and improved diagnostic certainty. Microbiological review of all recent isolates at the University of Minnesota Medical Center was also conducted, with description of the antimicrobial sensitivity patterns encountered in our center, and compared with those published from other centers in the recent literature. A discussion of conventional antimicrobial treatment regimens, alongside detailed description of the relevant antimicrobials, is derived from recent publications. Antimicrobial therapy, combined with surgical intervention in some cases, remains the mainstay of pediatric care. Ongoing questions remain regarding the transmission mechanics, immunologic vulnerabilities exploited by these organisms in the host, and the optimal antimicrobial regimens necessary to enable a reliable cure. Updated treatment guidelines based on focused clinical studies in children and accounting especially for the immunocompromised children at greatest risk are very much needed.
Collapse
Affiliation(s)
- Arick P Sabin
- Department of Medicine, Division of Infectious Diseases and International Medicine, University of Minnesota Medical School, 420 Delaware Street SE, MMC # 250, Minneapolis, MN, 55455, USA
| | - Patricia Ferrieri
- Department of Laboratory Medicine and Pathology and Department of Pediatrics, Division of Infectious Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Susan Kline
- Department of Medicine, Division of Infectious Diseases and International Medicine, University of Minnesota Medical School, 420 Delaware Street SE, MMC # 250, Minneapolis, MN, 55455, USA.
| |
Collapse
|
152
|
Gregoire SA, Byam J, Pavelka MS. galK-based suicide vector mediated allelic exchange in Mycobacterium abscessus. MICROBIOLOGY-SGM 2017; 163:1399-1408. [PMID: 28933689 DOI: 10.1099/mic.0.000528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacterium abscessus is a fast-growing environmental organism and an important emerging pathogen. It is highly resistant to many antibiotics and undergoes a smooth to rough colony morphology change that appears to be important for pathogenesis. Smooth environmental strains have a glycopeptidolipid (GPL) on the surface, while certain types of clinical strains are often rough and lack this GPL, due to mutations in biosynthetic genes or the mmpL4b transporter gene. We report here the development and evaluation of an allelic exchange system for unmarked alleles in M. abscessus ATCC19977, using a suicide vector bearing the E. coli galK gene and 2-deoxygalactose counterselection. We describe here two variant galK suicide vectors, and demonstrate their utility in constructing a variety of mutants with deletion alleles of the mmpL4b GPL transporter gene, the mbtH GPL biosynthesis gene, the known β-lactamase gene MAB_2875 and a putative β-lactamase gene, MAB_2833. We also show that a novel allele of the E. coli aacC4 gene, conferring apramycin resistance (aacC41), can be used as a selectable marker in M. abscessus ATCC19977 at single copy.
Collapse
Affiliation(s)
- Stacy A Gregoire
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joel Byam
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Martin S Pavelka
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
153
|
Leo S, Gaïa N, Ruppé E, Emonet S, Girard M, Lazarevic V, Schrenzel J. Detection of Bacterial Pathogens from Broncho-Alveolar Lavage by Next-Generation Sequencing. Int J Mol Sci 2017; 18:ijms18092011. [PMID: 28930150 PMCID: PMC5618659 DOI: 10.3390/ijms18092011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/10/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022] Open
Abstract
The applications of whole-metagenome shotgun sequencing (WMGS) in routine clinical analysis are still limited. A combination of a DNA extraction procedure, sequencing, and bioinformatics tools is essential for the removal of human DNA and for improving bacterial species identification in a timely manner. We tackled these issues with a broncho-alveolar lavage (BAL) sample from an immunocompromised patient who had developed severe chronic pneumonia. We extracted DNA from the BAL sample with protocols based either on sequential lysis of human and bacterial cells or on the mechanical disruption of all cells. Metagenomic libraries were sequenced on Illumina HiSeq platforms. Microbial community composition was determined by k-mer analysis or by mapping to taxonomic markers. Results were compared to those obtained by conventional clinical culture and molecular methods. Compared to mechanical cell disruption, a sequential lysis protocol resulted in a significantly increased proportion of bacterial DNA over human DNA and higher sequence coverage of Mycobacterium abscessus, Corynebacterium jeikeium and Rothia dentocariosa, the bacteria reported by clinical microbiology tests. In addition, we identified anaerobic bacteria not searched for by the clinical laboratory. Our results further support the implementation of WMGS in clinical routine diagnosis for bacterial identification.
Collapse
Affiliation(s)
- Stefano Leo
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals (HUG), 1205 Geneva, Switzerland.
| | - Nadia Gaïa
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals (HUG), 1205 Geneva, Switzerland.
| | - Etienne Ruppé
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals (HUG), 1205 Geneva, Switzerland.
| | - Stephane Emonet
- Service of Infectious Diseases, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland.
- Bacteriology Laboratory, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland.
| | - Myriam Girard
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals (HUG), 1205 Geneva, Switzerland.
| | - Vladimir Lazarevic
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals (HUG), 1205 Geneva, Switzerland.
| | - Jacques Schrenzel
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals (HUG), 1205 Geneva, Switzerland.
- Service of Infectious Diseases, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland.
- Bacteriology Laboratory, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland.
| |
Collapse
|
154
|
Ribeiro GM, Matsumoto CK, Real F, Teixeira D, Duarte RS, Mortara RA, Leão SC, de Souza Carvalho-Wodarz C. Increased survival and proliferation of the epidemic strain Mycobacterium abscessus subsp. massiliense CRM0019 in alveolar epithelial cells. BMC Microbiol 2017; 17:195. [PMID: 28903728 PMCID: PMC5598063 DOI: 10.1186/s12866-017-1102-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/05/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Outbreaks of infections caused by rapidly growing mycobacteria have been reported worldwide generally associated with medical procedures. Mycobacterium abscessus subsp. massiliense CRM0019 was obtained during an epidemic of postsurgical infections and was characterized by increased persistence in vivo. To better understand the successful survival strategies of this microorganism, we evaluated its infectivity and proliferation in macrophages (RAW and BMDM) and alveolar epithelial cells (A549). For that, we assessed the following parameters, for both M. abscessus CRM0019 as well as the reference strain M. abscessus ATCC 19977: internalization, intracellular survival for up 3 days, competence to subvert lysosome fusion and the intracellular survival after cell reinfection. RESULTS CRM0019 and ATCC 19977 strains showed the same internalization rate (approximately 30% after 6 h infection), in both A549 and RAW cells. However, colony forming units data showed that CRM0019 survived better in A549 cells than the ATCC 19977 strain. Phagosomal characteristics of CRM0019 showed the bacteria inside tight phagosomes in A549 cells, contrasting to the loosely phagosomal membrane in macrophages. This observation holds for the ATCC 19977 strain in both cell types. The competence to subvert lysosome fusion was assessed by acidification and acquisition of lysosomal protein. For M. abscessus strains the phagosomes were acidified in all cell lines; nevertheless, the acquisition of lysosomal protein was reduced by CRM0019 compared to the ATCC 19977 strain, in A549 cells. Conversely, in macrophages, both M. abscessus strains were located in mature phagosomes, however without bacterial death. Once recovered from macrophages M. abscessus could establish a new intracellular infection. Nevertheless, only CRM0019 showed a higher growth rate in A549, increasing nearly 10-fold after 48 and 72 h. CONCLUSION M. abscessus CRM0019 creates a protective and replicative niche in alveolar epithelial cells mainly by avoiding phagosome maturation. Once recovered from infected macrophages, CRM0019 remains infective and displays greater intracellular growth in A549 cells compared to the ATCC 19977 strain. This evasion strategy in alveolar epithelial cells may contribute to the long survival of the CRM0019 strain in the host and thus to the inefficacy of in vivo treatment.
Collapse
Affiliation(s)
- Giovanni Monteiro Ribeiro
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Cristianne Kayoko Matsumoto
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fernando Real
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.,Laboratoire Entrée muqueuse du VIH et Immunité muqueuse, Department Infection, Immunité et Inflammation, Institut Cochin, Paris, France
| | - Daniela Teixeira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rafael Silva Duarte
- Laboratório de Micobactérias, Instituto de Microbiologia Professor Paulo de Góes, Cidade Universitária, Rio de Janeiro, Brazil
| | - Renato Arruda Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sylvia Cardoso Leão
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Cristiane de Souza Carvalho-Wodarz
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil. .,Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.
| |
Collapse
|
155
|
Decoding the similarities and differences among mycobacterial species. PLoS Negl Trop Dis 2017; 11:e0005883. [PMID: 28854187 PMCID: PMC5595346 DOI: 10.1371/journal.pntd.0005883] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/12/2017] [Accepted: 08/18/2017] [Indexed: 11/19/2022] Open
Abstract
Mycobacteriaceae comprises pathogenic species such as Mycobacterium tuberculosis, M. leprae and M. abscessus, as well as non-pathogenic species, for example, M. smegmatis and M. thermoresistibile. Genome comparison and annotation studies provide insights into genome evolutionary relatedness, identify unique and pathogenicity-related genes in each species, and explore new targets that could be used for developing new diagnostics and therapeutics. Here, we present a comparative analysis of ten-mycobacterial genomes with the objective of identifying similarities and differences between pathogenic and non-pathogenic species. We identified 1080 core orthologous clusters that were enriched in proteins involved in amino acid and purine/pyrimidine biosynthetic pathways, DNA-related processes (replication, transcription, recombination and repair), RNA-methylation and modification, and cell-wall polysaccharide biosynthetic pathways. For their pathogenicity and survival in the host cell, pathogenic species have gained specific sets of genes involved in repair and protection of their genomic DNA. M. leprae is of special interest owing to its smallest genome (1600 genes and ~1300 psuedogenes), yet poor genome annotation. More than 75% of the pseudogenes were found to have a functional ortholog in the other mycobacterial genomes and belong to protein families such as transferases, oxidoreductases and hydrolases. Members of the Mycobacteriaceae family, which are known to adapt to different environmental niches, comprise bacterial species with varied genome sizes. They are unique in their cell-wall composition, which is remarkably thick and lipid-rich as compared to other bacteria. We performed a comparative analysis at the proteome level for ten mycobacterial species that differ in their pathogenicity, genome size and environmental niches. A total of 1080 orthologous clusters with representation from all ten species were obtained, and these were further examined for their domain annotations, domain architecture similarities and enriched GO terms. These core orthologous clusters are enriched in various biosynthetic pathways. The proteins that are specific to each of the ten species were also investigated for their GO functions. The M. leprae genome has a large number of pseudogenes and we searched for their functional orthologs in other mycobacterial species in order to understand the functions that are lost from the M. leprae genome. The proteins present exclusively in M. leprae genome were studied in more detail, in order to predict putative drug targets and diagnostic markers. These findings, which have implications in understanding evolution of mycobacterial genomes, identify species-specific proteins that have potential for use in developing new diagnostic tools and therapeutics.
Collapse
|
156
|
Thomas SE, Mendes V, Kim SY, Malhotra S, Ochoa-Montaño B, Blaszczyk M, Blundell TL. Structural Biology and the Design of New Therapeutics: From HIV and Cancer to Mycobacterial Infections: A Paper Dedicated to John Kendrew. J Mol Biol 2017; 429:2677-2693. [PMID: 28648615 DOI: 10.1016/j.jmb.2017.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
Abstract
Interest in applications of protein crystallography to medicine was evident, as the first high-resolution structures emerged in the 50s and 60s. In Cambridge, Max Perutz and John Kendrew sought to understand mutations in sickle cell and other genetic diseases related to hemoglobin, while in Oxford, the group of Dorothy Hodgkin became interested in long-lasting zinc-insulin crystals for treatment of diabetes and later considered insulin redesign, as synthetic insulins became possible. The use of protein crystallography in structure-guided drug discovery emerged as enzyme structures allowed the identification of potential inhibitor-binding sites and optimization of interactions of hits using the structure of the target protein. Early examples of this approach were the use of the structure of renin to design antihypertensives and the structure of HIV protease in design of AIDS antivirals. More recently, use of structure-guided design with fragment-based drug discovery, which reduces the size of screening libraries by decreasing complexity, has improved ligand efficiency in drug design and has been used to progress three oncology drugs through clinical trials to FDA approval. We exemplify current developments in structure-guided target identification and fragment-based lead discovery with efforts to develop new antimicrobials for mycobacterial infections.
Collapse
Affiliation(s)
- Sherine E Thomas
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Vitor Mendes
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - So Yeon Kim
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Sony Malhotra
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Bernardo Ochoa-Montaño
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Michal Blaszczyk
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK.
| |
Collapse
|
157
|
Low JL, Wu ML, Aziz DB, Laleu B, Dick T. Screening of TB Actives for Activity against Nontuberculous Mycobacteria Delivers High Hit Rates. Front Microbiol 2017; 8:1539. [PMID: 28861054 PMCID: PMC5559473 DOI: 10.3389/fmicb.2017.01539] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
The prevalence of lung disease due to infections with nontuberculous mycobacteria (NTM) has been increasing and surpassed tuberculosis (TB) in some countries. Treatment outcomes are often unsatisfactory, highlighting an urgent need for new anti-NTM medications. Although NTM in general do not respond well to TB specific drugs, the similarities between NTM and Mycobacterium tuberculosis at the molecular and cell structural level suggest that compound libraries active against TB could be leveraged for NTM drug discovery. Here we tested this hypothesis. The Pathogen Box from the Medicines for Malaria Venture (MMV) is a collection of 400 diverse drug-like compounds, among which 129 are known to be active against M. tuberculosis. By screening this compound collection against two NTM species, Mycobacterium abscessus and Mycobacterium avium, we showed that indeed the hit rates for NTM among TB active compounds is significantly higher compared to compounds that are not active against TB. MIC/dose response confirmation identified 10 top hits. Bactericidal activity determination demonstrated attractive potency for a subset of the confirmed hits. In vivo pharmacokinetic profiling showed that some of the compounds present reasonable starting points for medicinal chemistry programs. Three of the top hits were oxazolidinones, suggesting the potential for repositioning this class of protein synthesis inhibitors to replace linezolid which suffers from low potency. Two hits were inhibitors of the trehalose monomycolate transporter MmpL3, suggesting that this transmembrane protein may be an attractive target for NTM. Other hits are predicted to target a range of functions, including cell division (FtsZ), DNA gyrase (GyrB), dihydrofolate reductase, RNA polymerase and ABC transporters. In conclusion, our study showed that screening TB active compounds for activity against NTM resulted in high hit rates, suggesting that this may be an attractive approach to kick start NTM drug discovery projects. In addition, the work identified a series of novel high value NTM hits with associated candidate targets which can be followed up in hit-to-lead projects for the discovery of new NTM antibiotics.
Collapse
Affiliation(s)
- Jian Liang Low
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Mu-Lu Wu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Dinah Binte Aziz
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Benoît Laleu
- Medicines for Malaria VentureGeneva, Switzerland
| | - Thomas Dick
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore.,New Jersey Medical School, Public Health Research Institute, Rutgers, The State University of New JerseyNewark, NJ, United States
| |
Collapse
|
158
|
Bryant JM, Grogono DM, Rodriguez-Rincon D, Everall I, Brown KP, Moreno P, Verma D, Hill E, Drijkoningen J, Gilligan P, Esther CR, Noone PG, Giddings O, Bell SC, Thomson R, Wainwright CE, Coulter C, Pandey S, Wood ME, Stockwell RE, Ramsay KA, Sherrard LJ, Kidd TJ, Jabbour N, Johnson GR, Knibbs LD, Morawska L, Sly PD, Jones A, Bilton D, Laurenson I, Ruddy M, Bourke S, Bowler IC, Chapman SJ, Clayton A, Cullen M, Daniels T, Dempsey O, Denton M, Desai M, Drew RJ, Edenborough F, Evans J, Folb J, Humphrey H, Isalska B, Jensen-Fangel S, Jönsson B, Jones AM, Katzenstein TL, Lillebaek T, MacGregor G, Mayell S, Millar M, Modha D, Nash EF, O'Brien C, O'Brien D, Ohri C, Pao CS, Peckham D, Perrin F, Perry A, Pressler T, Prtak L, Qvist T, Robb A, Rodgers H, Schaffer K, Shafi N, van Ingen J, Walshaw M, Watson D, West N, Whitehouse J, Haworth CS, Harris SR, Ordway D, Parkhill J, Floto RA. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science 2017; 354:751-757. [PMID: 27846606 DOI: 10.1126/science.aaf8156] [Citation(s) in RCA: 391] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/23/2016] [Indexed: 12/20/2022]
Abstract
Lung infections with Mycobacterium abscessus, a species of multidrug-resistant nontuberculous mycobacteria, are emerging as an important global threat to individuals with cystic fibrosis (CF), in whom M. abscessus accelerates inflammatory lung damage, leading to increased morbidity and mortality. Previously, M. abscessus was thought to be independently acquired by susceptible individuals from the environment. However, using whole-genome analysis of a global collection of clinical isolates, we show that the majority of M. abscessus infections are acquired through transmission, potentially via fomites and aerosols, of recently emerged dominant circulating clones that have spread globally. We demonstrate that these clones are associated with worse clinical outcomes, show increased virulence in cell-based and mouse infection models, and thus represent an urgent international infection challenge.
Collapse
Affiliation(s)
- Josephine M Bryant
- Wellcome Trust Sanger Institute, Hinxton, UK.,University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Dorothy M Grogono
- University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK.,Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, UK
| | - Daniela Rodriguez-Rincon
- University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | | | - Karen P Brown
- University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK.,Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, UK
| | - Pablo Moreno
- EMBL European Bioinformatics Institute, Hinxton, UK
| | - Deepshikha Verma
- Mycobacteria Research Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO, USA
| | - Emily Hill
- Mycobacteria Research Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO, USA
| | - Judith Drijkoningen
- University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Peter Gilligan
- University of North Carolina School of Medicine, NC, USA
| | | | - Peadar G Noone
- University of North Carolina School of Medicine, NC, USA
| | | | - Scott C Bell
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, The University of Queensland, Australia.,The Prince Charles Hospital, Brisbane, Australia
| | - Rachel Thomson
- Gallipoli Medical Research Centre, University of Queensland, Brisbane, Australia
| | - Claire E Wainwright
- School of Medicine, The University of Queensland, Australia.,Lady Cilento Children's Hospital, Brisbane
| | - Chris Coulter
- Queensland Mycobacterial Reference Laboratory, Brisbane, Australia
| | - Sushil Pandey
- Queensland Mycobacterial Reference Laboratory, Brisbane, Australia
| | - Michelle E Wood
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, The University of Queensland, Australia.,The Prince Charles Hospital, Brisbane, Australia
| | - Rebecca E Stockwell
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, The University of Queensland, Australia
| | - Kay A Ramsay
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, The University of Queensland, Australia
| | | | - Timothy J Kidd
- Centre for Experimental Medicine, Queen's University Belfast, UK.,School of Chemistry and Biomolecular sciences, The University of Queensland, Australia
| | - Nassib Jabbour
- Queensland University of Technology, Brisbane, Australia.,International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Graham R Johnson
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Luke D Knibbs
- School of Public Health, The University of Queensland, Brisbane, Australia
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Peter D Sly
- Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Andrew Jones
- Royal Brompton and Harefield NHS Foundation Trust, UK
| | - Diana Bilton
- Royal Brompton and Harefield NHS Foundation Trust, UK
| | | | | | - Stephen Bourke
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | | | | | | | - Mairi Cullen
- University Hospital of South Manchester NHS Foundation Trust, UK
| | - Thomas Daniels
- University Hospital of South Manchester NHS Foundation Trust, UK
| | - Owen Dempsey
- Aberdeen Royal Infirmary, NHS Grampian, Scotland, UK
| | | | - Maya Desai
- Birmingham Children's Hospital NHS Foundation Trust, UK
| | | | | | | | - Jonathan Folb
- The Royal Liverpool and Broadgreen University Hospitals NHS Trust, UK
| | - Helen Humphrey
- University Hospital Southampton NHS Foundation Trust, UK
| | - Barbara Isalska
- University Hospital of South Manchester NHS Foundation Trust, UK
| | | | - Bodil Jönsson
- Department of Infectious Medicine, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Andrew M Jones
- University Hospital of South Manchester NHS Foundation Trust, UK
| | - Terese L Katzenstein
- Copenhagen Cystic Fibrosis Center, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Troels Lillebaek
- International reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - Gordon MacGregor
- Gartnavel Hospital, Glasgow, NHS Greater Glasgow and Clyde, Scotland, UK
| | | | | | | | - Edward F Nash
- Heart of England NHS Foundation Trust, Birmingham, UK
| | | | | | | | | | | | | | - Audrey Perry
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | - Tania Pressler
- Copenhagen Cystic Fibrosis Center, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Laura Prtak
- The Royal Liverpool and Broadgreen University Hospitals NHS Trust, UK
| | - Tavs Qvist
- Copenhagen Cystic Fibrosis Center, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Ali Robb
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | | | | | - Nadia Shafi
- Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, UK
| | - Jakko van Ingen
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Martin Walshaw
- Liverpool Heart and Chest Hospital NHS Foundation Trust, UK
| | | | - Noreen West
- Sheffield Children's NHS Foundation Trust, UK
| | | | - Charles S Haworth
- Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, UK
| | | | - Diane Ordway
- Mycobacteria Research Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO, USA
| | | | - R Andres Floto
- University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK.,Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, UK
| |
Collapse
|
159
|
Kozikowski AP, Onajole OK, Stec J, Dupont C, Viljoen A, Richard M, Chaira T, Lun S, Bishai W, Raj VS, Ordway D, Kremer L. Targeting Mycolic Acid Transport by Indole-2-carboxamides for the Treatment of Mycobacterium abscessus Infections. J Med Chem 2017; 60:5876-5888. [PMID: 28574259 DOI: 10.1021/acs.jmedchem.7b00582] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mycobacterium abscessus is a fast-growing, multidrug-resistant organism that has emerged as a clinically significant pathogen in cystic fibrosis (CF) patients. The intrinsic resistance of M. abscessus to most commonly available antibiotics seriously restricts chemotherapeutic options. Herein, we report the potent activity of a series of indolecarboxamides against M. abscessus. The lead compounds, 6 and 12, exhibited strong activity in vitro against a wide panel of M. abscessus isolates and in infected macrophages. High resistance levels to the indolecarboxamides appear to be associated with an A309P mutation in the mycolic acid transporter MmpL3. Biochemical analyses demonstrated that while de novo mycolic acid synthesis remained unaffected, the indolecarboxamides strongly inhibited the transport of trehalose monomycolate, resulting in the loss of trehalose dimycolate production and abrogating mycolylation of arabinogalactan. Our data introduce a hereto unexploited chemical structure class active against M. abscessus infections with promising translational development possibilities for the treatment of CF patients.
Collapse
Affiliation(s)
- Alan P Kozikowski
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Oluseye K Onajole
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States.,Department of Biological, Chemical and Physical Sciences, Roosevelt University , 425 South Wabash Avenue, Chicago, Illinois 60605, United States
| | - Jozef Stec
- Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University , 9501 South King Drive, Chicago, Illinois 60628, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, Marshall B. Ketchum University , 2575 Yorba Linda Boulevard, Fullerton, California 92831, United States
| | - Christian Dupont
- Institut de Recherche en Infectiologie (IRIM), CNRS, UMR 9004, Université de Montpellier , Montpellier Cedex 5 34 293, France
| | - Albertus Viljoen
- Institut de Recherche en Infectiologie (IRIM), CNRS, UMR 9004, Université de Montpellier , Montpellier Cedex 5 34 293, France
| | - Matthias Richard
- Institut de Recherche en Infectiologie (IRIM), CNRS, UMR 9004, Université de Montpellier , Montpellier Cedex 5 34 293, France
| | - Tridib Chaira
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR , Rajiv Gandhi Education City, Sonepat 131 029, Haryana India.,Daiichi Sankyo India Pharma Private Limited , Sector 18, Gurgaon 122 015, Haryana India
| | - Shichun Lun
- JHU Center for TB Research, Johns Hopkins School of Medicine , 1550 Orleans Street, Baltimore, Maryland 21231-1001, United States
| | - William Bishai
- JHU Center for TB Research, Johns Hopkins School of Medicine , 1550 Orleans Street, Baltimore, Maryland 21231-1001, United States
| | - V Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR , Rajiv Gandhi Education City, Sonepat 131 029, Haryana India
| | - Diane Ordway
- Department of Microbiology, Immunology & Pathology, Mycobacteria Research Laboratory, Colorado State University , Fort Collins, Colorado 80523 United States
| | - Laurent Kremer
- Institut de Recherche en Infectiologie (IRIM), CNRS, UMR 9004, Université de Montpellier , Montpellier Cedex 5 34 293, France.,IRIM, INSERM , 34293 Montpellier, France
| |
Collapse
|
160
|
Kim BJ, Kim GN, Kim BR, Shim TS, Kook YH, Kim BJ. Phylogenetic analysis of Mycobacterium massiliense strains having recombinant rpoB gene laterally transferred from Mycobacterium abscessus. PLoS One 2017; 12:e0179237. [PMID: 28604829 PMCID: PMC5467896 DOI: 10.1371/journal.pone.0179237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/25/2017] [Indexed: 11/18/2022] Open
Abstract
Recent multi locus sequence typing (MLST) and genome based studies indicate that lateral gene transfer (LGT) events in the rpoB gene are prevalent between Mycobacterium abscessus complex strains. To check the prevalence of the M. massiliense strains subject to rpoB LGT (Rec-mas), we applied rpoB typing (711 bp) to 106 Korean strains of M. massiliense infection that had already been identified by hsp65 sequence analysis (603 bp). The analysis indicated 6 smooth strains in M. massiliense Type I (10.0%, 6/60) genotypes but no strains in M. massiliense Type II genotypes (0%, 0/46), showing a discrepancy between the 2 typing methods. Further MLST analysis based on the partial sequencing of seven housekeeping genes, argH, cya, glpK, gnd, murC, pta and purH, as well as erm(41) PCR proved that these 6 Rec-mas strains consisted of two distinct genotypes belonging to M. massiliense and not M. abscessus. The complete rpoB sequencing analysis showed that these 6 Rec-mas strains have an identical hybrid rpoB gene, of which a 478 bp partial rpoB fragment may be laterally transferred from M. abscessus. Notably, five of the 6 Rec-mas strains showed complete identical sequences in a total of nine genes, including the seven MLST genes, hsp65, and rpoB, suggesting their clonal propagation in South Korea. In conclusion, we identified 6 M. massiliense smooth strains of 2 phylogenetically distinct genotypes with a specific hybrid rpoB gene laterally transferred from M. abscessus from Korean patients. Their clinical relevance and bacteriological traits remain to be elucidated.
Collapse
Affiliation(s)
- Byoung-Jun Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Ga-Na Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Bo-Ram Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Tae-Sun Shim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Yoon-Hoh Kook
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
161
|
Rifabutin Is Active against Mycobacterium abscessus Complex. Antimicrob Agents Chemother 2017; 61:AAC.00155-17. [PMID: 28396540 PMCID: PMC5444174 DOI: 10.1128/aac.00155-17] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/31/2017] [Indexed: 12/30/2022] Open
Abstract
Lung infections caused by Mycobacterium abscessus are emerging as a global threat to individuals with cystic fibrosis and to other patient groups. Recent evidence for human-to-human transmission worsens the situation. M. abscessus is an intrinsically multidrug-resistant pathogen showing resistance to even standard antituberculosis drugs, such as rifampin. Here, our objective was to identify existing drugs that may be employed for the treatment of M. abscessus lung disease. A collection of more than 2,700 approved drugs was screened at a single-point concentration against an M. abscessus clinical isolate. Hits were confirmed with fresh solids in dose-response experiments. For the most attractive hit, growth inhibition and bactericidal activities against reference strains of the three M. abscessus subspecies and a collection of clinical isolates were determined. Surprisingly, the rifampin derivative rifabutin had MICs of 3 ± 2 μM (3 μg/ml) against the screening strain, the reference strains M. abscessus subsp. abscessus ATCC 19977, M. abscessus subsp. bolletii CCUG 50184-T, and M. abscessus subsp. massiliense CCUG 48898-T, as well as against a collection of clinical isolates. Furthermore, rifabutin was active against clarithromycin-resistant strains. In conclusion, rifabutin, in contrast to rifampin, is active against the Mycobacterium abscessus complex bacteria in vitro and may be considered for treatment of M. abscessus lung disease.
Collapse
|
162
|
Nasiri MJ, Haeili M, Ghazi M, Goudarzi H, Pormohammad A, Imani Fooladi AA, Feizabadi MM. New Insights in to the Intrinsic and Acquired Drug Resistance Mechanisms in Mycobacteria. Front Microbiol 2017; 8:681. [PMID: 28487675 PMCID: PMC5403904 DOI: 10.3389/fmicb.2017.00681] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/04/2017] [Indexed: 01/25/2023] Open
Abstract
Infectious diseases caused by clinically important Mycobacteria continue to be an important public health problem worldwide primarily due to emergence of drug resistance crisis. In recent years, the control of tuberculosis (TB), the disease caused by Mycobacterium tuberculosis (MTB), is hampered by the emergence of multidrug resistance (MDR), defined as resistance to at least isoniazid (INH) and rifampicin (RIF), two key drugs in the treatment of the disease. Despite the availability of curative anti-TB therapy, inappropriate and inadequate treatment has allowed MTB to acquire resistance to the most important anti-TB drugs. Likewise, for most mycobacteria other than MTB, the outcome of drug treatment is poor and is likely related to the high levels of antibiotic resistance. Thus, a better knowledge of the underlying mechanisms of drug resistance in mycobacteria could aid not only to select the best therapeutic options but also to develop novel drugs that can overwhelm the existing resistance mechanisms. In this article, we review the distinctive mechanisms of antibiotic resistance in mycobacteria.
Collapse
Affiliation(s)
- Mohammad J. Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Mehri Haeili
- Department of Biology, Faculty of Natural Sciences, University of TabrizTabriz, Iran
| | - Mona Ghazi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Ali Pormohammad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Abbas A. Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical SciencesTehran, Iran
| | - Mohammad M. Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical SciencesTehran, Iran
- Thoracic Research Center, Imam Khomeini Hospital, Tehran University of Medical SciencesTehran, Iran
| |
Collapse
|
163
|
Viljoen A, Dubois V, Girard-Misguich F, Blaise M, Herrmann JL, Kremer L. The diverse family of MmpL transporters in mycobacteria: from regulation to antimicrobial developments. Mol Microbiol 2017; 104:889-904. [DOI: 10.1111/mmi.13675] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Albertus Viljoen
- Institut de Recherche en Infectiologie de Montpellier (IRIM); CNRS, UMR 9004, Université de Montpellier, France
| | - Violaine Dubois
- INSERM, UMR1173; Université de Versailles Saint-Quentin-en-Yvelines; Montigny-le-Bretonneux 78180 France
| | - Fabienne Girard-Misguich
- INSERM, UMR1173; Université de Versailles Saint-Quentin-en-Yvelines; Montigny-le-Bretonneux 78180 France
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier (IRIM); CNRS, UMR 9004, Université de Montpellier, France
| | - Jean-Louis Herrmann
- INSERM, UMR1173; Université de Versailles Saint-Quentin-en-Yvelines; Montigny-le-Bretonneux 78180 France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM); CNRS, UMR 9004, Université de Montpellier, France
- IRIM; INSERM; 34293 Montpellier France
| |
Collapse
|
164
|
Bernut A, Herrmann JL, Ordway D, Kremer L. The Diverse Cellular and Animal Models to Decipher the Physiopathological Traits of Mycobacterium abscessus Infection. Front Cell Infect Microbiol 2017; 7:100. [PMID: 28421165 PMCID: PMC5378707 DOI: 10.3389/fcimb.2017.00100] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/14/2017] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium abscessus represents an important respiratory pathogen among the rapidly-growing non-tuberculous mycobacteria. Infections caused by M. abscessus are increasingly found in cystic fibrosis (CF) patients and are often refractory to antibiotic therapy. The underlying immunopathological mechanisms of pathogenesis remain largely unknown. A major reason for the poor advances in M. abscessus research has been a lack of adequate models to study the acute and chronic stages of the disease leading to delayed progress of evaluation of therapeutic efficacy of potentially active antibiotics. However, the recent development of cellular models led to new insights in the interplay between M. abscessus with host macrophages as well as with amoebae, proposed to represent the environmental host and reservoir for non-tuberculous mycobacteria. The zebrafish embryo has also appeared as a useful alternative to more traditional models as it recapitulates the vertebrate immune system and, due to its optical transparency, allows a spatio-temporal visualization of the infection process in a living animal. More sophisticated immunocompromised mice have also been exploited recently to dissect the immune and inflammatory responses to M. abscessus. Herein, we will discuss the limitations, advantages and potential offered by these various models to study the pathophysiology of M. abscessus infection and to assess the preclinical efficacy of compounds active against this emerging human pathogen.
Collapse
Affiliation(s)
- Audrey Bernut
- IRIM (ex-CPBS)-UMR 9004, Centre National de la Recherche Scientifique (CNRS), Infectious Disease Research Institute of Montpellier, Université de MontpellierMontpellier, France
| | - Jean-Louis Herrmann
- UMR 1173, Institut National de la Santé et de la Recherche Médicale, Université de Versailles Saint-Quentin-en-YvelinesMontigny-le-Bretonneux, France
| | - Diane Ordway
- Mycobacteria Research Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State UniversityFort Collins, CO, USA
| | - Laurent Kremer
- IRIM (ex-CPBS)-UMR 9004, Centre National de la Recherche Scientifique (CNRS), Infectious Disease Research Institute of Montpellier, Université de MontpellierMontpellier, France.,Institut National de la Santé et de la Recherche Médicale, IRIMMontpellier, France
| |
Collapse
|
165
|
Resistance to Thiacetazone Derivatives Active against Mycobacterium abscessus Involves Mutations in the MmpL5 Transcriptional Repressor MAB_4384. Antimicrob Agents Chemother 2017; 61:AAC.02509-16. [PMID: 28096157 DOI: 10.1128/aac.02509-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/06/2017] [Indexed: 12/17/2022] Open
Abstract
Available chemotherapeutic options are very limited against Mycobacterium abscessus, which imparts a particular challenge in the treatment of cystic fibrosis (CF) patients infected with this rapidly growing mycobacterium. New drugs are urgently needed against this emerging pathogen, but the discovery of active chemotypes has not been performed intensively. Interestingly, however, the repurposing of thiacetazone (TAC), a drug once used to treat tuberculosis, has increased following the deciphering of its mechanism of action and the detection of significantly more potent analogues. We therefore report studies performed on a library of 38 TAC-related derivatives previously evaluated for their antitubercular activity. Several compounds, including D6, D15, and D17, were found to exhibit potent activity in vitro against M. abscessus, Mycobacterium massiliense, and Mycobacterium bolletii clinical isolates from CF and non-CF patients. Similar to TAC in Mycobacterium tuberculosis, the three analogues act as prodrugs in M. abscessus, requiring bioactivation by the EthA enzyme, MAB_0985. Importantly, mutations in the transcriptional TetR repressor MAB_4384, with concomitant upregulation of the divergently oriented adjacent genes encoding an MmpS5/MmpL5 efflux pump system, accounted for high cross-resistance levels among all three compounds. Overall, this study uncovered a new mechanism of drug resistance in M. abscessus and demonstrated that simple structural optimization of the TAC scaffold can lead to the development of new drug candidates against M. abscessus infections.
Collapse
|
166
|
Wijers CD, Chmiel JF, Gaston BM. Bacterial infections in patients with primary ciliary dyskinesia: Comparison with cystic fibrosis. Chron Respir Dis 2017; 14:392-406. [PMID: 29081265 PMCID: PMC5729729 DOI: 10.1177/1479972317694621] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder associated with severely impaired mucociliary clearance caused by defects in ciliary structure and function. Although recurrent bacterial infection of the respiratory tract is one of the major clinical features of this disease, PCD airway microbiology is understudied. Despite the differences in pathophysiology, assumptions about respiratory tract infections in patients with PCD are often extrapolated from cystic fibrosis (CF) airway microbiology. This review aims to summarize the current understanding of bacterial infections in patients with PCD, including infections with Pseudomonas aeruginosa, Staphylococcus aureus, and Moraxella catarrhalis, as it relates to bacterial infections in patients with CF. Further, we will discuss current and potential future treatment strategies aimed at improving the care of patients with PCD suffering from recurring bacterial infections.
Collapse
Affiliation(s)
- Christiaan Dm Wijers
- 1 Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - James F Chmiel
- 1 Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Benjamin M Gaston
- 1 Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
167
|
Selection of Resistance to Clarithromycin in Mycobacterium abscessus Subspecies. Antimicrob Agents Chemother 2016; 61:AAC.00943-16. [PMID: 27799212 DOI: 10.1128/aac.00943-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/25/2016] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium abscessus is an emerging pathogen against which clarithromycin is the main drug used. Clinical failures are commonly observed and were first attributed to acquired mutations in rrl encoding 23S rRNA but were then attributed to the intrinsic production of the erm(41) 23S RNA methylase. Since strains of M. abscessus were recently distributed into subspecies and erm(41) sequevars, we investigated acquired clarithromycin resistance mechanisms in mutants selected in vitro from four representative strains. Mutants were sequenced for rrl, erm(41), whiB, rpIV, and rplD and studied for seven antibiotic MICs. For mutants obtained from strain M. abscessus subsp. abscessus erm(41) T28 sequevar and strain M. abscessus subsp. bolletii, which are both known to produce effective methylase, rrl was mutated in only 19% (4/21) and 32.5% (13/40) of mutants, respectively, at position 2058 (A2058C, A2058G) or position 2059 (A2059C, A2059G). No mutations were observed in any of the other genes studied, and resistance to other antibiotics (amikacin, cefoxitin, imipenem, tigecycline, linezolid, and ciprofloxacin) was mainly unchanged. For M. abscessus subsp. abscessus erm(41) C28 sequevar and M. abscessus subsp. massiliense, not producing effective methylase, 100% (26/26) and 97.5% (39/40) of mutants had rrl mutations at position 2058 (A2058C, A2058G, A2058T) or position 2059 (A2059C, A2059G). The remaining M. abscessus subsp. massiliense mutant showed an 18-bp repeat insertion in rpIV, encoding the L22 protein. Our results showed that acquisition of clarithromycin resistance is 100% mediated by structural 50S ribosomal subunit mutations for M. abscessus subsp. abscessus erm(41) C28 and M. abscessus subsp. massiliense, whereas it is less common for M. abscessus subsp. abscessus erm(41) T28 sequevar and M. abscessus subsp. bolletii, where other mechanisms may be responsible for failure.
Collapse
|
168
|
Rominski A, Roditscheff A, Selchow P, Böttger EC, Sander P. Intrinsic rifamycin resistance ofMycobacterium abscessusis mediated by ADP-ribosyltransferase MAB_0591. J Antimicrob Chemother 2016; 72:376-384. [DOI: 10.1093/jac/dkw466] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 11/14/2022] Open
|
169
|
Mougari F, Guglielmetti L, Raskine L, Sermet-Gaudelus I, Veziris N, Cambau E. Infections caused by Mycobacterium abscessus: epidemiology, diagnostic tools and treatment. Expert Rev Anti Infect Ther 2016; 14:1139-1154. [PMID: 27690688 DOI: 10.1080/14787210.2016.1238304] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Mycobacterium abscessus is an emerging mycobacteria that is responsible for lung diseases and healthcare-associated extrapulmonary infections. Recent findings support its taxonomic status as a single species comprising 3 subspecies designated abscessus, bolletii and massiliense. We performed a review of English-language publications investigating all three of these subspecies. Areas covered: Worldwide, human infections are often attributable to environmental contamination, although the isolation of M. abscessus in this reservoir is very rare. Basic research has demonstrated an association between virulence and cell wall components and cording, and genome analysis has identified gene transfer from other bacteria. The bacteriological diagnosis of M. abscessus is based on innovative tools combining molecular biology and mass spectrometry. Genotypic and phenotypic susceptibility testing are required to predict the success of macrolide (clarithromycin or azithromycin)-based therapeutic regimens. Genotyping methods are helpful to assess relapse and cross-transmission and to search for a common source. Treatment is not standardised, and outcomes are often unsatisfactory. Expert commentary: M. abscessus is still an open field in terms of clinical and bacteriological research. Further knowledge of its ecology and transmission routes, as well as host-pathogen interactions, is required. Because the number of human cases is increasing, it is also necessary to identify more active treatments and perform clinical trials to assess standard effective regimens.
Collapse
Affiliation(s)
- Faiza Mougari
- a Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA) , Assistance publique-Hôpitaux de Paris (APHP) , Paris , France.,b AP-HP, Hôpital Lariboisière-Fernand Widal , Service de Bactériologie , Paris , France.,c IAME, UMR 1137, INSERM , Université Paris Diderot, Sorbonne Paris Cité , Paris , France
| | - Lorenzo Guglielmetti
- a Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA) , Assistance publique-Hôpitaux de Paris (APHP) , Paris , France.,b AP-HP, Hôpital Lariboisière-Fernand Widal , Service de Bactériologie , Paris , France.,d Sorbonne Universités, UPMC Université Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses, CIMI, team E13 (Bacteriology) , Paris , France.,e INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, CIMI, team E13 (Bacteriology) , Paris , France
| | - Laurent Raskine
- a Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA) , Assistance publique-Hôpitaux de Paris (APHP) , Paris , France.,b AP-HP, Hôpital Lariboisière-Fernand Widal , Service de Bactériologie , Paris , France
| | - Isabelle Sermet-Gaudelus
- f AP-HP, Groupe Hospitalier Necker-Enfants Malades , Centre de Ressources et de Compétences pour la Mucoviscidose (CRCM) et Centre de Formation de Traitement à Domicile Chez l'Enfant (CFTDE) , Paris , France
| | - Nicolas Veziris
- a Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA) , Assistance publique-Hôpitaux de Paris (APHP) , Paris , France.,d Sorbonne Universités, UPMC Université Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses, CIMI, team E13 (Bacteriology) , Paris , France.,e INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, CIMI, team E13 (Bacteriology) , Paris , France.,g AP-HP, Hôpital Pitié-Salpêtrière , Laboratory of Bacteriology , Paris , France
| | - Emmanuelle Cambau
- a Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA) , Assistance publique-Hôpitaux de Paris (APHP) , Paris , France.,b AP-HP, Hôpital Lariboisière-Fernand Widal , Service de Bactériologie , Paris , France.,c IAME, UMR 1137, INSERM , Université Paris Diderot, Sorbonne Paris Cité , Paris , France
| |
Collapse
|
170
|
Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Mycobacterium abscessus Subspecies According to Whole-Genome Sequencing. J Clin Microbiol 2016; 54:2982-2989. [PMID: 27682129 DOI: 10.1128/jcm.01151-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/19/2016] [Indexed: 12/22/2022] Open
Abstract
This study was undertaken to evaluate the utility of matrix-assisted laser desorption ionization-time of flight mass spectrometry with the Vitek MS Plus system for identifying Mycobacterium abscessus subspecies in order to facilitate more rapid and appropriate therapy. A total of 175 clinical M. abscessus strains were identified by whole-genome sequencing analysis: 139 Mycobacterium abscessus subsp. abscessus and 36 Mycobacterium abscessus subsp. massiliense The research-use-only (RUO) Saramis Knowledge Base database v.4.12 was modified accordingly by adding 40 M. abscessus subsp. abscessus and 19 M. abscessus subsp. massiliense reference spectra to construct subspecies SuperSpectra. A blind test, used to validate the remaining 116 isolates, yielded 99.1% (n = 115) reliability and only 0.9% (n = 1) error for subspecies identification. Among the two subspecies SuperSpectra, two specific peaks were found for M. abscessus subsp. abscessus and four specific peaks were found for M. abscessus subsp. massiliense Our study is the first to report differential peaks 3,354.4 m/z and 6,711.1 m/z, which were specific for M. abscessus subsp. massiliense Our research demonstrates the capacity of the Vitek MS RUO Saramis Knowledge Base database to identify M. abscessus at the subspecies level. Moreover, it validates the potential ease and accuracy with which it can be incorporated into the IVD system for the identification of M. abscessus subspecies.
Collapse
|
171
|
Complete Genome Sequences of 17 Rapidly Growing Nontuberculous Mycobacterial Strains. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01009-16. [PMID: 27660787 PMCID: PMC5034138 DOI: 10.1128/genomea.01009-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the complete genome sequences of 17 rapidly growing nontuberculous mycobacterial (NTM) strains, including 16 Mycobacterium abscessus complex strains and one M. immunogenum strain. These sequences add value to studies of the genetic diversity of rapidly growing NTM strains recovered from human specimens.
Collapse
|
172
|
MgtC as a Host-Induced Factor and Vaccine Candidate against Mycobacterium abscessus Infection. Infect Immun 2016; 84:2895-903. [PMID: 27481243 DOI: 10.1128/iai.00359-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/18/2016] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium abscessus is an emerging pathogenic mycobacterium involved in pulmonary and mucocutaneous infections, presenting a serious threat for patients with cystic fibrosis (CF). The lack of an efficient treatment regimen and the emergence of multidrug resistance in clinical isolates require the development of new therapeutic strategies against this pathogen. Reverse genetics has revealed genes that are present in M. abscessus but absent from saprophytic mycobacteria and that are potentially involved in pathogenicity. Among them, MAB_3593 encodes MgtC, a known virulence factor involved in intramacrophage survival and adaptation to Mg(2+) deprivation in several major bacterial pathogens. Here, we demonstrated a strong induction of M. abscessus MgtC at both the transcriptional and translational levels when bacteria reside inside macrophages or upon Mg(2+) deprivation. Moreover, we showed that M. abscessus MgtC was recognized by sera from M. abscessus-infected CF patients. The intramacrophage growth (J774 or THP1 cells) of a M. abscessus knockout mgtC mutant was, however, not significantly impeded. Importantly, our results indicated that inhibition of MgtC in vivo through immunization with M. abscessus mgtC DNA, formulated with a tetrafunctional amphiphilic block copolymer, exerted a protective effect against an aerosolized M. abscessus challenge in CF (ΔF508 FVB) mice. The formulated DNA immunization was likely associated with the production of specific MgtC antibodies, which may stimulate a protective effect by counteracting MgtC activity during M. abscessus infection. These results emphasize the importance of M. abscessus MgtC in vivo and provide a basis for the development of novel therapeutic tools against pulmonary M. abscessus infections in CF patients.
Collapse
|
173
|
Viljoen A, Blaise M, de Chastellier C, Kremer L. MAB_3551c encodes the primary triacylglycerol synthase involved in lipid accumulation in Mycobacterium abscessus. Mol Microbiol 2016; 102:611-627. [PMID: 27513974 DOI: 10.1111/mmi.13482] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2016] [Indexed: 01/16/2023]
Abstract
Slow growing pathogenic mycobacteria utilize host-derived lipids and accumulate large amounts of triacylglycerol (TAG) in the form of intracytoplasmic lipid inclusions (ILI), serving as a source of carbon and energy during prolonged infection. Mycobacterium abscessus is an emerging and rapidly growing species capable to induce severe and chronic pulmonary infections. However, whether M. abscessus, like Mycobacterium tuberculosis, possesses the machinery to acquire and store host lipids, remains unaddressed. Herein, we aimed at deciphering the contribution of the seven putative M. abscessus TAG synthases (Tgs) in TAG synthesis/accumulation thanks to a combination of genetic and biochemical techniques and a well-defined foamy macrophage (FM) model along with electron microscopy. Targeted gene deletion and functional complementation studies identified the MAB_3551c product, Tgs1, as the major Tgs involved in TAG production. Tgs1 exhibits a preference for long acyl-CoA substrates and site-directed mutagenesis demonstrated that His144 and Gln145 are essential for enzymatic activity. Importantly, in the lipid-rich intracellular context of FM, M. abscessus formed large ILI in a Tgs1-dependent manner. This supports the ability of M. abscessus to assimilate host lipids and the crucial role of Tgs1 in intramycobacterial TAG production, which may represent important mechanisms for long-term storage of a rich energy supply.
Collapse
Affiliation(s)
- Albertus Viljoen
- Centre National de la Recherche Scientifique FRE3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919 route de Mende, Montpellier, 34293, France.,Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, 13288, France
| | - Mickael Blaise
- Centre National de la Recherche Scientifique FRE3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919 route de Mende, Montpellier, 34293, France
| | - Chantal de Chastellier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, 13288, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique FRE3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919 route de Mende, Montpellier, 34293, France.,INSERM, CPBS, Montpellier, 34293, France
| |
Collapse
|
174
|
Functional characterization of the Mycobacterium abscessus genome coupled with condition specific transcriptomics reveals conserved molecular strategies for host adaptation and persistence. BMC Genomics 2016; 17:553. [PMID: 27495169 PMCID: PMC4974804 DOI: 10.1186/s12864-016-2868-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/30/2016] [Indexed: 11/10/2022] Open
Abstract
Background Mycobacterium abscessus subsp. abscessus (MAB) is a highly drug resistant mycobacterium and the most common respiratory pathogen among the rapidly growing non-tuberculous mycobacteria. MAB is also one of the most deadly of the emerging cystic fibrosis (CF) pathogens requiring prolonged treatment with multiple antibiotics. In addition to its “mycobacterial” virulence genes, the genome of MAB harbours a large accessory genome, presumably acquired via lateral gene transfer including homologs shared with the CF pathogens Pseudomonas aeruginosa and Burkholderia cepacia. While multiple genome sequences are available there is little functional genomics data available for this important pathogen. Results We report here the first multi-omics approach to characterize the primary transcriptome, coding potential and potential regulatory regions of the MAB genome utilizing differential RNA sequencing (dRNA-seq), RNA-seq, Ribosome profiling and LC-MS proteomics. In addition we attempt to address the genomes contribution to the molecular systems that underlie MAB’s adaptation and persistence in the human host through an examination of MABs transcriptional response to a number of clinically relevant conditions. These include hypoxia, exposure to sub-inhibitory concentrations of antibiotics and growth in an artificial sputum designed to mimic the conditions within the cystic fibrosis lung. Conclusions Our integrated map provides the first comprehensive view of the primary transcriptome of MAB and evidence for the translation of over one hundred new short open reading frames (sORFs). Our map will act as a resource for ongoing functional genomics characterization of MAB and our transcriptome data from clinically relevant stresses informs our understanding of MAB’s adaptation to life in the CF lung. MAB’s adaptation to growth in artificial CF sputum highlights shared metabolic strategies with other CF pathogens including P. aeruginosa and mirrors the transcriptional responses that lead to persistence in mycobacteria. These strategies include an increased reliance on amino acid metabolism, and fatty acid catabolism and highlights the relevance of the glyoxylate shunt to growth in the CF lung. Our data suggests that, similar to what is seen in chronically persisting P. aeruginosa, progression towards a biofilm mode of growth would play a more prominent role in a longer-term MAB infection. Finally, MAB’s transcriptional response to antibiotics highlights the role of antibiotic modifications enzymes, active transport and the evolutionarily conserved WhiB7 driven antibiotic resistance regulon. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2868-y) contains supplementary material, which is available to authorized users.
Collapse
|
175
|
Ramírez A, Ruggiero M, Aranaga C, Cataldi A, Gutkind G, de Waard JH, Araque M, Power P. Biochemical Characterization of β-Lactamases from Mycobacterium abscessus Complex and Genetic Environment of the β-Lactamase-Encoding Gene. Microb Drug Resist 2016; 23:294-300. [PMID: 27429159 DOI: 10.1089/mdr.2016.0047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objectives of this study were to determine the kinetic parameters of purified recombinant BlaMab and BlaMmas by spectrophotometry, analyze the genetic environment of the blaMab and blaMmas genes in both species by polymerase chain reaction and sequencing, furthermore, in silico models of both enzymes in complex with imipenem were obtained by modeling tools. Our results showed that BlaMab and BlaMmas have a similar hydrolysis behavior, displaying high catalytic efficiencies toward penams, cephalothin, and nitrocefin; none of the enzymes are well inhibited by clavulanate. BlaMmas hydrolyzes imipenem at higher efficiency than cefotaxime and aztreonam. BlaMab and BlaMmas showed that their closest structural homologs are KPC-2 and SFC-1, which correlate to the mild carbapenemase activity toward imipenem observed at least for BlaMmas. They also seem to differ from other class A β-lactamases by the presence of a more flexible Ω loop, which could impact in the hydrolysis efficiency against some antibiotics. A -35 consensus sequence (TCGACA) and embedded at the 3' end of MAB_2874, which may constitute the blaMab and blaMmas promoter. Our results suggest that the resistance mechanisms in fast-growing mycobacteria could be probably evolving toward the production of β-lactamases that have improved catalytic efficiencies against some of the drugs commonly used for the treatment of mycobacterial infections, endangering the use of important drugs like the carbapenems.
Collapse
Affiliation(s)
- Ana Ramírez
- 1 Universidad de Los Andes , Facultad de Farmacia y Bioanálisis, Laboratorio de Microbiología Molecular, Mérida, Venezuela
| | - Melina Ruggiero
- 2 Universidad de Buenos Aires , Facultad de Farmacia y Bioquímica, Laboratorio de Resistencia Bacteriana, Buenos Aires, Argentina
| | - Carlos Aranaga
- 3 Instituto Venezolano de Investigaciones Científicas, Centro de Microbiología y Biología Celular , Caracas, Venezuela
| | - Angel Cataldi
- 4 Instituto Nacional de Tecnología Agropecuaria, Centro de Investigación en Ciencias Veterinarias y Agronómicas , Instituto de Biotecnología, Castelar, Buenos Aires, Argentina
| | - Gabriel Gutkind
- 2 Universidad de Buenos Aires , Facultad de Farmacia y Bioquímica, Laboratorio de Resistencia Bacteriana, Buenos Aires, Argentina
| | - Jacobus H de Waard
- 5 Universidad Central de Venezuela , Instituto de Biomedicina, Laboratorio de Tuberculosis, Caracas, Venezuela
| | - María Araque
- 1 Universidad de Los Andes , Facultad de Farmacia y Bioanálisis, Laboratorio de Microbiología Molecular, Mérida, Venezuela
| | - Pablo Power
- 2 Universidad de Buenos Aires , Facultad de Farmacia y Bioquímica, Laboratorio de Resistencia Bacteriana, Buenos Aires, Argentina
| |
Collapse
|
176
|
Guo J, Wang C, Han Y, Liu Z, Wu T, Liu Y, Liu Y, Tan Y, Cai X, Cao Y, Wang B, Zhang B, Liu C, Tan S, Zhang T. Identification of Lysine Acetylation in Mycobacterium abscessus Using LC-MS/MS after Immunoprecipitation. J Proteome Res 2016; 15:2567-78. [PMID: 27323652 DOI: 10.1021/acs.jproteome.6b00116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mycobacterium abscessus (MAB), which manifests in the pulmonary system, is one of the neglected causes of nontuberculous mycobacteria (NTM) infection. Treatment against MAB is difficult, characterized by its intrinsic antibiotic drug resistance. Lysine acetylation can alter the physiochemical property of proteins in living organisms. This study aimed to determine if this protein post-translational modification (PTM) exists in a clinical isolate M. abscessus GZ002. We used the antiacetyl-lysine immunoprecipitation to enrich the low-abundant PTM proteins, followed by the LC-MS/MS analysis. The lysine acetylome of M. abscessus GZ002 was determined. There were 459 lysine acetylation sites found in 289 acetylated proteins. Lysine acetylation occurred in 5.87% of the M. abscessus GZ002 proteome, and at least 25% of them were growth essential. Aerobic respiration and carbohydrate metabolic pathways of M. abscessus GZ002 were enriched with lysine acetylation. Through bioinformatics analysis, we identified four major acetyl motif logos (K(ac)Y, K(ac)F, K(ac)H, and DK(ac)). Further comparison of the reported M. tuberculosis (MTB) acetylomes and that of MAB GZ002 revealed several common features between these two species. The lysine residues of several antibiotic-resistance, virulence, and persistence-related proteins were acetylated in both MAB GZ002 and MTB. There were 51 identical acetylation sites in 37 proteins found in common between MAB GZ002 and MTB. Overall, we demonstrate a profile of lysine acetylation in MAB GZ002 proteome that shares similarities with MTB. Interventions that target at these conserved sections may be valuable as anti-NTM or anti-TB therapies.
Collapse
Affiliation(s)
- Jintao Guo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS) , Guangzhou, China
| | - Changwei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS) , Guangzhou, China
| | - Yi Han
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS) , Guangzhou, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS) , Guangzhou, China
| | - Tian Wu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS) , Guangzhou, China
| | - Yan Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS) , Guangzhou, China
| | - Yang Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS) , Guangzhou, China.,School of Life Sciences, University of Anhui , Hefei, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, The Guangzhou Chest Hospital , Guangzhou, China
| | - Xinshan Cai
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, The Guangzhou Chest Hospital , Guangzhou, China
| | - Yuanyuan Cao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS) , Guangzhou, China.,School of Life Sciences, University of Anhui , Hefei, China
| | - Bangxing Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS) , Guangzhou, China.,School of Life Sciences, University of Anhui , Hefei, China
| | - Buchang Zhang
- School of Life Sciences, University of Anhui , Hefei, China
| | - Chunping Liu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, The Guangzhou Chest Hospital , Guangzhou, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, The Guangzhou Chest Hospital , Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS) , Guangzhou, China
| |
Collapse
|
177
|
Complete Genome Sequence of Mycobacterium abscessus subsp. bolletii. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00543-16. [PMID: 27284156 PMCID: PMC4901240 DOI: 10.1128/genomea.00543-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the complete genome sequence of a Mycobacterium abscessus subsp. bolletii isolate recovered from a sputum culture from an individual with cystic fibrosis. This sequence is the first completed whole-genome sequence of M. abscessus subsp. bolletii and adds value to studies of M. abscessus complex genomics.
Collapse
|
178
|
Dupont C, Viljoen A, Dubar F, Blaise M, Bernut A, Pawlik A, Bouchier C, Brosch R, Guérardel Y, Lelièvre J, Ballell L, Herrmann JL, Biot C, Kremer L. A new piperidinol derivative targeting mycolic acid transport inMycobacterium abscessus. Mol Microbiol 2016; 101:515-29. [DOI: 10.1111/mmi.13406] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Christian Dupont
- Centre National de la Recherche Scientifique FRE 3689, Centre d’études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier; 1919 route de Mende Montpellier 34293 France
- UMR1173, INSERM, Université de Versailles St Quentin; 2 avenue de la Source de la Bièvre 78180 Montigny le Bretonneux France
| | - Albertus Viljoen
- Centre National de la Recherche Scientifique FRE 3689, Centre d’études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier; 1919 route de Mende Montpellier 34293 France
| | - Faustine Dubar
- Université Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle; Lille F 59000 France
| | - Mickaël Blaise
- Centre National de la Recherche Scientifique FRE 3689, Centre d’études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier; 1919 route de Mende Montpellier 34293 France
| | - Audrey Bernut
- Centre National de la Recherche Scientifique FRE 3689, Centre d’études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier; 1919 route de Mende Montpellier 34293 France
| | - Alexandre Pawlik
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée; 25 rue du Dr. Roux Paris 75724 France
| | | | - Roland Brosch
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée; 25 rue du Dr. Roux Paris 75724 France
| | - Yann Guérardel
- Université Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle; Lille F 59000 France
| | - Joël Lelièvre
- Diseases of the Developing World, GlaxoSmithKline Tres Cantos; Madrid 28760 Spain
| | - Lluis Ballell
- Diseases of the Developing World, GlaxoSmithKline Tres Cantos; Madrid 28760 Spain
| | - Jean-Louis Herrmann
- UMR1173, INSERM, Université de Versailles St Quentin; 2 avenue de la Source de la Bièvre 78180 Montigny le Bretonneux France
| | - Christophe Biot
- Université Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle; Lille F 59000 France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique FRE 3689, Centre d’études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier; 1919 route de Mende Montpellier 34293 France
- INSERM, CPBS; Montpellier 34293 France
| |
Collapse
|
179
|
Wassilew N, Hoffmann H, Andrejak C, Lange C. Pulmonary Disease Caused by Non-Tuberculous Mycobacteria. Respiration 2016; 91:386-402. [PMID: 27207809 DOI: 10.1159/000445906] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/31/2016] [Indexed: 11/19/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) include more than 160 ubiquitous, environmental, acid-fast-staining bacterial species, some of which may cause disease in humans. Chronic pulmonary infection is the most common clinical manifestation. Although patients suffering from chronic lung diseases are particularly susceptible to NTM pulmonary disease, many affected patients have no apparent risk factors. Host and pathogen factors leading to NTM pulmonary disease are not well understood and preventive therapies are lacking. NTM isolation and pulmonary disease are reported to rise in frequency in Europe as well as in other parts of the world. Differentiation between contamination, infection, and disease remains challenging. Treatment of NTM pulmonary disease is arduous, lengthy, and costly. Correlations between results of in vitro antibiotic susceptibility testing and clinical treatment outcomes are only evident for the Mycobacterium avium complex, M. kansasii, and some rapidly growing mycobacteria. We describe the epidemiology of NTM pulmonary disease as well as emerging NTM pathogens and their geographical distribution in non-cystic fibrosis patients in Europe. We also review recent innovations for the diagnosis of NTM pulmonary disease, summarize treatment recommendations, and identify future research priorities to improve the management of patients affected by NTM pulmonary disease.
Collapse
Affiliation(s)
- Nasstasja Wassilew
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
| | | | | | | |
Collapse
|
180
|
Viviani L, Harrison MJ, Zolin A, Haworth CS, Floto RA. Epidemiology of nontuberculous mycobacteria (NTM) amongst individuals with cystic fibrosis (CF). J Cyst Fibros 2016; 15:619-23. [PMID: 27050794 DOI: 10.1016/j.jcf.2016.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Infection by nontuberculous mycobacteria (NTM) in patients with cystic fibrosis (CF) is often associated with significant morbidity. Limited, conflicting results are published regarding risk factors for pulmonary NTM disease. We analysed factors potentially associated with NTM in a large population of European patients with CF. METHODS We investigated associations between presence of NTM and various factors for patients registered in the European Cystic Fibrosis Society Patient Registry. RESULTS 374 (2.75%) of 13,593 patients studied had at least one positive NTM culture within the study year. Age- and FEV1-adjusted odds of NTM infection was more than 2.5 times higher (95%CI: 1.79; 3.60) in patients infected by Stenotrophomonas maltophilia than in patients not infected (p<0.0001), 2.36 times higher (95%CI: 1.80;3.08) in patients with ABPA than without (p<0.0001), 1.79 times higher (95%CI: 1.34; 2.38) in patients who use bronchodilators than in patients who don't (p<0.0001), 1.49 times higher (95%CI: 1.18; 1.89) in patients who use inhaled antibiotics than in patients who don't (p=0.001), and 1.30 times higher (95%CI: 1.02; 1.66) in patients who use rhDNase than in patients who don't (p=0.032). CONCLUSIONS NTM-positive cultures in individuals with CF are associated with distinct clinical variables. Improved data collection identifying risk factors for NTM infection will allow more focused screening strategies, and influence therapeutic choices and infection control measures in high-risk patients.
Collapse
Affiliation(s)
- Laura Viviani
- Dipartimento di Scienze cliniche e di comunità, University of Milan, Italy
| | | | - Anna Zolin
- Dipartimento di Scienze cliniche e di comunità, University of Milan, Italy
| | - Charles S Haworth
- Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, UK
| | - R Andres Floto
- Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, UK; Cambridge Institute for Medical Research, University of Cambridge, UK.
| |
Collapse
|
181
|
Sapriel G, Konjek J, Orgeur M, Bouri L, Frézal L, Roux AL, Dumas E, Brosch R, Bouchier C, Brisse S, Vandenbogaert M, Thiberge JM, Caro V, Ngeow YF, Tan JL, Herrmann JL, Gaillard JL, Heym B, Wirth T. Genome-wide mosaicism within Mycobacterium abscessus: evolutionary and epidemiological implications. BMC Genomics 2016; 17:118. [PMID: 26884275 PMCID: PMC4756508 DOI: 10.1186/s12864-016-2448-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/08/2016] [Indexed: 11/16/2022] Open
Abstract
Background In mycobacteria, conjugation differs from the canonical Hfr model, but is still poorly understood. Here, we quantified this evolutionary processe in a natural mycobacterial population, taking advantage of a large clinical strain collection of the emerging pathogen Mycobacterium abscessus (MAB). Results Multilocus sequence typing confirmed the existence of three M. abscessus subspecies, and unravelled extensive allelic exchange between them. Furthermore, an asymmetrical gene flow occurring between these main lineages was detected, resulting in highly admixed strains. Intriguingly, these mosaic strains were significantly associated with cystic fibrosis patients with lung infections or chronic colonization. Genome sequencing of those hybrid strains confirmed that half of their genomic content was remodelled in large genomic blocks, leading to original tri-modal ‘patchwork’ architecture. One of these hybrid strains acquired a locus conferring inducible macrolide resistance, and a large genomic insertion from a slowly growing pathogenic mycobacteria, suggesting an adaptive gene transfer. This atypical genomic architecture of the highly recombinogenic strains is consistent with the distributive conjugal transfer (DCT) observed in M. smegmatis. Intriguingly, no known DCT function was found in M. abscessus chromosome, however, a p-RAW-like genetic element was detected in one of the highly admixed strains. Conclusion Taken together, our results strongly suggest that MAB evolution is sporadically punctuated by dramatic genome wide remodelling events. These findings might have far reaching epidemiological consequences for emerging mycobacterial pathogens survey in the context of increasing numbers of rapidly growing mycobacteria and M. tuberculosis co-infections. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2448-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guillaume Sapriel
- EA3647-EPIM, UFR des Sciences de La Santé, Université de Versailles St. Quentin, Montigny le Bretonneux, France. .,Laboratoire des Sciences du Climat et de l'Environnement, LSCE, UMR8212, Université de Versailles St. Quentin - CEA - CNRS, Saint-Aubin, France. .,Atelier de Bioinformatique, ISYEB, UMR 7205, Paris, France.
| | - Julie Konjek
- EA3647-EPIM, UFR des Sciences de La Santé, Université de Versailles St. Quentin, Montigny le Bretonneux, France. .,AP-HP, Hôpital Ambroise Paré, Service de Microbiologie et Hygiène, Boulogne-Billancourt, France.
| | - Mickael Orgeur
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France.
| | - Laurent Bouri
- EA3647-EPIM, UFR des Sciences de La Santé, Université de Versailles St. Quentin, Montigny le Bretonneux, France.
| | - Lise Frézal
- Institut of Biology of the Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris, Cedex 05, France.
| | | | - Emilie Dumas
- EA3647-EPIM, UFR des Sciences de La Santé, Université de Versailles St. Quentin, Montigny le Bretonneux, France.
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France.
| | | | - Sylvain Brisse
- Institut Pasteur, Genotyping of Pathogens and Public Health, Paris, France.
| | | | | | - Valérie Caro
- Institut Pasteur, Genotyping of Pathogens and Public Health, Paris, France.
| | - Yun Fong Ngeow
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Joon Liang Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Jean-Louis Herrmann
- EA3647-EPIM, UFR des Sciences de La Santé, Université de Versailles St. Quentin, Montigny le Bretonneux, France. .,AP-HP, Hôpital Raymond Poincaré, Service de Microbiologie et Hygiène, Garches, France.
| | - Jean-Louis Gaillard
- EA3647-EPIM, UFR des Sciences de La Santé, Université de Versailles St. Quentin, Montigny le Bretonneux, France. .,AP-HP, Hôpital Ambroise Paré, Service de Microbiologie et Hygiène, Boulogne-Billancourt, France.
| | - Beate Heym
- EA3647-EPIM, UFR des Sciences de La Santé, Université de Versailles St. Quentin, Montigny le Bretonneux, France. .,AP-HP, Hôpital Ambroise Paré, Service de Microbiologie et Hygiène, Boulogne-Billancourt, France.
| | - Thierry Wirth
- Laboratoire de Biologie intégrative des populations, Evolution moléculaire, Ecole Pratique des Hautes Etudes, Paris, France. .,Institut de Systématique, Evolution, Biodiversité, ISYEB, UMR 7205, CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, 16 rue Buffon, F-75231, Paris, Cedex 05, France.
| |
Collapse
|
182
|
Le Moigne V, Gaillard JL, Herrmann JL. Vaccine strategies against bacterial pathogens in cystic fibrosis patients. Med Mal Infect 2016; 46:4-9. [DOI: 10.1016/j.medmal.2015.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/27/2015] [Indexed: 12/12/2022]
|
183
|
Whole-Genome Sequences of Four Strains Closely Related to Members of the Mycobacterium chelonae Group, Isolated from Biofilms in a Drinking Water Distribution System Simulator. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01539-15. [PMID: 26798093 PMCID: PMC4722260 DOI: 10.1128/genomea.01539-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report here the draft genome sequences of four Mycobacterium chelonae strains from biofilms subjected to a “chlorine burn” in a chloraminated drinking water distribution system simulator. These opportunistic pathogens have been detected in hospital and municipal water distribution systems, in which biofilms have been recognized as an important factor for their persistence.
Collapse
|
184
|
Dumas E, Christina Boritsch E, Vandenbogaert M, Rodríguez de la Vega RC, Thiberge JM, Caro V, Gaillard JL, Heym B, Girard-Misguich F, Brosch R, Sapriel G. Mycobacterial Pan-Genome Analysis Suggests Important Role of Plasmids in the Radiation of Type VII Secretion Systems. Genome Biol Evol 2016; 8:387-402. [PMID: 26748339 PMCID: PMC4779608 DOI: 10.1093/gbe/evw001] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In mycobacteria, various type VII secretion systems corresponding to different ESX (ESAT-6 secretory) types, are contributing to pathogenicity, iron acquisition, and/or conjugation. In addition to the known chromosomal ESX loci, the existence of plasmid-encoded ESX systems was recently reported. To investigate the potential role of ESX-encoding plasmids on mycobacterial evolution, we analyzed a large representative collection of mycobacterial genomes, including both chromosomal and plasmid-borne sequences. Data obtained for chromosomal ESX loci confirmed the previous five classical ESX types and identified a novel mycobacterial ESX-4-like type, termed ESX-4-bis. Moreover, analysis of the plasmid-encoded ESX loci showed extensive diversification, with at least seven new ESX profiles, identified. Three of them (ESX-P clusters 1–3) were found in multiple plasmids, while four corresponded to singletons. Our phylogenetic and gene-order-analyses revealed two main groups of ESX types: 1) ancestral types, including ESX-4 and ESX-4-like systems from mycobacterial and non-mycobacterial actinobacteria and 2) mycobacteria-specific ESX systems, including ESX-1-2-3-5 systems and the plasmid-encoded ESX types. Synteny analysis revealed that ESX-P systems are part of phylogenetic groups that derived from a common ancestor, which diversified and resulted in the different ESX types through extensive gene rearrangements. A converging body of evidence, derived from composition bias-, phylogenetic-, and synteny analyses points to a scenario in which ESX-encoding plasmids have been a major driving force for acquisition and diversification of type VII systems in mycobacteria, which likely played (and possibly still play) important roles in the adaptation to new environments and hosts during evolution of mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Emilie Dumas
- INSERM U1173, UFR Simone Weil, Versailles-Saint-en-Quentin University, Saint-Quentin-en-Yvelines 78180, France
| | - Eva Christina Boritsch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, 75724, Paris Cedex 15, France
| | - Mathias Vandenbogaert
- Institut Pasteur, Genotyping of Pathogens and Public Health, 75724, Paris Cedex 15, France
| | | | - Jean-Michel Thiberge
- Institut Pasteur, Genotyping of Pathogens and Public Health, 75724, Paris Cedex 15, France
| | - Valerie Caro
- Institut Pasteur, Genotyping of Pathogens and Public Health, 75724, Paris Cedex 15, France
| | - Jean-Louis Gaillard
- INSERM U1173, UFR Simone Weil, Versailles-Saint-en-Quentin University, Saint-Quentin-en-Yvelines 78180, France AP-HP, Hôpital Ambroise Paré, Service De Microbiologie Et Hygiène, Boulogne-Billancourt, France
| | - Beate Heym
- INSERM U1173, UFR Simone Weil, Versailles-Saint-en-Quentin University, Saint-Quentin-en-Yvelines 78180, France AP-HP, Hôpital Ambroise Paré, Service De Microbiologie Et Hygiène, Boulogne-Billancourt, France
| | - Fabienne Girard-Misguich
- INSERM U1173, UFR Simone Weil, Versailles-Saint-en-Quentin University, Saint-Quentin-en-Yvelines 78180, France
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, 75724, Paris Cedex 15, France
| | - Guillaume Sapriel
- INSERM U1173, UFR Simone Weil, Versailles-Saint-en-Quentin University, Saint-Quentin-en-Yvelines 78180, France UMR 8212, LSCE, Versailles-Saint-Quentin University, Saint-Quentin-en-Yvelines 78180, France Atelier De Bio-Informatique. Institut De Systématique, Evolution, Biodiversité, ISYEB, UMR 7205, CNRS, MNHN, UPMC, EPHE. Muséum National D'histoire Naturelle, Cedex 05, Paris 75231, France
| |
Collapse
|
185
|
Complete Genome Sequence of a Novel Clinical Isolate, Mycobacterium abscessus Strain NOV0213. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01407-15. [PMID: 26744369 PMCID: PMC4706336 DOI: 10.1128/genomea.01407-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycobacterium abscessus is a rapid-growing species of nontuberculous mycobacteria that is frequently associated with opportunistic infections in humans. We determined the complete genome sequence of the M. abscessus strain NOV0213, which was isolated from a patient with tuberculosis-like disease and with various antibiotic resistances.
Collapse
|
186
|
Garcia BJ, Datta G, Davidson RM, Strong M. MycoBASE: expanding the functional annotation coverage of mycobacterial genomes. BMC Genomics 2015; 16:1102. [PMID: 26704706 PMCID: PMC4690229 DOI: 10.1186/s12864-015-2311-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/15/2015] [Indexed: 01/01/2023] Open
Abstract
Background Central to most omic scale experiments is the interpretation and examination of resulting gene lists corresponding to differentially expressed, regulated, or observed gene or protein sets. Complicating interpretation is a lack of functional annotation assigned to a large percentage of many microbial genomes. This is particularly noticeable in mycobacterial genomes, which are significantly divergent from many of the microbial model species used for gene and protein functional characterization, but which are extremely important clinically. Mycobacterial species, ranging from M. tuberculosis to M. abscessus, are responsible for deadly infectious diseases that kill over 1.5 million people each year across the world. A better understanding of the coding capacity of mycobacterial genomes is therefore necessary to shed increasing light on putative mechanisms of virulence, pathogenesis, and functional adaptations. Description Here we describe the improved functional annotation coverage of 11 important mycobacterial genomes, many involved in human diseases including tuberculosis, leprosy, and nontuberculous mycobacterial (NTM) infections. Of the 11 mycobacterial genomes, we provide 9899 new functional annotations, compared to NCBI and TBDB annotations, for genes previously characterized as genes of unknown function, hypothetical, and hypothetical conserved proteins. Functional annotations are available at our newly developed web resource MycoBASE (Mycobacterial Annotation Server) at strong.ucdenver.edu/mycobase. Conclusion Improved annotations allow for better understanding and interpretation of genomic and transcriptomic experiments, including analyzing the functional implications of insertions, deletions, and mutations, inferring the function of understudied genes, and determining functional changes resulting from differential expression studies. MycoBASE provides a valuable resource for mycobacterial researchers, through improved and searchable functional annotations and functional enrichment strategies. MycoBASE will be continually supported and updated to include new genomes, enabling a powerful resource to aid the quest to better understand these important pathogenic and environmental species.
Collapse
Affiliation(s)
- Benjamin J Garcia
- Computational Bioscience Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA. .,Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA.
| | - Gargi Datta
- Computational Bioscience Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Rebecca M Davidson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Michael Strong
- Computational Bioscience Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| |
Collapse
|
187
|
Bernut A, Viljoen A, Dupont C, Sapriel G, Blaise M, Bouchier C, Brosch R, de Chastellier C, Herrmann JL, Kremer L. Insights into the smooth-to-rough transitioning inMycobacterium bolletiiunravels a functional Tyr residue conserved in all mycobacterial MmpL family members. Mol Microbiol 2015; 99:866-83. [DOI: 10.1111/mmi.13283] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Audrey Bernut
- Centre National de la Recherche Scientifique FRE3689; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; 1919 route de Mende 34293 Montpellier France
| | - Albertus Viljoen
- Centre National de la Recherche Scientifique FRE3689; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; 1919 route de Mende 34293 Montpellier France
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280; 13288 Marseille France
| | - Christian Dupont
- Centre National de la Recherche Scientifique FRE3689; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; 1919 route de Mende 34293 Montpellier France
| | - Guillaume Sapriel
- UMR1173; INSERM; Université de Versailles St Quentin; 2 avenue de la Source de la Bièvre 78180 Montigny le Bretonneux France
| | - Mickaël Blaise
- Centre National de la Recherche Scientifique FRE3689; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; 1919 route de Mende 34293 Montpellier France
| | | | - Roland Brosch
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée; 25 rue du Dr. Roux 75724 Paris France
| | - Chantal de Chastellier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280; 13288 Marseille France
| | - Jean-Louis Herrmann
- UMR1173; INSERM; Université de Versailles St Quentin; 2 avenue de la Source de la Bièvre 78180 Montigny le Bretonneux France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique FRE3689; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; 1919 route de Mende 34293 Montpellier France
- INSERM; CPBS; 34293 Montpellier France
| |
Collapse
|
188
|
Abstract
Most mycobacterial species are harmless saprophytes, often found in aquatic environments. A few species seem to have evolved from this pool of environmental mycobacteria into major human pathogens, such as Mycobacterium tuberculosis, the agent of tuberculosis, Mycobacterium leprae, the leprosy bacillus, and Mycobacterium ulcerans, the agent of Buruli ulcer. While the pathogenicity of M. ulcerans relates to the acquisition of a large plasmid encoding a polyketide-derived toxin, the molecular mechanisms by which M. leprae or M. tuberculosis have evolved to cause disease are complex and involve the interaction between the pathogen and the host. Here we focus on M. tuberculosis and closely related mycobacteria and discuss insights gained from recent genomic and functional studies. Comparison of M. tuberculosis genome data with sequences from nontuberculous mycobacteria, such as Mycobacterium marinum or Mycobacterium kansasii, provides a perception of the more distant evolution of M. tuberculosis, while the recently accomplished genome sequences of multiple tubercle bacilli with smooth colony morphology, named Mycobacterium canettii, have allowed the ancestral gene pool of tubercle bacilli to be estimated. The resulting findings are instrumental for our understanding of the pathogenomic evolution of tuberculosis-causing mycobacteria. Comparison of virulent and attenuated members of the M. tuberculosis complex has further contributed to identification of a specific secretion pathway, named ESX or Type VII secretion. The molecular machines involved are key elements for mycobacterial pathogenicity, strongly influencing the ability of M. tuberculosis to cope with the immune defense mounted by the host.
Collapse
|
189
|
Revisiting the role of phospholipases C in virulence and the lifecycle of Mycobacterium tuberculosis. Sci Rep 2015; 5:16918. [PMID: 26603639 PMCID: PMC4658479 DOI: 10.1038/srep16918] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/22/2015] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium tuberculosis, the agent of human tuberculosis has developed
different virulence mechanisms and virulence-associated tools during its evolution
to survive and multiply inside the host. Based on previous reports and by analogy
with other bacteria, phospholipases C (PLC) of M. tuberculosis were thought
to be among these tools. To get deeper insights into the function of PLCs, we
investigated their putative involvement in the intracellular lifestyle of M.
tuberculosis, with emphasis on phagosomal rupture and virulence, thereby
re-visiting a research theme of longstanding interest. Through the construction and
use of an M. tuberculosis H37Rv PLC-null mutant (ΔPLC) and
control strains, we found that PLCs of M. tuberculosis were not required for
induction of phagosomal rupture and only showed marginal, if any, impact on
virulence of M. tuberculosis in the cellular and mouse infection models used
in this study. In contrast, we found that PLC-encoding genes were strongly
upregulated under phosphate starvation and that PLC-proficient M.
tuberculosis strains survived better than ΔPLC mutants under
conditions where phosphatidylcholine served as sole phosphate source, opening new
perspectives for studies on the role of PLCs in the lifecycle of M.
tuberculosis.
Collapse
|
190
|
Coolen N, Morand P, Martin C, Hubert D, Kanaan R, Chapron J, Honoré I, Dusser D, Audureau E, Veziris N, Burgel PR. Reduced risk of nontuberculous mycobacteria in cystic fibrosis adults receiving long-term azithromycin. J Cyst Fibros 2015; 14:594-9. [DOI: 10.1016/j.jcf.2015.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/25/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
|
191
|
Le Chevalier F, Cascioferro A, Majlessi L, Herrmann JL, Brosch R. Mycobacterium tuberculosis evolutionary pathogenesis and its putative impact on drug development. Future Microbiol 2015; 9:969-85. [PMID: 25302954 DOI: 10.2217/fmb.14.70] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium tuberculosis, the etiological agent of human TB, is the most important mycobacterial pathogen in terms of global patient numbers and gravity of disease. The molecular mechanisms by which M. tuberculosis causes disease are complex and the result of host-pathogen coevolution that might have started already in the time of its Mycobacterium canettii-like progenitors. Despite research progress, M. tuberculosis still holds many secrets of its successful strategy for circumventing host defences, persisting in the host and developing resistance, which makes anti-TB treatment regimens extremely long and often inefficient. Here, we discuss what we have learned from recent studies on the evolution of the pathogen and its putative new drug targets that are essential for mycobacterial growth under in vitro or in vivo conditions.
Collapse
Affiliation(s)
- Fabien Le Chevalier
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | | | | | | | | |
Collapse
|
192
|
Ahmed A, Das A, Mukhopadhyay S. Immunoregulatory functions and expression patterns of PE/PPE family members: Roles in pathogenicity and impact on anti-tuberculosis vaccine and drug design. IUBMB Life 2015; 67:414-27. [DOI: 10.1002/iub.1387] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/29/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Asma Ahmed
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD); Hyderabad, Telengana India
| | - Arghya Das
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD); Hyderabad, Telengana India
- Manipal University; Manipal Karnataka India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD); Hyderabad, Telengana India
| |
Collapse
|
193
|
Belon C, Soscia C, Bernut A, Laubier A, Bleves S, Blanc-Potard AB. A Macrophage Subversion Factor Is Shared by Intracellular and Extracellular Pathogens. PLoS Pathog 2015; 11:e1004969. [PMID: 26080006 PMCID: PMC4469704 DOI: 10.1371/journal.ppat.1004969] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/21/2015] [Indexed: 01/03/2023] Open
Abstract
Pathogenic bacteria have developed strategies to adapt to host environment and resist host immune response. Several intracellular bacterial pathogens, including Salmonella enterica and Mycobacterium tuberculosis, share the horizontally-acquired MgtC virulence factor that is important for multiplication inside macrophages. MgtC is also found in pathogenic Pseudomonas species. Here we investigate for the first time the role of MgtC in the virulence of an extracellular pathogen, Pseudomonas aeruginosa. A P. aeruginosa mgtC mutant is attenuated in the systemic infection model of zebrafish embryos, and strikingly, the attenuated phenotype is dependent on the presence of macrophages. In ex vivo experiments, the P. aeruginosa mgtC mutant is more sensitive to macrophage killing than the wild-type strain. However, wild-type and mutant strains behave similarly toward macrophage killing when macrophages are treated with an inhibitor of the vacuolar proton ATPase. Importantly, P. aeruginosa mgtC gene expression is strongly induced within macrophages and phagosome acidification contributes to an optimal expression of the gene. Thus, our results support the implication of a macrophage intracellular stage during P. aeruginosa acute infection and suggest that Pseudomonas MgtC requires phagosome acidification to play its intracellular role. Moreover, we demonstrate that P. aeruginosa MgtC is required for optimal growth in Mg2+ deprived medium, a property shared by MgtC factors from intracellular pathogens and, under Mg2+ limitation, P. aeruginosa MgtC prevents biofilm formation. We propose that MgtC shares a similar function in intracellular and extracellular pathogens, which contributes to macrophage resistance and fine-tune adaptation to host immune response in relation to the different bacterial lifestyles. In addition, the phenotypes observed with the mgtC mutant in infection models can be mimicked in wild-type P. aeruginosa strain by producing a MgtC antagonistic peptide, thus highlighting MgtC as a promising new target for anti-virulence strategies. Pathogenic bacteria have to resist host immune response and MgtC is used by several intracellular pathogens to promote bacterial multiplication inside macrophages. Here we investigated MgtC’s role in the virulence of an extracellular pathogen, Pseudomonas aeruginosa. A P. aeruginosa mgtC mutant is attenuated in zebrafish embryos, but only in the presence of macrophages. Moreover, this mutant is more rapidly killed by macrophages than the wild-type strain. Both phenotypes can be mimicked upon production of a MgtC antagonistic peptide in wild-type Pseudomonas strain. MgtC thus provides a singular example of a virulence determinant that promotes strategies to subvert the antimicrobial behavior of macrophages, in both intracellular and extracellular pathogens and our results support an intramacrophage stage during in P. aeruginosa acute infection, as well as an interplay between MgtC role and phagosome acidification. In addition, P. aeruginosa MgtC is required for growth in Mg2+ deprived medium, a property shared by MgtC factors from intracellular pathogens, and limits biofilm formation. MgtC may share a similar function in intracellular and extracellular pathogens, with an outcome adapted to the different bacterial lifestyles
Collapse
Affiliation(s)
- Claudine Belon
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS-UMR5235, Montpellier, France
| | - Chantal Soscia
- CNRS & Aix-Marseille Université, Laboratoire d’Ingénierie des Systèmes Macromoléculaires (UMR7255), Marseille, France
| | - Audrey Bernut
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS-UMR5235, Montpellier, France
| | - Aurélie Laubier
- CNRS & Aix-Marseille Université, Laboratoire d’Ingénierie des Systèmes Macromoléculaires (UMR7255), Marseille, France
| | - Sophie Bleves
- CNRS & Aix-Marseille Université, Laboratoire d’Ingénierie des Systèmes Macromoléculaires (UMR7255), Marseille, France
- * E-mail: (SB); (ABBP)
| | - Anne-Béatrice Blanc-Potard
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS-UMR5235, Montpellier, France
- * E-mail: (SB); (ABBP)
| |
Collapse
|
194
|
Draft Genome Sequence of Mycobacterium chelonae Type Strain ATCC 35752. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00536-15. [PMID: 26021923 PMCID: PMC4447908 DOI: 10.1128/genomea.00536-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterium chelonae is a rapidly growing opportunistic nontuberculous mycobacterial (NTM) species that causes infections in humans and other hosts. Here, we report the draft genome sequence of Mycobacterium chelonae type strain ATCC 35752, consisting of 4.89 Mbp, 63.96% G+C content, 4,489 protein-coding genes, 48 tRNAs, and 3 rRNA genes.
Collapse
|
195
|
Kendall BA, Barker AP, Hadley JC, Florell SR, Winthrop KL. Disseminated Mycobacterial Infection After International Medical Tourism. Open Forum Infect Dis 2015; 2:ofv054. [PMID: 26380346 PMCID: PMC4567086 DOI: 10.1093/ofid/ofv054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/14/2015] [Indexed: 11/14/2022] Open
Abstract
International travel for the purpose of receiving medical care is increasing. We report a case of disseminated mycobacterial infection after fetal stem cell infusion.
Collapse
Affiliation(s)
| | | | - Jason C Hadley
- Department of Dermatology , Intermountain Healthcare , Ogden, Utah
| | | | - Kevin L Winthrop
- Departments of Medicine ; Public Health and Preventative Medicine , Oregon Health and Sciences University , Portland
| |
Collapse
|
196
|
Bacterial phospholipases C as vaccine candidate antigens against cystic fibrosis respiratory pathogens: the Mycobacterium abscessus model. Vaccine 2015; 33:2118-24. [PMID: 25804706 DOI: 10.1016/j.vaccine.2015.03.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 03/05/2015] [Accepted: 03/11/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Vaccine strategies represent one of the fighting answers against multiresistant bacteria in a number of clinical settings like cystic fibrosis (CF). Mycobacterium abscessus, an emerging CF pathogen, raises difficult therapeutic problems due to its intrinsic antibiotic multiresistance. METHODS By reverse vaccinology, we identified M. abscessus phospholipase C (MA-PLC) as a potential vaccine target. We deciphered here the protective response generated by vaccination with plasmid DNA encoding the MA-PLC formulated with a tetra functional block copolymer 704, in CF (ΔF508) mice. Protection was tested against aerosolized smooth and rough (hypervirulent) variants of M. abscessus. RESULTS MA-PLC DNA vaccination (days 0, 21, 42) elicited a strong antibody response. A significant protective effect was obtained against aerosolized M. abscessus (S variant) in ΔF508 mice, but not in wild-type FVB littermates; similar results were observed when: (i) challenging mice with the "hypervirulent" R variant, and; (ii) immunizing mice with purified MA-PLC protein. High IgG titers against MA-PLC protein were measured in CF patients with M. abscessus infection; interestingly, significant titers were also detected in CF patients positive for Pseudomonas aeruginosa versus P. aeruginosa-negative controls. CONCLUSIONS MA-PLC DNA- and PLC protein-vaccinated mice cleared more rapidly M. abscessus than β-galactosidase DNA- or PBS- vaccinated mice in the context of CF. PLCs could constitute interesting vaccine targets against common PLC-producing CF pathogens like P. aeruginosa.
Collapse
|
197
|
Kweon O, Kim SJ, Blom J, Kim SK, Kim BS, Baek DH, Park SI, Sutherland JB, Cerniglia CE. Comparative functional pan-genome analyses to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon metabolism in the genus Mycobacterium. BMC Evol Biol 2015; 15:21. [PMID: 25880171 PMCID: PMC4342237 DOI: 10.1186/s12862-015-0302-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/29/2015] [Indexed: 11/10/2022] Open
Abstract
Background The bacterial genus Mycobacterium is of great interest in the medical and biotechnological fields. Despite a flood of genome sequencing and functional genomics data, significant gaps in knowledge between genome and phenome seriously hinder efforts toward the treatment of mycobacterial diseases and practical biotechnological applications. In this study, we propose the use of systematic, comparative functional pan-genomic analysis to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon (PAH) metabolism in the genus Mycobacterium. Results Phylogenetic, phenotypic, and genomic information for 27 completely genome-sequenced mycobacteria was systematically integrated to reconstruct a mycobacterial phenotype network (MPN) with a pan-genomic concept at a network level. In the MPN, mycobacterial phenotypes show typical scale-free relationships. PAH degradation is an isolated phenotype with the lowest connection degree, consistent with phylogenetic and environmental isolation of PAH degraders. A series of functional pan-genomic analyses provide conserved and unique types of genomic evidence for strong epistatic and pleiotropic impacts on evolutionary trajectories of the PAH-degrading phenotype. Under strong natural selection, the detailed gene gain/loss patterns from horizontal gene transfer (HGT)/deletion events hypothesize a plausible evolutionary path, an epistasis-based birth and pleiotropy-dependent death, for PAH metabolism in the genus Mycobacterium. This study generated a practical mycobacterial compendium of phenotypic and genomic changes, focusing on the PAH-degrading phenotype, with a pan-genomic perspective of the evolutionary events and the environmental challenges. Conclusions Our findings suggest that when selection acts on PAH metabolism, only a small fraction of possible trajectories is likely to be observed, owing mainly to a combination of the ambiguous phenotypic effects of PAHs and the corresponding pleiotropy- and epistasis-dependent evolutionary adaptation. Evolutionary constraints on the selection of trajectories, like those seen in PAH-degrading phenotypes, are likely to apply to the evolution of other phenotypes in the genus Mycobacterium. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0302-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research/FDA, Jefferson, Arkansas, USA.
| | - Seong-Jae Kim
- Division of Microbiology, National Center for Toxicological Research/FDA, Jefferson, Arkansas, USA.
| | - Jochen Blom
- Center for Biotechnology, Bielefeld University, Bielefeld, Nordrhein-Westfalen, Germany.
| | - Sung-Kwan Kim
- Department of Management, University of Arkansas at Little Rock, Little Rock, Arkansas, USA.
| | - Bong-Soo Kim
- Department of Life Science, Hallym University, Chuncheon, Gangwon-do, 200-702, Republic of Korea.
| | - Dong-Heon Baek
- Department of Oral Microbiology and Immunology, School of Dentistry, Dankook University, Chonan, Republic of Korea.
| | - Su Inn Park
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, USA.
| | - John B Sutherland
- Division of Microbiology, National Center for Toxicological Research/FDA, Jefferson, Arkansas, USA.
| | - Carl E Cerniglia
- Division of Microbiology, National Center for Toxicological Research/FDA, Jefferson, Arkansas, USA.
| |
Collapse
|
198
|
Simeone R, Bottai D, Frigui W, Majlessi L, Brosch R. ESX/type VII secretion systems of mycobacteria: Insights into evolution, pathogenicity and protection. Tuberculosis (Edinb) 2015; 95 Suppl 1:S150-4. [PMID: 25732627 DOI: 10.1016/j.tube.2015.02.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Pathogenesis of Mycobacterium tuberculosis depends on the secretion of key virulence factors, such as the 6 kDa early secreted antigenic target ESAT-6 (EsxA) and its protein partner, the 10 kDa culture filtrate protein CFP-10 (EsxB), via the ESX-1 secretion system. ESX-1 represents the prototype system of the recently named type VII secretion systems that exist in a range of actinobacteria. The M. tuberculosis genome harbours a total of five gene clusters potentially coding for type VII secretion systems, designated ESX-1 - ESX-5, with ESX-4 being the most ancient system from which other ESX systems seem to have evolved by gene duplication and gene insertion events. The five ESX systems show similarity in gene content and gene order but differ in function. ESX-1 and ESX-5 are both crucial virulence determinants of M. tuberculosis, but with different mechanisms. While ESX-1 is implicated in the lysis of the host cell phagosomes, ESX-5 is involved in secretion of the mycobacteria specific PE and PPE proteins and cell wall stability. Research on type VII secretion systems has thus become a large and competitive research topic that is tightly linked to studies of host-pathogen interaction of pathogenic mycobacteria. Insights into this matter are of relevance for redrawing the patho-evolution of M. tuberculosis, which might help improving current strategies for prevention, diagnostics and therapy of tuberculosis as well as elucidating the virulence mechanisms employed by this important human pathogen.
Collapse
Affiliation(s)
- Roxane Simeone
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Daria Bottai
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France; Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Wafa Frigui
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Laleh Majlessi
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France.
| |
Collapse
|
199
|
Uchiya KI, Takahashi H, Nakagawa T, Yagi T, Moriyama M, Inagaki T, Ichikawa K, Nikai T, Ogawa K. Characterization of a novel plasmid, pMAH135, from Mycobacterium avium subsp. hominissuis. PLoS One 2015; 10:e0117797. [PMID: 25671431 PMCID: PMC4324632 DOI: 10.1371/journal.pone.0117797] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/31/2014] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium avium complex (MAC) causes mainly two types of disease. The first is disseminated disease in immunocompromised hosts, such as individuals infected by human immunodeficiency virus (HIV). The second is pulmonary disease in individuals without systemic immunosuppression, and the incidence of this type is increasing worldwide. M. avium subsp. hominissuis, a component of MAC, causes infection in pigs as well as in humans. Many aspects of the different modes of M. avium infection and its host specificity remain unclear. Here, we report the characteristics and complete sequence of a novel plasmid, designated pMAH135, derived from M. avium strain TH135 in an HIV-negative patient with pulmonary MAC disease. The pMAH135 plasmid consists of 194,711 nucleotides with an average G + C content of 66.5% and encodes 164 coding sequences (CDSs). This plasmid was unique in terms of its homology to other mycobacterial plasmids. Interestingly, it contains CDSs with sequence homology to mycobactin biosynthesis proteins and type VII secretion system-related proteins, which are involved in the pathogenicity of mycobacteria. It also contains putative conserved domains of the multidrug efflux transporter. Screening of isolates from humans and pigs for genes located on pMAH135 revealed that the detection rate of these genes was higher in clinical isolates from pulmonary MAC disease patients than in those from HIV-positive patients, whereas the genes were almost entirely absent in isolates from pigs. Moreover, variable number tandem repeats typing analysis showed that isolates carrying pMAH135 genes are grouped in a specific cluster. Collectively, the pMAH135 plasmid contains genes associated with M. avium's pathogenicity and resistance to antimicrobial agents. The results of this study suggest that pMAH135 influence not only the pathological manifestations of MAC disease, but also the host specificity of MAC infection.
Collapse
Affiliation(s)
- Kei-ichi Uchiya
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- * E-mail:
| | - Hiroyasu Takahashi
- Department of Pharmacy, Kainan Hospital Aichi Prefectural Welfare Federation of Agricultural Cooperatives, Yatomi, Japan
| | - Taku Nakagawa
- Department of Clinical Research, National Hospital Organization, Higashi Nagoya National Hospital, Nagoya, Japan
- Department of Pulmonary Medicine, National Hospital Organization, Higashi Nagoya National Hospital, Nagoya, Japan
| | - Tetsuya Yagi
- Department of Infectious Diseases, Center of National University Hospital for Infection Control, Nagoya University Hospital, Nagoya, Japan
| | - Makoto Moriyama
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- Department of Pharmacy, National Hospital Organization, Toyohashi Medical Center, Toyohashi, Japan
| | - Takayuki Inagaki
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- Department of Pharmacy, Nagoya University Hospital, Nagoya, Japan
| | - Kazuya Ichikawa
- Department of Pharmacy, Nagoya University Hospital, Nagoya, Japan
| | - Toshiaki Nikai
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Kenji Ogawa
- Department of Clinical Research, National Hospital Organization, Higashi Nagoya National Hospital, Nagoya, Japan
- Department of Pulmonary Medicine, National Hospital Organization, Higashi Nagoya National Hospital, Nagoya, Japan
| |
Collapse
|
200
|
Reva O, Korotetskiy I, Ilin A. Role of the horizontal gene exchange in evolution of pathogenic Mycobacteria. BMC Evol Biol 2015; 15 Suppl 1:S2. [PMID: 25708825 PMCID: PMC4331801 DOI: 10.1186/1471-2148-15-s1-s2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis is one of the most dangerous human pathogens, the causative agent of tuberculosis. While this pathogen is considered as extremely clonal and resistant to horizontal gene exchange, there are many facts supporting the hypothesis that on the early stages of evolution the development of pathogenicity of ancestral Mtb has started with a horizontal acquisition of virulence factors. Episodes of infections caused by non-tuberculosis Mycobacteria reported worldwide may suggest a potential for new pathogens to appear. If so, what is the role of horizontal gene transfer in this process? RESULTS Availing of accessibility of complete genomes sequences of multiple pathogenic, conditionally pathogenic and saprophytic Mycobacteria, a genome comparative study was performed to investigate the distribution of genomic islands among bacteria and identify ontological links between these mobile elements. It was shown that the ancient genomic islands from M. tuberculosis still may be rooted to the pool of mobile genetic vectors distributed among Mycobacteria. A frequent exchange of genes was observed between M. marinum and several saprophytic and conditionally pathogenic species. Among them M. avium was the most promiscuous species acquiring genetic materials from diverse origins. CONCLUSIONS Recent activation of genetic vectors circulating among Mycobacteria potentially may lead to emergence of new pathogens from environmental and conditionally pathogenic Mycobacteria. The species which require monitoring are M. marinum and M. avium as they eagerly acquire genes from different sources and may become donors of virulence gene cassettes to other micro-organisms.
Collapse
|