151
|
A highly sensitive and rapid enzymatic method using a biochemical automated analyzer to detect inorganic pyrophosphate generated by nucleic acid sequence-based amplification. Clin Chim Acta 2020; 511:298-305. [DOI: 10.1016/j.cca.2020.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 01/26/2023]
|
152
|
Paramathas S, Guha T, Pugh TJ, Malkin D, Villani A. Considerations for the use of circulating tumor DNA sequencing as a screening tool in cancer predisposition syndromes. Pediatr Blood Cancer 2020; 67:e28758. [PMID: 33047872 DOI: 10.1002/pbc.28758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022]
Abstract
Liquid biopsy, specifically circulating tumor DNA (ctDNA) detection, has started to revolutionize the clinical management of patients with cancer by surpassing many limitations of traditional tissue biopsies, particularly for serial testing. ctDNA sequencing has been successfully utilized for cancer detection, prognostication, and assessment of disease response and evolution. While the applications of ctDNA analysis are growing, the majority of studies to date have primarily evaluated its use as a tool for tracking a known cancer, and in most cases at advanced stage. Herein, we discuss the potential application of ctDNA for surveillance and early cancer detection in patients with a cancer predisposition syndrome.
Collapse
Affiliation(s)
- Sangeetha Paramathas
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Tanya Guha
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Trevor J Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Princess Margaret Cancer Centre, Toronto, Canada.,Ontario Institute for Cancer Research, Toronto, Canada
| | - David Malkin
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Canada.,Division of Haematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Anita Villani
- Division of Haematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Canada
| |
Collapse
|
153
|
Jia R, Zhao CH, Li PS, Liu RR, Zhang Y, Chen HE, Chang LP, Gong YH, Guan YF, Yi X, Xu JM. Post-radiation circulating tumor DNA as a prognostic factor in locally advanced esophageal squamous cell carcinoma. Oncol Lett 2020; 21:68. [PMID: 33365079 PMCID: PMC7716704 DOI: 10.3892/ol.2020.12329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly malignant and deadly tumor. Radiation therapy is one of the primary treatments for locally advanced ESCC. However, the biomarkers for prognosis of definitive radiation remain undefined. Peripheral blood circulating tumor (ct)DNA provides information of tumor genetic alterations and has been confirmed as a potential non-invasive biomarker for several types of cancer. The present study investigated the clinical implications of ctDNA detection in patients with ESCC and receiving definitive radiation therapy. Patients with locally advanced ESCC were retrospectively recruited. Plasma samples were collected before, during and following radiation therapy. Next-generation sequencing was performed to identify somatic mutations in 180 genes. A total of 69 baseline and post-radiation plasma samples were collected from 25 patients. A total of 59 non-silent single nucleotide variants were present in 33 genes. All pre-radiation and 58.3% (14/24) of post-radiation samples had at least one mutation. Patients with lymph node metastases (LNM) exhibited a higher number of pre-radiation mutations compared with those without LNM. The variables, progression-free survival (PFS) and overall survival (OS) of the patients with one baseline mutation were not significantly different compared with that in patients with more than one baseline mutation. Patients with initial ctDNA-positive post-radiation samples exhibited significantly reduced PFS (P=0.047) and OS (P=0.005) compared with that in patients with ctDNA-negative samples. The post-radiation plasma ctDNA status was an independent prognostic factor from univariate and multivariate analyses. Dynamic monitoring of ctDNA during follow-up was examined. The results indicated that ctDNA was a predictive and prognostic marker in patients with ESCC and receiving definitive radiation therapy, which may guide subsequent treatment.
Collapse
Affiliation(s)
- Ru Jia
- Department of Gastrointestinal Oncology, The Fifth Medical Centre, Chinese People's Liberation Army General Hospital, Fengtai, Beijing 100071, P.R. China
| | - Chuan-Hua Zhao
- Department of Gastrointestinal Oncology, The Fifth Medical Centre, Chinese People's Liberation Army General Hospital, Fengtai, Beijing 100071, P.R. China
| | - Pan-Song Li
- Geneplus-Beijing Institute, Changping, Beijing 102206, P.R. China
| | - Rong-Rui Liu
- Department of Gastrointestinal Oncology, The Fifth Medical Centre, Chinese People's Liberation Army General Hospital, Fengtai, Beijing 100071, P.R. China
| | - Yun Zhang
- Department of Gastrointestinal Oncology, The Fifth Medical Centre, Chinese People's Liberation Army General Hospital, Fengtai, Beijing 100071, P.R. China
| | - Hai-E Chen
- Department of Gastrointestinal Oncology, The Fifth Medical Centre, Chinese People's Liberation Army General Hospital, Fengtai, Beijing 100071, P.R. China
| | - Lian-Peng Chang
- Geneplus-Beijing Institute, Changping, Beijing 102206, P.R. China
| | - Yu-Hua Gong
- Geneplus-Beijing Institute, Changping, Beijing 102206, P.R. China
| | - Yan-Fang Guan
- Geneplus-Beijing Institute, Changping, Beijing 102206, P.R. China
| | - Xin Yi
- Geneplus-Beijing Institute, Changping, Beijing 102206, P.R. China
| | - Jian-Ming Xu
- Department of Gastrointestinal Oncology, The Fifth Medical Centre, Chinese People's Liberation Army General Hospital, Fengtai, Beijing 100071, P.R. China
| |
Collapse
|
154
|
Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival. Ann Oncol 2020; 32:229-239. [PMID: 33232761 PMCID: PMC9348585 DOI: 10.1016/j.annonc.2020.11.007] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/29/2020] [Accepted: 11/08/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) is strongly associated with favorable outcome. We examined the utility of serial circulating tumor DNA (ctDNA) testing for predicting pCR and risk of metastatic recurrence. PATIENTS AND METHODS Cell-free DNA (cfDNA) was isolated from 291 plasma samples of 84 high-risk early breast cancer patients treated in the neoadjuvant I-SPY 2 TRIAL with standard NAC alone or combined with MK-2206 (AKT inhibitor) treatment. Blood was collected at pretreatment (T0), 3 weeks after initiation of paclitaxel (T1), between paclitaxel and anthracycline regimens (T2), or prior to surgery (T3). A personalized ctDNA test was designed to detect up to 16 patient-specific mutations (from whole-exome sequencing of pretreatment tumor) in cfDNA by ultra-deep sequencing. The median follow-up time for survival analysis was 4.8 years. RESULTS At T0, 61 of 84 (73%) patients were ctDNA positive, which decreased over time (T1: 35%; T2: 14%; and T3: 9%). Patients who remained ctDNA positive at T1 were significantly more likely to have residual disease after NAC (83% non-pCR) compared with those who cleared ctDNA (52% non-pCR; odds ratio 4.33, P = 0.012). After NAC, all patients who achieved pCR were ctDNA negative (n = 17, 100%). For those who did not achieve pCR (n = 43), ctDNA-positive patients (14%) had a significantly increased risk of metastatic recurrence [hazard ratio (HR) 10.4; 95% confidence interval (CI) 2.3-46.6]; interestingly, patients who did not achieve pCR but were ctDNA negative (86%) had excellent outcome, similar to those who achieved pCR (HR 1.4; 95% CI 0.15-13.5). CONCLUSIONS Lack of ctDNA clearance was a significant predictor of poor response and metastatic recurrence, while clearance was associated with improved survival even in patients who did not achieve pCR. Personalized monitoring of ctDNA during NAC of high-risk early breast cancer may aid in real-time assessment of treatment response and help fine-tune pCR as a surrogate endpoint of survival.
Collapse
|
155
|
Cullinane C, Fleming C, O’Leary DP, Hassan F, Kelly L, O’Sullivan MJ, Corrigan MA, Redmond HP. Association of Circulating Tumor DNA With Disease-Free Survival in Breast Cancer: A Systematic Review and Meta-analysis. JAMA Netw Open 2020; 3:e2026921. [PMID: 33211112 PMCID: PMC7677763 DOI: 10.1001/jamanetworkopen.2020.26921] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPORTANCE Fragmented DNA is continuously released into the circulation following apoptosis and necrosis of both cancerous and noncancerous cells; when it is released by cancer cells, it is specifically known as circulating tumor DNA (ctDNA). Previous studies have suggested that ctDNA can reflect tumor burden and guide potential therapeutic targets. OBJECTIVE To determine the association of ctDNA with breast cancer disease-free survival (DFS) and progression-free survival in early, locally advanced, and metastatic breast cancer. DATA SOURCES An electronic search was conducted using the Cochrane Library, ScienceDirect, PubMed, and Embase from July 30, 2019, to October 31, 2019; all languages were included. The following search terms were used: ctDNA OR circulating tumor DNA OR liquid biopsy AND breast cancer OR breast carcinoma OR breast tumor AND prognosis OR survival. All titles were screened, and the appropriate abstracts were reviewed. If any data were missing, the authors contacted the study authors for permission to access data and extrapolate hazard ratios (HRs). STUDY SELECTION To be included in the analysis, the studies had to meet the following prespecified inclusion criteria: (1) a ctDNA blood sample was measured; (2) DFS, progression-free survival, or relapse-free survival was reported as an HR; and (3) the patient population only had breast cancer. Retrospective and prospective observational cohort studies were included. DATA EXTRACTION AND SYNTHESIS Two authors (C.C. and C.F.) independently reviewed the literature. All data were recorded independently by both authors and were compared at the end of the reviewing process to limit selection bias. Duplicates were removed and any disparities were clarified. Data were pooled using a fixed-effects or random-effects model according to the study heterogeneity. This study adhered to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) and Meta-Analysis of Observational Studies in Epidemiology (MOOSE). MAIN OUTCOMES AND MEASURES The primary outcome was the association of ctDNA with DFS or relapse-free survival in breast cancer. Secondary outcomes focused on subgroup analysis in the setting of early breast cancer and metastatic breast cancer. RESULTS From a total of 263 publications found using the predefined search terms, data from 8 studies (3.0%) reporting on 739 patients in total were suitable for inclusion. Circulating tumor DNA gene variation detection (both before and after treatment) was statistically significantly associated with shorter DFS (HR, 4.44; 95% CI, 2.29-8.61; P < .001). Detection of ctDNA was statistically significantly associated with a reduction in DFS in both the early breast cancer subgroup (HR, 8.32; 95% CI, 3.01-22.99; P < .001) and the metastatic or locally advanced subgroup (HR, 1.91; 95% CI, 1.35-2.71; P < .001). Pretreatment and posttreatment plasma sample collection was analyzed in both early and metastatic groups. The posttreatment group encompassed both surgical and oncologic therapy. Pretreatment plasma detection of ctDNA was statistically significantly associated with reduced DFS (HR, 3.30; 95% CI, 1.98-5.52; P < .001). Posttreatment sampling of ctDNA failed to achieve statistical significance (HR, 8.17; 95% CI, 1.01-65.89; P = .05). CONCLUSIONS AND RELEVANCE In this systematic review and meta-analysis, elevated plasma ctDNA was associated with a high risk of relapse. This finding suggests that plasma ctDNA may provide an excellent method to stratify risk and personalize patient follow-up.
Collapse
Affiliation(s)
- Carolyn Cullinane
- Department of General and Breast Surgery, Cork University Hospital, Cork, Ireland
- Cork Breast Research Centre, University College Cork, Cork, Ireland
| | - Christina Fleming
- Department of General and Breast Surgery, Cork University Hospital, Cork, Ireland
- Cork Breast Research Centre, University College Cork, Cork, Ireland
| | - Donal Peter O’Leary
- Department of General and Breast Surgery, Cork University Hospital, Cork, Ireland
- Cork Breast Research Centre, University College Cork, Cork, Ireland
| | - Fara Hassan
- Department of General and Breast Surgery, Cork University Hospital, Cork, Ireland
- Cork Breast Research Centre, University College Cork, Cork, Ireland
| | - Louise Kelly
- Department of General and Breast Surgery, Cork University Hospital, Cork, Ireland
- Cork Breast Research Centre, University College Cork, Cork, Ireland
| | - Martin J. O’Sullivan
- Department of General and Breast Surgery, Cork University Hospital, Cork, Ireland
- Cork Breast Research Centre, University College Cork, Cork, Ireland
| | - Mark Antony Corrigan
- Department of General and Breast Surgery, Cork University Hospital, Cork, Ireland
- Cork Breast Research Centre, University College Cork, Cork, Ireland
| | - Henry Paul Redmond
- Department of General and Breast Surgery, Cork University Hospital, Cork, Ireland
- Cork Breast Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
156
|
Banys-Paluchowski M, Krawczyk N, Fehm T. Liquid Biopsy in Breast Cancer. Geburtshilfe Frauenheilkd 2020; 80:1093-1104. [PMID: 33173237 PMCID: PMC7647718 DOI: 10.1055/a-1124-7225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, the blood-based analysis of circulating tumour cells (CTCs) and nucleic acids (DNA/RNA), otherwise known as liquid biopsy, has become increasingly important in breast cancer. Numerous trials have already underscored the high prognostic significance of CTC detection in both early and metastatic stages. Moreover, the changes in CTC levels and circulating tumour DNA (ctDNA) during the course of the disease correlate with the response to treatment. Research currently focuses on liquid-biopsy based therapeutic interventions in metastatic breast cancer. In this context, alpelisib, a PI3K inhibitor, was the first agent to be approved by FDA and EMA.
Collapse
Affiliation(s)
| | - Natalia Krawczyk
- Universitäts-Frauenklinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Tanja Fehm
- Universitäts-Frauenklinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
157
|
Marra A, Trapani D, Viale G, Criscitiello C, Curigliano G. Practical classification of triple-negative breast cancer: intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ Breast Cancer 2020; 6:54. [PMID: 33088912 PMCID: PMC7568552 DOI: 10.1038/s41523-020-00197-2] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is not a unique disease, encompassing multiple entities with marked histopathological, transcriptomic and genomic heterogeneity. Despite several efforts, transcriptomic and genomic classifications have remained merely theoretic and most of the patients are being treated with chemotherapy. Driver alterations in potentially targetable genes, including PIK3CA and AKT, have been identified across TNBC subtypes, prompting the implementation of biomarker-driven therapeutic approaches. However, biomarker-based treatments as well as immune checkpoint inhibitor-based immunotherapy have provided contrasting and limited results so far. Accordingly, a better characterization of the genomic and immune contexture underpinning TNBC, as well as the translation of the lessons learnt in the metastatic disease to the early setting would improve patients' outcomes. The application of multi-omics technologies, biocomputational algorithms, assays for minimal residual disease monitoring and novel clinical trial designs are strongly warranted to pave the way toward personalized anticancer treatment for patients with TNBC.
Collapse
Affiliation(s)
- Antonio Marra
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Dario Trapani
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
| | - Giulia Viale
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
| | - Carmen Criscitiello
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| |
Collapse
|
158
|
Arechederra M, Ávila MA, Berasain C. Liquid biopsy for cancer management: a revolutionary but still limited new tool for precision medicine. ADVANCES IN LABORATORY MEDICINE 2020; 1:20200009. [PMID: 37361495 PMCID: PMC10197281 DOI: 10.1515/almed-2020-0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/19/2020] [Indexed: 06/28/2023]
Abstract
The term liquid biopsy is used in contraposition to the traditional "solid" tissue biopsy. In the oncology field it has opened a new plethora of clinical opportunities as tumor-derived material is shedded into the different biofluids from where it can be isolated and analyzed. Common biofluids include blood, urine, saliva, cerebrospinal fluid (CSF), pleural effusion or bile. Starting from these biological specimens several analytes can be isolated, among which we will review the most widely used: circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), proteins, metabolites, and exosomes. Regarding the nature of the biomarkers it will depend on the analyte, the type of tumor and the clinical application of the liquid biopsy and it includes, somatic point mutations, deletions, amplifications, gene-fusions, DNA-methylated marks, tumor-specific miRNAs, proteins or metabolites. Here we review the characteristics of the analytes and the methodologies used for their isolation. We also describe the applications of the liquid biopsy in the management of patients with cancer, from the early detection of cancers to treatment guidance in patients with advanced tumors. Finally, we also discuss some current limitations and still open questions.
Collapse
Affiliation(s)
- María Arechederra
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
- Hepatology Program, CIMA, University of Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain
| | - Matías A. Ávila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Berasain
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Hepatology Program, CIMA, University of Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain
| |
Collapse
|
159
|
Liu KS, Tong H, Li TP, Chen YJ. Evaluation of circulating tumor DNA as a biomarker for gynecological tumors. Chin Med J (Engl) 2020; 133:2613-2615. [PMID: 33009020 PMCID: PMC7722560 DOI: 10.1097/cm9.0000000000001140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
160
|
Pessoa LS, Heringer M, Ferrer VP. ctDNA as a cancer biomarker: A broad overview. Crit Rev Oncol Hematol 2020; 155:103109. [PMID: 33049662 DOI: 10.1016/j.critrevonc.2020.103109] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/17/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor DNA (ctDNA) in fluids has gained attention because ctDNA seems to identify tumor-specific abnormalities, which could be used for diagnosis, follow-up of treatment, and prognosis: the so-called liquid biopsy. Liquid biopsy is a minimally invasive approach and presents the sum of ctDNA from primary and secondary tumor sites. It has been possible not only to quantify the amount of ctDNA but also to identify (epi)genetic changes. Specific mutations in genes have been identified in the plasma of patients with several types of cancer, which highlights ctDNA as a possible cancer biomarker. However, achieving detectable concentrations of ctDNA in body fluids is not an easy task. ctDNA fragments present a short half-life, and there are no cut-off values to discriminate high and low ctDNA concentrations. Here, we discuss the use of ctDNA as a cancer biomarker, the main methodologies, the inherent difficulties, and the clinical predictive value of ctDNA.
Collapse
Affiliation(s)
- Luciana Santos Pessoa
- Brain's Biomedicine Laboratory, Paulo Niemeyer State Brain Institute, Rio de Janeiro, Rio de Janeiro, Brazil; Center for Experimental Surgery, Graduate Program in Surgical Sciences, Department of Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Manoela Heringer
- Brain's Biomedicine Laboratory, Paulo Niemeyer State Brain Institute, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valéria Pereira Ferrer
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil.
| |
Collapse
|
161
|
Manoharan A, Sambandam R, Bhat V. Recent technologies enhancing the clinical utility of circulating tumor DNA. Clin Chim Acta 2020; 510:498-506. [PMID: 32795543 DOI: 10.1016/j.cca.2020.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022]
Abstract
Circulating tumor DNA (ctDNA) is a promising blood based biomarker that is set to revolutionize cancer management. Non-invasive biopsy takes precedence over tissue biopsy for enabling longitudinal monitoring, providing a comprehensive profile of tumor heterogeneity and the ease of repeated sampling. Advanced genomic technologies enable real-time disease monitoring, detect minimal residual disease and recurrence at the earliest stages, the potential time points when treatment significantly reduces morbidity and mortality and enable tailored and personalized therapy. The review highlights evidence from literature that make ctDNA a potential liquid biopsy marker and the clinical utility of the recent techniques that leverage up on ctDNA.
Collapse
Affiliation(s)
- Aarthi Manoharan
- Multi-Disciplinary Center for Biomedical Research, Vinayaka Mission's Research Foundation, Aarupadai Veedu Medical College and Hospital (Deemed-to-be-University), Kirumampakkam, Puducherry 607402, India
| | - Ravikumar Sambandam
- Multi-Disciplinary Center for Biomedical Research, Vinayaka Mission's Research Foundation, Aarupadai Veedu Medical College and Hospital (Deemed-to-be-University), Kirumampakkam, Puducherry 607402, India.
| | - Vishnu Bhat
- Multi-Disciplinary Center for Biomedical Research, Vinayaka Mission's Research Foundation, Aarupadai Veedu Medical College and Hospital (Deemed-to-be-University), Kirumampakkam, Puducherry 607402, India
| |
Collapse
|
162
|
Moss EL, Gorsia DN, Collins A, Sandhu P, Foreman N, Gore A, Wood J, Kent C, Silcock L, Guttery DS. Utility of Circulating Tumor DNA for Detection and Monitoring of Endometrial Cancer Recurrence and Progression. Cancers (Basel) 2020; 12:E2231. [PMID: 32785174 PMCID: PMC7463944 DOI: 10.3390/cancers12082231] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the increasing incidence of endometrial cancer (EC) worldwide and the poor overall survival of patients who recur, no reliable biomarker exists for detecting and monitoring EC recurrence and progression during routine follow-up. Circulating tumor DNA (ctDNA) is a sensitive method for monitoring cancer activity and stratifying patients that are likely to respond to therapy. As a pilot study, we investigated the utility of ctDNA for detecting and monitoring EC recurrence and progression in 13 patients, using targeted next-generation sequencing (tNGS) and personalized ctDNA assays. Using tNGS, at least one somatic mutation at a variant allele frequency (VAF) > 20% was detected in 69% (9/13) of patient tumors. The four patients with no detectable tumor mutations at >20% VAF were whole exome sequenced, with all four harboring mutations in genes not analyzed by tNGS. Analysis of matched and longitudinal plasma DNA revealed earlier detection of EC recurrence and progression and dynamic kinetics of ctDNA levels reflecting treatment response. We also detected acquired high microsatellite instability (MSI-H) in ctDNA from one patient whose primary tumor was MSI stable. Our study suggests that ctDNA analysis could become a useful biomarker for early detection and monitoring of EC recurrence. However, further research is needed to confirm these findings and to explore their potential implications for patient management.
Collapse
Affiliation(s)
- Esther L. Moss
- Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester LE2 7LX, UK; (D.N.G.); (A.C.); (P.S.); (N.F.)
- Department of Gynaecological Oncology, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester LE5 4PW, UK; (A.G.); (J.W.); (C.K.)
| | - Diviya N. Gorsia
- Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester LE2 7LX, UK; (D.N.G.); (A.C.); (P.S.); (N.F.)
| | - Anna Collins
- Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester LE2 7LX, UK; (D.N.G.); (A.C.); (P.S.); (N.F.)
| | - Pavandeep Sandhu
- Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester LE2 7LX, UK; (D.N.G.); (A.C.); (P.S.); (N.F.)
| | - Nalini Foreman
- Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester LE2 7LX, UK; (D.N.G.); (A.C.); (P.S.); (N.F.)
| | - Anupama Gore
- Department of Gynaecological Oncology, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester LE5 4PW, UK; (A.G.); (J.W.); (C.K.)
| | - Joey Wood
- Department of Gynaecological Oncology, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester LE5 4PW, UK; (A.G.); (J.W.); (C.K.)
| | - Christopher Kent
- Department of Gynaecological Oncology, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester LE5 4PW, UK; (A.G.); (J.W.); (C.K.)
| | - Lee Silcock
- Nonacus Limited, Birmingham Research Park, Birmingham B15 2SQ, UK;
| | - David S. Guttery
- Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester LE2 7LX, UK; (D.N.G.); (A.C.); (P.S.); (N.F.)
| |
Collapse
|
163
|
Terata K, Imai K, Wakita A, Sato Y, Motoyama S, Minamiya Y. Surgical therapy for breast cancer liver metastases. Transl Cancer Res 2020; 9:5053-5062. [PMID: 35117871 PMCID: PMC8797688 DOI: 10.21037/tcr-20-1598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022]
Abstract
Breast cancer is the most commonly diagnosed cancer in females worldwide. If diagnosed early, patients generally have good outcomes. However, approximately 20% to 30% of all women diagnosed with breast cancer develop metastatic disease. Metastatic breast cancer is incurable, but there is growing evidence that resection or other local therapy for breast cancer liver metastases (BCLM) may improve survival. We aimed to review indications for and outcomes of perioperative liver resection and other local therapies for BCLM. In this series, we reviewed 11 articles (605 patients) focusing on surgical resection and 7 articles (266 patients) describing radiofrequency ablation (RFA) for BCLM. Median disease-free survival (DFS) after surgical resection was 23 months (range, 14–29 months) and median overall survival (OS) was 39.5 months (range, 26–82 months). One, 3- and 5-year survivals were 89.5%, 70%, and 38%, respectively. The factors favoring better outcomes are hormone receptor positive primary breast cancer status, R0 resection, no extrahepatic metastases (EHM), small BCLM, and solitary liver metastases. On the other hand, the median DFS with RFA was 11 months, median OS was 32 months, and the 3- and 5-year OS were 43% and 27%, respectively. The clinical features that are indications for RFA are smaller tumor and higher EHM rate than those favoring surgical resection (2.4 vs. 4.0 cm and 46% vs. 27%). The merits of RFA are its high technical success rate, low morbidity, short hospital stay, and that it can be repeated. Although results are as yet limited, in carefully selected patients, resection or other local therapies such as RFA, render BCLM potentially provide prognostic improvement.
Collapse
Affiliation(s)
- Kaori Terata
- Department of Breast and Endocrine Surgery, Akita University Hospital, Akita, Japan.,Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Kazuhiro Imai
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Akiyuki Wakita
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yusuke Sato
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Satoru Motoyama
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yoshihiro Minamiya
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
164
|
Liu K, Tong H, Li T, Chen Y, Mao X. Potential value of circulating tumor DNA in gynecological tumors. Am J Transl Res 2020; 12:3225-3233. [PMID: 32774696 PMCID: PMC7407692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Though the survival of patients with gynecological tumors has been significantly prolonged by radiotherapy, chemotherapy, targeted therapy and other treatments, the way to improve the patients' life quality still needs investigation. Circulating tumor DNA (ctDNA), which contains tumor genetic information, has the potential in early diagnosis of malignancies due to its high consistency with tumor tissues. Using the key words including "digital PCR", "ctDNA", "technology of digital PCR", and "detection method", "gynecological tumor", we retrieved the original articles and reviews in PubMed and WEB OF SCI database published before May 10, 2019 and performed a thorough review of them. The analysis of ctDNA could provide a comprehensive description of tumor genome, overcome the heterogeneity of tissue biopsy, and supplement the missing mutations in tissue samples. Furthermore, ctDNA could be used as a target of liquid biopsy. Our study also showed that digital PCR technology has a good potential to detect ctDNA in gynecological tumors.
Collapse
Affiliation(s)
- Kangsheng Liu
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210029, Jiangsu, China
| | - Hua Tong
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210029, Jiangsu, China
| | - Taiping Li
- Department of Neuro-Psychiatric Institute, The Affiliated Brain Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Yajun Chen
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210029, Jiangsu, China
| | - Xiaodong Mao
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210028, Jiangsu, China
| |
Collapse
|
165
|
Chopra N, Tovey H, Pearson A, Cutts R, Toms C, Proszek P, Hubank M, Dowsett M, Dodson A, Daley F, Kriplani D, Gevensleben H, Davies HR, Degasperi A, Roylance R, Chan S, Tutt A, Skene A, Evans A, Bliss JM, Nik-Zainal S, Turner NC. Homologous recombination DNA repair deficiency and PARP inhibition activity in primary triple negative breast cancer. Nat Commun 2020; 11:2662. [PMID: 32471999 PMCID: PMC7260192 DOI: 10.1038/s41467-020-16142-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Triple negative breast cancer (TNBC) encompasses molecularly different subgroups, with a subgroup harboring evidence of defective homologous recombination (HR) DNA repair. Here, within a phase 2 window clinical trial, RIO trial (EudraCT 2014-003319-12), we investigate the activity of PARP inhibitors in 43 patients with untreated TNBC. The primary end point, decreased Ki67, occured in 12% of TNBC. In secondary end point analyses, HR deficiency was identified in 69% of TNBC with the mutational-signature-based HRDetect assay. Cancers with HRDetect mutational signatures of HR deficiency had a functional defect in HR, assessed by impaired RAD51 foci formation on end of treatment biopsy. Following rucaparib treatment there was no association of Ki67 change with HR deficiency. In contrast, early circulating tumor DNA dynamics identified activity of rucaparib, with end of treatment ctDNA levels suppressed by rucaparib in mutation-signature HR-deficient cancers. In ad hoc analysis, rucaparib induced expression of interferon response genes in HR-deficient cancers. The majority of TNBCs have a defect in DNA repair, identifiable by mutational signature analysis, that may be targetable with PARP inhibitors.
Collapse
Affiliation(s)
- Neha Chopra
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, CB2 0XZ, United Kingdom
| | - Holly Tovey
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Alex Pearson
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, CB2 0XZ, United Kingdom
| | - Ros Cutts
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, CB2 0XZ, United Kingdom
| | - Christy Toms
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Paula Proszek
- The Centre for Molecular Pathology, The Royal Marsden Hospital, 15 Cotswold Road, Sutton, SM2 5NG, Surrey, United Kingdom
| | - Michael Hubank
- The Centre for Molecular Pathology, The Royal Marsden Hospital, 15 Cotswold Road, Sutton, SM2 5NG, Surrey, United Kingdom
| | - Mitch Dowsett
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, CB2 0XZ, United Kingdom
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, United Kingdom
| | - Andrew Dodson
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, United Kingdom
| | - Frances Daley
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, CB2 0XZ, United Kingdom
| | - Divya Kriplani
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, CB2 0XZ, United Kingdom
| | - Heidi Gevensleben
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, CB2 0XZ, United Kingdom
| | - Helen Ruth Davies
- Department of Medical Genetics, The Clinical School, Box 238, Level 6 Addenbrooke's Treatment Centre, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, United Kingdom
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, United Kingdom
| | - Andrea Degasperi
- Department of Medical Genetics, The Clinical School, Box 238, Level 6 Addenbrooke's Treatment Centre, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, United Kingdom
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, United Kingdom
| | - Rebecca Roylance
- University College London Hospitals NHS Foundation Trust, NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Stephen Chan
- Nottingham University Hospital Trust (City Campus), Nottingham, United Kingdom
| | - Andrew Tutt
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, CB2 0XZ, United Kingdom
- Breast Cancer Now Research Unit, Cancer Centre, Guy's Hospital, King's College London, London, United Kingdom
| | - Anthony Skene
- Royal Bournemouth Hospital, Bournemouth, United Kingdom
| | - Abigail Evans
- Poole Hospital NHS Foundation Trust, Poole, United Kingdom
| | - Judith M Bliss
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Serena Nik-Zainal
- Department of Medical Genetics, The Clinical School, Box 238, Level 6 Addenbrooke's Treatment Centre, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, United Kingdom
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, United Kingdom
| | - Nicholas C Turner
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, CB2 0XZ, United Kingdom.
- Breast Unit, The Royal Marsden Hospital, Fulham Road, London, United Kingdom.
| |
Collapse
|
166
|
Detection of ctDNA with Personalized Molecular Barcode NGS and Its Clinical Significance in Patients with Early Breast Cancer. Transl Oncol 2020; 13:100787. [PMID: 32473569 PMCID: PMC7260577 DOI: 10.1016/j.tranon.2020.100787] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 02/02/2023] Open
Abstract
We attempted to detect circulating tumor DNA (ctDNA), taking advantage of molecular barcode next-generation sequencing (MB-NGS), which can be more easily customized to detect a variety of mutations with a high sensitivity than PCR-based methods. Sequencing with a gene panel consisting of the 13 most frequently mutated genes in breast tumors from stage I or II patients revealed 95 somatic mutations in the 12 genes in 62% (62/100) of tumors. Then, plasma DNA from each patient (n = 62) before surgery was analyzed via MB-NGS customized to each somatic mutation, resulting in the detection of ctDNA in 16.1% (10/62) of patients. ctDNA was significantly associated with biologically aggressive phenotypes, including large tumor size (P = .004), positive lymph node (P = .009), high histological grade (P < .001), negative ER (P = .018), negative PR (P = .017), and positive HER2 (P = .046). Furthermore, distant disease-free survival was significantly worse in patients with ctDNA (n = 10) than those without ctDNA (n = 52) (P < .001). Our results demonstrate that MB-NGS personalized to each mutation can detect ctDNA with a high sensitivity in early breast cancer patients at diagnosis, and it seems to have a potential to serve as a clinically useful tumor marker for predicting their prognosis.
Collapse
|
167
|
Delmonico L, Alves G, Bines J. Cell free DNA biology and its involvement in breast carcinogenesis. Adv Clin Chem 2020; 97:171-223. [PMID: 32448434 DOI: 10.1016/bs.acc.2019.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liquid biopsy represents a procedure for minimally invasive analysis of non-solid tissue, blood and other body fluids. It comprises a set of analytes that includes circulating tumor cells (CTCs) and circulating free DNA (cfDNA), RNA, long noncoding RNA (lncRNA) and micro RNA (miRNA), as well as extracellular vesicles. These novel analytes represent an alternative tool to complement diagnosis and monitor and predict response to treatment of the tumoral process and may be used for other disease processes such viral and parasitic infection. This review focuses on the biologic and molecular characteristics of cfDNA in general and the molecular changes (mutational and epigenetic) proven useful in oncologic practice for diagnosis, monitoring and treatment of breast cancer specifically.
Collapse
Affiliation(s)
- Lucas Delmonico
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Gilda Alves
- Laboratório de Marcadores Circulantes, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - José Bines
- Instituto Nacional de Câncer (INCA-HCIII), Rio de Janeiro, Brazil
| |
Collapse
|
168
|
McCartney A, Benelli M, Di Leo A. Estimating the magnitude of clinical benefit from (neo)adjuvant chemotherapy in patients with ER-positive/HER2-negative breast cancer. Breast 2020; 48 Suppl 1:S81-S84. [PMID: 31839168 DOI: 10.1016/s0960-9776(19)31130-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Gene-expression assays were originally validated retrospectively as tools of prognostication, with evidence emerging from more recent prospectively-conducted studies such as MINDACT and TAILORx supporting their clinical validity and utility as biomarkers in identifying patients with luminal breast cancer who might be spared chemotherapy. However, these assays still do not have the ability to identify all patients who may safely avoid chemotherapy, and may over-estimate the risk of relapse in some cases. Future studies should aim to prospectively integrate contemporary approaches that assume a theoretical risk of relapse (based on pathological and/or genomic evaluation of the primary tumour), with new tools that can detect signals of active micro-metastatic disease. Until current methods of estimating prognosis and predicting benefit from adjuvant chemotherapy are significantly refined, estimating and improving the true magnitude of benefit derived from chemotherapy remains a challenge for clinicians.
Collapse
Affiliation(s)
- Amelia McCartney
- "Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Prato, Italy
| | | | - Angelo Di Leo
- "Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Prato, Italy.
| |
Collapse
|
169
|
Circulating Tumor DNA Using Tagged Targeted Deep Sequencing to Assess Minimal Residual Disease in Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy. JOURNAL OF ONCOLOGY 2020; 2020:8132507. [PMID: 32377196 PMCID: PMC7196957 DOI: 10.1155/2020/8132507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 11/17/2022]
Abstract
In breast cancer patients undergoing neoadjuvant chemotherapy before surgery, there is an unmet need for noninvasive predictive biomarkers of response. The analysis of circulating tumor DNA (ctDNA) in particular has been the object of several reports, but few of them have studied the applicability of tagged targeted deep sequencing (tTDS) to clinical practice and its performance compared with droplet digital PCR (ddPCR). Here, we present the first results from an ongoing study involving a prospectively accrued, monocentric cohort of patients affected by invasive breast cancer, undergoing neoadjuvant chemotherapy followed by surgery with curative intent as per clinical practice. A pretreatment tumor biopsy and plasma samples were collected before and during treatment, after surgery, and every six months henceforth or until relapse, whichever came first. Pretreatment biopsies were sequenced with a 409-gene massive parallel sequencing (MPS) panel, allowing the identification of target mutations and their research in plasma by tTDS and ddPCR as a complementary approach. Using tTDS, we demonstrated the presence of at least one deleterious mutation in all the relapsed cases we studied (n = 4), with an average lead time of six months before clinical relapse. The association with ddPCR was suboptimal, and only one relapsed patient could be identified with such method. tTDS shows potential as an early noninvasive method for the detection of MRD in BC patients.
Collapse
|
170
|
Zhang S, Zhou Y, Wang Y, Wang Z, Xiao Q, Zhang Y, Lou Y, Qiu Y, Zhu F. The mechanistic, diagnostic and therapeutic novel nucleic acids for hepatocellular carcinoma emerging in past score years. Brief Bioinform 2020; 22:1860-1883. [PMID: 32249290 DOI: 10.1093/bib/bbaa023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Despite The Central Dogma states the destiny of gene as 'DNA makes RNA and RNA makes protein', the nucleic acids not only store and transmit genetic information but also, surprisingly, join in intracellular vital movement as a regulator of gene expression. Bioinformatics has contributed to knowledge for a series of emerging novel nucleic acids molecules. For typical cases, microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) exert crucial role in regulating vital biological processes, especially in malignant diseases. Due to extraordinarily heterogeneity among all malignancies, hepatocellular carcinoma (HCC) has emerged enormous limitation in diagnosis and therapy. Mechanistic, diagnostic and therapeutic nucleic acids for HCC emerging in past score years have been systematically reviewed. Particularly, we have organized recent advances on nucleic acids of HCC into three facets: (i) summarizing diverse nucleic acids and their modification (miRNA, lncRNA, circRNA, circulating tumor DNA and DNA methylation) acting as potential biomarkers in HCC diagnosis; (ii) concluding different patterns of three key noncoding RNAs (miRNA, lncRNA and circRNA) in gene regulation and (iii) outlining the progress of these novel nucleic acids for HCC diagnosis and therapy in clinical trials, and discuss their possibility for clinical applications. All in all, this review takes a detailed look at the advances of novel nucleic acids from potential of biomarkers and elaboration of mechanism to early clinical application in past 20 years.
Collapse
Affiliation(s)
- Song Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China.,College of Pharmaceutical Sciences in Zhejiang University, China
| | - Ying Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China
| | - Yanan Wang
- School of Life Sciences in Nanchang University, China
| | - Zhengwen Wang
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Qitao Xiao
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Ying Zhang
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Yan Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China
| | - Feng Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China.,College of Pharmaceutical Sciences in Zhejiang University, China
| |
Collapse
|
171
|
Li S, Lai H, Liu J, Liu Y, Jin L, Li Y, Liu F, Gong Y, Guan Y, Yi X, Shi Q, Cai Z, Li Q, Li Y, Zhu M, Wang J, Yang Y, Wei W, Yin D, Song E, Liu Q. Circulating Tumor DNA Predicts the Response and Prognosis in Patients With Early Breast Cancer Receiving Neoadjuvant Chemotherapy. JCO Precis Oncol 2020; 4:PO.19.00292. [PMID: 32923909 PMCID: PMC7450928 DOI: 10.1200/po.19.00292] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Many patients with breast cancer still relapse after curative treatment. How to identify the ones with high relapse risk remains a critical problem. Circulating tumor DNA (ctDNA) has recently become a promising marker to monitor tumor burden. Whether ctDNA can be used to predict the response and prognosis in patients with breast cancer receiving neoadjuvant chemotherapy (NAC) is unknown. Our study aimed to evaluate the clinical value of the presence and dynamic change of ctDNA to predict the tumor response and prognosis in patients with breast cancer treated with NAC. MATERIALS AND METHODS Fifty-two patients with early breast cancer who underwent NAC were prospectively enrolled. Serial plasma samples before, during, and after NAC and paired tumor biopsies were harvested and subjected to deep targeted sequencing using a large next-generation sequencing panel that covers 1,021 cancer-related genes. RESULTS Positive baseline ctDNA was detected in 21 of 44 patients before NAC. Most patients with positive ctDNA had one or more mutations confirmed in paired primary tumor. The ctDNA level after 2 cycles of NAC was predictive of local tumor response after all cycles of NAC (area under the curve, 0.81; 95% CI, 0.61 to 1.00). ctDNA tracking during NAC outperformed imaging in predicting the overall response to NAC. More importantly, positive baseline ctDNA is significantly associated with worse disease-free survival (P = .011) and overall survival (P = .004) in patients with early breast cancer, especially in estrogen receptor-negative patients. CONCLUSION Our study demonstrated that ctDNA can be used to predict tumor response to NAC and prognosis in early breast cancer, providing information to tailor an individual's therapeutic regimen.
Collapse
Affiliation(s)
- Shunying Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongna Lai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jieqiong Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yujie Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liang Jin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yudong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fengtao Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | - Xin Yi
- Geneplus-Beijing, Beijing, China
| | - Qianfeng Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zijie Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengdi Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingru Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaping Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Wei
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
172
|
Pesapane F, Suter MB, Rotili A, Penco S, Nigro O, Cremonesi M, Bellomi M, Jereczek-Fossa BA, Pinotti G, Cassano E. Will traditional biopsy be substituted by radiomics and liquid biopsy for breast cancer diagnosis and characterisation? Med Oncol 2020; 37:29. [PMID: 32180032 DOI: 10.1007/s12032-020-01353-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
The diagnosis of breast cancer currently relies on radiological and clinical evaluation, confirmed by histopathological examination. However, such approach has some limitations as the suboptimal sensitivity, the long turnaround time for recall tests, the invasiveness of the procedure and the risk that some features of target lesions may remain undetected, making re-biopsy a necessity. Recent technological advances in the field of artificial intelligence hold promise in addressing such medical challenges not only in cancer diagnosis, but also in treatment assessment, and monitoring of disease progression. In the perspective of a truly personalised medicine, based on the early diagnosis and individually tailored treatments, two new technologies, namely radiomics and liquid biopsy, are rising as means to obtain information from diagnosis to molecular profiling and response assessment, without the need of a biopsied tissue sample. Radiomics works through the extraction of quantitative peculiar features of cancer from radiological data, while liquid biopsy gets the whole of the malignancy's biology from something as easy as a blood sample. Both techniques hopefully will identify diagnostic and prognostic information of breast cancer potentially reducing the need for invasive (and often difficult to perform) biopsies and favouring an approach that is as personalised as possible for each patient. Nevertheless, such techniques will not substitute tissue biopsy in the near future, and even in further times they will require the aid of other parameters to be correctly interpreted and acted upon.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy.
| | | | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Silvia Penco
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Olga Nigro
- Medical Oncology, ASST Sette Laghi, Viale Borri 57, 21100, Varese, VA, Italy
| | - Marta Cremonesi
- Radiation Research Unit, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Massimo Bellomi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Radiology, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Graziella Pinotti
- Medical Oncology, ASST Sette Laghi, Viale Borri 57, 21100, Varese, VA, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| |
Collapse
|
173
|
Álvarez-Alegret R, Rojo Todo F, Garrido P, Bellosillo B, Rodríguez-Lescure Á, Rodríguez-Peralto JL, Vera R, de Álava E, García-Campelo R, Remon J. [Liquid biopsy in oncology: A consensus statement of the Spanish Society of Pathology and the Spanish Society of Medical Oncology]. REVISTA ESPAÑOLA DE PATOLOGÍA : PUBLICACIÓN OFICIAL DE LA SOCIEDAD ESPAÑOLA DE ANATOMÍA PATOLÓGICA Y DE LA SOCIEDAD ESPAÑOLA DE CITOLOGÍA 2020; 53:234-245. [PMID: 33012494 DOI: 10.1016/j.patol.2019.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/27/2019] [Accepted: 12/09/2019] [Indexed: 11/18/2022]
Abstract
The proportion of cancer patients with tumours that harbour a potentially targetable genomic alteration is increasing considerably. The diagnosis of these genomic alterations can lead to tailoring of treatment, at the onset of disease or during progression, as well as providing additional, predictive information on the efficacy of immunotherapy. However, in up to 25% of cases, the initial tissue biopsy is inadequate for precision oncology and, in many cases, tumour genomic profiling at progression is not possible due to technical limitations of obtaining new tumour tissue specimens. Efficient diagnostic alternatives are therefore required for molecular stratification, such as liquid biopsy. This technique enables the evaluation of the tumour genomic profile dynamically and as well as capturing intra-patient genomic heterogeneity. To date, there are several diagnostic techniques available for use in liquid biopsy, each with different precision and performance levels. The objective of this consensus statement of the Spanish Society of Pathology (SEAP) and the Spanish Society of Medical Oncology (SEOM) is to evaluate the viability and effectiveness of the different methodological approaches of liquid biopsy in cancer patients, and the potential application of this method to current clinical practice. The experts contributing to this consensus statement agree that, according to current evidence, liquid biopsy is an acceptable alternative to tumour tissue biopsy for the study of biomarkers in various clinical settings. It is therefore important to standardise pre-analytical and analytical procedures to ensure reproducibility and to generate structured and accessible clinical reports. It is essential to appoint multidisciplinary tumour molecular committees to oversee these processes and to enable the most suitable therapeutic decisions for each patient according to the genomic profile.
Collapse
Affiliation(s)
| | - Federico Rojo Todo
- Departamento de Patología, Fundación Universitaria Jiménez Díaz, CIBERONC, Madrid, España
| | - Pilar Garrido
- Universidad de Alcalá; Departamento de Oncología Médica, IRYCIS, Hospital Universitario Ramón y Cajal, CIBERONC, Madrid, España
| | - Beatriz Bellosillo
- Departamento de Patología, Hospital del Mar, CIBERONC, Barcelona, España
| | - Álvaro Rodríguez-Lescure
- Departamento de Oncología Médica, Hospital General Universitario de Elche y Vega Baja, GEICAM, Elche, España
| | | | - Ruth Vera
- Departamento de Oncología Médica, Complejo Hospitalario de Navarra, Navarra Institute for health research (IdiSNA), Pamplona, España
| | - Enrique de Álava
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, CIBERONC, Departamento de Citología e Histología Normal y Patológica, Sevilla, España
| | - Rosario García-Campelo
- Departamento de Oncología Médica, Complexo Hospitalario Universitario A Coruña, A Coruña, España
| | - Jordi Remon
- Departamento de Oncología Médica, Centro Integral Oncológico Clara Campal Barcelona (CIOCCB), HM Delfos, Barcelona, España
| |
Collapse
|
174
|
De Keukeleire S, De Maeseneer D, Jacobs C, Rottey S. Targeting FGFR in bladder cancer: ready for clinical practice? Acta Clin Belg 2020; 75:49-56. [PMID: 31671027 DOI: 10.1080/17843286.2019.1685738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: To give a brief literature overview of current knowledge regarding FGFR inhibition in bladder cancer.Background: The deeper molecular understanding of bladder urothelial carcinoma (UC) has reshaped the diagnostic and therapeutic landscape of this malignancy. Rapid technological development, including the frequent use of next-generation sequencing (NGS) in clinical practice, has boosted identification and development of potential biomarkers and targeted therapies. Genetic aberrations in the fibroblast growth factor receptor (FGFR)-pathway may drive tumorigenesis and are considered as attractive drug targets in advanced and/or metastatic UC. Several clinical trials have been performed or are ongoing to assess the safety and efficacy of (non-)selective FGFR inhibitors in patients with advanced or metatastic UC.Results: While non-selective FGFR inhibitors have shown limited clinical response with unacceptable toxicity, selective 'pan'-FGFR inhibitors had favourable response rates with manageable toxicity. To predict response, patients were screened for FGFR aberrations using NGS after DNA/RNA extraction of UC tissue specimen or collection of ctDNA or cfDNA.Conclusion: Early clinical trials have shown promising results for targeting FGFR in advanced or metastatic UC, though these findings need to be validated in phase III trials. It seems that FGFR aberrations can be detected in ctDNA and cfDNA as efficiently as in tumour tissue, showing their potential as predictive, non-invasive liquid biomarkers.
Collapse
Affiliation(s)
| | - Daan De Maeseneer
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
- Department of Medical Oncology, AZ Sint-Lucas, Bruges, Belgium
| | - Celine Jacobs
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Sylvie Rottey
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
- Drug Research Unit Ghent, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
175
|
Ramón y Cajal S, Sesé M, Capdevila C, Aasen T, De Mattos-Arruda L, Diaz-Cano SJ, Hernández-Losa J, Castellví J. Clinical implications of intratumor heterogeneity: challenges and opportunities. J Mol Med (Berl) 2020; 98:161-177. [PMID: 31970428 PMCID: PMC7007907 DOI: 10.1007/s00109-020-01874-2] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/05/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
In this review, we highlight the role of intratumoral heterogeneity, focusing on the clinical and biological ramifications this phenomenon poses. Intratumoral heterogeneity arises through complex genetic, epigenetic, and protein modifications that drive phenotypic selection in response to environmental pressures. Functionally, heterogeneity provides tumors with significant adaptability. This ranges from mutual beneficial cooperation between cells, which nurture features such as growth and metastasis, to the narrow escape and survival of clonal cell populations that have adapted to thrive under specific conditions such as hypoxia or chemotherapy. These dynamic intercellular interplays are guided by a Darwinian selection landscape between clonal tumor cell populations and the tumor microenvironment. Understanding the involved drivers and functional consequences of such tumor heterogeneity is challenging but also promises to provide novel insight needed to confront the problem of therapeutic resistance in tumors.
Collapse
Affiliation(s)
- Santiago Ramón y Cajal
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Pathology Department, Vall d’Hebron Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
- Department of Pathology, Vall d’Hebron University Hospital, Autonomous University of Barcelona, Pg. Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Marta Sesé
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Claudia Capdevila
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032 USA
| | - Trond Aasen
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Leticia De Mattos-Arruda
- Vall d’Hebron Institute of Oncology, Vall d’Hebron University Hospital, c/Natzaret, 115-117, 08035 Barcelona, Spain
| | - Salvador J. Diaz-Cano
- Department of Histopathology, King’s College Hospital and King’s Health Partners, London, UK
| | - Javier Hernández-Losa
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Pathology Department, Vall d’Hebron Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Josep Castellví
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Pathology Department, Vall d’Hebron Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| |
Collapse
|
176
|
Abstract
In only few years, circulating tumor DNA (ctDNA) in breast cancer has moved from purely fundamental research to nearby daily use for treatment selection and drug-resistance assessment. Indeed, technical advances and widespread use of next-generation sequencing or digital PCR allowed for detection of very low amount of tumor DNA in bloodstream. The use of ctDNA as liquid biopsy able either to monitor tumor burden under treatment or to overcome tumor heterogeneity and identify potential targetable drivers. Time has come to define how ctDNA can be implemented for early or metastatic breast cancer management. Data from retrospective analyses of prospective trials have recently highlighted the potential advantages but also the limitations of ctDNA, in particular for patients under endocrine therapy.
Collapse
Affiliation(s)
- Florian Clatot
- Department of Medical Oncology, Centre Henri Becquerel, 1 rue d'Amiens, 76038, Rouen Cedex 1, France.
- Normandie Univ, UNIROUEN, Inserm U1245, IRON Group, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, Rouen, France.
| |
Collapse
|
177
|
da Silva JL, Cardoso Nunes NC, Izetti P, de Mesquita GG, de Melo AC. Triple negative breast cancer: A thorough review of biomarkers. Crit Rev Oncol Hematol 2019; 145:102855. [PMID: 31927455 DOI: 10.1016/j.critrevonc.2019.102855] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is defined as a type of breast cancer with lack of expression of estrogen receptor (ER), progesterone receptor (PR) and HER2 protein. The tumorigenesis is not likely to be driven by hormonal or HER2 pathway. In comparison to other types of breast cancer, TNBC stands out for its aggressive behavior, more prone to early recurrence. Historically, TNBC has been considered a disease with poor response to molecular target therapy, requiring better validation of biomarkers. Recent issues related to tumor heterogeneity have been widely discussed suggesting the subdivision of TNBC into different molecular subtypes. Through a complete research on the main published trials databases and platforms of ongoing clinical studies, the current manuscript was carried out in order to present a critical view of the role of immunohistochemical and molecular biomarkers for the prognosis and response prediction of TNBC to traditional therapy and new molecular target agents.
Collapse
|
178
|
Jahangiri L, Hurst T. Assessing the Concordance of Genomic Alterations between Circulating-Free DNA and Tumour Tissue in Cancer Patients. Cancers (Basel) 2019; 11:cancers11121938. [PMID: 31817150 PMCID: PMC6966532 DOI: 10.3390/cancers11121938] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/23/2022] Open
Abstract
Somatic alterations to the genomes of solid tumours, which in some cases represent actionable drivers, provide diagnostic and prognostic insight into these complex diseases. Spatial and longitudinal tracking of somatic genomic alterations (SGAs) in patient tumours has emerged as a new avenue of investigation, not only as a disease monitoring strategy, but also to improve our understanding of heterogeneity and clonal evolution from diagnosis through disease progression. Furthermore, analysis of circulating-free DNA (cfDNA) in the so-called "liquid biopsy" has emerged as a non-invasive method to identify genomic information to inform targeted therapy and may also capture the heterogeneity of the primary and metastatic tumours. Considering the potential of cfDNA analysis as a translational laboratory tool in clinical practice, establishing the extent to which cfDNA represents the SGAs of tumours, particularly actionable driver alterations, becomes a matter of importance, warranting standardisation of methods and practices. Here, we assess the utilisation of cfDNA for molecular profiling of SGAs in tumour tissue across a broad range of solid tumours. Moreover, we examine the underlying factors contributing to discordance of detected SGAs between cfDNA and tumour tissue.
Collapse
Affiliation(s)
- Leila Jahangiri
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK;
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Lab blocks level 3, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Correspondence:
| | - Tara Hurst
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK;
| |
Collapse
|
179
|
LeVasseur N, Willemsma KA, Li H, Gondara L, Yip WC, Illmann C, Chia SK, Simmons C. Efficacy of Neoadjuvant Endocrine Therapy Versus Neoadjuvant Chemotherapy in ER-positive Breast Cancer: Results From a Prospective Institutional Database. Clin Breast Cancer 2019; 19:e683-e689. [DOI: 10.1016/j.clbc.2019.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/17/2019] [Accepted: 05/27/2019] [Indexed: 11/30/2022]
|
180
|
Dowling RJO, Sparano JA, Goodwin PJ, Bidard FC, Cescon DW, Chandarlapaty S, Deasy JO, Dowsett M, Gray RJ, Henry NL, Meric-Bernstam F, Perlmutter J, Sledge GW, Thorat MA, Bratman SV, Carey LA, Chang MC, DeMichele A, Ennis M, Jerzak KJ, Korde LA, Lohmann AE, Mamounas EP, Parulekar WR, Regan MM, Schramek D, Stambolic V, Whelan TJ, Wolff AC, Woodgett JR, Kalinsky K, Hayes DF. Toronto Workshop on Late Recurrence in Estrogen Receptor-Positive Breast Cancer: Part 2: Approaches to Predict and Identify Late Recurrence, Research Directions. JNCI Cancer Spectr 2019; 3:pkz049. [PMID: 32337478 PMCID: PMC7050024 DOI: 10.1093/jncics/pkz049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/18/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Late disease recurrence (more than 5 years after initial diagnosis) represents a clinical challenge in the treatment and management of estrogen receptor-positive breast cancer (BC). An international workshop was convened in Toronto, Canada, in February 2018 to review the current understanding of late recurrence and to identify critical issues that require future study. The underlying biological causes of late recurrence are complex, with the processes governing cancer cell dormancy, including immunosurveillance, cell proliferation, angiogenesis, and cellular stemness, being integral to disease progression. These critical processes are described herein as well as their role in influencing risk of recurrence. Moreover, observational and interventional clinical trials are proposed, with a focus on methods to identify patients at risk of recurrence and possible strategies to combat this in patients with estrogen receptor-positive BC. Because the problem of late BC recurrence of great importance, recent advances in disease detection and patient monitoring should be incorporated into novel clinical trials to evaluate approaches to enhance patient management. Indeed, future research on these issues is planned and will offer new options for effective late recurrence treatment and prevention strategies.
Collapse
Affiliation(s)
- Ryan J O Dowling
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph A Sparano
- Departments of Medicine and Medical Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Albert Einstein Cancer Center, New York, NY
| | - Pamela J Goodwin
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill-Cornell Medical College, New York, NY
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mitch Dowsett
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, The Royal Marsden NHS Foundation Trust, Breast Cancer Now Research Centre, The Institute of Cancer Research, London, UK
| | - Robert J Gray
- Department of Biostatistics, Dana-Farber Cancer Institute, Boston, MA
- Harvard T.H. Chan School of Public Health, Boston, MA
| | - N Lynn Henry
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - George W Sledge
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Mangesh A Thorat
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Scott V Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Lisa A Carey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Martin C Chang
- University of Vermont Medical Center, Larner College of Medicine, Burlington, VT
| | - Angela DeMichele
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | | | - Katarzyna J Jerzak
- Division of Medical Oncology and Hematology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Larissa A Korde
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Ana Elisa Lohmann
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Wendy R Parulekar
- Canadian Cancer Trials Group, Queen's University, Kingston, ON, Canada
| | - Meredith M Regan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Daniel Schramek
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Vuk Stambolic
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Timothy J Whelan
- McMaster University and Juravinski Cancer Centre, Hamilton, ON, Canada
| | - Antonio C Wolff
- The Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Jim R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Kevin Kalinsky
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Daniel F Hayes
- University of Michigan Rogel Cancer Center, and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
181
|
Abstract
Abstract
Precision oncology aims to tailor clinical decisions specifically to patients with the objective of improving treatment outcomes. This can be achieved by leveraging omics information for accurate molecular characterization of tumors. Tumor tissue biopsies are currently the main source of information for molecular profiling. However, biopsies are invasive and limited in resolving spatiotemporal heterogeneity in tumor tissues. Alternative non-invasive liquid biopsies can exploit patient’s body fluids to access multiple layers of tumor-specific biological information (genomes, epigenomes, transcriptomes, proteomes, metabolomes, circulating tumor cells, and exosomes). Analysis and integration of these large and diverse datasets using statistical and machine learning approaches can yield important insights into tumor biology and lead to discovery of new diagnostic, predictive, and prognostic biomarkers. Translation of these new diagnostic tools into standard clinical practice could transform oncology, as demonstrated by a number of liquid biopsy assays already entering clinical use. In this review, we highlight successes and challenges facing the rapidly evolving field of cancer biomarker research.
Lay Summary
Precision oncology aims to tailor clinical decisions specifically to patients with the objective of improving treatment outcomes. The discovery of biomarkers for precision oncology has been accelerated by high-throughput experimental and computational methods, which can inform fine-grained characterization of tumors for clinical decision-making. Moreover, advances in the liquid biopsy field allow non-invasive sampling of patient’s body fluids with the aim of analyzing circulating biomarkers, obviating the need for invasive tumor tissue biopsies. In this review, we highlight successes and challenges facing the rapidly evolving field of liquid biopsy cancer biomarker research.
Collapse
|
182
|
Bai Y, Wang Z, Liu Z, Liang G, Gu W, Ge Q. Technical progress in circulating tumor DNA analysis using next generation sequencing. Mol Cell Probes 2019; 49:101480. [PMID: 31711827 DOI: 10.1016/j.mcp.2019.101480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022]
Abstract
Circulating tumor DNA (ctDNA) is tumor-derived, fragmented DNA that circulates freely in body fluids, predominantly in the peripheral blood. Recently, ctDNA analysis has been suggested as a complement to tissue biopsy in the detection and treatment of cancer. Genetic and epigenetic information specific to tumor cells, including single nucleotide variations, copy number variations, and modified methylation patterns, can be detected in ctDNA. Importantly, mutations in heterogenous tumors that could impart therapeutic resistance could be identified in ctDNA, which would aid in cancer diagnosis, prognosis, and real-time monitoring, and inform treatment with targeted therapies. However, ctDNA is still not a routinely used method for this purpose, because its detection techniques lack adequate sensitivity for reliable use in scientific studies and clinical trials. This review provides an up-to-date summary of ctDNA mutation detection methods based on next generation sequencing, highlighting their advantages and limitations, and focusing in particular on several optimized library preparation methods for improved sensitivity and specificity of ctDNA detection.
Collapse
Affiliation(s)
- Yunfei Bai
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Zexin Wang
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Zhiyu Liu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Wanjun Gu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Qinyu Ge
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
183
|
Abstract
Breast cancer is a highly heterogeneous and dynamic disease, exhibiting unique somatic alterations that lead to disease recurrence and resistance. Tumor biopsy and conventional imaging approaches are not able to provide sufficient information regarding the early detection of recurrence and real time monitoring through tracking sensitive or resistance mechanisms to treatment. Circulating tumor DNA (ctDNA) analysis has emerged as an attractive noninvasive methodology to detect cancer-specific genetic aberrations in plasma including DNA mutations and DNA methylation patterns. Numerous studies have reported on the potential of ctDNA analysis in the management of early and advanced stages of breast cancer. Advances in high-throughput technologies, especially next generation sequencing and PCR-based assays, were highly important for the successful application of ctDNA analysis. However, before being integrated into clinical practice, ctDNA analysis needs to be standardized and validated through the performance of multicenter prospective and well-designed clinical studies. This review is focused on the clinical utility of ctDNA analysis, especially at the DNA mutation and methylation level, in breast cancer patients, incorporating the latest advances in technological approaches and involving key studies in the early and metastatic setting.
Collapse
Affiliation(s)
- Eleni Tzanikou
- Department of Chemistry, Analysis of Circulating Tumor Cells (ACTC) Lab, Laboratory of Analytical Chemistry, University of Athens, Athens, Greece
| | - Evi Lianidou
- Department of Chemistry, Analysis of Circulating Tumor Cells (ACTC) Lab, Laboratory of Analytical Chemistry, University of Athens, Athens, Greece
| |
Collapse
|
184
|
Tuaeva NO, Falzone L, Porozov YB, Nosyrev AE, Trukhan VM, Kovatsi L, Spandidos DA, Drakoulis N, Kalogeraki A, Mamoulakis C, Tzanakakis G, Libra M, Tsatsakis A. Translational Application of Circulating DNA in Oncology: Review of the Last Decades Achievements. Cells 2019; 8:E1251. [PMID: 31615102 PMCID: PMC6829588 DOI: 10.3390/cells8101251] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, the introduction of new molecular techniques in experimental and clinical settings has allowed researchers and clinicians to propose circulating-tumor DNA (ctDNA) analysis and liquid biopsy as novel promising strategies for the early diagnosis of cancer and for the definition of patients' prognosis. It was widely demonstrated that through the non-invasive analysis of ctDNA, it is possible to identify and characterize the mutational status of tumors while avoiding invasive diagnostic strategies. Although a number of studies on ctDNA in patients' samples significantly contributed to the improvement of oncology practice, some investigations generated conflicting data about the diagnostic and prognostic significance of ctDNA. Hence, to highlight the relevant achievements obtained so far in this field, a clearer description of the current methodologies used, as well as the obtained results, are strongly needed. On these bases, this review discusses the most relevant studies on ctDNA analysis in cancer, as well as the future directions and applications of liquid biopsy. In particular, special attention was paid to the early diagnosis of primary cancer, to the diagnosis of tumors with an unknown primary location, and finally to the prognosis of cancer patients. Furthermore, the current limitations of ctDNA-based approaches and possible strategies to overcome these limitations are presented.
Collapse
Affiliation(s)
- Natalia O Tuaeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Luca Falzone
- Department of Biomedical and Biotechnlogical Sciences, University of Catania, 95123 Catania, Italy.
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Naples, Italy.
| | - Yuri B Porozov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
- ITMO University, Saint Petersburg 197101, Russia.
| | - Alexander E Nosyrev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Vladimir M Trukhan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54248 Thessaloniki, Greece.
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Zografou, Greece.
| | - Alexandra Kalogeraki
- Department of Pathology-Cytopathology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, 70013 Crete, Greece.
| | - George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Massimo Libra
- Department of Biomedical and Biotechnlogical Sciences, University of Catania, 95123 Catania, Italy.
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy.
| | - Aristides Tsatsakis
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, 71003 Crete, Greece.
| |
Collapse
|
185
|
Siravegna G, Mussolin B, Venesio T, Marsoni S, Seoane J, Dive C, Papadopoulos N, Kopetz S, Corcoran RB, Siu LL, Bardelli A. How liquid biopsies can change clinical practice in oncology. Ann Oncol 2019; 30:1580-1590. [PMID: 31373349 DOI: 10.1093/annonc/mdz227] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cell-free DNA fragments are shed into the bloodstream by tumor cells. The analysis of circulating tumor DNA (ctDNA), commonly known as liquid biopsy, can be exploited for a variety of clinical applications. ctDNA is being used to genotype solid cancers non-invasively, to track tumor dynamics and to detect the emergence of drug resistance. In a few settings, liquid biopsies have already entered clinical practice. For example, ctDNA is used to guide treatment in a subset of lung cancers. In this review, we discuss how recent improvements in the sensitivity and accuracy of ctDNA analyses have led to unprecedented advances in this research field. We further consider what is required for the routine deployment of liquid biopsies in the clinical diagnostic space. We pinpoint technical hurdles that liquid biopsies have yet to overcome, including preanalytical and analytical challenges. We foresee how liquid biopsies will transform clinical practice: by complementing (or replacing) imaging to monitor treatment response and by detecting minimal residual disease after surgery with curative intent.
Collapse
Affiliation(s)
- G Siravegna
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy; Department of Oncology, University of Torino, Candiolo, Turin, Italy
| | - B Mussolin
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - T Venesio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - S Marsoni
- IFOM, Istituto FIRC di Oncología Molecolare, Milan, Italy
| | - J Seoane
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital and Universitat Autonoma de Barcelona, CIBERONC, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - C Dive
- Clinical and Experimental Pharmacology Group and Manchester Centre for Cancer Biomarker Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - N Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, USA; Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - S Kopetz
- Division of Cancer Medicine, Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - R B Corcoran
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - L L Siu
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - A Bardelli
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy; Department of Oncology, University of Torino, Candiolo, Turin, Italy.
| |
Collapse
|
186
|
Garcia-Murillas I, Chopra N, Comino-Méndez I, Beaney M, Tovey H, Cutts RJ, Swift C, Kriplani D, Afentakis M, Hrebien S, Walsh-Crestani G, Barry P, Johnston SRD, Ring A, Bliss J, Russell S, Evans A, Skene A, Wheatley D, Dowsett M, Smith IE, Turner NC. Assessment of Molecular Relapse Detection in Early-Stage Breast Cancer. JAMA Oncol 2019; 5:1473-1478. [PMID: 31369045 PMCID: PMC6681568 DOI: 10.1001/jamaoncol.2019.1838] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/08/2019] [Indexed: 01/04/2023]
Abstract
Importance Current treatment cures most cases of early-stage, primary breast cancer. However, better techniques are required to identify which patients are at risk of relapse. Objective To assess the clinical validity of molecular relapse detection with circulating tumor DNA (ctDNA) analysis in early-stage breast cancer. Design, Setting, and Participants This prospective, multicenter, sample collection, validation study conducted at 5 United Kingdom medical centers from November 24, 2011, to October 18, 2016, assessed patients with early-stage breast cancer irrespective of hormone receptor and ERBB2 (formerly HER2 or HER2/neu) status who were receiving neoadjuvant chemotherapy followed by surgery or surgery before adjuvant chemotherapy. The study recruited 170 women, with mutations identified in 101 patients forming the main cohort. Secondary analyses were conducted on a combined cohort of 144 patients, including 43 patients previously analyzed in a proof of principle study. Interventions Primary tumor was sequenced to identify somatic mutations, and personalized tumor-specific digital polymerase chain reaction assays were used to monitor these mutations in serial plasma samples taken every 3 months for the first year of follow-up and subsequently every 6 months. Main Outcomes and Measures The primary end point was relapse-free survival analyzed with Cox proportional hazards regression models. Results In the main cohort of 101 female patients (mean [SD] age, 54 [11] years) with a median follow-up of 35.5 months (interquartile range, 27.9-43.0 months), detection of ctDNA during follow-up was associated with relapse (hazard ratio, 25.2; 95% CI, 6.7-95.6; P < .001). Detection of ctDNA at diagnosis, before any treatment, was also associated with relapse-free survival (hazard ratio, 5.8; 95% CI, 1.2-27.1; P = .01). In the combined cohort, ctDNA detection had a median lead time of 10.7 months (95% CI, 8.1-19.1 months) compared with clinical relapse and was associated with relapse in all breast cancer subtypes. Distant extracranial metastatic relapse was detected by ctDNA in 22 of 23 patients (96%). Brain-only metastasis was less commonly detected by ctDNA (1 of 6 patients [17%]), suggesting relapse sites less readily detectable by ctDNA analysis. Conclusions and Relevance The findings suggest that detection of ctDNA during follow-up is associated with a high risk of future relapse of early-stage breast cancer. Prospective studies are needed to assess the potential of molecular relapse detection to guide adjuvant therapy.
Collapse
Affiliation(s)
- Isaac Garcia-Murillas
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Neha Chopra
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Iñaki Comino-Méndez
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Matthew Beaney
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Holly Tovey
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Rosalind J. Cutts
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Claire Swift
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Divya Kriplani
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Maria Afentakis
- Ralph Lauren Centre for Breast Cancer Research, London, United Kingdom
| | - Sarah Hrebien
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Giselle Walsh-Crestani
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Peter Barry
- Breast Unit, Royal Marsden Hospital, London, United Kingdom
| | | | - Alistair Ring
- Breast Unit, Royal Marsden Hospital, London, United Kingdom
| | - Judith Bliss
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, United Kingdom
| | | | | | - Anthony Skene
- Royal Bournemouth Hospital, Bournemouth, United Kingdom
| | - Duncan Wheatley
- Department of Oncology, Royal Cornwall Hospitals National Health Service Trust, Truro, United Kingdom
| | - Mitch Dowsett
- Ralph Lauren Centre for Breast Cancer Research, London, United Kingdom
| | - Ian E. Smith
- Breast Unit, Royal Marsden Hospital, London, United Kingdom
| | - Nicholas C. Turner
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, United Kingdom
- Breast Unit, Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
187
|
Liquid biopsy in oncology: a consensus statement of the Spanish Society of Pathology and the Spanish Society of Medical Oncology. Clin Transl Oncol 2019; 22:823-834. [PMID: 31559582 PMCID: PMC7854395 DOI: 10.1007/s12094-019-02211-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
The proportion of cancer patients with tumours that harbour a potentially targetable genomic alteration is growing considerably. The diagnosis of these genomic alterations can lead to tailored treatment at the onset of disease or on progression and to obtaining additional predictive information on immunotherapy efficacy. However, in up to 25% of cases, the initial tissue biopsy is inadequate for precision oncology and, in many cases, tumour genomic profiling at progression is not possible due to technical limitations of obtaining new tumour tissue specimens. Efficient diagnostic alternatives are therefore required for molecular stratification, which includes liquid biopsy. This technique enables the evaluation of the tumour genomic profile dynamically and captures intra-patient genomic heterogeneity as well. To date, there are several diagnostic techniques available for use in liquid biopsy, each one of them with different precision and performance levels. The objective of this consensus statement of the Spanish Society of Pathology and the Spanish Society of Medical Oncology is to evaluate the viability and effectiveness of the different methodological approaches in liquid biopsy in cancer patients and the potential application of this method to current clinical practice. The experts contributing to this consensus statement agree that, according to current evidence, liquid biopsy is an acceptable alternative to tumour tissue biopsy for the study of biomarkers in various clinical settings. It is therefore important to standardise pre-analytical and analytical procedures, to ensure reproducibility and generate structured and accessible clinical reports. It is essential to appoint multidisciplinary tumour molecular boards to oversee these processes and to enable the most suitable therapeutic decisions for each patient according to the genomic profile.
Collapse
|
188
|
Ma L, Du J, Sui Y, Wang S. Clinical significance of plasma free DNA in patients with non-small cell lung cancer. J Int Med Res 2019; 47:5593-5600. [PMID: 31547735 PMCID: PMC6862902 DOI: 10.1177/0300060519872046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives Plasma free DNA is a promising new tumor biomarker, which may have applications in clinical diagnosis and treatment of non-small cell lung cancer (NSCLC). Methods Plasma free DNA was collected from 120 healthy controls and 116 patients with NSCLC before and after treatment. Results The mean plasma free DNA levels in 116 NSCLC patients (200.70 ± 88.54 ng/mL) were higher than those of 120 healthy controls (18.65 ± 6.30 ng/mL). Further analysis showed that the mean serum free DNA level in stage I/II NSCLC patients was 172.75 ± 72.87 ng/mL, significantly lower than that of stage III/IV patients (221.88 ± 93.86 ng/mL). Following surgery and effective chemotherapy, the plasma free DNA levels of NSCLC patients decreased significantly. Conclusions Through quantitation of plasma free DNA, this study established proof-of-concept for a highly sensitive and specific detection method, which can be used for diagnosis, prognosis and treatment monitoring in NSCLC patients.
Collapse
Affiliation(s)
- Lanxiang Ma
- Department of Cardiology, Shaanxi Provincial Corps Hospital, Chinese People's Armed Police Forces, Xi'an, China
| | - Jie Du
- Department of Health Examination Center, Shaanxi Provincial People Hospital, Xi'an, China
| | - Yongjie Sui
- Department of Health Examination Center, Shaanxi Provincial People Hospital, Xi'an, China
| | - Shuili Wang
- Department of Respiratory Medicine, Shaanxi Provincial People Hospital, Xi'an, China
| |
Collapse
|
189
|
Pasha HA, Rezk NA, Riad MA. Circulating Cell Free Nuclear DNA, Mitochondrial DNA and Global DNA Methylation: Potential Noninvasive Biomarkers for Breast Cancer Diagnosis. Cancer Invest 2019; 37:432-439. [PMID: 31516038 DOI: 10.1080/07357907.2019.1663864] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Eighty seven women with benign breast lesion, 120 patients with breast cancer (BC) and one hundred controls were included in the study. Quantification of mtDNA and nDNA was done by qPCR. Global DNA methylation was measured using ELISA. Circulating cell-free nDNA and mtDNA were significantly elevated in BC and benign breast lesions patients. Global methylation was significantly low in BC patients. Combining the studied parameters in one panel, nDNA/mtDNA/hypomethylation, improved their sensitivity in detecting BC to reach 92.5%. Circulating cell-free nDNA, mtDNA and global DNA hypomethylation can be used as diagnostic and prognostic markers for BC.
Collapse
Affiliation(s)
- Heba A Pasha
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University , Zagazig , Egypt
| | - Noha A Rezk
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University , Zagazig , Egypt
| | - Mohamed A Riad
- Surgery Department, Faculty of Medicine, Zagazig University , Zagazig , Egypt
| |
Collapse
|
190
|
Liquid Biopsy Detects Relapse Five Months Earlier than Regular Clinical Follow-Up and Guides Targeted Treatment in Breast Cancer. Case Rep Oncol Med 2019; 2019:6545298. [PMID: 31583146 PMCID: PMC6754891 DOI: 10.1155/2019/6545298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
Genetic alterations in circulating tumor DNA (ctDNA) are an emerging biomarker for the early detection of relapse and have the potential to guide targeted treatment. ctDNA analysis is often performed by droplet digital PCR; however, next-generation sequencing (NGS) allows multigene testing without having to access a tumor sample to identify target alterations. Here, we report the case of a stage III hormone receptor-positive breast cancer patient who remained symptomless after receiving surgery and adjuvant chemotherapy. Liquid biopsy analysis by NGS revealed the presence of a ctDNA PIK3CA N345K mutation five months before the detection of relapse with multiple liver metastases by regular clinical follow-up. To date, clinical implications of the PIK3CA N345K variant remain insufficiently investigated; however, everolimus treatment resulted in the shrinkage of tumor lesions and decreased the levels of tumor markers. Four months after treatment initiation, a second ctDNA analysis suggested a relapse, and the patient clinically progressed after five months of everolimus therapy. This case report demonstrates the value of ctDNA analysis by NGS for the early detection of relapse in breast cancer patients. The study further indicates its usefulness for the choice of targeted treatments, suggesting that the variant PIK3CA N345K might be associated with everolimus sensitivity.
Collapse
|
191
|
Antoniou P, Ziogas DE, Vlachioti A, Lykoudis EG, Mitsis M, Roukos DH. Genomic and transcriptional heterogeneity-based precision in personalized treatment for breast cancer. Per Med 2019; 16:361-364. [PMID: 31507233 DOI: 10.2217/pme-2019-0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Persefoni Antoniou
- Centre for Biosystems & Genome Network Medicine, Ioannina University, Ioannina, Greece
- Department of Surgery, Ioannina University Hospital, Ioannina, Greece
| | - Demosthenes E Ziogas
- Centre for Biosystems & Genome Network Medicine, Ioannina University, Ioannina, Greece
- Department of Surgery, 'G Hatzikosta' General Hospital, Ioannina, Greece
| | - Aikaterini Vlachioti
- Centre for Biosystems & Genome Network Medicine, Ioannina University, Ioannina, Greece
- Department of Gynecology, General Hospital, Preveza, Greece
| | - Eustathios G Lykoudis
- Cancer Biobank Centre, Department of Medicine, University of Ioannina, Ioannina, Greece
| | - Michail Mitsis
- Department of Surgery, Ioannina University Hospital, Ioannina, Greece
- Cancer Biobank Centre, Department of Medicine, University of Ioannina, Ioannina, Greece
| | - Dimitrios H Roukos
- Centre for Biosystems & Genome Network Medicine, Ioannina University, Ioannina, Greece
- Department of Surgery, Ioannina University Hospital, Ioannina, Greece
- Cancer Biobank Centre, Department of Medicine, University of Ioannina, Ioannina, Greece
- Department of Systems Biology, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| |
Collapse
|
192
|
Förnvik D, Aaltonen KE, Chen Y, George AM, Brueffer C, Rigo R, Loman N, Saal LH, Rydén L. Detection of circulating tumor cells and circulating tumor DNA before and after mammographic breast compression in a cohort of breast cancer patients scheduled for neoadjuvant treatment. Breast Cancer Res Treat 2019; 177:447-455. [PMID: 31236809 PMCID: PMC6661025 DOI: 10.1007/s10549-019-05326-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE It is not known if mammographic breast compression of a primary tumor causes shedding of tumor cells into the circulatory system. Little is known about how the detection of circulating biomarkers such as circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA) is affected by breast compression intervention. METHODS CTCs and ctDNA were analyzed in blood samples collected before and after breast compression in 31 patients with primary breast cancer scheduled for neoadjuvant therapy. All patients had a central venous access to allow administration of intravenous neoadjuvant chemotherapy, which enabled blood collection from superior vena cava, draining the breasts, in addition to sampling from a peripheral vein. RESULTS CTC and ctDNA positivity was seen in 26% and 65% of the patients, respectively. There was a significant increase of ctDNA after breast compression in central blood (p = 0.01), not observed in peripheral testing. No increase related with breast compression was observed for CTC. ctDNA positivity was associated with older age (p = 0.05), and ctDNA increase after breast compression was associated with high Ki67 proliferating tumors (p = 0.04). CTCs were more abundant in central compared to peripheral blood samples (p = 0.04). CONCLUSIONS There was no significant release of CTCs after mammographic breast compression but more CTCs were present in central compared to peripheral blood. No significant difference between central and peripheral levels of ctDNA was observed. The small average increase in ctDNA after breast compression is unlikely to be clinically relevant. The results give support for mammography as a safe procedure from the point of view of CTC and ctDNA shedding to the blood circulation. The results may have implications for the standardization of sampling procedures for circulating tumor markers.
Collapse
Affiliation(s)
- Daniel Förnvik
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden.
| | - Kristina E Aaltonen
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Yilun Chen
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Anthony M George
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Christian Brueffer
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Robert Rigo
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Niklas Loman
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
- Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - Lao H Saal
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Lisa Rydén
- Department of Clinical Sciences Lund, Division of Surgery, Lund University, Lund, Sweden
- Department of Surgery and Gastroenterology, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
193
|
Dong L, Wang X, Wang S, Du M, Niu C, Yang J, Li L, Zhang G, Fu B, Gao Y, Wang J. Interlaboratory assessment of droplet digital PCR for quantification of BRAF V600E mutation using a novel DNA reference material. Talanta 2019; 207:120293. [PMID: 31594564 DOI: 10.1016/j.talanta.2019.120293] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Droplet digital PCR (ddPCR) has attracted much attention in the detection of genetic signatures of cancer present at low levels in circulating tumor DNA (ctDNA) in blood. A growing number of laboratory-developed liquid biopsy tests based on such technology have become commercially available for clinical settings. To obtain consistent and comparable results, an international standard is necessary for validation of the analytical performance. In this study, a novel and SI-traceable "ctDNA" reference material (RM) carrying BRAF V600E was prepared by gravimetrically mixing a 152 bp PCR amplicon and sonicated wild-type genomic DNA. The ddPCR performance was evaluated by analyzing serial "ctDNA" dilutions using a competitive MGB assay. The mutant frequency concordance (k) between ddPCR and the gravimetrical value was 1.03 in the range from 53.9% to 0.1%. The limit of blank (LoB), detection (LoD) and quantification (LoQ) of ddPCR assay were determined to be 0.01%, 0.02% and 0.1%, respectively. Results from the interlaboratory study, using challenging low levels of BRAF V600E ctDNA RMs, demonstrated that the participating laboratories had the appropriate technical competency to perform accurate ddPCR-based low level of ratio measurements. However, a systematic error caused by uncorrected droplet volume in Naica Crystal ddPCR platform was found by using the ctDNA RM. Between-laboratory consistency in copy number measurement was greatly improved when a correct droplet volume was applied for the ddPCR measurement by using the ctDNA RM. This confirms that the "ctDNA" RM is fit for the validation of ddPCR systems for ctDNA quantification. This would also support translation of tests for circulating tumor DNA by ddPCR into routine use.
Collapse
Affiliation(s)
- Lianhua Dong
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China.
| | - Xia Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China
| | - Shangjun Wang
- Nanjing Institute of Measurement and Testing Technology, Nanjing, 210049, PR China
| | - Meihong Du
- Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing Center for Physical & Chemical Analysis, Beijing, 100093, PR China
| | - Chunyan Niu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China
| | - Jiayi Yang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China
| | - Liang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Ganlin Zhang
- Oncology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, PR China
| | - Boqiang Fu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China
| | - Jing Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China.
| |
Collapse
|
194
|
Suppan C, Brcic I, Tiran V, Mueller HD, Posch F, Auer M, Ercan E, Ulz P, Cote RJ, Datar RH, Dandachi N, Heitzer E, Balic M. Untargeted Assessment of Tumor Fractions in Plasma for Monitoring and Prognostication from Metastatic Breast Cancer Patients Undergoing Systemic Treatment. Cancers (Basel) 2019; 11:1171. [PMID: 31416207 PMCID: PMC6721524 DOI: 10.3390/cancers11081171] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to assess the prognostic and predictive value of an untargeted assessment of tumor fractions in the plasma of metastatic breast cancer patients and to compare circulating tumor DNA (ctDNA) with circulating tumor cells (CTC) and conventional tumor markers. In metastatic breast cancer patients (n = 29), tumor fractions in plasma were assessed using the untargeted mFAST-SeqS method from 127 serial blood samples. Resulting z-scores for the ctDNA were compared to tumor fractions established with the recently published ichorCNA algorithm and associated with the clinical outcome. We observed a close correlation between mFAST-SeqS z-scores and ichorCNA ctDNA quantifications. Patients with mFAST-SeqS z-scores above three (34.5%) showed significantly worse overall survival (p = 0.014) and progression-free survival (p = 0.018) compared to patients with lower values. Elevated z-score values were clearly associated with radiologically proven progression. The baseline CTC count, carcinoembryonic antigen (CEA), and cancer antigen (CA)15-5 had no prognostic impact on the outcome of patients in the analyzed cohort. This proof of principle study demonstrates the prognostic impact of ctDNA levels detected with mFAST-SeqS as a very fast and cost-effective means to assess the ctDNA fraction without prior knowledge of the genetic landscape of the tumor. Furthermore, mFAST-SeqS-based ctDNA levels provided an early means of measuring treatment response.
Collapse
Affiliation(s)
- Christoph Suppan
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Iva Brcic
- Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Verena Tiran
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Hannah D Mueller
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Florian Posch
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Martina Auer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria
| | - Erkan Ercan
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria
| | - Peter Ulz
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria
| | - Richard J Cote
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ram H Datar
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nadia Dandachi
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Research Unit Epigenetic and Genetic Cancer Biomarkers, Medical University of Graz, 8036 Graz, Austria.
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria.
- BioTechMed-Graz, 8036 Graz, Austria.
- Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, 8010 Graz, Austria.
| | - Marija Balic
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
- Research Unit Circulating Tumor Cells and Cancer Stem Cells, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
195
|
Chen YL, Lin CC, Yang SC, Chen WL, Chen JR, Hou YH, Lu CC, Chow NH, Su WC, Ho CL. Five Technologies for Detecting the EGFR T790M Mutation in the Circulating Cell-Free DNA of Patients With Non-small Cell Lung Cancer: A Comparison. Front Oncol 2019; 9:631. [PMID: 31380273 PMCID: PMC6646711 DOI: 10.3389/fonc.2019.00631] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/26/2019] [Indexed: 12/24/2022] Open
Abstract
Third-generation tyrosine kinase inhibitors (TKIs) were developed to overcome T790M-mediated resistance to earlier generations of epidermal growth factor receptor (EGFR)-targeted TKIs. We compared four well-established and one in-house method for the analysis of the EGFR T790M mutation in plasma cell-free DNA (cfDNA), in hope to find a better way to select non-small cell lung cancer (NSCLC) patients appropriate for 3rd-generation TKI therapy. For sensitivity levels of each method, plasmid DNA with EGFR T790M mutations was serially diluted with cfDNA from healthy controls with wild type EGFR. The clinical performance was analyzed in a clinical cohort of EGFR mutation-positive NSCLC patients with acquired EGFR TKI resistance (n = 40). All methods except the therascreen kit (Qiagen) had a sensitivity level of 10 copies of T790M plasmid DNA in the spiked specimen. The detection rates of the EGFR T790M mutation in plasma cfDNA from the clinical cohort were 42.5, 35, 32.5, 22.5, and 17.5% for the in-house ARMS method, Bio-Rad droplet digital PCR, PANAMutyper, Therascreen EGFR Plasma RGQ PCR Kit and Cobas EGFR Mutation kit (with suboptimal template amounts), respectively. Osimertinib was given to 17 of 20 patients with EGFR T790M mutations. The best treatment responses, based on the RECIST criteria, included 6 partial responses (PR) and 7 stable diseases (SD). The PANAMutyper and the Bio-Rad droplet digital PCR were comparable, the Cobas EGFR Mutation kit required significantly more template for testing. The best combination would be the in-house ARMS method plus the PANAMutyper or Bio-Rad droplet digital PCR, which would have a detection rate of 50% (20/40) and a disease control rate of 76% (13/17).
Collapse
Affiliation(s)
- Yi-Lin Chen
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.,Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,Association of Medical Technologists, Tainan, Taiwan
| | - Chien-Chung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Shu-Ching Yang
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.,Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Wan-Li Chen
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.,Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Jian-Rong Chen
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.,Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Hsin Hou
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.,Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Cheng-Chan Lu
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.,Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,College of Medicine, Institute of Molecular Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nan-Haw Chow
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.,Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,College of Medicine, Institute of Molecular Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wu-Chou Su
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,College of Medicine, Institute of Molecular Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Liang Ho
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.,Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,College of Medicine, Institute of Molecular Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
196
|
Coombes RC, Page K, Salari R, Hastings RK, Armstrong A, Ahmed S, Ali S, Cleator S, Kenny L, Stebbing J, Rutherford M, Sethi H, Boydell A, Swenerton R, Fernandez-Garcia D, Gleason KLT, Goddard K, Guttery DS, Assaf ZJ, Wu HT, Natarajan P, Moore DA, Primrose L, Dashner S, Tin AS, Balcioglu M, Srinivasan R, Shchegrova SV, Olson A, Hafez D, Billings P, Aleshin A, Rehman F, Toghill BJ, Hills A, Louie MC, Lin CHJ, Zimmermann BG, Shaw JA. Personalized Detection of Circulating Tumor DNA Antedates Breast Cancer Metastatic Recurrence. Clin Cancer Res 2019; 25:4255-4263. [PMID: 30992300 DOI: 10.1158/1078-0432.ccr-18-3663] [Citation(s) in RCA: 308] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/06/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Up to 30% of patients with breast cancer relapse after primary treatment. There are no sensitive and reliable tests to monitor these patients and detect distant metastases before overt recurrence. Here, we demonstrate the use of personalized circulating tumor DNA (ctDNA) profiling for detection of recurrence in breast cancer. EXPERIMENTAL DESIGN Forty-nine primary patients with breast cancer were recruited following surgery and adjuvant therapy. Plasma samples (n = 208) were collected every 6 months for up to 4 years. Personalized assays targeting 16 variants selected from primary tumor whole-exome data were tested in serial plasma for the presence of ctDNA by ultradeep sequencing (average >100,000X). RESULTS Plasma ctDNA was detected ahead of clinical or radiologic relapse in 16 of the 18 relapsed patients (sensitivity of 89%); metastatic relapse was predicted with a lead time of up to 2 years (median, 8.9 months; range, 0.5-24.0 months). None of the 31 nonrelapsing patients were ctDNA-positive at any time point across 156 plasma samples (specificity of 100%). Of the two relapsed patients who were not detected in the study, the first had only a local recurrence, whereas the second patient had bone recurrence and had completed chemotherapy just 13 days prior to blood sampling. CONCLUSIONS This study demonstrates that patient-specific ctDNA analysis can be a sensitive and specific approach for disease surveillance for patients with breast cancer. More importantly, earlier detection of up to 2 years provides a possible window for therapeutic intervention.
Collapse
Affiliation(s)
| | - Karen Page
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | | | - Robert K Hastings
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Anne Armstrong
- The Christie Foundation NHS Trust, Manchester, United Kingdom
| | - Samreen Ahmed
- Leicester Royal Infirmary, UHL NHS Trust, Leicester, United Kingdom
| | - Simak Ali
- Imperial College London, London, United Kingdom
| | | | - Laura Kenny
- Imperial College London, London, United Kingdom
| | | | - Mark Rutherford
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | | | - David S Guttery
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | | | | | | | - David A Moore
- University College London, Bloomsbury, London, United Kingdom
| | - Lindsay Primrose
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | - Bradley J Toghill
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | - Jaqueline A Shaw
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
197
|
Sota Y, Seno S, Shigeta H, Osato N, Shimoda M, Noguchi S, Matsuda H. Improvement of detection performance of fusion genes from RNA-seq data by clustering short reads. J Bioinform Comput Biol 2019; 17:1940008. [PMID: 31288642 DOI: 10.1142/s0219720019400080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fusion genes are involved in cancer, and their detection using RNA-Seq is insufficient given the relatively short reading length. Therefore, we proposed a shifted short-read clustering (SSC) method, which focuses on overlapping reads from the same loci and extends them as a representative sequence. To verify their usefulness, we applied the SSC method to RNA-Seq data from four types of cell lines (BT-474, MCF-7, SKBR-3, and T-47D). As the slide width of the SSC method increased to one, two, five, or ten bases, the read length was extended from 201 bases to 217 (108%), 234 (116%), 282 (140%), or 317 (158%) bases, respectively. Furthermore, fusion genes were investigated using STAR-Fusion, a fusion gene detection tool, with and without the SSC method. When one base was shifted by the SSC method, the reads mapped to multiple loci decreased from 9.7% to 4.6%, and the sensitivity of the fusion gene was improved from 47% to 54% on average (BT-474: from 48% to 57%, MCF-7: 49% to 53%, SKBR-3: 50% to 57%, and T-47D: 43% to 50%) compared with original data. When the reads are shifted more, the positive predictive value was also improved. The SSC method could be an effective method for fusion gene detection.
Collapse
Affiliation(s)
- Yoshiaki Sota
- * Graduate School of Information Science and Technology, Osaka University, 1-15 Yamadaoka, Suita, Osaka 565-0871, Japan.,† Graduate School of Medicine, Osaka University, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeto Seno
- * Graduate School of Information Science and Technology, Osaka University, 1-15 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hironori Shigeta
- * Graduate School of Information Science and Technology, Osaka University, 1-15 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoki Osato
- * Graduate School of Information Science and Technology, Osaka University, 1-15 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masafumi Shimoda
- † Graduate School of Medicine, Osaka University, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinzaburo Noguchi
- † Graduate School of Medicine, Osaka University, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideo Matsuda
- * Graduate School of Information Science and Technology, Osaka University, 1-15 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
198
|
Pondé NF, Zardavas D, Piccart M. Progress in adjuvant systemic therapy for breast cancer. Nat Rev Clin Oncol 2019; 16:27-44. [PMID: 30206303 DOI: 10.1038/s41571-018-0089-9] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The prognosis of patients with early stage breast cancer has greatly improved in the past three decades. Following the first adjuvant endocrine therapy and chemotherapy trials, continuous improvements of clinical outcomes have been achieved through intense therapeutic escalation, albeit with increased health-care costs and treatment-related toxicities. In contrast to the advances achieved in surgery or radiotherapy, the identification of the patient subgroups that will derive clinical benefit from therapeutic escalation has proved to be a daunting process hindered by a lack of collaboration between scientific groups and by the pace of drug development. In the past few decades, initiatives towards de-escalation of systemic adjuvant treatment have achieved success. Herein, we summarize attempts to escalate and de-escalate adjuvant systemic treatment for patients with breast cancer and argue that new, creative trial designs focused on patients' actual needs rather than on maximizing drug market size are needed. Ultimately, the adoption of effective treatments that do not needlessly expose patients and health-care systems to harm demands extensive international collaboration between academic groups, governments, and pharmaceutical companies.
Collapse
Affiliation(s)
- Noam F Pondé
- Research Department, Institut Jules Bordet, Academic Promoting Team, Brussels, Belgium
| | | | - Martine Piccart
- Research Department, Institut Jules Bordet, Brussels, Belgium.
| |
Collapse
|
199
|
Advances in liquid biopsy using circulating tumor cells and circulating cell-free tumor DNA for detection and monitoring of breast cancer. Clin Exp Med 2019; 19:271-279. [PMID: 31190187 DOI: 10.1007/s10238-019-00563-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 06/03/2019] [Indexed: 12/17/2022]
Abstract
Overview the progress of liquid biopsy using circulating tumor cells (CTCs) and circulating cell-free tumor DNA (cfDNA) to detect and monitor breast cancer. Based on numerous research efforts, the potential value of CTCs and cfDNA in the clinical aspects of cancer has become clear. With the development of next-generation sequencing analysis and newly developed technologies, many technical issues have been resolved, making liquid biopsy widely used in clinical practice. They can be powerful tools for dynamic monitoring of tumor progression and therapeutic efficacy. In the field of breast cancer, liquid biopsy is a research hot spot in recent years, playing a key role in monitoring breast cancer metastasis, predicting disease recurrence and assessing clinical drug resistance. Liquid biopsy has the advantages of noninvasive, high sensitivity, high specificity and real-time dynamic monitoring. Still application is far from reality, but the research and application prospects of CTCs and cfDNA in breast cancer are still worth exploring and discovering. This article reviews the main techniques and applications of CTCs and cfDNA in breast cancer.
Collapse
|
200
|
Cabel L, Proudhon C, Romano E, Girard N, Lantz O, Stern MH, Pierga JY, Bidard FC. Clinical potential of circulating tumour DNA in patients receiving anticancer immunotherapy. Nat Rev Clin Oncol 2019; 15:639-650. [PMID: 30050094 DOI: 10.1038/s41571-018-0074-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Considerable interest surrounds the use of immune-checkpoint inhibitors in patients with solid tumours following the demonstration of the impressive clinical efficacy of anti-programmed cell death protein 1 and anti-programmed cell death 1 ligand 1 antibodies in several tumour types. However, the emergence of unexpected tumour response patterns, such as pseudoprogression or hyperprogression, might complicate the management of patients receiving these agents. Analysis of circulating tumour DNA (ctDNA) has been shown to have prognostic value by enabling the detection of residual proliferating disease in the adjuvant setting and estimation of tumour burden in the metastatic setting, which are key stratification biomarkers for use of immune-checkpoint inhibition (ICI). Furthermore, examinations of ctDNA for genetic predictors of responsiveness to immunotherapy, such as mutations, tumour mutational load, and microsatellite instability provide a noninvasive surrogate for tumour biopsy sampling. Proof-of-concept reports have also demonstrated that quantitative changes in ctDNA levels early in the course of disease are a promising tool for the assessment of responsiveness to ICI that might complement standard imaging approaches. Other applications of this technology are also currently under investigation, such as early detection of resistance to immunotherapy and characterization of mechanisms of resistance. The aim of this Review is to summarize available data on the application of ctDNA in patients receiving immunotherapy and to discuss the most promising future directions.
Collapse
Affiliation(s)
- Luc Cabel
- Department of Medical Oncology, Institut Curie, PSL Research University, Paris, France.,Versailles Saint Quentin en Yvelines University, Paris Saclay University, Saint Cloud, Paris, France.,Circulating Tumor Biomarkers Laboratory, Institut Curie, PSL Research University, Paris, France
| | - Charlotte Proudhon
- Circulating Tumor Biomarkers Laboratory, Institut Curie, PSL Research University, Paris, France
| | - Emanuela Romano
- Department of Medical Oncology, Institut Curie, PSL Research University, Paris, France.,INSERM U932, Institut Curie, PSL Research University, Paris, France
| | - Nicolas Girard
- Department of Medical Oncology, Institut Curie, PSL Research University, Paris, France
| | - Olivier Lantz
- INSERM U932, Institut Curie, PSL Research University, Paris, France
| | - Marc-Henri Stern
- INSERM U830, Institut Curie, PSL Research University, Paris, France
| | - Jean-Yves Pierga
- Department of Medical Oncology, Institut Curie, PSL Research University, Paris, France.,Paris Descartes University, Paris, France
| | - François-Clément Bidard
- Department of Medical Oncology, Institut Curie, PSL Research University, Paris, France. .,Versailles Saint Quentin en Yvelines University, Paris Saclay University, Saint Cloud, Paris, France. .,Circulating Tumor Biomarkers Laboratory, Institut Curie, PSL Research University, Paris, France.
| |
Collapse
|