151
|
Battleday RM, Muller T, Clayton MS, Cohen Kadosh R. Mapping the mechanisms of transcranial alternating current stimulation: a pathway from network effects to cognition. Front Psychiatry 2014; 5:162. [PMID: 25477826 PMCID: PMC4237786 DOI: 10.3389/fpsyt.2014.00162] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 11/01/2014] [Indexed: 01/12/2023] Open
Affiliation(s)
| | - Timothy Muller
- Department of Experimental Psychology, University of Oxford , Oxford , UK
| | - Michael S Clayton
- Department of Experimental Psychology, University of Oxford , Oxford , UK
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford , Oxford , UK
| |
Collapse
|
152
|
Santarnecchi E, Feurra M, Barneschi F, Acampa M, Bianco G, Cioncoloni D, Rossi A, Rossi S. Time Course of Corticospinal Excitability and Autonomic Function Interplay during and Following Monopolar tDCS. Front Psychiatry 2014; 5:86. [PMID: 25101009 PMCID: PMC4104833 DOI: 10.3389/fpsyt.2014.00086] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/07/2014] [Indexed: 12/21/2022] Open
Abstract
While polarity-specific after-effects of monopolar transcranial direct current stimulation (tDCS) on corticospinal excitability are well-documented, modulation of vital parameters due to current spread through the brainstem is still a matter of debate, raising potential concerns about its use through the general public, as well as for neurorehabilitation purposes. We monitored online and after-effects of monopolar tDCS (primary motor cortex) in 10 healthy subjects by adopting a neuronavigated transcranial magnetic stimulation (TMS)/tDCS combined protocol. Motor evoked potentials (MEPs) together with vital parameters [e.g., blood pressure, heart-rate variability (HRV), and sympathovagal balance] were recorded and monitored before, during, and after anodal, cathodal, or sham tDCS. Ten MEPs, every 2.5-min time windows, were recorded from the right first dorsal interosseous (FDI), while 5-min epochs were used to record vital parameters. The protocol included 15 min of pre-tDCS and of online tDCS (anodal, cathodal, or sham). After-effects were recorded for 30 min. We showed a polarity-independent stabilization of cortical excitability level, a polarity-specific after-effect for cathodal and anodal stimulation, and an absence of persistent excitability changes during online stimulation. No significant effects on vital parameters emerged both during and after tDCS, while a linear increase in systolic/diastolic blood pressure and HRV was observed during each tDCS condition, as a possible unspecific response to experimental demands. Taken together, current findings provide new insights on the safety of monopolar tDCS, promoting its application both in research and clinical settings.
Collapse
Affiliation(s)
- Emiliano Santarnecchi
- Unit of Neurology and Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena , Siena , Italy ; Brain Investigation and Neuromodulation Lab, University of Siena , Siena , Italy
| | - Matteo Feurra
- Unit of Neurology and Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena , Siena , Italy ; Brain Investigation and Neuromodulation Lab, University of Siena , Siena , Italy
| | - Federico Barneschi
- Brain Investigation and Neuromodulation Lab, University of Siena , Siena , Italy
| | - Maurizio Acampa
- U.O.C. Stroke Unit, Department of Medicine, Surgery and Neuroscience, Le Scotte Policlinic , Siena , Italy
| | - Giovanni Bianco
- Brain Investigation and Neuromodulation Lab, University of Siena , Siena , Italy
| | - David Cioncoloni
- Unit of Neurology and Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena , Siena , Italy ; Brain Investigation and Neuromodulation Lab, University of Siena , Siena , Italy
| | - Alessandro Rossi
- Unit of Neurology and Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena , Siena , Italy
| | - Simone Rossi
- Unit of Neurology and Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena , Siena , Italy ; Brain Investigation and Neuromodulation Lab, University of Siena , Siena , Italy
| |
Collapse
|
153
|
Soekadar SR, Witkowski M, Cossio EG, Birbaumer N, Robinson SE, Cohen LG. In vivo assessment of human brain oscillations during application of transcranial electric currents. Nat Commun 2013; 4:2032. [PMID: 23787780 PMCID: PMC4892116 DOI: 10.1038/ncomms3032] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 05/17/2013] [Indexed: 01/12/2023] Open
Abstract
Brain oscillations reflect pattern formation of cell assemblies’ activity, which is often disturbed in neurological and psychiatric diseases like depression, schizophrenia and stroke. In the neurobiological analysis and treatment of these conditions, transcranial electric currents applied to the brain proved beneficial. However, the direct effects of these currents on brain oscillations have remained an enigma because of the inability to record them simultaneously. Here we report a novel strategy that resolves this problem. We describe accurate reconstructed localization of dipolar sources and changes of brain oscillatory activity associated with motor actions in primary cortical brain regions undergoing transcranial electric stimulation. This new method allows for the first time direct measurement of the effects of non-invasive electrical brain stimulation on brain oscillatory activity and behavior.
Collapse
Affiliation(s)
- Surjo R Soekadar
- Human Cortical Physiology and Stroke Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, NIH, 10 Center Drive, Building 10, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
154
|
Davis NJ, van Koningsbruggen MG. "Non-invasive" brain stimulation is not non-invasive. Front Syst Neurosci 2013; 7:76. [PMID: 24391554 PMCID: PMC3870277 DOI: 10.3389/fnsys.2013.00076] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/06/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nick J Davis
- Department of Psychology, Swansea University Swansea, UK
| | - Martijn G van Koningsbruggen
- Centro Interdipartimentale Mente/Cervello, University of Trento Rovereto, Italy ; Department of Cognitive Sciences, University of Trento Rovereto, Italy
| |
Collapse
|
155
|
State-dependent effects of transcranial oscillatory currents on the motor system: what you think matters. J Neurosci 2013; 33:17483-9. [PMID: 24174681 DOI: 10.1523/jneurosci.1414-13.2013] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Imperceptible transcranial alternating current stimulation (tACS) changes the endogenous cortical oscillatory activity in a frequency-specific manner. In the human motor system, tACS coincident with the idling beta rhythm of the quiescent motor cortex increased the corticospinal output. We reasoned that changing the initial state of the brain (i.e., from quiescence to a motor imagery task that desynchronizes the local beta rhythm) might also change the susceptibility of the corticospinal system to resonance effects induced by beta-tACS. We tested this hypothesis by delivering tACS at different frequencies (theta, alpha, beta, and gamma) on the primary motor cortex at rest and during motor imagery. Motor-evoked potentials (MEPs) were obtained by transcranial magnetic stimulation (TMS) on the primary motor cortex with an online-navigated TMS-tACS setting. During motor imagery, the increase of corticospinal excitability was maximal with theta-tACS, likely reflecting a reinforcement of working memory processes required to mentally process and "execute" the cognitive task. As expected, the maximal MEPs increase with subjects at rest was instead obtained with beta-tACS, substantiating previous evidence. This dissociation provides new evidence of state and frequency dependency of tACS effects on the motor system and helps discern the functional role of different oscillatory frequencies of this brain region. These findings may be relevant for rehabilitative neuromodulatory interventions.
Collapse
|
156
|
Reato D, Rahman A, Bikson M, Parra LC. Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies. Front Hum Neurosci 2013; 7:687. [PMID: 24167483 PMCID: PMC3805939 DOI: 10.3389/fnhum.2013.00687] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/30/2013] [Indexed: 12/17/2022] Open
Abstract
Rhythmic neuronal activity is ubiquitous in the human brain. These rhythms originate from a variety of different network mechanisms, which give rise to a wide-ranging spectrum of oscillation frequencies. In the last few years an increasing number of clinical research studies have explored transcranial alternating current stimulation (tACS) with weak current as a tool for affecting brain function. The premise of these interventions is that tACS will interact with ongoing brain oscillations. However, the exact mechanisms by which weak currents could affect neuronal oscillations at different frequency bands are not well known and this, in turn, limits the rational optimization of human experiments. Here we review the available in vitro and in vivo animal studies that attempt to provide mechanistic explanations. The findings can be summarized into a few generic principles, such as periodic modulation of excitability, shifts in spike timing, modulation of firing rate, and shifts in the balance of excitation and inhibition. These effects result from weak but simultaneous polarization of a large number of neurons. Whether this can lead to an entrainment or a modulation of brain oscillations, or whether AC currents have no effect at all, depends entirely on the specific dynamic that gives rise to the different brain rhythms, as discussed here for slow wave oscillations (∼1 Hz) and gamma oscillations (∼30 Hz). We conclude with suggestions for further experiments to investigate the role of AC stimulation for other physiologically relevant brain rhythms.
Collapse
Affiliation(s)
- Davide Reato
- Department of Biomedical Engineering, The City College of The City University of New York New York, USA
| | | | | | | |
Collapse
|
157
|
Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J Neurosci 2013; 33:11262-75. [PMID: 23825429 DOI: 10.1523/jneurosci.5867-12.2013] [Citation(s) in RCA: 311] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has emerged as a potentially safe and effective brain stimulation modality that alters cortical excitability by passing a small, constant electric current through the scalp. tDCS creates an electric field that weakly modulates the membrane voltage of a large number of cortical neurons. Recent human studies have suggested that sine-wave stimulation waveforms [transcranial alternating current stimulation (tACS)] represent a more targeted stimulation paradigm for the enhancement of cortical oscillations. Yet, the underlying mechanisms of how periodic, weak global perturbations alter the spatiotemporal dynamics of large-scale cortical network dynamics remain a matter of debate. Here, we simulated large-scale networks of spiking neuron models to address this question in endogenously rhythmic networks. We identified distinct roles of the depolarizing and hyperpolarizing phases of tACS in entrainment, which entailed moving network activity toward and away from a strong nonlinearity provided by the local excitatory coupling of pyramidal cells. Together, these mechanisms gave rise to resonance dynamics characterized by an Arnold tongue centered on the resonance frequency of the network. We then performed multichannel extracellular recordings of multiunit firing activity during tACS in anesthetized ferrets (Mustela putoris furo), a model species with a gyrencephalic brain, to verify that weak global perturbations can selectively enhance oscillations at the applied stimulation frequency. Together, these results provide a detailed mechanistic understanding of tACS at the level of large-scale network dynamics and support the future design of activity-dependent feedback tACS paradigms that dynamically tailor stimulation frequency to the spectral peak of ongoing brain activity.
Collapse
|
158
|
Santarnecchi E, Polizzotto NR, Godone M, Giovannelli F, Feurra M, Matzen L, Rossi A, Rossi S. Frequency-dependent enhancement of fluid intelligence induced by transcranial oscillatory potentials. Curr Biol 2013; 23:1449-53. [PMID: 23891115 DOI: 10.1016/j.cub.2013.06.022] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/03/2013] [Accepted: 06/10/2013] [Indexed: 11/25/2022]
Abstract
Everyday problem solving requires the ability to go beyond experience by efficiently encoding and manipulating new information, i.e., fluid intelligence (Gf) [1]. Performance in tasks involving Gf, such as logical and abstract reasoning, has been shown to rely on distributed neural networks, with a crucial role played by prefrontal regions [2]. Synchronization of neuronal activity in the gamma band is a ubiquitous phenomenon within the brain; however, no evidence of its causal involvement in cognition exists to date [3]. Here, we show an enhancement of Gf ability in a cognitive task induced by exogenous rhythmic stimulation within the gamma band. Imperceptible alternating current [4] delivered through the scalp over the left middle frontal gyrus resulted in a frequency-specific shortening of the time required to find the correct solution in a visuospatial abstract reasoning task classically employed to measure Gf abilities (i.e., Raven's matrices) [5]. Crucially, gamma-band stimulation (γ-tACS) selectively enhanced performance only on more complex trials involving conditional/logical reasoning. The present finding supports a direct involvement of gamma oscillatory activity in the mechanisms underlying higher-order human cognition.
Collapse
Affiliation(s)
- Emiliano Santarnecchi
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Laakso I, Hirata A. Computational analysis shows why transcranial alternating current stimulation induces retinal phosphenes. J Neural Eng 2013; 10:046009. [PMID: 23813466 DOI: 10.1088/1741-2560/10/4/046009] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Transcranial alternating current stimulation (tACS), which is a novel technique for the manipulation of cortical oscillations, can generate subjective visual sensations (phosphenes). In this work, we computationally investigate the current that reaches the eyes from tACS electrodes in order to show that phosphenes induced by tACS are retinal in origin. APPROACH The finite-element method is used for modelling the path of the current in an anatomically realistic model of the head for various electrode montages. The computational results are used for analysing previous experimental data to investigate the sensitivity of the eye to electrical stimulation. MAIN RESULTS Depending on the locations of both the stimulating and reference electrodes, a small portion of the stimulation current chooses a path that goes through the eyes. Due to the sensitivity of the retina to electrical stimulation, even distant electrodes can produce a sufficiently strong current at the eyes for inducing retinal phosphenes. SIGNIFICANCE The interference from retinal phosphenes needs to be considered in the design of tACS experiments. The occurrence of phosphenes can be reduced by optimizing the locations of the electrodes, or potentially increasing the number of reference electrodes to two or more. Computational modelling is an effective tool for guiding the electrode positioning.
Collapse
Affiliation(s)
- Ilkka Laakso
- Department of Computer Science and Engineering, Nagoya Institute of Technology, Nagoya, Japan.
| | | |
Collapse
|
160
|
Cheyne DO. MEG studies of sensorimotor rhythms: A review. Exp Neurol 2013; 245:27-39. [PMID: 22981841 DOI: 10.1016/j.expneurol.2012.08.030] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/24/2012] [Accepted: 08/30/2012] [Indexed: 11/15/2022]
Affiliation(s)
- Douglas Owen Cheyne
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, Ontario, Canada, M5G 1X8.
| |
Collapse
|
161
|
Herrmann CS, Rach S, Neuling T, Strüber D. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci 2013; 7:279. [PMID: 23785325 PMCID: PMC3682121 DOI: 10.3389/fnhum.2013.00279] [Citation(s) in RCA: 481] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/28/2013] [Indexed: 11/22/2022] Open
Abstract
Brain oscillations of different frequencies have been associated with a variety of cognitive functions. Convincing evidence supporting those associations has been provided by studies using intracranial stimulation, pharmacological interventions and lesion studies. The emergence of novel non-invasive brain stimulation techniques like repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) now allows to modulate brain oscillations directly. Particularly, tACS offers the unique opportunity to causally link brain oscillations of a specific frequency range to cognitive processes, because it uses sinusoidal currents that are bound to one frequency only. Using tACS allows to modulate brain oscillations and in turn to influence cognitive processes, thereby demonstrating the causal link between the two. Here, we review findings about the physiological mechanism of tACS and studies that have used tACS to modulate basic motor and sensory processes as well as higher cognitive processes like memory, ambiguous perception, and decision making.
Collapse
Affiliation(s)
- Christoph S Herrmann
- Experimental Psychology Lab, Center of excellence Hearing4all, Department for Psychology, Faculty for Medicine and Health Sciences, Carl von Ossietzky Universität, Ammerländer Heerstr Oldenburg, Germany ; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany
| | | | | | | |
Collapse
|
162
|
Innocenti I, Cappa SF, Feurra M, Giovannelli F, Santarnecchi E, Bianco G, Cincotta M, Rossi S. TMS interference with primacy and recency mechanisms reveals bimodal episodic encoding in the human brain. J Cogn Neurosci 2013. [PMID: 23198892 DOI: 10.1162/jocn_a_00304] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A classic finding of the psychology of memory is the "serial position effect." Immediate free recall of a word list is more efficient for items presented early (primacy effect) or late (recency effect), with respect to those in the middle. In an event-related, randomized block design, we interfered with the encoding of unrelated words lists with brief trains of repetitive TMS (rTMS), applied coincidently with the acoustic presentation of each word to the left dorsolateral pFC, the left intraparietal lobe, and a control site (vertex). Interference of rTMS with encoding produced a clear-cut double dissociation on accuracy during immediate free recall. The primacy effect was selectively worsened by rTMS of the dorsolateral pFC, whereas recency was selectively worsened by rTMS of the intraparietal lobe. These results are in agreement with the double dissociation between short-term and long-term memory observed in neuropsychological patients and provide direct evidence of distinct cortical mechanisms of encoding in the human brain.
Collapse
|
163
|
Tomczak CR, Greidanus KR, Boliek CA. Modulation of chest wall intermuscular coherence: effects of lung volume excursion and transcranial direct current stimulation. J Neurophysiol 2013; 110:680-7. [PMID: 23678011 DOI: 10.1152/jn.00723.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chest wall muscle recruitment varies as a function of the breathing task performed. However, the cortical control of the chest wall muscles during different breathing tasks is not known. We studied chest wall intermuscular coherence during various task-related lung volume excursions in 10 healthy adults (34 ± 15 yr; 2 men, 8 women) and determined if transcranial direct current stimulation (tDCS) could modulate chest wall intermuscular coherence during these tasks. Simultaneous assessment of regional intercostal and oblique electromyographic activity was measured while participants performed standardized tidal breathing, speech, maximum phonation, and vital capacity tasks. Lung volume and chest wall kinematics were determined using variable inductance plethysmography. We found that chest wall area of intermuscular coherence was greater during tidal and speech breathing compared with phonation and vital capacity (all P < 0.05) and between tidal breathing compared with speech breathing (P < 0.05). Anodal tDCS increased chest wall area of intermuscular coherence from 0.04 ± 0.09 prestimulation to 0.18 ± 0.19 poststimulation for vital capacity (P < 0.05). Sham tDCS and cathodal tDCS had no effect on coherence during lung volume excursions. Chest wall kinematics were not affected by tDCS. Our findings indicate that lung volume excursions about the midrange of vital capacity elicit a greater area of chest wall intermuscular coherence compared with lung volume excursions spanning the entire range of vital capacity in healthy adults. Our findings also demonstrate that brief tDCS may modulate the cortical control of the chest wall muscles in a stimulation- and lung volume excursion task-dependent manner but does not affect chest wall kinematics in healthy adults.
Collapse
Affiliation(s)
- Corey R Tomczak
- Department of Speech Pathology and Audiology, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
164
|
Tecchio F, Cancelli A, Cottone C, Tomasevic L, Devigus B, Zito G, Ercolani M, Carducci F. Regional personalized electrodes to select transcranial current stimulation target. Front Hum Neurosci 2013; 7:131. [PMID: 23626529 PMCID: PMC3631708 DOI: 10.3389/fnhum.2013.00131] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/25/2013] [Indexed: 11/18/2022] Open
Abstract
Rationale: Personalizing transcranial stimulations promises to enhance beneficial effects for individual patients. Objective: To stimulate specific cortical regions by developing a procedure to bend and position custom shaped electrodes; to probe the effects on cortical excitability produced when the properly customized electrode is targeting different cortical areas. Method: An ad hoc neuronavigation procedure was developed to accurately shape and place the personalized electrodes on the basis of individual brain magnetic resonance images (MRI) on bilateral primary motor (M1) and somatosensory (S1) cortices. The transcranial alternating current stimulation (tACS) protocol published by Feurra et al. (2011b) was used to test the effects on cortical excitability of the personalized electrode when targeting S1 or M1. Results: Neuronal excitability as evaluated by tACS was different when targeting M1 or S1, with the General Estimating Equation model indicating a clear tCS Effect (p < 0.001), and post hoc comparisons showing solely M1 20 Hz tACS to reduce M1 excitability with respect to baseline and other tACS conditions. Conclusions: The present work indicates that specific cortical regions can be targeted by tCS properly shaping and positioning the stimulating electrode. Significance: Through multimodal brain investigations continuous efforts in understanding the neuronal changes related to specific neurological or psychiatric diseases become more relevant as our ability to build the compensating interventions improves. An important step forward on this path is the ability to target the specific cortical area of interest, as shown in the present pilot work.
Collapse
Affiliation(s)
- Franca Tecchio
- Laboratory of Electrophysiology for Translational neuroScience (LET'S) - ISTC - CNR, Department of Neuroscience, Fatebenefratelli Hospital Rome, Italy ; Department of Neuroimaging, IRCCS San Raffaele Pisana Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Salinas FS, Narayana S, Zhang W, Fox PT, Szabó CÁ. Repetitive transcranial magnetic stimulation elicits rate-dependent brain network responses in non-human primates. Brain Stimul 2013; 6:777-87. [PMID: 23540281 DOI: 10.1016/j.brs.2013.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) has the potential to treat brain disorders by tonically modulating firing patterns in disease-specific neural circuits. The selection of treatment parameters for clinical repetitive transcranial magnetic stimulation (rTMS) trials has not been rule based, likely contributing to the variability of observed outcomes. OBJECTIVE To utilize our newly developed baboon (Papio hamadryas anubis) model of rTMS during position-emission tomography (PET) to quantify the brain's rate-response functions in the motor system during rTMS. METHODS We delivered image-guided, suprathreshold rTMS at 3 Hz, 5 Hz, 10 Hz, 15 Hz and rest (in separate randomized sessions) to the primary motor cortex (M1) of the lightly anesthetized baboon during PET imaging; we also administered a (reversible) paralytic to eliminate any somatosensory feedback due to rTMS-induced muscle contractions. Each rTMS/PET session was analyzed using normalized cerebral blood flow (CBF) measurements; statistical parametric images and the resulting areas of significance underwent post-hoc analysis to determine any rate-specific rTMS effects throughout the motor network. RESULTS The motor system's rate-response curves were unimodal and system wide--with all nodes in the network showing highly similar rate response functions--and an optimal network stimulation frequency of 5 Hz. CONCLUSION(S) These findings suggest that non-invasive brain stimulation may be more efficiently delivered at (system-specific) optimal frequencies throughout the targeted network and that functional imaging in non-human primates is a promising strategy for identifying the optimal treatment parameters for TMS clinical trials in specific brain regions and/or networks.
Collapse
Affiliation(s)
- Felipe S Salinas
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | | | | | | | | |
Collapse
|
166
|
Effects of 10Hz and 20Hz transcranial alternating current stimulation (tACS) on motor functions and motor cortical excitability. Behav Brain Res 2013; 241:1-6. [DOI: 10.1016/j.bbr.2012.11.038] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/22/2012] [Accepted: 11/26/2012] [Indexed: 11/21/2022]
|
167
|
Is transcranial alternating current stimulation effective in modulating brain oscillations? PLoS One 2013; 8:e56589. [PMID: 23457586 PMCID: PMC3573000 DOI: 10.1371/journal.pone.0056589] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/11/2013] [Indexed: 11/20/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) is a promising tool for modulating brain oscillations, as well as a possible therapeutic intervention. However, the lack of conclusive evidence on whether tACS is able to effectively affect cortical activity continues to limit its application. The present study aims to address this issue by exploiting the well-known inhibitory alpha rhythm in the posterior parietal cortex during visual perception and attention orientation. Four groups of healthy volunteers were tested with a Gabor patch detection and discrimination task. All participants were tested at the baseline and selective frequencies of tACS, including Sham, 6 Hz, 10 Hz, and 25 Hz. Stimulation at 6 Hz and 10 Hz over the occipito-parietal area impaired performance in the detection task compared to the baseline. The lack of a retinotopically organised effect and marginal frequency-specificity modulation in the detection task force us to be cautious about the effectiveness of tACS in modulating brain oscillations. Therefore, the present study does not provide significant evidence for tACS reliably inducing direct modulations of brain oscillations that can influence performance in a visual task.
Collapse
|
168
|
Using transcranial electrical stimulation to enhance cognitive functions in the typical and atypical brain. Transl Neurosci 2013. [DOI: 10.2478/s13380-013-0104-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AbstractTranscranial electrical stimulation (TES) includes methods such as transcranial direct current stimulation, transcranial random noise stimulation, and transcranial alternating current stimulation. These methods provide novel ways of enhancing human cognitive abilities for restorative purposes, or for general cognitive enhancement, by modulating neuronal activity. I discuss here the basic principles behind these methods and provide some illustrations of their efficacy in cognitive enhancement in those with typical and atypical brain function. Next, I outline some future directions for research that are have been largely neglected, such as the issue of individual differences, cognitive side effects, the efficacy of TES for use with healthy elderly populations, children with atypical development, and sports. The results observed thus far with TES as well as its future possibilities have significant implications for both basic and translational neuroscience.
Collapse
|
169
|
Houze B, Bradley C, Magnin M, Garcia-Larrea L. Changes in Sensory Hand Representation and Pain Thresholds Induced by Motor Cortex Stimulation in Humans. Cereb Cortex 2012; 23:2667-76. [DOI: 10.1093/cercor/bhs255] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
170
|
Abstract
Alterations of cortical excitability, oscillatory as well as non-oscillatory, are physiological derivates of cognitive processes, such as perception, working memory, learning, and long-term memory formation. Since noninvasive electrical brain stimulation is capable of inducing alterations in the human brain, these stimulation approaches might be attractive tools to modulate cognition. Transcranial direct current stimulation (tDCS) alters spontaneous cortical activity, while transcranial alternating current stimulation (tACS) and transcranial random noise stimulation (tRNS) are presumed to induce or interfere with oscillations of cortical networks. Via these mechanisms, the respective stimulation techniques have indeed been shown to modulate cognitive processes in a multitude of studies conducted during the last years. In this review, we will gather knowledge about the potential of noninvasive electrical brain stimulation to study and modify cognitive processes in healthy humans and discuss directions of future research.
Collapse
Affiliation(s)
- Min-Fang Kuo
- Department of Clinical Neurophysiology, Georg-August University, Goettingen, Germany
| | | |
Collapse
|
171
|
Polanía R, Nitsche MA, Korman C, Batsikadze G, Paulus W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol 2012; 22:1314-8. [PMID: 22683259 DOI: 10.1016/j.cub.2012.05.021] [Citation(s) in RCA: 384] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/20/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
Abstract
Functional cortical circuits for central executive functions have been shown to emerge by theta (~6 Hz) phase-coupling of distant cortical areas. It has been repeatedly shown that frontoparietal theta coupling at ~0° relative phase is associated with recognition, encoding, short-term retention, and planning; however, a causal link has not been demonstrated so far. Here we used transcranial alternating current stimulation simultaneously applied at 6 Hz over left prefrontal and parietal cortices with a relative 0° ("synchronized" condition) or 180° ("desynchronized" condition) phase difference or a placebo stimulation condition, whereas healthy subjects performed a delayed letter discrimination task. We show that exogenously induced frontoparietal theta synchronization significantly improves visual memory-matching reaction times as compared to placebo stimulation. In contrast, exogenously induced frontoparietal theta desynchronization deteriorates performance. The present findings provide for the first time evidence of causality of theta phase-coupling of distant cortical areas for cognitive performance in healthy humans. Moreover, the results demonstrate the suitability of transcranial alternating current stimulation to artificially induce coupling or decoupling of behaviorally relevant brain rhythms between segregated cortical regions.
Collapse
Affiliation(s)
- Rafael Polanía
- Department of Clinical Neurophysiology, Georg-August University of Göttingen, 37075 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
172
|
Feurra M, Galli G, Rossi S. Transcranial alternating current stimulation affects decision making. Front Syst Neurosci 2012; 6:39. [PMID: 22654737 PMCID: PMC3360236 DOI: 10.3389/fnsys.2012.00039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/03/2012] [Indexed: 11/13/2022] Open
Affiliation(s)
- Matteo Feurra
- Dipartimento di Neuroscienze, Sezione Neurologia e Neurofisiologia Clinica, Azienda Ospedaliera-Universitaria Senese, Policlinico Le Scotte Siena, Italy
| | | | | |
Collapse
|
173
|
Sounds reset rhythms of visual cortex and corresponding human visual perception. Curr Biol 2012; 22:807-13. [PMID: 22503499 PMCID: PMC3368263 DOI: 10.1016/j.cub.2012.03.025] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/01/2012] [Accepted: 03/13/2012] [Indexed: 11/23/2022]
Abstract
An event in one sensory modality can phase reset brain oscillations concerning another modality. In principle, this may result in stimulus-locked periodicity in behavioral performance. Here we considered this possible cross-modal impact of a sound for one of the best-characterized rhythms arising from the visual system, namely occipital alpha-oscillations (8-14 Hz). We presented brief sounds and concurrently recorded electroencephalography (EEG) and/or probed visual cortex excitability (phosphene perception) through occipital transcranial magnetic stimulation (TMS). In a first, TMS-only experiment, phosphene perception rate against time postsound showed a periodic pattern cycling at ~10 Hz phase-aligned to the sound. In a second, combined TMS-EEG experiment, TMS-trials reproduced the cyclical phosphene pattern and revealed a ~10 Hz pattern also for EEG-derived measures of occipital cortex reactivity to the TMS pulses. Crucially, EEG-data from intermingled trials without TMS established cross-modal phase-locking of occipitoparietal alpha oscillations. These independently recorded variables, i.e., occipital cortex excitability and reactivity and EEG phase dynamics, were significantly correlated. This shows that cross-modal phase locking of oscillatory visual cortex activity can arise in the human brain to affect perceptual and EEG measures of visual processing in a cyclical manner, consistent with occipital alpha oscillations underlying a rapid cycling of neural excitability in visual areas.
Collapse
|
174
|
Romei V, Thut G, Mok RM, Schyns PG, Driver J. Causal implication by rhythmic transcranial magnetic stimulation of alpha frequency in feature-based local vs. global attention. Eur J Neurosci 2012; 35:968-74. [DOI: 10.1111/j.1460-9568.2012.08020.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
175
|
|
176
|
Sela T, Kilim A, Lavidor M. Transcranial alternating current stimulation increases risk-taking behavior in the balloon analog risk task. Front Neurosci 2012; 6:22. [PMID: 22347844 PMCID: PMC3278979 DOI: 10.3389/fnins.2012.00022] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/29/2012] [Indexed: 11/18/2022] Open
Abstract
The process of evaluating risks and benefits involves a complex neural network that includes the dorsolateral prefrontal cortex (DLPFC). It has been proposed that in conflict and reward situations, theta-band (4–8 Hz) oscillatory activity in the frontal cortex may reflect an electrophysiological mechanism for coordinating neural networks monitoring behavior, as well as facilitating task-specific adaptive changes. The goal of the present study was to investigate the hypothesis that theta-band oscillatory balance between right and left frontal and prefrontal regions, with a predominance role to the right hemisphere (RH), is crucial for regulatory control during decision-making under risk. In order to explore this hypothesis, we used transcranial alternating current stimulation, a novel technique that provides the opportunity to explore the functional role of neuronal oscillatory activities and to establish a causal link between specific oscillations and functional lateralization in risky decision-making situations. For this aim, healthy participants were randomly allocated to one of three stimulation groups (LH stimulation/RH stimulation/Sham stimulation), with active AC stimulation delivered in a frequency-dependent manner (at 6.5 Hz; 1 mA peak-to-peak). During the AC stimulation, participants performed the Balloon Analog Risk Task. This experiment revealed that participants receiving LH stimulation displayed riskier decision-making style compared to sham and RH stimulation groups. However, there was no difference in decision-making behaviors between sham and RH stimulation groups. The current study extends the notion that DLPFC activity is critical for adaptive decision-making in the context of risk-taking and emphasis the role of theta-band oscillatory activity during risky decision-making situations.
Collapse
Affiliation(s)
- Tal Sela
- Department of Psychology, Bar Ilan University Ramat Gan, Israel
| | | | | |
Collapse
|
177
|
Joundi RA, Jenkinson N, Brittain JS, Aziz TZ, Brown P. Driving oscillatory activity in the human cortex enhances motor performance. Curr Biol 2012; 22:403-7. [PMID: 22305755 PMCID: PMC3343257 DOI: 10.1016/j.cub.2012.01.024] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/05/2011] [Accepted: 01/11/2012] [Indexed: 11/28/2022]
Abstract
Voluntary movement is accompanied by changes in the degree to which neurons in the brain synchronize their activity within discrete frequency ranges. Two patterns of movement-related oscillatory activity stand out in human cortical motor areas. Activity in the beta frequency (15–30 Hz) band is prominent during tonic contractions but is attenuated prior to and during voluntary movement [1]. Without such attenuation, movement may be slowed, leading to the suggestion that beta activity promotes postural and tonic contraction, possibly at a cost to the generation of new movements [2, 3]. In contrast, activity in the gamma (60–90 Hz) band increases during movement [4]. The direction of change suggests that gamma activity might facilitate motor processing. In correspondence with this, increased frontal gamma activity is related with reduced reaction times [5]. Yet the possibility remains that these functional correlations reflect an epiphenomenal rather than causal relationship. Here we provide strong evidence that oscillatory activities at the cortical level are mechanistically involved in determining motor behavior and can even improve performance. By driving cortical oscillations using noninvasive electrical stimulation, we show opposing effects at beta and gamma frequencies and interactions with motor task that reveal the potential quantitative importance of oscillations in motor behavior.
Collapse
Affiliation(s)
- Raed A Joundi
- Functional Neurosurgery and Experimental Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | | | | | | | | |
Collapse
|