151
|
Murata Y, Yasuo T, Yoshida R, Obata K, Yanagawa Y, Margolskee RF, Ninomiya Y. Action potential-enhanced ATP release from taste cells through hemichannels. J Neurophysiol 2010; 104:896-901. [PMID: 20519578 DOI: 10.1152/jn.00414.2010] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Only some taste cells fire action potentials in response to sapid stimuli. Type II taste cells express many taste transduction molecules but lack well-elaborated synapses, bringing into question the functional significance of action potentials in these cells. We examined the dependence of adenosine triphosphate (ATP) transmitter release from taste cells on action potentials. To identify type II taste cells we used mice expressing a green fluorescence protein (GFP) transgene from the alpha-gustducin promoter. Action potentials were recorded by an electrode basolaterally attached to a single GFP-positive taste cell. We monitored ATP release from gustducin-expressing taste cells by collecting the electrode solution immediately after tastant-stimulated action potentials and using a luciferase assay to quantify ATP. Stimulation of gustducin-expressing taste cells with saccharin, quinine, or glutamate on the apical membrane increased ATP levels in the electrode solution; the amount of ATP depended on the firing rate. Increased spontaneous firing rates also induced ATP release from gustducin-expressing taste cells. ATP release from gustducin-expressing taste cells was depressed by tetrodotoxin and inhibited below the detection limit by carbenoxolone. Our data support the hypothesis that action potentials in taste cells responsive to sweet, bitter, or umami tastants enhance ATP release through pannexin 1, not connexin-based hemichannels.
Collapse
Affiliation(s)
- Yoshihiro Murata
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
152
|
Miura H, Barlow LA. Taste bud regeneration and the search for taste progenitor cells. Arch Ital Biol 2010; 148:107-118. [PMID: 20830973 PMCID: PMC3545678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
While the taste periphery has been studied for over a century, we are only beginning to understand how this important sensory system is maintained throughout adult life. With the advent of molecular genetics in rodent models, and the upswing in translational approaches that impact human patients, we expect the field will make significant advances in the near future.
Collapse
Affiliation(s)
- Hirohito Miura
- Dept of Oral Physiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Linda A. Barlow
- Dept of Cell and Developmental Biology and the Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora CO 80045, USA
| |
Collapse
|
153
|
Taste representation in the human insula. Brain Struct Funct 2010; 214:551-61. [PMID: 20512366 DOI: 10.1007/s00429-010-0266-9] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/21/2010] [Indexed: 11/27/2022]
Abstract
The sense of taste exists so that organisms can detect potential nutrients and toxins. Despite the fact that this ability is of critical importance to all species there appear to be significant interspecies differences in gustatory organization. For example, monkeys and humans lack a pontine taste relay, which is a critical relay underlying taste and feeding behavior in rodents. In addition, and of particular relevance to this special issue, the primary taste cortex appears to be located further caudally in the insular cortex in humans compared to in monkeys. The primary aim of this paper is to review the evidence that supports this possibility. It is also suggested that one parsimonious explanation for this apparent interspecies differences is that if, as Craig suggests, the far anterior insular cortex is newly evolved and unique to humans, then the human taste cortex may only appear to be located further caudally because it is no longer the anterior-most section of insular cortex. In addition to discussing the location of taste representation in human insular cortex, evidence is presented to support the possibility that this region is better conceptualized as an integrated oral sensory region that plays role in feeding behavior, rather than as unimodal sensory cortex.
Collapse
|
154
|
Carleton A, Accolla R, Simon SA. Coding in the mammalian gustatory system. Trends Neurosci 2010; 33:326-34. [PMID: 20493563 DOI: 10.1016/j.tins.2010.04.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 03/29/2010] [Accepted: 04/13/2010] [Indexed: 01/17/2023]
Abstract
To understand gustatory physiology and associated dysfunctions it is important to know how oral taste stimuli are encoded both in the periphery and in taste-related brain centres. The identification of distinct taste receptors, together with electrophysiological recordings and behavioral assessments in response to taste stimuli, suggest that information about distinct taste modalities (e.g. sweet versus bitter) are transmitted from the periphery to the brain via segregated pathways. By contrast, gustatory neurons throughout the brain are more broadly tuned, indicating that ensembles of neurons encode taste qualities. Recent evidence reviewed here suggests that the coding of gustatory stimuli is not immutable, but is dependant on a variety of factors including appetite-regulating molecules and associative learning.
Collapse
Affiliation(s)
- Alan Carleton
- Department of Neurosciences, Medical Faculty, University of Geneva, 1 rue Michel-Servet, 1211 Genève 4, Switzerland.
| | | | | |
Collapse
|
155
|
Szebenyi SA, Laskowski AI, Medler KF. Sodium/calcium exchangers selectively regulate calcium signaling in mouse taste receptor cells. J Neurophysiol 2010; 104:529-38. [PMID: 20463203 DOI: 10.1152/jn.00118.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Taste cells use multiple signaling mechanisms to generate appropriate cellular responses to discrete taste stimuli. Some taste stimuli activate G protein coupled receptors (GPCRs) that cause calcium release from intracellular stores while other stimuli depolarize taste cells to cause calcium influx through voltage-gated calcium channels (VGCCs). While the signaling mechanisms that initiate calcium signals have been described in taste cells, the calcium clearance mechanisms (CCMs) that contribute to the termination of these signals have not been identified. In this study, we used calcium imaging to define the role of sodium-calcium exchangers (NCXs) in the termination of evoked calcium responses. We found that NCXs regulate the calcium signals that rely on calcium influx at the plasma membrane but do not significantly contribute to the calcium signals that depend on calcium release from internal stores. Our data indicate that this selective regulation of calcium signals by NCXs is due primarily to their location in the cell rather than to the differences in cytosolic calcium loads. This is the first report to define the physiological role for any of the CCMs utilized by taste cells to regulate their evoked calcium responses.
Collapse
Affiliation(s)
- Steven A Szebenyi
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | | | | |
Collapse
|
156
|
Martin B, Shin YK, White CM, Ji S, Kim W, Carlson OD, Napora JK, Chadwick W, Chapter M, Waschek JA, Mattson MP, Maudsley S, Egan JM. Vasoactive intestinal peptide-null mice demonstrate enhanced sweet taste preference, dysglycemia, and reduced taste bud leptin receptor expression. Diabetes 2010; 59:1143-52. [PMID: 20150284 PMCID: PMC2857894 DOI: 10.2337/db09-0807] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE It is becoming apparent that there is a strong link between taste perception and energy homeostasis. Recent evidence implicates gut-related hormones in taste perception, including glucagon-like peptide 1 and vasoactive intestinal peptide (VIP). We used VIP knockout mice to investigate VIP's specific role in taste perception and connection to energy regulation. RESEARCH DESIGN AND METHODS Body weight, food intake, and plasma levels of multiple energy-regulating hormones were measured and pancreatic morphology was determined. In addition, the immunocytochemical profile of taste cells and gustatory behavior were examined in wild-type and VIP knockout mice. RESULTS VIP knockout mice demonstrate elevated plasma glucose, insulin, and leptin levels, with no islet beta-cell number/topography alteration. VIP and its receptors (VPAC1, VPAC2) were identified in type II taste cells of the taste bud, and VIP knockout mice exhibit enhanced taste preference to sweet tastants. VIP knockout mouse taste cells show a significant decrease in leptin receptor expression and elevated expression of glucagon-like peptide 1, which may explain sweet taste preference of VIP knockout mice. CONCLUSIONS This study suggests that the tongue can play a direct role in modulating energy intake to correct peripheral glycemic imbalances. In this way, we could view the tongue as a sensory mechanism that is bidirectionally regulated and thus forms a bridge between available foodstuffs and the intricate hormonal balance in the animal itself.
Collapse
Affiliation(s)
- Bronwen Martin
- National Institutes of Health, National Institute on Aging, Baltimore, Maryland
| | - Yu-Kyong Shin
- National Institutes of Health, National Institute on Aging, Baltimore, Maryland
| | - Caitlin M. White
- National Institutes of Health, National Institute on Aging, Baltimore, Maryland
| | - Sunggoan Ji
- National Institutes of Health, National Institute on Aging, Baltimore, Maryland
| | - Wook Kim
- National Institutes of Health, National Institute on Aging, Baltimore, Maryland
| | - Olga D. Carlson
- National Institutes of Health, National Institute on Aging, Baltimore, Maryland
| | - Joshua K. Napora
- National Institutes of Health, National Institute on Aging, Baltimore, Maryland
| | - Wayne Chadwick
- National Institutes of Health, National Institute on Aging, Baltimore, Maryland
| | - Megan Chapter
- National Institutes of Health, National Institute on Aging, Baltimore, Maryland
| | - James A. Waschek
- Department of Psychiatry and Behavioral Sciences, Mental Retardation Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Mark P. Mattson
- National Institutes of Health, National Institute on Aging, Baltimore, Maryland
| | - Stuart Maudsley
- National Institutes of Health, National Institute on Aging, Baltimore, Maryland
| | - Josephine M. Egan
- National Institutes of Health, National Institute on Aging, Baltimore, Maryland
- Corresponding author: Josephine Egan,
| |
Collapse
|
157
|
Liu F, Millar S. Wnt/beta-catenin signaling in oral tissue development and disease. J Dent Res 2010; 89:318-30. [PMID: 20200414 PMCID: PMC3140915 DOI: 10.1177/0022034510363373] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 01/08/2010] [Accepted: 01/12/2010] [Indexed: 11/16/2022] Open
Abstract
The Wnt/beta-catenin signaling pathway is one of several key conserved intercellular signaling pathways in animals, and plays fundamental roles in the proliferation, regeneration, differentiation, and function of many cell and tissue types. This pathway is activated in a dynamic manner during the morphogenesis of oral organs, including teeth, taste papillae, and taste buds, and is essential for these processes to occur normally. Conversely, forced activation of Wnt/beta-catenin signaling promotes the formation of ectopic teeth and taste papillae. In this review, we discuss our current understanding of the roles of Wnt/beta-catenin signaling in oral tissue development and in related human diseases, and the potential of manipulating this pathway for therapeutic purposes.
Collapse
Affiliation(s)
- F. Liu
- Institute for Regenerative Medicine at Scott & White Hospital, Texas A&M Health Science Center, Temple, TX 76502, USA
| | - S.E. Millar
- Departments of Dermatology and Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
158
|
Dando R, Roper SD. Cell-to-cell communication in intact taste buds through ATP signalling from pannexin 1 gap junction hemichannels. J Physiol 2010; 587:5899-906. [PMID: 19884319 DOI: 10.1113/jphysiol.2009.180083] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Isolated taste cells, taste buds and strips of lingual tissue from taste papillae secrete ATP upon taste stimulation. Taste bud receptor (Type II) cells have been identified as the source of ATP secretion. Based on studies on isolated taste buds and single taste cells, we have postulated that ATP secreted from receptor cells via pannexin 1 hemichannels acts within the taste bud to excite neighbouring presynaptic (Type III) cells. This hypothesis, however, remains to be tested in intact tissues. In this report we used confocal Ca(2+) imaging and lingual slices containing intact taste buds to test the hypothesis of purinergic signalling between taste cells in a more integral preparation. Incubating lingual slices with apyrase reversibly blocked cell-to-cell communication between receptor cells and presynaptic cells, consistent with ATP being the transmitter. Inhibiting pannexin 1 gap junction hemichannels with CO(2)-saturated buffer or probenecid significantly reduced cell-cell signalling between receptor cells and presynaptic cells. In contrast, anandamide, a blocker of connexin gap junction channels, had no effect of cell-to-cell communication in taste buds. These findings are consistent with the model for peripheral signal processing via ATP and pannexin 1 hemichannels in mammalian taste buds.
Collapse
Affiliation(s)
- Robin Dando
- Miller School of Medicine, University of Miami Physiology & Biophysics and Program in Neuroscience, 1600 NW 10th Ave, Miami, FL 33136, USA
| | | |
Collapse
|
159
|
Breza JM, Nikonov AA, Contreras RJ. Response latency to lingual taste stimulation distinguishes neuron types within the geniculate ganglion. J Neurophysiol 2010; 103:1771-84. [PMID: 20107132 DOI: 10.1152/jn.00785.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to investigate the role of response latency in discrimination of chemical stimuli by geniculate ganglion neurons in the rat. Accordingly, we recorded single-cell 5-s responses from geniculate ganglion neurons (n = 47) simultaneously with stimulus-evoked summated potentials (electrogustogram; EGG) from the anterior tongue to signal when the stimulus contacted the lingual epithelium. Artificial saliva served as the rinse solution and solvent for all stimuli [(0.5 M sucrose, 0.03-0.5 M NaCl, 0.01 M citric acid, and 0.02 M quinine hydrochloride (QHCl)], 0.1 M KCl as well as for 0.1 M NaCl +1 μM benzamil. Cluster analysis separated neurons into four groups (sucrose specialists, NaCl specialists, NaCl/QHCl generalists and acid generalists). Artificial saliva elevated spontaneous firing rate and response frequency of all neurons. As a rule, geniculate ganglion neurons responded with the highest frequency and shortest latency to their best stimulus with acid generalist the only exception. For specialist neurons and NaCl/QHCl generalists, the average response latency to the best stimulus was two to four times shorter than the latency to secondary stimuli. For NaCl-specialist neurons, response frequency increased and response latency decreased systematically with increasing NaCl concentration; benzamil significantly decreased NaCl response frequency and increased response latency. Acid-generalist neurons had the highest spontaneous firing rate and were the only group that responded consistently to citric acid and KCl. For many acid generalists, a citric-acid-evoked inhibition preceded robust excitation. We conclude that response latency may be an informative coding signal for peripheral chemosensory neurons.
Collapse
Affiliation(s)
- Joseph M Breza
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA
| | | | | |
Collapse
|
160
|
Yoshida R, Ninomiya Y. New Insights into the Signal Transmission from Taste Cells to Gustatory Nerve Fibers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 279:101-34. [DOI: 10.1016/s1937-6448(10)79004-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
161
|
Reception and Transmission of Taste Information in Type II and Type III Taste Bud Cells. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
162
|
Niki M, Jyotaki M, Yoshida R, Ninomiya Y. Reciprocal modulation of sweet taste by leptin and endocannabinoids. Results Probl Cell Differ 2010; 52:101-114. [PMID: 20865375 DOI: 10.1007/978-3-642-14426-4_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Sweet taste perception is important for animals to detect carbohydrate source of calories and has a critical role in the nutritional status of animals. Recent studies demonstrated that sweet taste responses can be modulated by leptin and endocannabinoids [anandamide (N-arachidonoylethanolamine) and 2-arachidonoyl glycerol]. Leptin is an anorexigenic mediator that reduces food intake by acting on hypothalamic receptor, Ob-Rb. Leptin is shown to selectively suppress sweet taste responses in wild-type mice but not in leptin receptor-deficient db/db mice. In marked contrast, endocannabinoids are orexigenic mediators that act via CB(1) receptors in hypothalamus and limbic forebrain to induce appetite and stimulate food intake. In the peripheral taste system, endocannabinoids also oppose the action of leptin and enhance sweet taste sensitivities in wild-type mice but not in mice genetically lacking CB(1) receptors. These findings indicate that leptin and endocannabinoids not only regulate food intake via central nervous systems but also may modulate palatability of foods by altering peripheral sweet taste responses via their cognate receptors.
Collapse
Affiliation(s)
- Mayu Niki
- Section of Oral Neuroscience, Kyushu University, Graduate School of Dental Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
163
|
Dvoryanchikov G, Sinclair MS, Perea-Martinez I, Wang T, Chaudhari N. Inward rectifier channel, ROMK, is localized to the apical tips of glial-like cells in mouse taste buds. J Comp Neurol 2009; 517:1-14. [PMID: 19708028 DOI: 10.1002/cne.22152] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cells in taste buds are closely packed, with little extracellular space. Tight junctions and other barriers further limit permeability and may result in buildup of extracellular K(+) following action potentials. In many tissues, inwardly rectifying K channels such as the renal outer medullary K (ROMK) channel (also called Kir1.1 and derived from the Kcnj1 gene) help to redistribute K(+). Using reverse-transcription polymerase chain reaction (RT-PCR), we defined ROMK splice variants in mouse kidney and report here the expression of a single one of these, ROMK2, in a subset of mouse taste cells. With quantitative (q)RT-PCR, we show the abundance of ROMK mRNA in taste buds is vallate > foliate > > palate > > fungiform. ROMK protein follows the same pattern of prevalence as mRNA, and is essentially undetectable by immunohistochemistry in fungiform taste buds. ROMK protein is localized to the apical tips of a subset of taste cells. Using tissues from PLCbeta2-GFP and GAD1-GFP transgenic mice, we show that ROMK is not found in PLCbeta2-expressing type II/receptor cells or in GAD1-expressing type III/presynaptic cells. Instead, ROMK is found, by single-cell RT-PCR and immunofluorescence, in most cells that are positive for the taste glial cell marker, Ectonucleotidase2. ROMK is precisely localized to the apical tips of these cells, at and above apical tight junctions. We propose that in taste buds, ROMK in type I/glial-like cells may serve a homeostatic function, excreting excess K(+) through the apical pore, and allowing excitable taste cells to maintain a hyperpolarized resting membrane potential.
Collapse
Affiliation(s)
- Gennady Dvoryanchikov
- Department of Physiology & Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
164
|
Abstract
Receptor (type II) taste bud cells secrete ATP during taste stimulation. In turn, ATP activates adjacent presynaptic (type III) cells to release serotonin (5-hydroxytryptamine, or 5-HT) and norepinephrine (NE). The roles of these neurotransmitters in taste buds have not been fully elucidated. Here we tested whether ATP or 5-HT exert feedback onto receptor (type II) cells during taste stimulation. Our previous studies showed NE does not appear to act on adjacent taste bud cells, or at least on receptor cells. Our data show that 5-HT released from presynaptic (type III) cells provides negative paracrine feedback onto receptor cells by activating 5-HT(1A) receptors, inhibiting taste-evoked Ca(2+) mobilization in receptor cells, and reducing ATP secretion. The findings also demonstrate that ATP exerts positive autocrine feedback onto receptor (type II) cells by activating P2Y1 receptors and enhancing ATP secretion. These results begin to sort out how purinergic and aminergic transmitters function within the taste bud to modulate gustatory signaling in these peripheral sensory organs.
Collapse
|
165
|
Huque T, Cowart BJ, Dankulich-Nagrudny L, Pribitkin EA, Bayley DL, Spielman AI, Feldman RS, Mackler SA, Brand JG. Sour ageusia in two individuals implicates ion channels of the ASIC and PKD families in human sour taste perception at the anterior tongue. PLoS One 2009; 4:e7347. [PMID: 19812697 PMCID: PMC2754526 DOI: 10.1371/journal.pone.0007347] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 06/27/2009] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The perception of sour taste in humans is incompletely understood at the receptor cell level. We report here on two patients with an acquired sour ageusia. Each patient was unresponsive to sour stimuli, but both showed normal responses to bitter, sweet, and salty stimuli. METHODS AND FINDINGS Lingual fungiform papillae, containing taste cells, were obtained by biopsy from the two patients, and from three sour-normal individuals, and analyzed by RT-PCR. The following transcripts were undetectable in the patients, even after 50 cycles of amplification, but readily detectable in the sour-normal subjects: acid sensing ion channels (ASICs) 1a, 1beta, 2a, 2b, and 3; and polycystic kidney disease (PKD) channels PKD1L3 and PKD2L1. Patients and sour-normals expressed the taste-related phospholipase C-beta2, the delta-subunit of epithelial sodium channel (ENaC) and the bitter receptor T2R14, as well as beta-actin. Genomic analysis of one patient, using buccal tissue, did not show absence of the genes for ASIC1a and PKD2L1. Immunohistochemistry of fungiform papillae from sour-normal subjects revealed labeling of taste bud cells by antibodies to ASICs 1a and 1beta, PKD2L1, phospholipase C-beta2, and delta-ENaC. An antibody to PKD1L3 labeled tissue outside taste bud cells. CONCLUSIONS These data suggest a role for ASICs and PKDs in human sour perception. This is the first report of sour ageusia in humans, and the very existence of such individuals ("natural knockouts") suggests a cell lineage for sour that is independent of the other taste modalities.
Collapse
Affiliation(s)
- Taufiqul Huque
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Abstract
Neuroscientists are now coming to appreciate that a significant degree of information processing occurs in the peripheral sensory organs of taste prior to signals propagating to the brain. Gustatory stimulation causes taste bud cells to secrete neurotransmitters that act on adjacent taste bud cells (paracrine transmitters) as well as on primary sensory afferent fibers (neurocrine transmitters). Paracrine transmission, representing cell-cell communication within the taste bud, has the potential to shape the final signal output that taste buds transmit to the brain. The following paragraphs summarize current thinking about how taste signals generally, and umami taste in particular, are processed in taste buds.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology and Biophysics, and Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA.
| | | |
Collapse
|
167
|
Yoshida R, Miyauchi A, Yasuo T, Jyotaki M, Murata Y, Yasumatsu K, Shigemura N, Yanagawa Y, Obata K, Ueno H, Margolskee RF, Ninomiya Y. Discrimination of taste qualities among mouse fungiform taste bud cells. J Physiol 2009; 587:4425-39. [PMID: 19622604 PMCID: PMC2766648 DOI: 10.1113/jphysiol.2009.175075] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 07/17/2009] [Indexed: 11/08/2022] Open
Abstract
Multiple lines of evidence from molecular studies indicate that individual taste qualities are encoded by distinct taste receptor cells. In contrast, many physiological studies have found that a significant proportion of taste cells respond to multiple taste qualities. To reconcile this apparent discrepancy and to identify taste cells that underlie each taste quality, we investigated taste responses of individual mouse fungiform taste cells that express gustducin or GAD67, markers for specific types of taste cells. Type II taste cells respond to sweet, bitter or umami tastants, express taste receptors, gustducin and other transduction components. Type III cells possess putative sour taste receptors, and have well elaborated conventional synapses. Consistent with these findings we found that gustducin-expressing Type II taste cells responded best to sweet (25/49), bitter (20/49) or umami (4/49) stimuli, while all GAD67 (Type III) taste cells examined (44/44) responded to sour stimuli and a portion of them showed multiple taste sensitivities, suggesting discrimination of each taste quality among taste bud cells. These results were largely consistent with those previously reported with circumvallate papillae taste cells. Bitter-best taste cells responded to multiple bitter compounds such as quinine, denatonium and cyclohexamide. Three sour compounds, HCl, acetic acid and citric acid, elicited responses in sour-best taste cells. These results suggest that taste cells may be capable of recognizing multiple taste compounds that elicit similar taste sensation. We did not find any NaCl-best cells among the gustducin and GAD67 taste cells, raising the possibility that salt sensitive taste cells comprise a different population.
Collapse
Affiliation(s)
- Ryusuke Yoshida
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Bender G, Veldhuizen MG, Meltzer JA, Gitelman DR, Small DM. Neural correlates of evaluative compared with passive tasting. Eur J Neurosci 2009; 30:327-38. [PMID: 19614981 DOI: 10.1111/j.1460-9568.2009.06819.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We used functional magnetic resonance imaging to test the hypothesis that the nature of the neural response to taste varies as a function of the task the subject is asked to perform. Subjects received sweet, sour, salty and tasteless solutions passively and while evaluating stimulus presence, pleasantness and identity. Within the insula and overlying operculum the location of maximal response to taste vs. tasteless varied as a function of task; however, the primary taste cortex (anterior dorsal insula/frontal operculum--AIFO), as well as a more ventral region of anterior insula, responded to taste vs. tasteless irrespective of task. Although the response here did not depend upon task, preferential connectivity between AIFO and the amygdala (bilaterally) was observed when subjects tasted passively compared with when they performed a task. This suggests that information transfer between AIFO and the amygdala is maximal during implicit processing of taste. In contrast, a region of the left lateral orbitofrontal cortex (OFC) responded preferentially to taste and to tasteless when subjects evaluated pleasantness, and was preferentially connected to earlier gustatory relays (caudomedial OFC and AIFO) when a taste was present. This suggests that processing in the lateral OFC organizes the retrieval of gustatory information from earlier relays in the service of computing perceived pleasantness. These findings show that neural encoding of taste varies as a function of task beyond that of the initial cortical representation.
Collapse
|
169
|
Laskowski AI, Medler KF. Sodium-calcium exchangers contribute to the regulation of cytosolic calcium levels in mouse taste cells. J Physiol 2009; 587:4077-89. [PMID: 19581381 DOI: 10.1113/jphysiol.2009.173567] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Taste cells use multiple signalling mechanisms to generate unique calcium responses to distinct taste stimuli. Some taste stimuli activate G-protein coupled receptors (GPCRs) that cause calcium release from intracellular stores while other stimuli depolarize taste cells to cause calcium influx through voltage-gated calcium channels (VGCCs). We recently demonstrated that a constitutive calcium influx exists in taste cells that is regulated by mitochondrial calcium transport and that the magnitude of this calcium influx correlates with the signalling mechanisms used by the taste cells. In this study, we used calcium imaging to determine that sodium-calcium exchangers (NCXs) also routinely contribute to the regulation of basal cytosolic calcium and that their relative role correlates with the signalling mechanisms used by the taste cells. RT-PCR analysis revealed that multiple NCXs and sodium-calcium-potassium exchangers (NCKXs) are expressed in taste cells. Thus, a dynamic relationship exists between calcium leak channels and calcium regulatory mechanisms in taste cells that functions to keep cytosolic calcium levels in the appropriate range for cell function.
Collapse
Affiliation(s)
- Agnieszka I Laskowski
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | | |
Collapse
|
170
|
Sato T, Nishishita K, Okada Y, Toda K. Effect of gap junction blocker beta-glycyrrhetinic acid on taste disk cells in frog. Cell Mol Neurobiol 2009; 29:503-12. [PMID: 19145483 DOI: 10.1007/s10571-008-9342-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 12/19/2008] [Indexed: 11/30/2022]
Abstract
A gap junction blocker, 18beta-glycyrrhetinic acid (beta-GA), increased the membrane resistance of Ia, Ib and II/III cells of frog taste disk by 50, 160, and 300 M Omega, respectively, by blocking the gap junction channels and hemichannels. The amplitudes of gustatory depolarizing potentials in the disk cells for 4 basic taste stimuli were reduced to 40-60% after intravenous injection of beta-GA at 1.0 mg/kg. beta-GA of 1.0 mg/kg did not affect the resting potentials and the reversal potentials for tastant-induced depolarizing potentials in any taste disk cells. The percentage of cells responding to each of 4 basic taste stimuli and varying numbers of 4 taste qualities did not differ between control and beta-GA-treated taste disk cells. This implies that gustatory depolarizing response profiles for 4 basic taste stimuli were very similar in control and beta-GA-treated taste disk cells. It is concluded that beta-GA at 1.0 mg/kg reduced the amplitude of gustatory depolarizing potentials in taste disk cells by strongly blocking depolarizing currents flowing through the gap junction channels and hemichannels, but probably weakly affected the gustatory transduction mechanisms for 4 taste stimuli.
Collapse
Affiliation(s)
- Toshihide Sato
- Division of Integrative Sensory Physiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | | | | | | |
Collapse
|
171
|
Sweet, bitter and umami receptors: a complex relationship. Trends Biochem Sci 2009; 34:296-302. [DOI: 10.1016/j.tibs.2009.02.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 02/13/2009] [Accepted: 02/18/2009] [Indexed: 11/18/2022]
|
172
|
Roper SD. Parallel processing in mammalian taste buds? Physiol Behav 2009; 97:604-8. [PMID: 19371753 DOI: 10.1016/j.physbeh.2009.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 03/25/2009] [Accepted: 04/01/2009] [Indexed: 12/22/2022]
Abstract
ROPER, S.D. Parallel processing in mammalian taste buds? Physiol Behav XXX(Y) 000-000, 2009. There is emerging evidence that two parallel lines of gustatory information are generated in taste buds. One pathway leads to higher cortical centers and is involved in discriminating basic taste qualities (sweet, bitter, sour, salty, umami) and perceiving flavors. The other pathway may conduct information involved in physiological reflexes such as swallowing, salivation, and cephalic phase digestion. If this notion is true, the existence of two populations of taste bud cells that have different functional characteristics may lie at the origins of the two pathways. This speculative concept is explored in this review of taste signal processing in mammalian taste buds.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology & Biophysics and Program in Neuroscience, Miller School of Medicine, University of Miami R430, Miami, FL 33136, USA.
| |
Collapse
|
173
|
Travers SP, Geran LC. Bitter-responsive brainstem neurons: characteristics and functions. Physiol Behav 2009; 97:592-603. [PMID: 19303890 DOI: 10.1016/j.physbeh.2009.02.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 02/16/2009] [Indexed: 11/28/2022]
Abstract
The sensation that humans describe as "bitter" is evoked by a large group of chemically diverse ligands. Bitter stimuli are avoided by a range of species and elicit reflex rejection, behaviors considered adaptations to the toxicity of many of these compounds. We review novel evidence for neurons that are narrowly tuned to bitter ligands at the initial stages of central processing. These "B-best" neurons in the nucleus of the solitary tract (NST) and parabrachial nucleus (PBN) respond to multiple types of bitter stimuli and exhibit average responses to bitter tastants that are 6-8 times larger than to moderate concentrations of compounds representing other qualities. However, in the PBN B-best units are appreciably activated by intense salt and acid. Neurons broadly sensitive to salts and acids ("AN" neurons) also responded to bitter stimuli. This sensitivity appeared restricted to stronger intensities of ionic bitters, as cycloheximide remained ineffective across concentrations. In addition to chemosensitive profile, B-best neurons were also distinctive with regard to their posterior receptive fields, long latencies, slow firing rates and projection status. Compared to B-best NST cells, those in the PBN received increased convergence from anterior and posterior receptive fields and responded to a greater number of bitter stimuli. We conclude that B-best neurons likely contribute to pathways underlying gaping, aversive hedonic quality and taste coding. The differential responsiveness of B-best and AN neurons to ionic and nonionic bitter ligands also suggests a potential substrate for discrimination within this quality.
Collapse
Affiliation(s)
- Susan P Travers
- College of Dentistry, Oral Biology, The Ohio State University, Columbus OH 43210, USA
| | | |
Collapse
|
174
|
Synaptophysin as a probable component of neurotransmission occurring in taste receptor cells. J Mol Histol 2009; 40:59-70. [DOI: 10.1007/s10735-009-9214-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 02/18/2009] [Indexed: 12/18/2022]
|
175
|
Wang Y, Danilova V, Cragin T, Roberts TW, Koposov A, Hellekant G. The sweet taste quality is linked to a cluster of taste fibers in primates: lactisole diminishes preference and responses to sweet in S fibers (sweet best) chorda tympani fibers of M. fascicularis monkey. BMC PHYSIOLOGY 2009; 9:1. [PMID: 19224647 PMCID: PMC2662785 DOI: 10.1186/1472-6793-9-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 02/18/2009] [Indexed: 11/10/2022]
Abstract
Background Psychophysically, sweet and bitter have long been considered separate taste qualities, evident already to the newborn human. The identification of different receptors for sweet and bitter located on separate cells of the taste buds substantiated this separation. However, this finding leads to the next question: is bitter and sweet also kept separated in the next link from the taste buds, the fibers of the taste nerves? Previous studies in non-human primates, P. troglodytes, C. aethiops, M. mulatta, M. fascicularis and C. jacchus, suggest that the sweet and bitter taste qualities are linked to specific groups of fibers called S and Q fibers. In this study we apply a new sweet taste modifier, lactisole, commercially available as a suppressor of the sweetness of sugars on the human tongue, to test our hypothesis that sweet taste is conveyed in S fibers. Results We first ascertained that lactisole exerted similar suppression of sweetness in M. fascicularis, as reported in humans, by recording their preference of sweeteners and non- sweeteners with and without lactisole in two-bottle tests. The addition of lactisole significantly diminished the preference for all sweeteners but had no effect on the intake of non-sweet compounds or the intake of water. We then recorded the response to the same taste stimuli in 40 single chorda tympani nerve fibers. Comparison between single fiber nerve responses to stimuli with and without lactisole showed that lactisole only suppressed the responses to sweeteners in S fibers. It had no effect on the responses to any other stimuli in all other taste fibers. Conclusion In M. fascicularis, lactisole diminishes the attractiveness of compounds, which taste sweet to humans. This behavior is linked to activity of fibers in the S-cluster. Assuming that lactisole blocks the T1R3 monomer of the sweet taste receptor T1R2/R3, these results present further support for the hypothesis that S fibers convey taste from T1R2/R3 receptors, while the impulse activity in non-S fibers originates from other kinds of receptors. The absence of the effect of lactisole on the faint responses in some S fibers to other stimuli as well as the responses to sweet and non-sweet stimuli in non-S fibers suggest that these responses originate from other taste receptors.
Collapse
Affiliation(s)
- Yiwen Wang
- Department of Physiology and Pharmacology, Medical School, University of Minnesota-Duluth, 1035 University Dr, Duluth, MN 55812, USA.
| | | | | | | | | | | |
Collapse
|
176
|
Roberts CD, Dvoryanchikov G, Roper SD, Chaudhari N. Interaction between the second messengers cAMP and Ca2+ in mouse presynaptic taste cells. J Physiol 2009; 587:1657-68. [PMID: 19221121 DOI: 10.1113/jphysiol.2009.170555] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The second messenger, 3',5'-cyclic adenosine monophosphate (cAMP), is known to be modulated in taste buds following exposure to gustatory and other stimuli. Which taste cell type(s) (Type I/glial-like cells, Type II/receptor cells, or Type III/presynaptic cells) undergo taste-evoked changes of cAMP and what the functional consequences of such changes are remain unknown. Using Fura-2 imaging of isolated mouse vallate taste cells, we explored how elevating cAMP alters Ca(2+) levels in identified taste cells. Stimulating taste buds with forskolin (Fsk; 1 microm) + isobutylmethylxanthine (IBMX; 100 microm), which elevates cellular cAMP, triggered Ca(2+) transients in 38% of presynaptic cells (n = 128). We used transgenic GAD-GFP mice to show that cAMP-triggered Ca(2+) responses occur only in the subset of presynaptic cells that lack glutamic acid decarboxylase 67 (GAD). We never observed cAMP-stimulated responses in receptor cells, glial-like cells or GAD-expressing presynaptic cells. The response to cAMP was blocked by the protein kinase A inhibitor H89 and by removing extracellular Ca(2+). Thus, the response to elevated cAMP is a PKA-dependent influx of Ca(2+). This Ca(2+) influx was blocked by nifedipine (an inhibitor of L-type voltage-gated Ca(2+) channels) but was unperturbed by omega-agatoxin IVA and omega-conotoxin GVIA (P/Q-type and N-type channel inhibitors, respectively). Single-cell RT-PCR on functionally identified presynaptic cells from GAD-GFP mice confirmed the pharmacological analyses: Ca(v)1.2 (an L-type subunit) is expressed in cells that display cAMP-triggered Ca(2+) influx, while Ca(v)2.1 (a P/Q subunit) is expressed in all presynaptic cells, and underlies depolarization-triggered Ca(2+) influx. Collectively, these data demonstrate cross-talk between cAMP and Ca(2+) signalling in a subclass of taste cells that form synapses with gustatory fibres and may integrate tastant-evoked signals.
Collapse
Affiliation(s)
- Craig D Roberts
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
177
|
Abstract
ATP and serotonin (5-HT) are neurotransmitters secreted from taste bud receptor (type II) and presynaptic (type III) cells, respectively. Norepinephrine (NE) has also been proposed to be a neurotransmitter or paracrine hormone in taste buds. Yet, to date, the specific stimulus for NE release in taste buds is not well understood, and the identity of the taste cells that secrete NE is not known. Chinese hamster ovary cells were transfected with alpha(1A) adrenoceptors and loaded with fura-2 ("biosensors") to detect NE secreted from isolated mouse taste buds and taste cells. Biosensors responded to low concentrations of NE (>or=10 nm) with a reliable fura-2 signal. NE biosensors did not respond to stimulation with KCl or taste compounds. However, we recorded robust responses from NE biosensors when they were positioned against mouse circumvallate taste buds and the taste buds were stimulated with KCl (50 mm) or a mixture of taste compounds (cycloheximide, 10 microm; saccharin, 2 mm; denatonium, 1 mm; SC45647, 100 microm). NE biosensor responses evoked by stimulating taste buds were reversibly blocked by prazosin, an alpha(1A) receptor antagonist. Together, these findings indicate that taste bud cells secrete NE when they are stimulated. We isolated individual taste bud cells to identify the origin of NE release. NE was secreted only from presynaptic (type III) taste cells and not receptor (type II) cells. Stimulus-evoked NE release depended on Ca(2+) in the bathing medium. Using dual biosensors (sensitive to 5-HT and NE), we found all presynaptic cells secrete 5-HT and 33% corelease NE with 5-HT.
Collapse
|
178
|
Geran LC, Travers SP. Bitter-responsive gustatory neurons in the rat parabrachial nucleus. J Neurophysiol 2009; 101:1598-612. [PMID: 19129294 DOI: 10.1152/jn.91168.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bitterness is a distinctive taste sensation, but central coding for this quality remains enigmatic. Although some receptor cells and peripheral fibers are selectively responsive to bitter ligands, central bitter responses are most typical in broadly tuned neurons. Recently we reported more specifically tuned bitter-best cells (B-best) in the nucleus of the solitary tract (NST). Most had glossopharyngeal receptive fields and few projected to the parabrachial nucleus (PBN), suggesting a role in reflexes. To determine their potential contribution to other functions, the present study investigated whether B-best neurons occur further centrally. Responses from 90 PBN neurons were recorded from anesthetized rats. Stimulation with four bitter tastants (quinine, denatonium, propylthiouracil, cycloheximide) and sweet, umami, salty, and sour ligands revealed a substantial proportion of B-best cells (22%). Receptive fields for B-best NST neurons were overwhelmingly foliate in origin, but in PBN, about half received foliate and nasoincisor duct input. Despite convergence, most B-best PBN neurons were as selectively tuned as their medullary counterparts and response profiles were reliable. Regardless of intensity, cycloheximide did not activate broadly tuned acid/sodium (AN) neurons but did elicit robust responses in B-best cells. However, stronger quinine activated AN neurons and concentrated electrolytes stimulated B-best cells, suggesting that B-best neurons might contribute to higher-order functions such as taste quality coding but work in conjunction with other cell types to unambiguously signal bitter-tasting ligands. In this ensemble, B-best neurons would help discriminate sour from bitter stimuli, whereas AN neurons might be more important in differentiating ionic from nonionic bitter stimuli.
Collapse
Affiliation(s)
- Laura C Geran
- College of Dentistry, Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
179
|
Døving KB, Sandvig K, Kasumyan A. Ligand-specific induction of endocytosis in taste receptor cells. J Exp Biol 2009; 212:42-9. [DOI: 10.1242/jeb.025700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWe demonstrate a ligand-specific induction of endocytosis in cells of juvenile brown trout taste buds. The process is fast, massive and selective,as only a few cells in each taste buds are stained by exposure of the oral cavity to the taste stimulant l-cysteine together with a dye at 20°C. Low temperature (+2°C) and disruption of microtubules with nocodazole caused a substantial reduction in the number of taste cells stained, indicating endocytic uptake of dye and transport towards the cell soma in vesicles. As endocytosis is evoked by the presence of ligands, it is most likely that the stained cells are the so-called receptor cells, which have taste receptors and the molecular machinery for downstream processing. The number of stained taste cells and taste buds containing stained taste cells increased with the concentration of l-cysteine. Control experiments with different dyes revealed great variability in the ability to induce staining on their own. In particular, Texas Red dextran was efficient and stained many cells within each taste bud. Behavioural experiments demonstrated that Texas Red dextran is a deterrent taste substance for brown trout. In fish first exposed to the stimulant l-cysteine plus a dye and subsequently to a deterrent, either Texas Red, or glycine, the majority of stained cells were found in separate taste receptor cells, indicating that the majority of taste receptors for stimulants and deterrents are expressed in separate taste buds. These results also strengthen the assumption that the stained cells take part in the initiation of taste processes that are related to perception. The functional implication of the induced endocytosis is discussed.
Collapse
Affiliation(s)
- Kjell B. Døving
- Physiology Program, Department of Molecular Bioscience, PO Box 1041,University of Oslo, 0316 Oslo, Norway
| | - Kirsten Sandvig
- Centre for Cancer Biomedicine, University of Oslo and Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital,Rikshospitalet University Hospital, Montebello, 0310 Oslo, Norway
| | - Alexander Kasumyan
- Department of Ichthyology, Faculty of Biology, Moscow State University,119991, Moscow, Russia
| |
Collapse
|
180
|
Tizzano M, Dvoryanchikov G, Barrows JK, Kim S, Chaudhari N, Finger TE. Expression of Galpha14 in sweet-transducing taste cells of the posterior tongue. BMC Neurosci 2008; 9:110. [PMID: 19014514 PMCID: PMC2596171 DOI: 10.1186/1471-2202-9-110] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 11/13/2008] [Indexed: 12/03/2022] Open
Abstract
Background "Type II"/Receptor cells express G protein-coupled receptors (GPCRs) for sweet, umami (T1Rs and mGluRs) or bitter (T2Rs), as well as the proteins for downstream signalling cascades. Transduction downstream of T1Rs and T2Rs relies on G-protein and PLCβ2-mediated release of stored Ca2+. Whereas Gαgus (gustducin) couples to the T2R (bitter) receptors, which Gα-subunit couples to the sweet (T1R2 + T1R3) receptor is presently not known. We utilized RT-PCR, immunocytochemistry and single-cell gene expression profiling to examine the expression of the Gαq family (q, 11, 14) in mouse taste buds. Results By RT-PCR, Gα14 is expressed strongly and in a taste selective manner in posterior (vallate and foliate), but not anterior (fungiform and palate) taste fields. Gαq and Gα11, although detectable, are not expressed in a taste-selective fashion. Further, expression of Gα14 mRNA is limited to Type II/Receptor cells in taste buds. Immunocytochemistry on vallate papillae using a broad Gαq family antiserum reveals specific staining only in Type II taste cells (i.e. those expressing TrpM5 and PLCβ2). This staining persists in Gαq knockout mice and immunostaining with a Gα11-specific antiserum shows no immunoreactivity in taste buds. Taken together, these data show that Gα14 is the dominant Gαq family member detected. Immunoreactivity for Gα14 strongly correlates with expression of T1R3, the taste receptor subunit present in taste cells responsive to either umami or sweet. Single cell gene expression profiling confirms a tight correlation between the expression of Gα14 and both T1R2 and T1R3, the receptor combination that forms sweet taste receptors. Conclusion Gα14 is co-expressed with the sweet taste receptor in posterior tongue, although not in anterior tongue. Thus, sweet taste transduction may rely on different downstream transduction elements in posterior and anterior taste fields.
Collapse
Affiliation(s)
- Marco Tizzano
- Rocky Mountain Taste & Smell Center, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA.
| | | | | | | | | | | |
Collapse
|
181
|
Frank ME, Lundy RF, Contreras RJ. Cracking taste codes by tapping into sensory neuron impulse traffic. Prog Neurobiol 2008; 86:245-63. [PMID: 18824076 DOI: 10.1016/j.pneurobio.2008.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 07/03/2008] [Accepted: 09/02/2008] [Indexed: 12/25/2022]
Abstract
Insights into the biological basis for mammalian taste quality coding began with electrophysiological recordings from "taste" nerves and this technique continues to produce essential information today. Chorda tympani (geniculate ganglion) neurons, which are particularly involved in taste quality discrimination, are specialists or generalists. Specialists respond to stimuli characterized by a single taste quality as defined by behavioral cross-generalization in conditioned taste tests. Generalists respond to electrolytes that elicit multiple aversive qualities. Na(+)-salt (N) specialists in rodents and sweet-stimulus (S) specialists in multiple orders of mammals are well characterized. Specialists are associated with species' nutritional needs and their activation is known to be malleable by internal physiological conditions and contaminated external caloric sources. S specialists, associated with the heterodimeric G-protein coupled receptor T1R, and N specialists, associated with the epithelial sodium channel ENaC, are consistent with labeled line coding from taste bud to afferent neuron. Yet, S-specialist neurons and behavior are less specific than T1R2-3 in encompassing glutamate and E generalist neurons are much less specific than a candidate, PDK TRP channel, sour receptor in encompassing salts and bitter stimuli. Specialist labeled lines for nutrients and generalist patterns for aversive electrolytes may be transmitting taste information to the brain side by side. However, specific roles of generalists in taste quality coding may be resolved by selecting stimuli and stimulus levels found in natural situations. T2Rs, participating in reflexes via the glossopharynygeal nerve, became highly diversified in mammalian phylogenesis as they evolved to deal with dangerous substances within specific environmental niches. Establishing the information afferent neurons traffic to the brain about natural taste stimuli imbedded in dynamic complex mixtures will ultimately "crack taste codes."
Collapse
Affiliation(s)
- Marion E Frank
- Center for Chemosensory Sciences, Department of Oral Health & Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT 06030-1715, United States.
| | | | | |
Collapse
|
182
|
Hacker K, Medler KF. Mitochondrial calcium buffering contributes to the maintenance of Basal calcium levels in mouse taste cells. J Neurophysiol 2008; 100:2177-91. [PMID: 18684902 DOI: 10.1152/jn.90534.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Taste stimuli are detected by taste receptor cells present in the oral cavity using diverse signaling pathways. Some taste stimuli are detected by G protein-coupled receptors (GPCRs) that cause calcium release from intracellular stores, whereas other stimuli depolarize taste cells to cause calcium influx through voltage-gated calcium channels (VGCCs). Although taste cells use two distinct mechanisms to transmit taste signals, increases in cytosolic calcium are critical for normal responses in both pathways. This creates a need to tightly control intracellular calcium levels in all transducing taste cells. To date, however, the mechanisms used by taste cells to regulate cytosolic calcium levels have not been identified. Studies in other cell types have shown that mitochondria can be important calcium buffers, even during small changes in calcium loads. In this study, we used calcium imaging to characterize the role of mitochondria in buffering calcium levels in taste cells. We discovered that mitochondria make important contributions to the maintenance of resting calcium levels in taste cells by routinely buffering a constitutive calcium influx across the plasma membrane. This is unusual because in other cell types, mitochondrial calcium buffering primarily affects large evoked calcium responses. We also found that the amount of calcium that is buffered by mitochondria varies with the signaling pathways used by the taste cells. A transient receptor potential (TRP) channel, likely TRPV1 or a taste variant of TRPV1, contributes to the constitutive calcium influx.
Collapse
Affiliation(s)
- Kyle Hacker
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | | |
Collapse
|
183
|
Shin YK, Martin B, Golden E, Dotson CD, Maudsley S, Kim W, Jang HJ, Mattson MP, Drucker DJ, Egan JM, Munger SD. Modulation of taste sensitivity by GLP-1 signaling. J Neurochem 2008; 106:455-63. [PMID: 18397368 DOI: 10.1111/j.1471-4159.2008.05397.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In many sensory systems, stimulus sensitivity is dynamically modulated through mechanisms of peripheral adaptation, efferent input, or hormonal action. In this way, responses to sensory stimuli can be optimized in the context of both the environment and the physiological state of the animal. Although the gustatory system critically influences food preference, food intake and metabolic homeostasis, the mechanisms for modulating taste sensitivity are poorly understood. In this study, we report that glucagon-like peptide-1 (GLP-1) signaling in taste buds modulates taste sensitivity in behaving mice. We find that GLP-1 is produced in two distinct subsets of mammalian taste cells, while the GLP-1 receptor is expressed on adjacent intragemmal afferent nerve fibers. GLP-1 receptor knockout mice show dramatically reduced taste responses to sweeteners in behavioral assays, indicating that GLP-1 signaling normally acts to maintain or enhance sweet taste sensitivity. A modest increase in citric acid taste sensitivity in these knockout mice suggests GLP-1 signaling may modulate sour taste, as well. Together, these findings suggest a novel paracrine mechanism for the regulation of taste function.
Collapse
Affiliation(s)
- Yu-Kyong Shin
- National Institute on Aging/NIH, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
McCaughey SA. The taste of sugars. Neurosci Biobehav Rev 2008; 32:1024-43. [PMID: 18499254 DOI: 10.1016/j.neubiorev.2008.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 03/27/2008] [Accepted: 04/10/2008] [Indexed: 10/22/2022]
Abstract
Sugars evoke a distinctive perceptual quality ("sweetness" in humans) and are generally highly preferred. The neural basis for these phenomena is reviewed for rodents, in which detailed electrophysiological measurements have been made. A receptor has been identified that binds sweeteners and activates G-protein-mediated signaling in taste receptor cells, which leads to changes in neural firing rates in the brain, where perceptions of taste quality, intensity, and palatability are generated. Most cells in gustatory nuclei are broadly tuned, so quality perception presumably arises from patterns of activity across neural populations. However, some manipulations affect only the most sugar-oriented cells, making it useful to consider them as a distinct neural subtype. Quality perception may also arise partly due to temporal patterns of activity to sugars, especially within sugar-oriented cells that give large but delayed responses. Non-specific gustatory neurons that are excited by both sugars and unpalatable stimuli project to ventral forebrain areas, where neural responses provide a closer match with behavioral preferences. This transition likely involves opposing excitatory and inhibitory influences by different subgroups of gustatory cells. Sweeteners are generally preferred over water, but the strength of this preference can vary across time or between individuals, and higher preferences for sugars are often associated with larger taste-evoked responses.
Collapse
Affiliation(s)
- Stuart A McCaughey
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104-3308, United States.
| |
Collapse
|
185
|
Huang YA, Maruyama Y, Stimac R, Roper SD. Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste. J Physiol 2008; 586:2903-12. [PMID: 18420705 DOI: 10.1113/jphysiol.2008.151233] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Taste buds contain two types of cells that directly participate in taste transduction - receptor (Type II) cells and presynaptic (Type III) cells. Receptor cells respond to sweet, bitter and umami taste stimulation but until recently the identity of cells that respond directly to sour (acid) tastants has only been inferred from recordings in situ, from behavioural studies, and from immunostaining for putative sour transduction molecules. Using calcium imaging on single isolated taste cells and with biosensor cells to identify neurotransmitter release, we show that presynaptic (Type III) cells specifically respond to acid taste stimulation and release serotonin. By recording responses in cells isolated from taste buds and in taste cells in lingual slices to acetic acid titrated to different acid levels (pH), we also show that the active stimulus for acid taste is the membrane-permeant, uncharged acetic acid moiety (CH(3)COOH), not free protons (H(+)). That observation is consistent with the proximate stimulus for acid taste being intracellular acidification, not extracellular protons per se. These findings may also have implications for other sensory receptors that respond to acids, such as nociceptors.
Collapse
Affiliation(s)
- Yijen A Huang
- Department of Physiology and Biophysics, University of Miami School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
| | | | | | | |
Collapse
|
186
|
Shin YK, Martin B, Golden E, Dotson CD, Maudsley S, Kim W, Jang HJ, Mattson MP, Drucker DJ, Egan JM, Munger SD. Modulation of taste sensitivity by GLP-1 signaling. J Neurochem 2008. [PMID: 18397368 DOI: 10.1111/j.1471‐4159.2008.05397.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In many sensory systems, stimulus sensitivity is dynamically modulated through mechanisms of peripheral adaptation, efferent input, or hormonal action. In this way, responses to sensory stimuli can be optimized in the context of both the environment and the physiological state of the animal. Although the gustatory system critically influences food preference, food intake and metabolic homeostasis, the mechanisms for modulating taste sensitivity are poorly understood. In this study, we report that glucagon-like peptide-1 (GLP-1) signaling in taste buds modulates taste sensitivity in behaving mice. We find that GLP-1 is produced in two distinct subsets of mammalian taste cells, while the GLP-1 receptor is expressed on adjacent intragemmal afferent nerve fibers. GLP-1 receptor knockout mice show dramatically reduced taste responses to sweeteners in behavioral assays, indicating that GLP-1 signaling normally acts to maintain or enhance sweet taste sensitivity. A modest increase in citric acid taste sensitivity in these knockout mice suggests GLP-1 signaling may modulate sour taste, as well. Together, these findings suggest a novel paracrine mechanism for the regulation of taste function.
Collapse
Affiliation(s)
- Yu-Kyong Shin
- National Institute on Aging/NIH, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Taste quality coding in vertebrate receptor molecules and cells. Behav Brain Sci 2008. [DOI: 10.1017/s0140525x08003439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractRecent work on receptor molecules and cells used prototypical sweet, salty, sour, bitter, and umami stimuli. Labeled-line coding was supported, but it remains possible that the molecules and cells could respond to other tastants. Studies with other tastants are needed. The sensory message might contain two codes – one for attraction or aversion, the other, across-fiber patterning of stimulus quality.
Collapse
|
188
|
Abstract
AbstractThe target article described the ubiquitous and often undefined idea of “basic tastes” as the basis for sensory coding in taste, and its attendant problems. The commentaries cover the full range of reaction to this argument, from full support, to qualification of the level of analysis to which “basic tastes” apply and the nature of empirical support, to full denial of either the characterization of the literature or that such characterization reveals any problem. Many commentators, and I, go on to propose other types and sources for taste analysis, which I relate to the “across-fiber pattern model.”
Collapse
|
189
|
Abstract
AbstractWhy has the labeled line versus across-fiber pattern debate of taste coding not been resolved? Erickson suggests that the basic tastes concept has no rational definition to test. Similarly, however, taste neuron types, which are fundamental to the across-fiber pattern concept, have not been formally defined, leaving this concept with no rational definition to test. Consequently, the two concepts are largely indistinguishable.
Collapse
|
190
|
|
191
|
Hacker K, Laskowski A, Feng L, Restrepo D, Medler K. Evidence for two populations of bitter responsive taste cells in mice. J Neurophysiol 2008; 99:1503-14. [PMID: 18199819 DOI: 10.1152/jn.00892.2007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Taste receptor cells use multiple signaling mechanisms to detect different taste stimuli in the oral cavity. Ionic stimuli (sour, salty) interact directly with ion channels to elicit responses, whereas bitter, sweet, and umami tastants activate G protein-coupled receptors to initiate phospholipase C (PLC)-dependent release of calcium from intracellular stores. However, the precise role for PLC in taste responses remains unclear. One study reported that bitter, sweet, and umami detection is abolished in PLCbeta2 knock-out animals, indicating that the perception of these stimuli depends solely on PLCbeta2. In contrast, another study found that PLCbeta2 knock-out mice have a reduced, but not abolished, capacity to detect these taste qualities, suggesting a PLCbeta2-independent signaling pathway may be involved in the detection of taste stimuli. Since PLCbeta2-expressing taste cells do not have conventional synapses or express voltage-gated calcium channels (VGCCs), we sought to determine if any taste cells responding to bitter express VGCCs. We characterized calcium responses generated by bitter stimuli to activate the PLC pathway and 50 mM KCl to activate VGCCs. Comparisons of evoked calcium responses found that these two stimuli generated significantly different responses. Surprisingly, although most responsive taste cells responded to bitter or 50 mM KCl, some taste cells responded to both. Analysis of dual responsive cells found that bitter responses were inhibited by the PLC inhibitor U73122. Immunocytochemical analysis detected PLCbeta3 and IP(3)R1, indicating the presence of multiple PLC signaling pathways in taste cells.
Collapse
Affiliation(s)
- Kyle Hacker
- Dept. of Biological Sciences, Univ. at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | | | | | | | | |
Collapse
|
192
|
Vandenbeuch A, Clapp TR, Kinnamon SC. Amiloride-sensitive channels in type I fungiform taste cells in mouse. BMC Neurosci 2008; 9:1. [PMID: 18171468 PMCID: PMC2235881 DOI: 10.1186/1471-2202-9-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 01/02/2008] [Indexed: 11/16/2022] Open
Abstract
Background Taste buds are the sensory organs of taste perception. Three types of taste cells have been described. Type I cells have voltage-gated outward currents, but lack voltage-gated inward currents. These cells have been presumed to play only a support role in the taste bud. Type II cells have voltage-gated Na+ and K+ current, and the receptors and transduction machinery for bitter, sweet, and umami taste stimuli. Type III cells have voltage-gated Na+, K+, and Ca2+ currents, and make prominent synapses with afferent nerve fibers. Na+ salt transduction in part involves amiloride-sensitive epithelial sodium channels (ENaCs). In rodents, these channels are located in taste cells of fungiform papillae on the anterior part of the tongue innervated by the chorda tympani nerve. However, the taste cell type that expresses ENaCs is not known. This study used whole cell recordings of single fungiform taste cells of transgenic mice expressing GFP in Type II taste cells to identify the taste cells responding to amiloride. We also used immunocytochemistry to further define and compare cell types in fungiform and circumvallate taste buds of these mice. Results Taste cell types were identified by their response to depolarizing voltage steps and their presence or absence of GFP fluorescence. TRPM5-GFP taste cells expressed large voltage-gated Na+ and K+ currents, but lacked voltage-gated Ca2+ currents, as expected from previous studies. Approximately half of the unlabeled cells had similar membrane properties, suggesting they comprise a separate population of Type II cells. The other half expressed voltage-gated outward currents only, typical of Type I cells. A single taste cell had voltage-gated Ca2+ current characteristic of Type III cells. Responses to amiloride occurred only in cells that lacked voltage-gated inward currents. Immunocytochemistry showed that fungiform taste buds have significantly fewer Type II cells expressing PLC signalling components, and significantly fewer Type III cells than circumvallate taste buds. Conclusion The principal finding is that amiloride-sensitive Na+ channels appear to be expressed in cells that lack voltage-gated inward currents, likely the Type I taste cells. These cells were previously assumed to provide only a support function in the taste bud.
Collapse
Affiliation(s)
- Aurelie Vandenbeuch
- Department of Biomedical Science, Colorado State University, Fort Collins, USA.
| | | | | |
Collapse
|
193
|
Vandenbeuch A, Clapp TR, Kinnamon SC. Amiloride-sensitive channels in type I fungiform taste cells in mouse. BMC Neurosci 2008. [PMID: 18171468 DOI: 10.1186/1471‐2202‐9‐1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Taste buds are the sensory organs of taste perception. Three types of taste cells have been described. Type I cells have voltage-gated outward currents, but lack voltage-gated inward currents. These cells have been presumed to play only a support role in the taste bud. Type II cells have voltage-gated Na+ and K+ current, and the receptors and transduction machinery for bitter, sweet, and umami taste stimuli. Type III cells have voltage-gated Na+, K+, and Ca2+ currents, and make prominent synapses with afferent nerve fibers. Na+ salt transduction in part involves amiloride-sensitive epithelial sodium channels (ENaCs). In rodents, these channels are located in taste cells of fungiform papillae on the anterior part of the tongue innervated by the chorda tympani nerve. However, the taste cell type that expresses ENaCs is not known. This study used whole cell recordings of single fungiform taste cells of transgenic mice expressing GFP in Type II taste cells to identify the taste cells responding to amiloride. We also used immunocytochemistry to further define and compare cell types in fungiform and circumvallate taste buds of these mice. RESULTS Taste cell types were identified by their response to depolarizing voltage steps and their presence or absence of GFP fluorescence. TRPM5-GFP taste cells expressed large voltage-gated Na+ and K+ currents, but lacked voltage-gated Ca2+ currents, as expected from previous studies. Approximately half of the unlabeled cells had similar membrane properties, suggesting they comprise a separate population of Type II cells. The other half expressed voltage-gated outward currents only, typical of Type I cells. A single taste cell had voltage-gated Ca2+ current characteristic of Type III cells. Responses to amiloride occurred only in cells that lacked voltage-gated inward currents. Immunocytochemistry showed that fungiform taste buds have significantly fewer Type II cells expressing PLC signalling components, and significantly fewer Type III cells than circumvallate taste buds. CONCLUSION The principal finding is that amiloride-sensitive Na+ channels appear to be expressed in cells that lack voltage-gated inward currents, likely the Type I taste cells. These cells were previously assumed to provide only a support function in the taste bud.
Collapse
Affiliation(s)
- Aurelie Vandenbeuch
- Department of Biomedical Science, Colorado State University, Fort Collins, USA.
| | | | | |
Collapse
|