151
|
Budi HS, Farhood B. Tumor microenvironment remodeling in oral cancer: Application of plant derived-natural products and nanomaterials. ENVIRONMENTAL RESEARCH 2023; 233:116432. [PMID: 37331557 DOI: 10.1016/j.envres.2023.116432] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Oral cancers consist of squamous cell carcinoma (SCC) and other malignancies in the mouth with varying degrees of invasion and differentiation. For many years, different modalities such as surgery, radiation therapy, and classical chemotherapy drugs have been used to control the growth of oral tumors. Nowadays, studies have confirmed the remarkable effects of the tumor microenvironment (TME) on the development, invasion, and therapeutic resistance of tumors like oral cancers. Therefore, several studies have been conducted to modulate the TME in various types of tumors in favor of cancer suppression. Natural products are intriguing agents for targeting cancers and TME. Flavonoids, non-flavonoid herbal-derived molecules, and other natural products have shown promising effects on cancers and TME. These agents, such as curcumin, resveratrol, melatonin, quercetin and naringinin have demonstrated potency in suppressing oral cancers. In this paper, we will review and discuss about the potential efficacy of natural adjuvants on oral cancer cells. Furthermore, we will review the possible therapeutic effects of these agents on the TME and oral cancer cells. Moreover, the potential of nanoparticles-loaded natural products for targeting oral cancers and TME will be reviewed. The potentials, gaps, and future perspectives for targeting TME by nanoparticles-loaded natural products will also be discussed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
152
|
Aghaei-Zarch SM, Nia AHS, Nouri M, Mousavinasab F, Najafi S, Bagheri-Mohammadi S, Aghaei-Zarch F, Toolabi A, Rasoulzadeh H, Ghanavi J, Moghadam MN, Talebi M. The impact of particulate matters on apoptosis in various organs: Mechanistic and therapeutic perspectives. Biomed Pharmacother 2023; 165:115054. [PMID: 37379642 DOI: 10.1016/j.biopha.2023.115054] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Ecological air contamination is the non-homogenous suspension of insoluble particles into gas or/and liquid fluids known as particulate matter (PM). It has been discovered that exposure to PM can cause serious cellular defects, followed by tissue damage known as cellular stress. Apoptosis is a homeostatic and regulated phenomenon associated with distinguished physiological actions inclusive of organ and tissue generation, aging, and development. Moreover, it has been proposed that the deregulation of apoptotic performs an active role in the occurrence of many disorders, such as autoimmune disease, neurodegenerative, and malignant, in the human population. Recent studies have shown that PMs mainly modulate multiple signaling pathways involved in apoptosis, including MAPK, PI3K/Akt, JAK/STAT, NFκB, Endoplasmic Stress, and ATM/P53, leading to apoptosis dysregulation and apoptosis-related pathological conditions. Here, the recently published data concerning the effect of PM on the apoptosis of various organs, with a particular focus on the importance of apoptosis as a component in PM-induced toxicity and human disease development, is carefully discussed. Moreover, the review also highlighted the various therapeutic approaches, including small molecules, miRNA replacement therapy, vitamins, and PDRN, for treating diseases caused by PM toxicity. Notably, researchers have considered medicinal herbs a potential treatment for PM-induced toxicity due to their fewer side effects. So, in the final section, we analyzed the performance of some natural products for inhibition and intervention of apoptosis arising from PM-induced toxicity.
Collapse
Affiliation(s)
- Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hosein Sanjari Nia
- Division of Animal Sciences, Department of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Morteza Nouri
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemehsadat Mousavinasab
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Toolabi
- Environmental Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hassan Rasoulzadeh
- Department of Environmental Health Engineering, School of Public Health, Bam University of Medical Sciences, Bam, Iran.
| | - Jalaledin Ghanavi
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Mehrdad Talebi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
153
|
Cai Z, Zeng Y, Liu Z, Zhu R, Wang W. Curcumin Alleviates Epidermal Psoriasis-Like Dermatitis and IL-6/STAT3 Pathway of Mice. Clin Cosmet Investig Dermatol 2023; 16:2399-2408. [PMID: 37675183 PMCID: PMC10478781 DOI: 10.2147/ccid.s423922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Background To further investigate why curcumin (CUR) can attenuate psoriasis-like dermatitis of mice. Methods and Results Sixteen mice were randomized into four groups. The control group used carrier cream, and the model and the CUR group were applied with topical 5% imiquimod in the naked mice skin once a day for 6 days (62.5 mg/day/mice). Meanwhile, the control and model mice were given the same dose of saline by oral means, while mice in the CUR groups received oral drug doses of 50 and 100 mg/kg once a day for 6 days, respectively. CUR could largely improve imiquimod-induced lesions of mice. By using the ELISA and qPCR, we found that the protein and mRNA levels of epidermal TNF-α and IL-6 were inhibited by CUR. The phosphorylation levels of STAT3 and its downstream associated protein levels (eg, Cyclin D1, Bcl-2 and Pim1) in skin tissues of different groups were also inhibited by CUR. Furthermore, the results of immunohistochemistry also showed the repressed effect of CUR for the expression of TNF-α, IL-6 and p-STAT3 in psoriasis-like lesions of mice. Conclusion CUR can effectively ameliorate the featured lesions of psoriasis mice, which may be closely associated with the involvement of IL-6/STAT3 signaling.
Collapse
Affiliation(s)
- Zhenguo Cai
- Department of Dermatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Yibin Zeng
- Department of Dermatology, Minhang Hospital, Fudan University/Central Hospital of Minhang District, Shanghai, 201199, People’s Republic of China
| | - Zhuohang Liu
- Department of Dermatology, Minhang Hospital, Fudan University/Central Hospital of Minhang District, Shanghai, 201199, People’s Republic of China
| | - Ruizheng Zhu
- Department of Dermatology, Minhang Hospital, Fudan University/Central Hospital of Minhang District, Shanghai, 201199, People’s Republic of China
| | - Wuqing Wang
- Department of Dermatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Dermatology, Minhang Hospital, Fudan University/Central Hospital of Minhang District, Shanghai, 201199, People’s Republic of China
| |
Collapse
|
154
|
Nkune NW, Abrahamse H. The Efficacy of Zinc Phthalocyanine Nanoconjugate on Melanoma Cells Grown as Three-Dimensional Multicellular Tumour Spheroids. Pharmaceutics 2023; 15:2264. [PMID: 37765232 PMCID: PMC10535874 DOI: 10.3390/pharmaceutics15092264] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Melanoma remains a major public health concern that is highly resistant to standard therapeutic approaches. Photodynamic therapy (PDT) is an underutilised cancer therapy with an increased potency and negligible side effects, and it is non-invasive compared to traditional treatment modalities. Three-dimensional multicellular tumour spheroids (MCTS) closely resemble in vivo avascular tumour features, allowing for the more efficient and precise screening of novel anticancer agents with various treatment combinations. In this study, we utilised A375 human melanoma spheroids to screen the phototoxic effect of zinc phthalocyanine tetrasulfonate (ZnPcS4) conjugated to gold nanoparticles (AuNP). The nanoconjugate was synthesised and characterised using ultraviolet-visible spectroscopy, a high-resolution transmission electron microscope (TEM), dynamic light scattering (DLS), and zeta potential (ZP). The phototoxicity of the nanoconjugate was tested on the A375 MCTS using PDT at a fluency of 10 J/cm2. After 24 h, the cellular responses were evaluated via microscopy, an MTT viability assay, an ATP luminescence assay, and cell death induction using annexin propidium iodide. The MTT viability assay demonstrated that the photoactivated ZnPcS4, at a concentration of 12.73 µM, caused an approximately 50% reduction in the cell viability of the spheroids. When conjugated to AuNPs, the latter significantly increased the cellular uptake and cytotoxicity in the melanoma spheroids via the induction of apoptosis. This novel Zinc Phthalocyanine Nanoconjugate shows promise as a more effective PDT treatment modality.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
| |
Collapse
|
155
|
Moremane MM, Abrahams B, Tiloke C. Moringa oleifera: A Review on the Antiproliferative Potential in Breast Cancer Cells. Curr Issues Mol Biol 2023; 45:6880-6902. [PMID: 37623253 PMCID: PMC10453312 DOI: 10.3390/cimb45080434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
The global burden of female breast cancer and associated deaths has become a major concern. Many chemotherapeutic agents, such as doxorubicin, have been shown to have adverse side effects. The development of multi-drug resistance is a common occurrence, contributing to chemotherapeutic failure. The resistance of breast cancer cells to drug treatment leads to a decline in the treatment efficacy and an increase in cancer recurrence. Therefore, action is required to produce alternative drug therapies, such as herbal drugs. Herbal drugs have been proven to be beneficial in treating illnesses, including cancer. This review aims to highlight the antiproliferative potential of Moringa oleifera (MO), a medicinal tree native to India and indigenous to Africa, in breast cancer cells. Although MO is not yet considered a commercial chemopreventive drug, previous studies have indicated that it could become a chemotherapeutic agent. The possible antiproliferative potential of MO aqueous leaf extract has been previously proven through its antioxidant potential as well as its ability to induce apoptosis. This review will provide an increased understanding of the effect that MO aqueous leaf extract could potentially have against breast cancer.
Collapse
Affiliation(s)
| | | | - Charlette Tiloke
- Department of Basic Medical Sciences, School of Biomedical Sciences, Faculty of Health Sciences, University of the Free State, Bloemfontein 9301, South Africa; (M.M.M.); (B.A.)
| |
Collapse
|
156
|
Joha Z, Öztürk A, Yulak F, Karataş Ö, Ataseven H. Mechanism of anticancer effect of gambogic acid on gastric signet ring cell carcinoma. Med Oncol 2023; 40:269. [PMID: 37587317 DOI: 10.1007/s12032-023-02149-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
Gambogic acid has demonstrated inhibitory effects on the growth of various cancer cell types, such as breast cancer, pancreatic cancer, prostate cancer, lung cancer, and osteosarcoma. This study aims to investigate the antiproliferative activity of Gambogic acid on SNU-16 cells derived from gastric signet ring cell carcinoma and elucidate the underlying mechanisms. The cytotoxic effect of gambogic acid was evaluated in SNU-16 cells by treating them with different concentrations of the compound, and the XTT cell viability assay was employed to assess cell viability. ELISA was used to measure bax, BCL-2, caspase 3, PARP, and 8-oxo-dG levels. Additionally, immunofluorescence staining was applied to assess 8-oxo-dG and LC3β levels in SNU-16 cells. It was observed that gambogic acid exerted a dose-dependent and statistically significant antiproliferative effect on SNU-16 cells. The IC50 value of gambogic acid in SNU-16 cells was found to be 655.1 nM for 24 h. Subsequent investigations conducted using the IC50 dose revealed a significant upregulation of apoptotic proteins including cleaved caspase 3, Bax, and cleaved PARP (p < 0.001), along with a downregulation of BCL-2 (p < 0.001), an anti-apoptotic protein. Moreover, the administration of this drug led to an upregulation of 8-oxo-dG (p < 0.001), a widely acknowledged biomarker indicating oxidative damage in DNA, as well as an increase in LC3β levels (p < 0.05), a marker associated with autophagy. The antiproliferative effect of gambogic acid against gastric signet ring cell carcinoma is attributed to its ability to induce apoptosis and autophagy. This discovery highlights the promising potential of gambogic acid as a treatment option for gastric signet ring cell carcinoma.
Collapse
Affiliation(s)
- Ziad Joha
- Department of Pharmacology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Ayşegül Öztürk
- Departments of Medical Services and Techniques, Vocational School of Health Services, Sivas Cumhuriyet University, Sivas, Turkey
| | - Fatih Yulak
- Department of Physiology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Özhan Karataş
- Department of Veterinary Pathology, School of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Hilmi Ataseven
- Departments of Pharmacology, School of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
157
|
Wang LL, Li RT, Zang ZH, Song YX, Zhang YZ, Zhang TF, Wang FZ, Hao GP, Cao L. 6-Methoxydihydrosanguinarine exhibits cytotoxicity and sensitizes TRAIL-induced apoptosis of hepatocellular carcinoma cells through ROS-mediated upregulation of DR5. Med Oncol 2023; 40:266. [PMID: 37566135 DOI: 10.1007/s12032-023-02129-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023]
Abstract
6-methoxydihydrosanguinarine (6-MS), a natural benzophenanthridine alkaloid extracted from Macleaya cordata (Willd.) R. Br, has shown to trigger apoptotic cell death in cancer cells. However, the exact mechanisms involved have not yet been clarified. The current study reveals the underlying mechanisms of 6-MS-induced cytotoxicity in hepatocellular carcinoma (HCC) cells and investigates whether 6-MS sensitizes TNF-related apoptosis inducing ligand (TRAIL)-induced apoptosis. 6-MS was shown to suppress cell proliferation and trigger cell cycle arrest, DNA damage, and apoptosis in HCC cells. Mechanisms analysis indicated that 6-MS promoted reactive oxygen species (ROS) generation, JNK activation, and inhibits EGFR/Akt signaling pathway. DNA damage and apoptosis induced by 6-MS were reversed following N-acetyl-l-cysteine (NAC) treatment. The enhancement of PARP cleavage caused by 6-MS was abrogated by pretreatment with JNK inhibitor SP600125. Furthermore, 6-MS enhanced TRAIL-mediated HCC cells apoptosis by upregulating the cell surface receptor DR5 expression. Pretreatment with NAC attenuated 6-MS-upregulated DR5 protein expression and alleviated cotreatment-induced viability reduction, cleavage of caspase-8, caspase-9, and PARP. Overall, our results suggest that 6-MS exerts cytotoxicity by modulating ROS generation, EGFR/Akt signaling, and JNK activation in HCC cells. 6-MS potentiates TRAIL-induced apoptosis through upregulation of DR5 via ROS generation. The combination of 6-MS with TRAIL may be a promising strategy and warrants further investigation.
Collapse
Affiliation(s)
- Lin-Lin Wang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
| | - Ruo-Tong Li
- Department of Pathology, Tai' an Central Hospital, Taian, 271000, People's Republic of China
| | - Zi-Heng Zang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
| | - Yun-Xuan Song
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
| | - Yu-Zhe Zhang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
| | - Teng-Fei Zhang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
| | - Feng-Ze Wang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, People's Republic of China
| | - Gang-Ping Hao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China.
| | - Lu Cao
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, People's Republic of China.
| |
Collapse
|
158
|
Liu J, Zhu T, Liu J, Cui Y, Yang S, Zhao R. Synergistic antitumor effects of circularly permuted TRAIL with doxorubicin in triple-negative breast cancer. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1247-1256. [PMID: 37559457 PMCID: PMC10449636 DOI: 10.3724/abbs.2023160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023] Open
Abstract
Circularly permuted TRAIL (CPT), a novel recombinant TRAIL mutant, is a potent antitumor agent. However, its efficacy in triple-negative breast cancer (TNBC) remains unclear. Treatment with CPT alone and in combination with doxorubicin (Dox) is explored for its effects on the proliferation and apoptosis of MDA-MB-231 (MB231) and MDA-MB-436 (MB436) breast cancer cells in vitro and in vivo. Here, we show that CPT combined with Dox exhibits time- and dose-dependent synergy to inhibit cell viability and enhance apoptosis of MB231 and MB436 cells. Combined treatment substantially increases caspase-8, caspase-3, and PARP cleavage in both cell lines and significantly suppresses tumor growth in nude mice bearing MB231 xenografts. Collectively, our findings demonstrate that treatment with CPT in combination with Dox exerts synergistic antitumor effects through activation of the caspase cascade pathway, a mechanism that is partly dependent on the Dox-induced upregulation of death receptor 4 and death receptor 5. Therefore, CPT combined with Dox may be a feasible therapeutic strategy for the management of TNBC.
Collapse
Affiliation(s)
- Jia Liu
- Department of OncologyHebei Medical UniversityShijiazhuang050017China
- Department of HematologyAffiliated Hospital of Hebei UniversityBaoding071000China
| | - Tienian Zhu
- Department of OncologyHebei Medical UniversityShijiazhuang050017China
- Department of Medical OncologyBethune International Peace HospitalShijiazhuang050082China
| | - Jiankun Liu
- Department of OncologyHebei Medical UniversityShijiazhuang050017China
| | - Yujie Cui
- of OncologyHebei General HospitalShijiazhuang050057China
| | - Shifang Yang
- Beijing Sunbio Biotech Co.Ltd.Beijing100000China
| | - Ruijing Zhao
- of ImmunologyHebei Medical UniversityKey Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei ProvinceShijiazhuang050017China
| |
Collapse
|
159
|
Ghorbani Alvanegh A, Mirzaei Nodooshan M, Dorostkar R, Ranjbar R, Jalali Kondori B, Shahriary A, Parastouei K, Vazifedust S, Afrasiab E, Esmaeili Gouvarchinghaleh H. Antiproliferative effects of mesenchymal stem cells carrying Newcastle disease virus and Lactobacillus Casei extract on CT26 Cell line: synergistic effects in cancer therapy. Infect Agent Cancer 2023; 18:46. [PMID: 37525229 PMCID: PMC10391864 DOI: 10.1186/s13027-023-00521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND AND AIMS Colorectal Cancer (CRC) is a frequent malignancy with a high mortality rate. Specific inherited and environmental influences can affect CRC. Oncolytic viruses and bacteria in treating CRC are one of the innovative therapeutic options. This study aims to determine whether mesenchymal stem cells (MSCs) infected with the Newcastle Disease Virus (NDV) in combination with Lactobacillus casei extract (L. casei) have a synergistic effects on CRC cell line growth. MATERIALS AND METHODS MSCs taken from the bone marrow of BALB/c mice and were infected with the 20 MOI of NDV. Then, using the CT26 cell line in various groups as a single and combined treatment, the anticancer potential of MSCs containing the NDV and L. casei extract was examined. The evaluations considered the CT26 survival and the rate at which LDH, ROS, and levels of caspases eight and nine were produced following various treatments. RESULTS NDV, MSCs-NDV, and L. casei in alone or combined treatment significantly increased apoptosis percent, LDH, and ROS production compared with the control group (P˂0.05). Also, NDV, in free or capsulated in MSCs, had anticancer effects, but in capsulated form, it had a delay compared with free NDV. The findings proved that L. casei primarily stimulates the extrinsic pathway, while NDV therapy promotes apoptosis through the activation of both intrinsic and extrinsic apoptosis pathways. CONCLUSIONS The results suggest that MSCs carrying oncolytic NDV in combination with L. casei extract as a potentially effective strategy for cancer immunotherapy by promoting the generation of LDH, ROS, and apoptosis in the microenvironment of the CT26 cell line.
Collapse
Affiliation(s)
| | | | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Jalali Kondori
- Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Karim Parastouei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Soheil Vazifedust
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elmira Afrasiab
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | |
Collapse
|
160
|
Abusaliya A, Jeong SH, Bhosale PB, Kim HH, Park MY, Kim E, Won CK, Park KI, Heo JD, Kim HW, Ahn M, Seong JK, Kim GS. Mechanistic Action of Cell Cycle Arrest and Intrinsic Apoptosis via Inhibiting Akt/mTOR and Activation of p38-MAPK Signaling Pathways in Hep3B Liver Cancer Cells by Prunetrin-A Flavonoid with Therapeutic Potential. Nutrients 2023; 15:3407. [PMID: 37571343 PMCID: PMC10420889 DOI: 10.3390/nu15153407] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has a poor prognosis and a low survival rate. Drugs without side effects are desperately needed since chemotherapy has a negative effect on the host cells. Previous research has firmly established that plant-based compounds have significant bioactivities without a negative impact on the host. Flavonoids, in particular, are a class of compounds with both anti-inflammatory and anti-cancer properties. Prunetrin (PUR) is a glycosyloxyisoflavone (Prunetin 4'-O-glucoside) derived from Prunus sp., and its other form, called prunetin, showed optimistic results in an anti-cancerous study. Hence, we aimed to discover the anti-cancer ability of prunetrin in liver cancer Hep3B cells. Our cytotoxicity results showed that PUR can decrease cell viability. The colony formation assay confirms this strongly and correlates with cell cytotoxicity results. Prunetrin, in a dose-dependent manner, arrested the cell cycle in the G2/M phase and decreased the expression of cyclin proteins such as Cyclin B1, CDK1/CDC2, and CDC25c. Prunetrin treatment also promoted the strong cleavage of two important apoptotic hallmark proteins called PARP and caspase-3. It also confirms that apoptosis occurs through the mitochondrial pathway through increased expression of cleaved caspase-9 and increased levels of the pro-apoptotic protein Bak. Bak was significantly increased with the declining expression of the anti-apoptotic protein Bcl-xL. Next, it inhibits the mTOR/AKT signaling pathways, proving that prunetrin includes apoptosis and decreases cell viability by suppressing these pathways. Further, it was also observed that the activation of p38-MAPK was dose-dependent. Taken together, they provide evidence that prunetrin has an anti-cancerous ability in Hep3B liver cancer cells by arresting the cell cycle via p38 and inhibiting mTOR/AKT.
Collapse
Affiliation(s)
- Abuyaseer Abusaliya
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Se Hyo Jeong
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Hun Hwan Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Min Yeong Park
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Eunhye Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Chung Kil Won
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Kwang Il Park
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Jeong Doo Heo
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea
| | - Hyun Wook Kim
- Division of Animal Bioscience & Integrated Biotechnology, Jinju 52725, Republic of Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Gon Sup Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| |
Collapse
|
161
|
Interdonato L, Impellizzeri D, D’Amico R, Cordaro M, Siracusa R, D’Agostino M, Genovese T, Gugliandolo E, Crupi R, Fusco R, Cuzzocrea S, Di Paola R. Modulation of TLR4/NFκB Pathways in Autoimmune Myocarditis. Antioxidants (Basel) 2023; 12:1507. [PMID: 37627502 PMCID: PMC10451772 DOI: 10.3390/antiox12081507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Myocarditis is an inflammatory and oxidative disorder characterized by immune cell recruitment in the damaged tissue and organ dysfunction. In this paper, we evaluated the molecular pathways involved in myocarditis using a natural compound, Coriolus versicolor, in an experimental model of autoimmune myocarditis (EAM). Animals were immunized with an emulsion of pig cardiac myosin and complete Freund's adjuvant supplemented with mycobacterium tuberculosis; thereafter, Coriolus versicolor (200 mg/Kg) was orally administered for 21 days. At the end of the experiment, blood pressure and heart rate measurements were recorded and the body and heart weights as well. From the molecular point of view, the Coriolus versicolor administration reduced the activation of the TLR4/NF-κB pathway and the levels of pro-inflammatory cytokines (INF-γ, TNF-α, IL-6, IL-17, and IL-2) and restored the levels of anti-inflammatory cytokines (IL-10). These anti-inflammatory effects were accompanied with a reduced lipid peroxidation and nitrite levels and restored the antioxidant enzyme activities (SOD and CAT) and GSH levels. Additionally, it reduced the histological injury and the immune cell recruitment (CD4+ and CD68+ cells). Moreover, we observed an antiapoptotic activity in both intrinsic (Fas/FasL/caspase-3) and extrinsic (Bax/Bcl-2) pathways. Overall, our data showed that Coriolus versicolor administration modulates the TLR4/NF-κB signaling in EAM.
Collapse
Affiliation(s)
- Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Consolare Valeria, 98100 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Melissa D’Agostino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
162
|
Nosalova N, Keselakova A, Kello M, Martinkova M, Fabianova D, Pilatova MB. Involvement of Both Extrinsic and Intrinsic Apoptotic Pathways in Tridecylpyrrolidine-Diol Derivative-Induced Apoptosis In Vitro. Int J Mol Sci 2023; 24:11696. [PMID: 37511455 PMCID: PMC10380684 DOI: 10.3390/ijms241411696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Despite the decreasing trend in mortality from colorectal cancer, this disease still remains the third most common cause of death from cancer. In the present study, we investigated the antiproliferative and pro-apoptotic effects of (2S,3S,4R)-2-tridecylpyrrolidine-3,4-diol hydrochloride on colon cancer cells (Caco-2 and HCT116). The antiproliferative effect and IC50 values were determined by the MTT and BrdU assays. Flow cytometry, qRT-PCR and Western blot were used to study the cellular and molecular mechanisms involved in the induction of apoptotic pathways. Colon cancer cell migration was monitored by the scratch assay. Concentration-dependent cytotoxic and antiproliferative effects on both cell lines, with IC50 values of 3.2 ± 0.1 μmol/L (MTT) vs. 6.46 ± 2.84 μmol/L (BrdU) for HCT116 and 2.17 ± 1.5 μmol/L (MTT) vs. 1.59 ± 0.72 μmol/L (BrdU), for Caco-2 were observed. The results showed that tridecylpyrrolidine-induced apoptosis was associated with the externalization of phosphatidylserine, reduced mitochondrial membrane potential (MMP) accompanied by the activation of casp-3/7, the cleavage of PARP and casp-8, the overexpression of TNF-α and FasL and the dysregulation of Bcl-2 family proteins. Inhibition of the migration of treated cells across the wound area was detected. Taken together, our data show that the anticancer effects of tridecylpyrrolidine analogues in colon cancer cells are mediated by antiproliferative activity, the induction of both extrinsic and intrinsic apoptotic pathways and the inhibition of cell migration.
Collapse
Affiliation(s)
- Natalia Nosalova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, 040 01 Košice, Slovakia
| | - Alexandra Keselakova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, 040 01 Košice, Slovakia
| | - Miroslava Martinkova
- Department of Organic Chemistry, Faculty of Science, Institute of Chemical Sciences, P.J. Šafárik University, 040 01 Košice, Slovakia
| | - Dominika Fabianova
- Department of Organic Chemistry, Faculty of Science, Institute of Chemical Sciences, P.J. Šafárik University, 040 01 Košice, Slovakia
| | - Martina Bago Pilatova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
163
|
George M, Masamba P, Iwalokun BA, Kappo AP. Zooming into the structure-function of RING finger proteins for anti-cancer therapeutic applications. Am J Cancer Res 2023; 13:2773-2789. [PMID: 37559981 PMCID: PMC10408477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/22/2023] [Indexed: 08/11/2023] Open
Abstract
Cancer is one of the most common and widely diagnosed diseases worldwide. With an increase in prevalence and incidence, many studies in cancer biology have been looking at the role pro-cancer proteins play. One of these proteins is the Really Interesting New Gene (RING), which has been studied extensively due to its structure and functions such as apoptosis, neddylation, and its role in ubiquitination. The RING domain is a cysteine-rich domain known to bind Cysteine and Histidine residues. It also binds two zinc ions that help stabilize the protein in various patterns, often with a 'cross-brace' topology. Different RING finger proteins have been studied and found to have suitable targets for developing anti-cancer therapeutics. These identified candidate proteins include Parkin, COP1, MDM2, BARD1, BRCA-1, PIRH2, c-CBL, SIAH1, RBX1 and RNF8. Inhibiting these candidate proteins provides opportunities for shutting down pathways associated with tumour development and metastasis.
Collapse
Affiliation(s)
- Mary George
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway CampusAuckland Park, Johannesburg, South Africa
| | - Priscilla Masamba
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway CampusAuckland Park, Johannesburg, South Africa
| | - Bamidele Abiodun Iwalokun
- Department of Molecular Biology and Biotechnology, Nigerian Institute of Medical Research (NIMR)Yaba, Lagos, Nigeria
| | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway CampusAuckland Park, Johannesburg, South Africa
| |
Collapse
|
164
|
Karademir D, Özgür A. The effects of STA-9090 (Ganetespib) and venetoclax (ABT-199) combination on apoptotic pathways in human cervical cancer cells. Med Oncol 2023; 40:234. [PMID: 37432531 DOI: 10.1007/s12032-023-02107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
Combined chemotherapy is recommended strategy as a first-line treatment method in patients with cervical cancer. Ganetespib (STA-9090) is a second-generation heat shock protein 90 (Hsp90) inhibitor that blocks the ATPase function of Hsp90 and inhibits the proper folding of oncogenic client proteins. Venetoclax (ABT-199) is an orally bioavailable Bcl-2 (B-cell lymphoma 2) inhibitor that stimulates apoptotic signaling pathways in cancer cells. This study evaluated the anticancer effects of STA-9090 combined with Venetoclax in the human cervical cancer cell line (HeLa). The human cervical cancer cells were treated with STA-9090, Venetoclax, and Sta-9090 plus Venetoclax for 48 h, and cell viability was measured using the XTT assay. The alteration of the Hsp90 protein expression level and the chaperone activity of HSP90 were detected by ELISA and luciferase aggregation assay, respectively. For the apoptotic process, qRT-PCR was applied to study Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), Bcl-2-like protein 1 (Bcl-xL ), Cytochrome c (Cyt-c), Caspase3 (Cas-3), and Caspase7 (Cas-7) expression levels after drug treatments. Also, a colorimetric Cas-3 activity assay was performed to detect the induction of the apoptosis process. Our results demonstrated that 8 nM of STA-9090 combined with 4 µM of Venetoclax synergistically inhibited cervical cancer cell proliferation more than STA-9090 or Venetoclax alone after 48 h of treatment. STA-9090 and Venetoclax combination decreased the protein expression level of Hsp90 and significantly inhibited chaperone activity of Hsp90. This combination stimulated apoptosis in cervical cancer cells by down-regulating of anti-apoptotic markers while inducing pro-apoptotic markers. Also, the STA-9090-Venetoclax combination increased Cas-3 activity in Hela cells. Collectively, these findings pointed out that the STA-9090-Venetoclax combination exhibited more activity than the individual drugs to stimulate toxicity and apoptosis in cervical cancer cells based on HSP90 inhibition.
Collapse
Affiliation(s)
- Dilay Karademir
- Faculty of Medicine, Department of Gynecology and Obstetrics, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Aykut Özgür
- Artova Vocational School, Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
165
|
Razi S, Mozdarani H, Behzadi Andouhjerdi R. Evaluation of the Potential Diagnostic Role of the Lnc-MIAT, miR-29a-3p, and FOXO3a ceRNA Networks as Noninvasive Circulatory Bioindicator in Ductal Carcinoma Breast Cancer. Breast Cancer (Auckl) 2023; 17:11782234231184378. [PMID: 37434996 PMCID: PMC10331106 DOI: 10.1177/11782234231184378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Background Over the last few decades, tremendous progress has been achieved in the early detection and treatment of breast cancer (BC). However, the prognosis remains unsatisfactory, and the underlying processes of carcinogenesis are still unclear. The purpose of this research was to find out the relationship between myocardial infarction-associated transcript (MIAT), FOXO3a, and miRNA29a-3p and evaluated the expression levels in patients compare with control and their potential as a noninvasive bioindicator in whole blood in BC. Methods Whole blood and BC tissue are taken from patients before radiotherapy and chemotherapy. Total RNA was extracted from BC tissue and whole blood to synthesize complementary DNA (cDNA). The expression of MIAT, FOXO3a, and miRNA29a-3p was analyzed by the quantitative reverse transcription-polymerase chain reaction (RT-qPCR) method and the sensitivity and specificity of them were determined by the receiver operating characteristic (ROC) curve. Bioinformatics analysis was used to understand the connections between MIAT, FOXO3a, and miRNA29a-3p in human BC to develop a ceRNA (competitive endogenous RNA) network. Results We identified that in ductal carcinoma BC tissue and whole blood, MIAT and FOXO3a were more highly expressed, whereas miRNA29a-3p was lower compared with those in nontumor samples. There was a positive correlation between the expression levels of MIAT, FOXO3a, and miRNA29a-3p in BC tissues and whole blood. Our results also proposed miRNA29a-3p as a common target between MIAT and FOXO3a, and we showed them as a ceRNA network. Conclusions This is the first study that indicates MIAT, FOXO3a, and miRNA29a-3p as a ceRNA network, and their expression was analyzed in both BC tissue and whole blood. As a preliminary assessment, our findings indicate that combined levels of MIAT, FOXO3a, and miR29a-3p may be considered as potential diagnostic bioindicator for BC.
Collapse
Affiliation(s)
- Shokufeh Razi
- Department of Genetics, Faculty of
Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty
of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
166
|
Serban RM, Niculae D, Manda G, Neagoe I, Dobre M, Niculae DA, Temelie M, Mustăciosu C, Leonte RA, Chilug LE, Cornoiu MR, Cocioabă D, Stan M, Dinischiotu A. Modifications in cellular viability, DNA damage and stress responses inflicted in cancer cells by copper-64 ions. Front Med (Lausanne) 2023; 10:1197846. [PMID: 37415761 PMCID: PMC10320858 DOI: 10.3389/fmed.2023.1197846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
Due to combined therapeutical emissions, a high linear energy transfer Auger-electrons with the longer ranged β- particles, 64Cu-based radiopharmaceuticals raise particular theragnostic interest in cancer, by joined therapeutic and real-time PET imaging properties. The in vitro study aimed to investigate the biological and molecular background of 64CuCl2 therapy by analyzing the damages and stress responses inflicted in various human normal and tumor cell lines. Colon (HT29 and HCT116) and prostate carcinoma (DU145) cell lines, as well as human normal BJ fibroblasts, were treated up to 72 h with 2-40 MBq/mL 64CuCl2. Radioisotope uptake and retention were assessed, and cell viability/death, DNA damage, oxidative stress, and the expression of 84 stress genes were investigated at various time points after [64Cu]CuCl2 addition. All the investigated cells incorporated 64Cu ions similarly, independent of their tumoral or normal status, but their fate after exposure to [64Cu]CuCl2 was cell-dependent. The most striking cytotoxic effects of the radioisotope were registered in colon carcinoma HCT116 cells, for which a substantial decrease in the number of metabolically active cells, and an increased DNA damage and oxidative stress were registered. The stress gene expression study highlighted the activation of both death and repair mechanisms in these cells, related to extrinsic apoptosis, necrosis/necroptosis or autophagy, and cell cycle arrest, nucleotide excision repair, antioxidant, and hypoxic responses, respectively. The in vitro study indicated that 40 MBq/mL [64Cu]CuCl2 delivers a therapeutic effect in human colon carcinoma, but its use is limited by harmful, yet lower effects on normal fibroblasts. The exposure of tumor cells to 20 MBq/mL [64Cu]CuCl2, might be used for a softer approach aiming for a lower radiotoxicity in normal fibroblasts as compared to tumor cells. This radioactive concentration was able to induce a persistent decrease in the number of metabolically active cells, accompanied by DNA damage and oxidative stress, associated with significant changes in stress gene expression in HCT116 colon cancer cells.
Collapse
Affiliation(s)
- Radu M. Serban
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Dana Niculae
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Gina Manda
- Radiobiology Laboratory, National Institute of Pathology "Victor Babeș", Bucharest, Romania
| | - Ionela Neagoe
- Radiobiology Laboratory, National Institute of Pathology "Victor Babeș", Bucharest, Romania
| | - Maria Dobre
- Radiobiology Laboratory, National Institute of Pathology "Victor Babeș", Bucharest, Romania
| | - Dragoș A. Niculae
- Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Mihaela Temelie
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Cosmin Mustăciosu
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Radu A. Leonte
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Livia E. Chilug
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Maria R. Cornoiu
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Doctoral School of Applied Chemistry and Materials Science, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Bucharest, Romania
| | - Diana Cocioabă
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Doctoral School of Physics, Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Miruna Stan
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | |
Collapse
|
167
|
Zhou X, Zeng Y, Zheng R, Wang Y, Li T, Song S, Zhang S, Huang J, Ren Y. Natural products modulate cell apoptosis: a promising way for treating endometrial cancer. Front Pharmacol 2023; 14:1209412. [PMID: 37361222 PMCID: PMC10285317 DOI: 10.3389/fphar.2023.1209412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Endometrial cancer (EC) is a prevalent epithelial malignancy in the uterine corpus's endometrium and myometrium. Regulating apoptosis of endometrial cancer cells has been a promising approach for treating EC. Recent in-vitro and in-vivo studies show that numerous extracts and monomers from natural products have pro-apoptotic properties in EC. Therefore, we have reviewed the current studies regarding natural products in modulating the apoptosis of EC cells and summarized their potential mechanisms. The potential signaling pathways include the mitochondria-dependent apoptotic pathway, endoplasmic reticulum stress (ERS) mediated apoptotic pathway, the mitogen-activated protein kinase (MAPK) mediated apoptotic pathway, NF-κB-mediated apoptotic pathway, PI3K/AKT/mTOR mediated apoptotic pathway, the p21-mediated apoptotic pathway, and other reported pathways. This review focuses on the importance of natural products in treating EC and provides a foundation for developing natural products-based anti-EC agents.
Collapse
Affiliation(s)
- Xin Zhou
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiwei Zeng
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Runchen Zheng
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuemei Wang
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Li
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shanshan Song
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Su Zhang
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinzhu Huang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gynecology, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulan Ren
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
168
|
Jin X, Ma Y, Liu D, Huang Y. Role of pyroptosis in the pathogenesis and treatment of diseases. MedComm (Beijing) 2023; 4:e249. [PMID: 37125240 PMCID: PMC10130418 DOI: 10.1002/mco2.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 05/02/2023] Open
Abstract
Programmed cell death (PCD) is regarded as a pathological form of cell death with an intracellular program mediated, which plays a pivotal role in maintaining homeostasis and embryonic development. Pyroptosis is a new paradigm of PCD, which has received increasing attention due to its close association with immunity and disease. Pyroptosis is a form of inflammatory cell death mediated by gasdermin that promotes the release of proinflammatory cytokines and contents induced by inflammasome activation. Recently, increasing evidence in studies shows that pyroptosis has a crucial role in inflammatory conditions like cardiovascular diseases (CVDs), cancer, neurological diseases (NDs), and metabolic diseases (MDs), suggesting that targeting cell death is a potential intervention for the treatment of these inflammatory diseases. Based on this, the review aims to identify the molecular mechanisms and signaling pathways related to pyroptosis activation and summarizes the current insights into the complicated relationship between pyroptosis and multiple human inflammatory diseases (CVDs, cancer, NDs, and MDs). We also discuss a promising novel strategy and method for treating these inflammatory diseases by targeting pyroptosis and focus on the pyroptosis pathway application in clinics.
Collapse
Affiliation(s)
- Xiangyu Jin
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| | - Yinchu Ma
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| | - Didi Liu
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| | - Yi Huang
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| |
Collapse
|
169
|
Bensam M, Rechreche H, Abdelwahab AE, Abu-Serie MM, Ali SM. The role of Algerian Ephedra alata ethanolic extract in inhibiting the growth of breast cancer cells by inducing apoptosis in a p53- dependent pathway. Saudi J Biol Sci 2023; 30:103650. [PMID: 37152301 PMCID: PMC10160583 DOI: 10.1016/j.sjbs.2023.103650] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/17/2023] [Accepted: 04/09/2023] [Indexed: 05/09/2023] Open
Abstract
Background Ephedra alata, a member of the Ephedraceae family, was used to treat different diseases and it might be shown a strong efficacy to inhibit cancer cell lines. Methods Due to the limited research available about this plant, the objective of this research was to evaluate the antioxidant, cytotoxic and apoptotic effects of Ephedra alata ethanolic extract (EAEE), against different human cancer cell lines. Results EAEE inhibited the growth of the liver (HepG2), breast (MCF-7), and colon cancer cells (Caco-2). MCF-7 cells with an IC50 of 153 µg/ml, were the most sensitive to the extract. Furthermore, exploration using flow cytometry using Annexin V-FITC/PI assay demonstrated that EAEE caused death for all human cancer cells mainly through apoptosis. Very interestingly, qRT-PCR analysis using the ΔΔCt method revealed that four genes, Bax, p21, RB1, and TP53 were up-regulated in MCF-7 cells treated either with EAEE or S-FU drug. These findings let us believe that the mechanism by which EAEE kills breast cancer cells seems to be apoptosis via a P53-dependent manner, which involved intrinsic pathways through the induction of Bax, p21, and RB1. Conclusions EAEE exhibits good biological properties in contradiction of HepG-2, MCF-7, and Caco-2 cell lines. This study appoints for the first time that EAEE increases the expression in MCF-7 cells of p53 and three more genetic traits that control cellular proliferation and apoptosis. Therefore, this plant could serve as a potential source to find new pro-apoptotic drugs for cancer treatment.
Collapse
Affiliation(s)
- Moufida Bensam
- Laboratory of molecular and cellular biology, Faculty of Nature and life science, University of Jijel, Algeria
| | - Hocine Rechreche
- Laboratory of molecular and cellular biology, Faculty of Nature and life science, University of Jijel, Algeria
| | - Abeer E. Abdelwahab
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Application, Alexandria, Egypt
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Application, Alexandria, Egypt
| | - Safaa M. Ali
- Nucleic acid department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Application, Alexandria, Egypt
- Corresponding author at.
| |
Collapse
|
170
|
Agena R, Cortés-Sánchez ADJ, Hernández-Sánchez H, Álvarez-Salas LM, Martínez-Rodríguez OP, García VHR, Jaramillo Flores ME. Pro-Apoptotic Activity and Cell Cycle Arrest of Caulerpa sertularioides against SKLU-1 Cancer Cell in 2D and 3D Cultures. Molecules 2023; 28:molecules28114361. [PMID: 37298837 DOI: 10.3390/molecules28114361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is a disease with the highest mortality and morbidity rate worldwide. First-line drugs induce several side effects that drastically reduce the quality of life of people with this disease. Finding molecules to prevent it or generate less aggressiveness or no side effects is significant to counteract this problem. Therefore, this work searched for bioactive compounds of marine macroalgae as an alternative treatment. An 80% ethanol extract of dried Caulerpa sertularioides (CSE) was analyzed by HPLS-MS to identify the chemical components. CSE was utilized through a comparative 2D versus 3D culture model. Cisplatin (Cis) was used as a standard drug. The effects on cell viability, apoptosis, cell cycle, and tumor invasion were evaluated. The IC50 of CSE for the 2D model was 80.28 μg/mL versus 530 μg/mL for the 3D model after 24 h of treatment exposure. These results confirmed that the 3D model is more resistant to treatments and complex than the 2D model. CSE generated a loss of mitochondrial membrane potential, induced apoptosis by extrinsic and intrinsic pathways, upregulated caspases-3 and -7, and significantly decreased tumor invasion of a 3D SKLU-1 lung adenocarcinoma cell line. CSE generates biochemical and morphological changes in the plasma membrane and causes cell cycle arrest at the S and G2/M phases. These findings conclude that C. sertularioides is a potential candidate for alternative treatment against lung cancer. This work reinforced the use of complex models for drug screening and suggested using CSE's primary component, caulerpin, to determine its effect and mechanism of action on SKLU-1 in the future. A multi-approach with molecular and histological analysis and combination with first-line drugs must be included.
Collapse
Affiliation(s)
- Rosette Agena
- Ingeniería Bioquímica-Escuela Nacional de Ciencias Biológicas (ENCB)-Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | | | - Humberto Hernández-Sánchez
- Ingeniería Bioquímica-Escuela Nacional de Ciencias Biológicas (ENCB)-Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Luis Marat Álvarez-Salas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico
| | - Oswaldo Pablo Martínez-Rodríguez
- Ingeniería Bioquímica-Escuela Nacional de Ciencias Biológicas (ENCB)-Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Víctor Hugo Rosales García
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico
| | - María Eugenia Jaramillo Flores
- Ingeniería Bioquímica-Escuela Nacional de Ciencias Biológicas (ENCB)-Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| |
Collapse
|
171
|
de Menezes AAPM, Aguiar RPS, Santos JVO, Sarkar C, Islam MT, Braga AL, Hasan MM, da Silva FCC, Sharifi-Rad J, Dey A, Calina D, Melo-Cavalcante AAC, Sousa JMC. Citrinin as a potential anti-cancer therapy: A comprehensive review. Chem Biol Interact 2023:110561. [PMID: 37230156 DOI: 10.1016/j.cbi.2023.110561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Citrinin (CIT) is a polyketide-derived mycotoxin, which is produced by many fungal strains belonging to the gerena Monascus, Aspergillus, and Penicillium. It has been postulated that mycotoxins have several toxic mechanisms and are potentially used as antineoplastic agents. Therefore, the present study carried out a systematic review, including articles from 1978 to 2022, by collecting evidence in experimental studies of CIT antiplorifactive activity in cancer. The Data indicate that CIT intervenes in important mediators and cell signaling pathways, including MAPKs, ERK1/2, JNK, Bcl-2, BAX, caspases 3,6,7 and 9, p53, p21, PARP cleavage, MDA, reactive oxygen species (ROS) and antioxidant defenses (SOD, CAT, GST and GPX). These factors demonstrate the potential antitumor drug CIT in inducing cell death, reducing DNA repair capacity and inducing cytotoxic and genotoxic effects in cancer cells.
Collapse
Affiliation(s)
- Ag-Anne P M de Menezes
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil.
| | - Raí P S Aguiar
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil.
| | - José V O Santos
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil.
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Muhammad T Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Antonio L Braga
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil.
| | - Mohammad M Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh.
| | - Felipe C C da Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, PI, Brazil.
| | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Ana A C Melo-Cavalcante
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil; Postgraduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, PI, Brazil.
| | - João M C Sousa
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil; Postgraduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, PI, Brazil.
| |
Collapse
|
172
|
Si L, Zhang L, Xing S, Fang P, Tian X, Liu X, Xv X. Curcumin as a therapeutic agent in cancer therapy: Focusing on its modulatory effects on circular RNAs. Phytother Res 2023. [PMID: 37200228 DOI: 10.1002/ptr.7863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/17/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023]
Abstract
Curcumin, a natural polyphenol compound, has been identified as an effective therapeutic agent against cancer that exerts its anti-tumor activities by up/downregulating signaling mediators and modulating various cellular processes, including angiogenesis, autophagy, apoptosis, metastasis, and epithelial-mesenchymal transition (EMT). Since almost 98% of genomic transcriptional production is noncoding RNAs in humans, there is evidence that curcumin exerts therapeutic effects through the alterations of noncoding RNAs in various types of cancers. Circular RNAs (circRNAs) are formed by the back-splicing of immature mRNAs and have several functions, including functioning as miRNA sponges. It has been shown that curcumin modulated various circRNAs, including circ-HN1, circ-PRKCA, circPLEKHM3, circZNF83, circFNDC3B, circ_KIAA1199, circRUNX1, circ_0078710, and circ_0056618. The modulation of these circRNAs targeted the expression of mRNAs and modified various signaling pathways and hallmarks of cancer. In this article, we reviewed the pharmacokinetics of curcumin, its anti-cancer activities, as well as the biology and structure of circRNAs. Our main focus was on how curcumin exerts anti-cancer functions by modulating circRNAs and their target mRNAs and pathways.
Collapse
Affiliation(s)
- Lihui Si
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Lina Zhang
- Research and Development Department, Jilin Zhongke Bio-engineering Joint Stock Co., Ltd, Changchun, People's Republic of China
| | - Shaoliang Xing
- Research and Development Department, Jilin Zhongke Bio-engineering Joint Stock Co., Ltd, Changchun, People's Republic of China
| | - Panke Fang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiu Tian
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaoyan Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaohong Xv
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
173
|
Di Paola R, De A, Capasso A, Giuliana S, Ranieri R, Ruosi C, Sciarra A, Vitagliano C, Perna AF, Capasso G, Simeoni M. Impact of Thyroid Cancer Treatment on Renal Function: A Relevant Issue to Be Addressed. J Pers Med 2023; 13:jpm13050813. [PMID: 37240983 DOI: 10.3390/jpm13050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Thyroid cancers require complex and heterogeneous therapies with different impacts on renal function. In our systematic literature review, we analyzed several aspects: renal function assessment, the impact of radiotherapy and thyroid surgery on kidney functioning, and mechanisms of nephrotoxicity of different chemotherapy, targeted and immunologic drugs. Our study revealed that the renal impact of thyroid cancer therapy can be a limiting factor in all radiotherapy, surgery, and pharmacological approaches. It is advisable to conduct a careful nephrological follow-up imposing the application of body surface based estimated Glomerular Filtration Rate (eGFR) formulas for the purpose of an early diagnosis and treatment of renal failure, guaranteeing the therapy continuation to thyroid cancer patients.
Collapse
Affiliation(s)
- Rossella Di Paola
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Ananya De
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anna Capasso
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas, Austin, TX 75063, USA
| | - Sofia Giuliana
- Nephrology Unit, Department of Specialist General Surgery, University Hospital "Luigi Vanvitelli", 80131 Naples, Italy
| | - Roberta Ranieri
- Nephrology Unit, Department of Specialist General Surgery, University Hospital "Luigi Vanvitelli", 80131 Naples, Italy
| | - Carolina Ruosi
- Nephrology Unit, Department of Specialist General Surgery, University Hospital "Luigi Vanvitelli", 80131 Naples, Italy
| | - Antonella Sciarra
- Department of Oncologic Surgery, Translational Medical Sciences at University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Caterina Vitagliano
- Nephrology Unit, Department of Specialist General Surgery, University Hospital "Luigi Vanvitelli", 80131 Naples, Italy
| | - Alessandra F Perna
- Nephrology and Dialysis Unit, Department of Translational Medical Sciences at University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | | | - Mariadelina Simeoni
- Nephrology and Dialysis Unit, Department of Translational Medical Sciences at University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| |
Collapse
|
174
|
Hafeez A, Khan Z, Armaghan M, Khan K, Sönmez Gürer E, Abdull Razis AF, Modu B, Almarhoon ZM, Setzer WN, Sharifi-Rad J. Exploring the therapeutic and anti-tumor properties of morusin: a review of recent advances. Front Mol Biosci 2023; 10:1168298. [PMID: 37228582 PMCID: PMC10203489 DOI: 10.3389/fmolb.2023.1168298] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Morusin is a natural product that has been isolated from the bark of Morus alba, a species of mulberry tree. It belongs to the flavonoid family of chemicals, which is abundantly present in the plant world and is recognized for its wide range of biological activities. Morusin has a number of biological characteristics, including anti-inflammatory, anti-microbial, neuro-protective, and antioxidant capabilities. Morusin has exhibited anti-tumor properties in many different forms of cancer, including breast, prostate, gastric, hepatocarcinoma, glioblastoma, and pancreatic cancer. Potential of morusin as an alternative treatment method for resistant malignancies needs to be explored in animal models in order to move toward clinical trials. In the recent years several novel findings regarding the therapeutic potential of morusin have been made. This aim of this review is to provide an overview of the present understanding of morusin's beneficial effects on human health as well as provide a comprehensive and up-to-date discussion of morusin's anti-cancer properties with a special focus on in vitro and in vivo studies. This review will aid future research on the creation of polyphenolic medicines in the prenylflavone family, for the management and treatment of cancers.
Collapse
Affiliation(s)
- Amna Hafeez
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zeeshan Khan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Armaghan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Zainab M. Almarhoon
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT, United States
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, United States
| | | |
Collapse
|
175
|
Abdullah H, Ismail I, Suppian R, Zakaria NM. Natural Gallic Acid and Methyl Gallate Induces Apoptosis in Hela Cells through Regulation of Intrinsic and Extrinsic Protein Expression. Int J Mol Sci 2023; 24:ijms24108495. [PMID: 37239840 DOI: 10.3390/ijms24108495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Induction of apoptosis is one of the targeted approaches in cancer therapies. As previously reported, natural products can induce apoptosis in in vitro cancer treatments. However, the underlying mechanisms of cancer cell death are poorly understood. The present study aimed to elucidate cell death mechanisms of gallic acid (GA) and methyl gallate (MG) from Quercus infectoria toward human cervical cancer cell lines (HeLa). The antiproliferative activity of GA and MG was characterised by an inhibitory concentration using 50% cell populations (IC50) by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Cervical cancer cells, HeLa, were treated with GA and MG for 72 h and calculated for IC50 values. The IC50 concentration of both compounds was used to elucidate the apoptotic mechanism using acridine orange/propidium iodide (AO/PI) staining, cell cycle analysis, the Annexin-V FITC dual staining assay, apoptotic proteins expressions (p53, Bax and Bcl-2) and caspase activation analysis. GA and MG inhibited the growth of HeLa cells with an IC50 value of 10.00 ± 0.67 µg/mL and 11.00 ± 0.58 µg/mL, respectively. AO/PI staining revealed incremental apoptotic cells. Cell cycle analysis revealed an accumulation of cells at the sub-G1 phase. The Annexin-V FITC assay showed that cell populations shifted from the viable to apoptotic quadrant. Moreover, p53 and Bax were upregulated, whereas Bcl-2 was markedly downregulated. Activation of caspase 8 and 9 showed an ultimate apoptotic event in HeLa cells treated with GA and MG. In conclusion, GA and MG significantly inhibited HeLa cell growth through apoptosis induction by the activation of the cell death mechanism via extrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Hasmah Abdullah
- Faculty of Resilience, Rabdan Academy, Al Dhafeer Street, Abu Dhabi 22401, United Arab Emirates
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ilyana Ismail
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus, Kuala Nerus 21300, Terengganu, Malaysia
| | - Rapeah Suppian
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nor Munirah Zakaria
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
176
|
Kumari S, Dhapola R, Reddy DH. Apoptosis in Alzheimer's disease: insight into the signaling pathways and therapeutic avenues. Apoptosis 2023:10.1007/s10495-023-01848-y. [PMID: 37186274 DOI: 10.1007/s10495-023-01848-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of hyperphosphorylated tau and amyloid-β (Aβ) protein resulting in synaptic loss and apoptosis. Aβ and tau deposition trigger apoptotic pathways that result in neuronal death. Apoptosis is considered to be responsible for manifestations associated with AD under pathological conditions. It regulates via extrinsic and intrinsic pathways. It activates various proteins including Bcl-2 family proteins like Bax, Bad, Bid, Bcl-XS, Bcl-XL and caspases comprising of initiator, effector and inflammatory caspases carried out through a cascade of events that finally lead to cell disintegration. The apoptotic elements interact with trophic factors, signaling molecules including Ras-ERK, JNK, GSK-3β, BDNF/TrkB/CREB and PI3K/AKT/mTOR. Ras-ERK signaling is involved in the progression of cell cycle and apoptosis. JNK pathway is also upregulated in AD which results in decreased expression of anti-apoptotic proteins. JAK-STAT triggers caspase-3 mediated apoptosis leading to neurodegeneration. The imbalance between autophagy and apoptosis is regulated by PI3K/Akt/mTOR pathway. GSK-3β is involved in the stimulation of pro-apoptotic factors resulting in dysregulation of apoptosis. Drugs like filgrastim, epigallocatechin gallate, curcumin, nicergoline and minocycline are under development which target these pathways and modulate the disease condition. This study sheds light on apoptotic pathways that are cardinal for neuronal survival and perform crucial role in the occurrence of AD along with the trends in therapeutics targeting apoptosis induced AD. To develop prospective treatments for AD, it is desirable to elucidate potential targets including restoration apoptotic balance, regulation of caspases, Bcl-2 and other crucial proteins involved in apoptosis mediated AD.
Collapse
Affiliation(s)
- Sneha Kumari
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Dibbanti HariKrishna Reddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
177
|
Lee WY, Lee R, Park HJ. Tebuconazole Induces ER-Stress-Mediated Cell Death in Bovine Mammary Epithelial Cell Lines. TOXICS 2023; 11:397. [PMID: 37112622 PMCID: PMC10144106 DOI: 10.3390/toxics11040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 06/19/2023]
Abstract
Tebuconazole (TEB) is a triazole fungicide used to increase crop production by controlling fungi, insects, and weeds. Despite their extensive use, people are concerned about the health risks associated with pesticides and fungicides. Numerous studies have defined the cellular toxicity of triazole groups in pesticides, but the mechanisms of TEB toxicity in bovine mammary gland epithelial cells (MAC-T cells) have not yet been studied. Damage to the mammary glands of dairy cows directly affects milk production. This study investigated the toxicological effects of TEB on MAC-T cells. We found that TEB decreases both cell viability and proliferation and activates apoptotic cell death via the upregulation of pro-apoptotic proteins, such as cleaved caspases 3 and 8 and BAX. TEB also induced endoplasmic reticulum (ER) stress via the upregulation of Bip/GRP78; PDI; ATF4; CHOP; and ERO1-Lα. We found that TEB induced mitochondria-mediated apoptotic MAC-T cell death by activating ER stress. This cell damage eventually led to a dramatic reduction in the expression levels of the milk-protein-synthesis-related genes LGB; LALA; CSN1S1; CSN1S2; and CSNK in MAC-T cells. Our data suggest that the exposure of dairy cows to TEB may negatively affect milk production by damaging the mammary glands.
Collapse
Affiliation(s)
- Won-Young Lee
- Department of Livestock, Korea National University of Agriculure and Fisheries, Jeonju-si 54874, Republic of Korea
| | - Ran Lee
- Department of Livestock, Korea National University of Agriculure and Fisheries, Jeonju-si 54874, Republic of Korea
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| |
Collapse
|
178
|
Xu DH, Du JK, Liu SY, Zhang H, Yang L, Zhu XY, Liu YJ. Upregulation of KLK8 contributes to CUMS-induced hippocampal neuronal apoptosis by cleaving NCAM1. Cell Death Dis 2023; 14:278. [PMID: 37076499 PMCID: PMC10115824 DOI: 10.1038/s41419-023-05800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023]
Abstract
Neuronal apoptosis has been well-recognized as a critical mediator in the pathogenesis of depressive disorders. Tissue kallikrein-related peptidase 8 (KLK8), a trypsin-like serine protease, has been implicated in the pathogenesis of several psychiatric disorders. The present study aimed to explore the potential function of KLK8 in hippocampal neuronal cell apoptosis associated with depressive disorders in rodent models of chronic unpredictable mild stress (CUMS)-induced depression. It was found that depression-like behavior in CUMS-induced mice was associated with hippocampal KLK8 upregulation. Transgenic overexpression of KLK8 exacerbated, whereas KLK8 deficiency attenuated CUMS-induced depression-like behaviors and hippocampal neuronal apoptosis. In HT22 murine hippocampal neuronal cells and primary hippocampal neurons, adenovirus-mediated overexpression of KLK8 (Ad-KLK8) was sufficient to induce neuron apoptosis. Mechanistically, it was identified that the neural cell adhesion molecule 1 (NCAM1) may associate with KLK8 in hippocampal neurons as KLK8 proteolytically cleaved the NCAM1 extracellular domain. Immunofluorescent staining exhibited decreased NCAM1 in hippocampal sections obtained from mice or rats exposed to CUMS. Transgenic overexpression of KLK8 exacerbated, whereas KLK8 deficiency largely prevented CUMS-induced loss of NCAM1 in the hippocampus. Both adenovirus-mediated overexpression of NCAM1 and NCAM1 mimetic peptide rescued KLK8-overexpressed neuron cells from apoptosis. Collectively, this study identified a new pro-apoptotic mechanism in the hippocampus during the pathogenesis of CUMS-induced depression via the upregulation of KLK8, and raised the possibility of KLK8 as a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Dan-Hong Xu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China
- Department of Physiology, Navy Medical University, Shanghai, 200433, China
| | - Jian-Kui Du
- National Clinical Research Center for Geriatric Disorders and National International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, 41008, China
| | - Shi-Yu Liu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China
| | - Hui Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Lu Yang
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai, 200433, China.
| | - Yu-Jian Liu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
179
|
Hu H, Zhang H, Zhong R, Yang Y, Huang C, Chen J, Liang L, Chen Y, Liu Y. Synthesis, RNA-sequence and evaluation of anticancer efficacy of ruthenium(II) polypyridyl complexes toward HepG2 cells. J Inorg Biochem 2023; 244:112230. [PMID: 37084581 DOI: 10.1016/j.jinorgbio.2023.112230] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
In this article, four new Ru(II) complexes [Ru(dmbpy)2(TFBIP)](PF6)2 (dmbpy = 4,4'-dimethyl-2,2'-bipyridine, TFPIP = 2-(4'-trifluoromethyl)-[1,1'-biphenyl]-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) (Ru1), [Ru(bpy)2(TFBIP)](PF6)2 (bpy = 2,2'-bipyridine) (Ru2), [Ru(phen)2(TFBIP)](PF6)2 (phen = 1,10-phenanthroline) (Ru3) and [Ru(dmp)2(TFBIP)](PF6)2 (dmp = 2,9-dimethyl-1,10-phenanthroline) (Ru4) were synthesized and characterized by elemental analysis, HRMS, IR, 1H NMR, 13C NMR and 19F NMR. The in vitro anticancer effect of the complexes on HepG2, A549, B16, HeLa, BEL-7402 and non-cancer LO2 cells was screened using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method. The results illustrate that the complexes display moderate anticancer activity. Apoptotic assay with Annexin V/PI double staining method indicated that complexes induce apoptosis in HepG2 cells. Also, the complexes interfere with the mitochondrial functions, accompanied by the production of intracellular ROS as well as a reduction of mitochondrial membrane potential. The results obtained from the western blot demonstrated that the complexes upregulate pro-apoptotic Bax and downregulate anti-apoptotic Bcl-2, which further activates caspase 3 and promotes the cleavage of PARP. RNA-sequence showed that the complexes upregulate the expression of 40 genes and downregulate 66 genes. Antitumour in vivo demonstrated that Ru1 inhibits the tumor growth with a high inhibitory rate of 51.19%. Taken together, these results revealed that complexes Ru1, Ru2, Ru3 and Ru4 induce cell death in HepG2 cells via autophagy and a ROS-mediated mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Huiyan Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huiwen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ruitong Zhong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yan Yang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, 510317, PR China.
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yichuan Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
180
|
Yang HL, Chiu LW, Lin YA, Pandey S, Vadivalagan C, Liao JW, Gowrisankar YV, Chen HJ, Lin HY, Hseu YC. In vitro and in vivo anti-tumor activity of Coenzyme Q 0 against TWIST1-overexpressing HNSCC cells: ROS-mediated inhibition of EMT/metastasis and autophagy/apoptosis induction. Toxicol Appl Pharmacol 2023; 465:116453. [PMID: 36914119 DOI: 10.1016/j.taap.2023.116453] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023]
Abstract
HNSCC (Head and Heck Squamous Cell Carcinoma) is a reasonably prevalent cancer with a high mortality rate. In this study, we tried to examine the anti-metastasis and apoptosis/autophagy actions of Coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone), a derivative of Antrodia camphorata in HNCC TWIST1 overexpressing (FaDu-TWIST1) cells as well as in vivo tumor xenograft mice model. Using fluorescence based cellular assays, western blot and nude mice tumor xenografts, we determined that CoQ0 effectively reduced cell viability and displayed rapid morphological changes in FaDu-TWIST1 cells compared to FaDu cells. Non/sub-cytotoxic concentrations of CoQ0 treatment reduces the cell migration by downregulating TWIST1 and upregulating E-cadherin. Apoptosis produced by CoQ0 was mostly related with caspase-3 activation, PARP cleavage, and VDAC-1 expression. The FaDu-TWIST1 cells treated with CoQ0 exhibits autophagy-mediated LC3-II accumulation and acidic vesicular organelles (AVOs) formation. Pre-treatment with 3-MA and CoQ effectively prevented CoQ0-induced cell death and CoQ0-triggered autophagy in FaDu-TWIST cells as a death mechanism. CoQ0 induces ROS production in FaDu-TWIST1 cells and NAC pre-treatment significantly reduces anti-metastasis, apoptosis, and autophagy. Likewise, ROS-mediated AKT inhibition regulates CoQ0-induced apoptosis/autophagy in FaDu-TWIST1 cells. In vivo studies exhibit, CoQ0 effectively delays and reduces the tumor incidence and burden in FaDu-TWIST1-xenografted nude mice. Current findings display, CoQ0 exhibits a novel anti-cancer mechanism hence, it might be appropriate for anticancer therapy, and a new potent drug for HNSCC.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan
| | - Li-Wen Chiu
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan
| | - Yi-An Lin
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan
| | - Sudhir Pandey
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Chithravel Vadivalagan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung-Hsing University, Taichung 402, Taiwan
| | | | - Hui-Jye Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan.
| | - Hui-Yi Lin
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
181
|
Radovanović M, Petrović M, Šantrić V, Milojević B, Zubelić A, Isaković A. P53 and survivin expression in renal cell carcinoma. Urol Ann 2023; 15:186-190. [PMID: 37304521 PMCID: PMC10252781 DOI: 10.4103/ua.ua_91_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/26/2022] [Indexed: 06/13/2023] Open
Abstract
Objective Mutation of p53 is detected in more than 50% of human cancers, expression of p53 has a potential prognostic value in patients with renal cell carcinoma (RCC). Survivin is a member of the inhibitor of apoptosis protein family, its overexpression is observed in many malignancies, including RCC. The aim of the study was to estimate a correlation between survivin and p53 expression in tumor samples and the histologic type of a tumor, tumor stage, tumor grade, and survival of patients. Materials and Methods Tumor samples were collected from surgical specimens of 90 patients who underwent radical or partial nephrectomy for RCC between November 2017 and July 2020. Tumors were staged according to the UICC (The Union for International Cancer Control) TNM classification system and histopathologically graded according to Fuhrman nuclear grade system. Histopathological diagnosis was confirmed with standard light microscopic evaluation, using hematoxylin and eosin staining and standard p53 and survivin antibodies. Results Positive p53 staining was observed in 36.7% of tumor specimens and 24.4% were survivin positive. There was a statistically significant correlation between p53 or survivin expression and histologic subtype of clear cell RCC as well as Type I and II of papillary RCC. There was a statistically significant correlation between p53 expression and tumor size, stage, and grade. The p53 or survivin expression was related to lower overall survival. Conclusion The results of this study suggest that p53 overexpression and survivin positivity in RCC patients could be associated with poor prognosis. Thus, these proteins could be used as prognostic markers in RCC.
Collapse
Affiliation(s)
- Milan Radovanović
- Clinic of Urology, University Clinical Centre of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Miloš Petrović
- Clinic of Urology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Veljko Šantrić
- Clinic of Urology, University Clinical Centre of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bogomir Milojević
- Clinic of Urology, University Clinical Centre of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksa Zubelić
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
182
|
Unterberger CJ, McIlwain SJ, Tsourkas PK, Maklakova VI, Prince JL, Onesti A, Hu R, Kopchick JJ, Swanson SM, Marker PC. Conditional gene regulation models demonstrate a pro-proliferative role for growth hormone receptor in prostate cancer. Prostate 2023; 83:416-429. [PMID: 36562110 PMCID: PMC9974633 DOI: 10.1002/pros.24474] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/11/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Humans with inactivating mutations in growth hormone receptor (GHR) have lower rates of cancer, including prostate cancer. Similarly, mice with inactivating Ghr mutations are protected from prostatic intraepithelial neoplasia in the C3(1)/TAg prostate cancer model. However, gaps in clinical relevance in those models persist. The current study addresses these gaps and the ongoing role of Ghr in prostate cancer using loss-of-function and gain-of-function models. METHODS Conditional Ghr inactivation was achieved in the C3(1)/TAg model by employing a tamoxifen-inducible Cre and a prostate-specific Cre. In parallel, a transgenic GH antagonist was also used. Pathology, proliferation, and gene expression of 6-month old mouse prostates were assessed. Analysis of The Cancer Genome Atlas data was conducted to identify GHR overexpression in a subset of human prostate cancers. Ghr overexpression was modeled in PTEN-P2 and TRAMP-C2 mouse prostate cancer cells using stable transfectants. The growth, proliferation, and gene expression effects of Ghr overexpression was assessed in vitro and in vivo. RESULTS Loss-of-function for Ghr globally or in prostatic epithelial cells reduced proliferation and stratification of the prostatic epithelium in the C3(1)/TAg model. Genes and gene sets involved in the immune system and tumorigenesis, for example, were dysregulated upon global Ghr disruption. Analysis of The Cancer Genome Atlas revealed higher GHR expression in human prostate cancers with ERG-fusion genes or ETV1-fusion genes. Modeling the GHR overexpression observed in these human prostate cancers by overexpressing Ghr in mouse prostate cancer cells with mutant Pten or T-antigen driver genes increased proliferation of prostate cancer cells in vitro and in vivo. Ghr overexpression regulated the expression of multiple genes oppositely to Ghr loss-of-function models. CONCLUSIONS Loss-of-function and gain-of-function Ghr models, including prostatic epithelial cell specific alterations in Ghr, altered proliferation, and gene expression. These data suggest that changes in GHR activity in human prostatic epithelial cells play a role in proliferation and gene regulation in prostate cancer, suggesting the potential for disrupting GH signaling, for example by the FDA approved GH antagonist pegvisomant, may be beneficial in treating prostate cancer.
Collapse
Affiliation(s)
- Christopher J Unterberger
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sean J McIlwain
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Philippos K Tsourkas
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vilena I Maklakova
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jordyn L Prince
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Abigail Onesti
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Steven M Swanson
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paul C Marker
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
183
|
Samavarchi Tehrani S, Esmaeili F, Shirzad M, Goodarzi G, Yousefi T, Maniati M, Taheri-Anganeh M, Anushiravani A. The critical role of circular RNAs in drug resistance in gastrointestinal cancers. Med Oncol 2023; 40:116. [PMID: 36917431 DOI: 10.1007/s12032-023-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Nowadays, drug resistance (DR) in gastrointestinal (GI) cancers, as the main reason for cancer-related mortality worldwide, has become a serious problem in the management of patients. Several mechanisms have been proposed for resistance to anticancer drugs, including altered transport and metabolism of drugs, mutation of drug targets, altered DNA repair system, inhibited apoptosis and autophagy, cancer stem cells, tumor heterogeneity, and epithelial-mesenchymal transition. Compelling evidence has revealed that genetic and epigenetic factors are strongly linked to DR. Non-coding RNA (ncRNA) interferences are the most crucial epigenetic alterations explored so far, and among these ncRNAs, circular RNAs (circRNAs) are the most emerging members known to have unique properties. Due to the absence of 5' and 3' ends in these novel RNAs, the two ends are covalently bonded together and are generated from pre-mRNA in a process known as back-splicing, which makes them more stable than other RNAs. As far as the unique structure and function of circRNAs is concerned, they are implicated in proliferation, migration, invasion, angiogenesis, metastasis, and DR. A clear understanding of the molecular mechanisms responsible for circRNAs-mediated DR in the GI cancers will open a new window to the management of GI cancers. Hence, in the present review, we will describe briefly the biogenesis, multiple features, and different biological functions of circRNAs. Then, we will summarize current mechanisms of DR, and finally, discuss molecular mechanisms through which circRNAs regulate DR development in esophageal cancer, pancreatic cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- Department of English, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Amir Anushiravani
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
184
|
Baggio C, Luisetto R, Boscaro C, Scanu A, Ramonda R, Albiero M, Sfriso P, Oliviero F. Leucocyte Abnormalities in Synovial Fluid of Degenerative and Inflammatory Arthropathies. Int J Mol Sci 2023; 24:ijms24065450. [PMID: 36982526 PMCID: PMC10056596 DOI: 10.3390/ijms24065450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/26/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
Genome damage has been related to the induction of autoimmune processes, chronic inflammation, and apoptosis. Recent studies suggest that some rheumatological diseases are associated with overall genomic instability in the T cell compartment. However, no data regarding leucocyte abnormalities in synovial fluid (SF) and their relationship with inflammation are available. The aim of this study was to investigate cellular phenotypes in SF collected from patients with different inflammatory arthropathies, including rhematoid arthritis (RA), psoriatic arthritis (PsA), crystal-induced arthritis (CIA), and non-inflammatory arthropathies, such as osteoarthritis (OA). We found high percentage of micronuclei in SF from CIA compared to the other groups and a high frequency of pyknotic cell in RA and CIA patients. A correlation between pyknosis and immature polymorphonuclear cells with local inflammatory indices was observed. The study of the apoptosis process revealed an increased BAX expression in CIA and RA compared to OA and PsA, while Bcl-2 was higher in CIA. Caspase-3 activity was increased in SF from RA patients and correlates with inflammatory and anti-inflammatory cytokines. In conclusion, our results showed that inflammatory SF is associated with genomic instability and abnormal cell subsets.
Collapse
Affiliation(s)
- Chiara Baggio
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology-DISCOG, University of Padova, 35128 Padova, Italy
| | - Carlotta Boscaro
- Department of Medicine, University of Padova, 35128 Padova, Italy
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
| | - Anna Scanu
- Department of Woman’s and Child’s Health, University of Padova, 35128 Padova, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Mattia Albiero
- Department of Medicine, University of Padova, 35128 Padova, Italy
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
| | - Paolo Sfriso
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Francesca Oliviero
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-049-8218682
| |
Collapse
|
185
|
Expanding therapeutic strategies for intracellular bacterial infections through conjugates of apoptotic body-antimicrobial peptides. Drug Discov Today 2023; 28:103444. [PMID: 36400344 DOI: 10.1016/j.drudis.2022.103444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Macrophage intracellular infections are difficult to treat because conventional antibiotics tend to have poor penetration of mammalian cells. As a consequence, the immune response is affected and bacteria remain protected inside macrophages. The use of antimicrobial peptides (AMPs) is one of the alternatives developed as new treatments because of their broad spectrum of action. To improve drug delivery into the intracellular space, extracellular vesicles (EVs) have emerged as an innovative strategy for drug delivery. In particular, apoptotic bodies (ApoBDs) are EVs that exhibit attraction to macrophages, which makes them a promising means of improving AMP delivery to treat macrophage intracellular infections. Here, we review important aspects that should be taken into account when developing ApoBD-AMP conjugates.
Collapse
|
186
|
The Assessment of the Phototoxic Action of Chlortetracycline and Doxycycline as a Potential Treatment of Melanotic Melanoma-Biochemical and Molecular Studies on COLO 829 and G-361 Cell Lines. Int J Mol Sci 2023; 24:ijms24032353. [PMID: 36768675 PMCID: PMC9917077 DOI: 10.3390/ijms24032353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/22/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Melanoma is still one of the most dangerous cancers. New methods of treatment are sought due to its high aggressiveness and the relatively low effectiveness of therapies. Tetracyclines are drugs exhibiting anticancer activity. Previous studies have also shown their activity against melanoma cells. The possibility of tetracycline accumulation in pigmented tissues and the increase in their toxicity under the influence of UVA radiation creates the possibility of developing a new anti-melanoma therapy. This study aimed to analyze the phototoxic effect of doxycycline and chlortetracycline on melanotic melanoma cells COLO 829 and G-361. The results indicated that tetracycline-induced phototoxicity significantly decreased the number of live cells by cell cycle arrest as well as a decrease in cell viability. The simultaneous exposure of cells to drugs and UVA caused the depolarization of mitochondria as well as inducing oxidative stress and apoptosis. It was found that the combined treatment activated initiator and effector caspases, caused DNA fragmentation and elevated p53 level. Finally, it was concluded that doxycycline demonstrated a stronger cytotoxic and phototoxic effect. UVA irradiation of melanoma cells treated with doxycycline and chlortetracycline allows for the reduction of therapeutic drug concentrations and increases the effectiveness of tested tetracyclines.
Collapse
|
187
|
Seaweed-Derived Sulfated Polysaccharides; The New Age Chemopreventives: A Comprehensive Review. Cancers (Basel) 2023; 15:cancers15030715. [PMID: 36765670 PMCID: PMC9913163 DOI: 10.3390/cancers15030715] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Seaweed-derived bioactive compounds are regularly employed to treat human diseases. Sulfated polysaccharides are potent chemotherapeutic or chemopreventive medications since it has been discovered. They have exhibited anti-cancer properties by enhancing immunity and driving apoptosis. Through dynamic modulation of critical intracellular signalling pathways, such as control of ROS generation and preservation of essential cell survival and death processes, sulfated polysaccharides' antioxidant and immunomodulatory potentials contribute to their disease-preventive effectiveness. Sulfated polysaccharides provide low cytotoxicity and good efficacy therapeutic outcomes via dynamic modulation of apoptosis in cancer. Understanding how sulfated polysaccharides affect human cancer cells and their molecular involvement in cell death pathways will showcase a new way of chemoprevention. In this review, the significance of apoptosis and autophagy-modulating sulfated polysaccharides has been emphasized, as well as the future direction of enhanced nano-formulation for greater clinical efficacy. Moreover, this review focuses on the recent findings about the possible mechanisms of chemotherapeutic use of sulfated polysaccharides, their potential as anti-cancer drugs, and proposed mechanisms of action to drive apoptosis in diverse malignancies. Because of their unique physicochemical and biological properties, sulfated polysaccharides are ideal for their bioactive ingredients, which can improve function and application in disease. However, there is a gap in the literature regarding the physicochemical properties and functionalities of sulfated polysaccharides and the use of sulfated polysaccharide-based delivery systems in functional cancer. Furthermore, the preclinical and clinical trials will reveal the drug's efficacy in cancer.
Collapse
|
188
|
Dai W, Dai YG, Ren DF, Zhu DW. Dieckol, a natural polyphenolic drug, inhibits the proliferation and migration of colon cancer cells by inhibiting PI3K, AKT, and mTOR phosphorylation. J Biochem Mol Toxicol 2023; 37:e23313. [PMID: 36683349 DOI: 10.1002/jbt.23313] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/07/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023]
Abstract
This study investigated that dieckol (DKL), a natural drug, inhibits colon cancer cell proliferation and migration by inhibiting phosphoinositide-3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) phosphorylation in HCT-116 cells. The cells were treated with DKL in various concentrations (32 and 50 μM) for 24 h and then analyzed for various experiments. MTT (tetrazolium bromide) and crystal violet assay investigated DKL-mediated cytotoxicity. Dichlorodihydrofluorescein diacetate staining was used to assess the reactive oxygen species (ROS) measurement, and apoptotic changes were studied by dual acridine orange and ethidium bromide staining. Protein expression of cell survival, cell cycle, proliferation, and apoptosis protein was evaluated by western blot analysis. Results indicated that DKL produces significant cytotoxicity in HCT-116, and the half-maximal inhibitory concentration was found to be 32 μM for 24-h incubation. Moreover, effective production of ROS and enhanced apoptotic signs were observed upon DKL treatment in HCT-116. DKL induces the expression of phosphorylated PI3K, AKT, and mToR-associated enhanced expression of cyclin-D1, proliferating cell nuclear antigen, cyclin-dependent kinase (CDK)-4, CDK-6, and Bcl-2 in HCT-116. In addition, proapoptotic proteins such as Bax, caspase-9, and caspase-3 were significantly enhanced by DKL treatment in HCT-116. Hence, DKL has been considered a chemotherapeutic drug by impeding the expression of PI3K-, AKT-, and mTOR-mediated inhibition of proliferation and cell cycle-regulating proteins.
Collapse
Affiliation(s)
- Wei Dai
- Department of Clinical Laboratory, Ganzhou People's Hospital, Jiangxi, Ganzhou, China
| | - Yong Gang Dai
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Dong Feng Ren
- Department of Oncology, The First Hospital of Yulin, Shaanxi, Yulin, China
| | - Da Wei Zhu
- Department of Gastroenterology, Hongze District People's Hospital, Jiangsu, Huai'an, China
| |
Collapse
|
189
|
Hou Z, Vanecek AS, Tepe JJ, Odom AL. Synthesis, structure, properties, and cytotoxicity of a (quinoline)RuCp + complex. Dalton Trans 2023; 52:721-730. [PMID: 36562335 DOI: 10.1039/d2dt03484k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A rare example of a structurally characterized metal quinoline complex was prepared using a non-covalent quinoline-based proteasome inhibitor (Quin1), and a related complex bearing an inactive quinoline ligand (Quin2) was also synthesized. The quinolines are prepared by a one-pot procedure involving titanium-catalyzed alkyne iminoamination and are bound to ruthenium by reaction with CpRu(NCMe)3+ PF6- in CH2Cl2. The arene of the quinoline is η6-bonded to the ruthenium metal center. The kinetics of quinoline displacement were investigated, and reactivity with deuterated solvents follows the order acetonitrile > DMSO > water. Quinolines with more methyl groups on the arene are more kinetically stable, and RuCp(Quin1)+ PF6- (1), which has two methyl groups on the arene, is stable for days in DMSO. In contrast, a very similar complex (2) made with Quin2 having no methyl groups on the arene was readily displaced by DMSO. Both 1 and 2 are stable in 9 : 1 water/DMSO for days with no measurable displacement of the quinoline. The cytotoxicity of the quinolines, their CpRu+-complexes, and CpRu(DMSO)3+ PF6- was investigated towards two multiple myeloma cell lines: MC/CAR and RPMI 8226. To determine whether the activity of the complexes was related to the nature of the quinoline ligands, two structurally similar quinoline ligands with vastly different biological properties were investigated. Quin1 is a cytotoxic proteasome inhibitor, whereas Quin2 is not a proteasome inhibitor and showed no discernable cytotoxicity. The ruthenium complexes showed poor cellular proteasome inhibition. However, both 1 and 2 showed good cytotoxicity towards RPMI 8226 and MC/CAR, with 1 being slightly more cytotoxic. For example, 1 has a CC50 = 2 μM in RPMI 8226, and 2 has a CC50 = 5 μM for the same cell line. In contrast, CpRu(DMSO)3+ PF6- was quite active towards MC/CAR with CC50 = 2.8 μM but showed no discernible cytotoxicity toward RPMI 8226. The mechanism of action responsible for the observed cytotoxicity is not known, but the new Ru(Cp)(Quin)+ PF6- complexes do not cross-link DNA as found for platinum-based drugs. It is concluded that the Ru(Cp)(Quin)+ PF6- complexes remain intact in the cellular assays and constitute a new class of cytotoxic metal complexes.
Collapse
Affiliation(s)
- Zhilin Hou
- Michigan State University, Department of Chemistry, 578 S. Shaw Ln, East Lansing, MI 48824, USA.
| | - Allison S Vanecek
- Michigan State University, Department of Chemistry, 578 S. Shaw Ln, East Lansing, MI 48824, USA.
| | - Jetze J Tepe
- Michigan State University, Department of Chemistry, 578 S. Shaw Ln, East Lansing, MI 48824, USA.
| | - Aaron L Odom
- Michigan State University, Department of Chemistry, 578 S. Shaw Ln, East Lansing, MI 48824, USA.
| |
Collapse
|
190
|
The Involvement of Natural Polyphenols in Molecular Mechanisms Inducing Apoptosis in Tumor Cells: A Promising Adjuvant in Cancer Therapy. Int J Mol Sci 2023; 24:ijms24021680. [PMID: 36675194 PMCID: PMC9863215 DOI: 10.3390/ijms24021680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Various literature data show how a diet rich in vegetables could reduce the incidence of several cancers due to the contribution of the natural polyphenols contained in them. Polyphenols are attributed multiple pharmacological actions such as anti-inflammatory, anti-oxidant, antibiotic, antiseptic, anti-allergic, cardioprotective and even anti-tumor properties. The multiple mechanisms involved in their anti-tumor action include signaling pathways modulation associated with cell proliferation, differentiation, migration, angiogenesis, metastasis and cell death. Since the dysregulation of death processes is involved in cancer etiopathology, the natural compounds able to kill cancer cells could be used as new anticancer agents. Apoptosis, a programmed form of cell death, is the most potent defense against cancer and the main mechanism used by both chemotherapy agents and polyphenols. The aim of this review is to provide an update of literature data on the apoptotic molecular mechanisms induced by some representative polyphenol family members in cancer cells. This aspect is particularly important because it may be useful in the design of new therapeutic strategies against cancer involving the polyphenols as adjuvants.
Collapse
|
191
|
Design, Synthesis, Docking Study, and Antiproliferative Evaluation of Novel Schiff Base-Benzimidazole Hybrids with VEGFR-2 Inhibitory Activity. Molecules 2023; 28:molecules28020481. [PMID: 36677536 PMCID: PMC9862622 DOI: 10.3390/molecules28020481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
A new series of Schiff-benzimidazole hybrids 3a-o has been designed and synthesized. The structure of the target compounds was proved by different spectroscopic and elemental analysis tools. The target compounds were evaluated for their in vitro cytotoxic activity against 60 cancer cell lines according to NCI single- and five-dose protocols. Consequently, four compounds were further examined against the most sensitive lung cancer A549 and NCI-H460 cell lines. Compounds 3e and 3g were the most active, achieving 3.58 ± 0.53, 1.71 ± 0.17 and 1.88 ± 0.35, 0.85 ± 0.24 against A549 and NCI-H460 cell lines, respectively. Moreover, they showed remarkable inhibitory activity on the VEGFR-2 TK with 86.23 and 89.89%, respectively, as compared with Sorafenib (88.17%). Moreover, cell cycle analysis of NCI-H460 cells treated with 3e and 3g showed cellular cycle arrest at both G1 and S phases (supported by caspases-9 study) with significant pro-apoptotic activity, as indicated by annexin V-FITC staining. The binding interactions of these compounds were confirmed through molecular docking studies; the most active compounds displayed complete overlay with, and a similar binding mode and pose to, Sorafenib, a reference VEGFR-2 inhibitor.
Collapse
|
192
|
Wu XY, Xu WW, Huan XK, Wu GN, Li G, Zhou YH, Najafi M. Mechanisms of cancer cell killing by metformin: a review on different cell death pathways. Mol Cell Biochem 2023; 478:197-214. [PMID: 35771397 DOI: 10.1007/s11010-022-04502-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/08/2022] [Indexed: 01/17/2023]
Abstract
Cancer resistance to anti-tumour agents has been one of the serious challenges in different types of cancer treatment. Usually, an increase in the cell death markers can predict a higher rate of survival among patients diagnosed with cancer. By increasing the regulation of survival genes, cancer cells can display a higher resistance to therapy through the suppression of anti-tumour immunity and inhibition of cell death signalling pathways. Administration of certain adjuvants may be useful in order to increase the therapeutic efficiency of anti-cancer therapy through the stimulation of different cell death pathways. Several studies have demonstrated that metformin, an antidiabetic drug with anti-cancer properties, amplifies cell death mechanisms, especially apoptosis in a broad-spectrum of cancer cells. Stimulation of the immune system by metformin has been shown to play a key role in the induction of cell death. It seems that the induction or suppression of different cell death mechanisms has a pivotal role in either sensitization or resistance of cancer cells to therapy. This review explains the cellular and molecular mechanisms of cell death following anticancer therapy. Then, we discuss the modulatory roles of metformin on different cancer cell death pathways including apoptosis, mitotic catastrophe, senescence, autophagy, ferroptosis and pyroptosis.
Collapse
Affiliation(s)
- Xiao-Yu Wu
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Wen-Wen Xu
- Department of Gynaecology, The Affiliated Hospital of Nanjing University of Chinese Medi-Cine, Nanjing, 210029, Jiangsu, China
| | - Xiang-Kun Huan
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Guan-Nan Wu
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Gang Li
- Department of General Surgery, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Yu-Hong Zhou
- Digestive Endoscopy Center, The Affiliated Hospital of Nanjing University of Chinese Medi-Cine, Nanjing, 210029, Jiangsu, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
193
|
Hashemi M, Mirdamadi MSA, Talebi Y, Khaniabad N, Banaei G, Daneii P, Gholami S, Ghorbani A, Tavakolpournegari A, Farsani ZM, Zarrabi A, Nabavi N, Zandieh MA, Rashidi M, Taheriazam A, Entezari M, Khan H. Pre-clinical and clinical importance of miR-21 in human cancers: Tumorigenesis, therapy response, delivery approaches and targeting agents. Pharmacol Res 2023; 187:106568. [PMID: 36423787 DOI: 10.1016/j.phrs.2022.106568] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
The field of non-coding RNA (ncRNA) has made significant progress in understanding the pathogenesis of diseases and has broadened our knowledge towards their targeting, especially in cancer therapy. ncRNAs are a large family of RNAs with microRNAs (miRNAs) being one kind of endogenous RNA which lack encoded proteins. By now, miRNAs have been well-coined in pathogenesis and development of cancer. The current review focuses on the role of miR-21 in cancers and its association with tumor progression. miR-21 has both oncogenic and onco-suppressor functions and most of the experiments are in agreement with the tumor-promoting function of this miRNA. miR-21 primarily decreases PTEN expression to induce PI3K/Akt signaling in cancer progression. Overexpression of miR-21 inhibits apoptosis and is vital for inducing pro-survival autophagy. miR-21 is vital for metabolic reprogramming and can induce glycolysis to enhance tumor progression. miR-21 stimulates EMT mechanisms and increases expression of MMP-2 and MMP-9 thereby elevating tumor metastasis. miR-21 is a target of anti-cancer agents such as curcumin and curcumol and its down-regulation impairs tumor progression. Upregulation of miR-21 results in cancer resistance to chemotherapy and radiotherapy. Increasing evidence has revealed the role of miR-21 as a biomarker as it is present in both the serum and exosomes making them beneficial biomarkers for non-invasive diagnosis of cancer.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Motahare Sadat Ayat Mirdamadi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Yasmin Talebi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Nasrin Khaniabad
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Pouria Daneii
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Zoheir Mohammadian Farsani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
194
|
Wang Y, Li Y, Chen J, Liu H, Zhou Y, Huang C, Liang L, Liu Y, Wang X. Anticancer effect evaluation of iridium(III) complexes targeting mitochondria and endoplasmic reticulum. J Inorg Biochem 2023; 238:112054. [PMID: 36335745 DOI: 10.1016/j.jinorgbio.2022.112054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Ligand HMSPIP (2-(4-(methylsulfonyl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) and its iridium(III) complexes [Ir(ppy)2(HMSPIP)]PF6 (ppy = 2-phenylpyridine, Ir1) and [Ir(bzq)2(HMSPIP)]PF6 (bzq = benzo[h]quinoline, Ir2) were synthesized. The complexes were characterized by 1H NMR, 13C NMR, and UV/Vis spectra. The cytotoxicity of the complexes toward cancer cells were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, the scratch wound healing and colony-forming were also investigated. MTT assay certificated that the complexes show high toxic effect on the HeLa cells. The cell cycle assay illustrated that the complexes blocked cell growth at G0/G1 phase in HeLa cells. A series of subsequent experiments showed that the complexes first enter the endoplasmic reticulum (ER) and then enter the mitochondria, leading to an increase in intracellular Ca2+ and reactive oxygen species (ROS) content, depolarizing mitochondrial membrane potential (MMP), and ultimately resulting in apoptosis. In addition, the experimental results revealed that the complexes not only increase the level of ROS but also inhibit the production of GSH and eventually produce large amounts of MDA and further leading to cell death. Taken together, we consider that the complexes can be used as potential candidate drugs for HeLa cancer treatment.
Collapse
Affiliation(s)
- Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yizhen Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Ju Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Haimei Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Xiuzhen Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
195
|
Hepatoprotective Effect of Kaempferol: A Review of the Dietary Sources, Bioavailability, Mechanisms of Action, and Safety. Adv Pharmacol Pharm Sci 2023; 2023:1387665. [PMID: 36891541 PMCID: PMC9988374 DOI: 10.1155/2023/1387665] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 02/03/2023] [Indexed: 03/02/2023] Open
Abstract
The liver is the body's most critical organ that performs vital functions. Hepatic disorders can affect the physiological and biochemical functions of the body. Hepatic disorder is a condition that describes the damage to cells, tissues, structures, and functions of the liver, which can cause fibrosis and ultimately result in cirrhosis. These diseases include hepatitis, ALD, NAFLD, liver fibrosis, liver cirrhosis, hepatic failure, and HCC. Hepatic diseases are caused by cell membrane rupture, immune response, altered drug metabolism, accumulation of reactive oxygen species, lipid peroxidation, and cell death. Despite the breakthrough in modern medicine, there is no drug that is effective in stimulating the liver function, offering complete protection, and aiding liver cell regeneration. Furthermore, some drugs can create adverse side effects, and natural medicines are carefully selected as new therapeutic strategies for managing liver disease. Kaempferol is a polyphenol contained in many vegetables, fruits, and herbal remedies. We use it to manage various diseases such as diabetes, cardiovascular disorders, and cancers. Kaempferol is a potent antioxidant and has anti-inflammatory effects, which therefore possesses hepatoprotective properties. The previous research has studied the hepatoprotective effect of kaempferol in various hepatotoxicity protocols, including acetaminophen (APAP)-induced hepatotoxicity, ALD, NAFLD, CCl4, HCC, and lipopolysaccharide (LPS)-induced acute liver injury. Therefore, this report aims to provide a recent brief overview of the literature concerning the hepatoprotective effect of kaempferol and its possible molecular mechanism of action. It also provides the most recent literature on kaempferol's chemical structure, natural source, bioavailability, and safety.
Collapse
|
196
|
Ojo OA, Nwafor-Ezeh PI, Rotimi DE, Iyobhebhe M, Ogunlakin AD, Ojo AB. Apoptosis, inflammation, and oxidative stress in infertility: A mini review. Toxicol Rep 2023; 10:448-462. [PMID: 37125147 PMCID: PMC10130922 DOI: 10.1016/j.toxrep.2023.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
Infertility has been a major issue in our society for many years, and millions of couples all over the world are still experiencing it. There are several reasons for and causes of infertility in both men and women. Recent studies have shown that apoptosis, inflammation, and oxidative stress contribute immensely to infertility. The data regarding this report were obtained through a thorough review of scientific articles published in various databases, including Elsevier, Web of Science, PubMed, Scopus, and Google Scholar. Furthermore, PhD and MSc theses were also reviewed when compiling the data. Apoptosis, also known as "programmed cell death," is a natural and harmless process that occurs in human beings. Although it can become harmful if altered, Inflammation, on the other hand, is the body's reaction to detrimental stimuli caused by toxic substances or compounds, while oxidative stress is a phenomenon that results in an imbalance between the generation and aggregation of reactive oxygen species (ROS) in the cells against antioxidants. These three factors interchangeably bring about several reproductive disorders in the body, resulting in infertility. This review aims at discussing how apoptosis, inflammation, and oxidative stress play a role in human infertility. Availability of data and material The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
- Correspondence to: Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo 232101, Nigeria.
| | - Pearl Ifunanya Nwafor-Ezeh
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | | | | | - Akingbolabo Daniel Ogunlakin
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | | |
Collapse
|
197
|
Wang Y, Yuan AJ, Wu YJ, Wu LM, Zhang L. Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
198
|
Rostamabadi H, Samandari Bahraseman MR, Esmaeilzadeh-Salestani K. Froriepia subpinnata Leaf Extract-Induced Apoptosis in the MCF-7 Breast Cancer Cell Line by Increasing Intracellular Oxidative Stress. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e136643. [PMID: 38444704 PMCID: PMC10912875 DOI: 10.5812/ijpr-136643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 03/07/2024]
Abstract
Background Froriepia subpinnata is one of the plants used in the diet of Iranian people. Previous studies have investigated the antioxidant and antibacterial effects of this plant extract, but no study has been conducted on its anticancer properties. Objectives In this study, we investigated the effect of F. subpinnata extract on MCF-7 breast cancer cells. Methods The inhibitory effect of F. subpinnata leaf extract was determined on the growth of cancer cells by the MTT test. The ROS (reactive oxygen species) test was used to investigate the impact of the extract on intracellular oxidative stress. Flow cytometry and real-time PCR tests were used to investigate the apoptosis-related molecular processes. The GC-MS analysis was performed to determine the most abundant components. Results The GC-MS analysis showed that phytol, mono-ethylhexyl phthalate (MEHP), cinnamaldehyde, and neophytadiene constituted 60% of the extracted content. The MTT assay demonstrated that F. subpinnata leaf extract caused 50% lethality at a 400 μg/mL dose in MCF7 cells. The F. subpinnata extract at low doses decreased the ROS level for 24 hours in MCF-7, but by increasing the concentration, the ROS levels increased. At the IC50 dose (inhibitory concentration (IC) associated with 50% impact), the ROS level increased 3.5 times compared to the control group. Examining the effect of N-acetyl cysteine (NAC) showed that this antioxidant agent could prevent the lethal impact of the extract and eliminate the ROS increase in MCF7 cells. Flow cytometry and real-time PCR results showed that the extract specifically induced apoptosis through the internal apoptosis pathway in this cancer cell line. Conclusions The F. subpinnata extract induced apoptosis by increasing ROS in MCF-7 cancer cells and can be considered for further studies.
Collapse
Affiliation(s)
- Hanieh Rostamabadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Rasoul Samandari Bahraseman
- Plant Production and Genetic Engineering Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
- Varjavand Kesht Kariman, Limited Liability Company, Kerman, Iran
| | - Keyvan Esmaeilzadeh-Salestani
- Department of Biotechnology, Faculty of Science and Modern Technology, Graduate University of Advanced Technology, Kerman, Iran
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, EE51014 Tartu, Estonia
| |
Collapse
|
199
|
Jin S, Park JH, Yun HJ, Oh YN, Oh S, Choi YH, Kim BW, Kwon HJ. Cedrol, a Sesquiterpene Isolated from Juniperus chinensis, Inhibits Human Colorectal Tumor Growth associated through Downregulation of Minichromosome Maintenance Proteins. J Cancer Prev 2022; 27:221-228. [PMID: 36713942 PMCID: PMC9836914 DOI: 10.15430/jcp.2022.27.4.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Cedrol, a sesquiterpene alcohol, isolated from Juniperus chinensis has been reported to inhibit minichromosome maintenance (MCM) proteins as cancer biomarkers in human lung cancer in vitro. In the present study, we investigated the anti-cancer activity of cedrol in vitro and in vivo using human colorectal cancer HT29 cells and a human colorectal tumor xenograft model. Cedrol inhibited MCM protein expression and cell growth in HT29 cells, which are associated with G1 arrest and the induction of apoptosis. We demonstrated that cedrol effectively reduced HT29 tumor growth without apparent weight loss in a human tumor xenograft model. Compared with vehicle- and adriamycin-treated tumor tissues, cedrol induced changes in the tumor tissue structure, resulting in a reduced cell density within the tumor parenchyma and reduced vascularization. Moreover, the expression of MCM7, an important subunit of MCM helicase, was significantly suppressed by cedrol in tumor tissue. Collectively, these results suggest that cedrol may act as a potential anti-cancer agent for colorectal cancer by inhibiting MCM protein expression and tumor growth.
Collapse
Affiliation(s)
- Soojung Jin
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan, Korea
| | - Jung-ha Park
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan, Korea,Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan, Korea,Department of Biopharmaceutics, Dong-eui University Graduate School, Busan, Korea
| | - Hee Jung Yun
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan, Korea,Department of Biopharmaceutics, Dong-eui University Graduate School, Busan, Korea
| | - You Na Oh
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan, Korea
| | - Seunghye Oh
- Department of Biopharmaceutics, Dong-eui University Graduate School, Busan, Korea
| | - Yung Hyun Choi
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan, Korea,Department of Biochemistry, College of Korean Medicine, Busan, Korea
| | - Byung Woo Kim
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan, Korea,Department of Biopharmaceutics, Dong-eui University Graduate School, Busan, Korea,Blue-Bio Industry Regional Innovation Center, Dong-eui University, Busan, Korea,Byung Woo Kim, E-mail: , https://orcid.org/0000-0001-7940-1074
| | - Hyun Ju Kwon
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan, Korea,Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan, Korea,Department of Biopharmaceutics, Dong-eui University Graduate School, Busan, Korea,Blue-Bio Industry Regional Innovation Center, Dong-eui University, Busan, Korea,Correspondence to Hyun Ju Kwon, E-mail: , https://orcid.org/0000-0002-1375-0906
| |
Collapse
|
200
|
Gold-Coated Superparamagnetic Iron Oxide Nanoparticles Functionalized to EGF and Ce6 Complexes for Breast Cancer Diagnoses and Therapy. Pharmaceutics 2022; 15:pharmaceutics15010100. [PMID: 36678728 PMCID: PMC9867104 DOI: 10.3390/pharmaceutics15010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have some limitations in the physiological environment, however, a modification on their surface, such as a core-shell structure with gold (SPIONs@Au), can enhance their applicability. In this study, SPIONs were synthesized by the chemical coprecipitation method, stabilized by sodium citrate, and followed by the gold-coating process. SPIONs@Au were functionalized with EGF-α-lipoic acid and chlorin e6 (Ce6)-cysteamine complexes, composing a Theranostic Nanoprobe (TP). The outcomes showed that the SPIONs@Au had changed in color to red and had an absorption band centered at 530 nm. The coating was verified in the TEM micrographs in bright and dark fields by EDS mapping, which indicated the presence of Au and Fe. The Ce6-cysteamine complex had a resonant band at 670 nm that enabled the diagnosis of biological samples using fluorescence analysis. In the measure of TNBC cell uptake, the maximum value of TP fluorescence intensity was obtained within 4 h of internalization. At 2 h, the incorporation of the TP in the cytoplasm as well as in the nuclei was observed, suggesting that it could be employed as a diagnostic marker. The PTT results showed significant percentages of apoptosis in the TNBC cell line, which confirms the efficacy of the TP.
Collapse
|