151
|
Noncanonical roles of p53 in cancer stemness and their implications in sarcomas. Cancer Lett 2022; 525:131-145. [PMID: 34742870 DOI: 10.1016/j.canlet.2021.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/24/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Impairment of the prominent tumor suppressor p53, well known for its canonical role as the "guardian of the genome", is found in almost half of human cancers. More recently, p53 has been suggested to be a crucial regulator of stemness, orchestrating the differentiation of embryonal and adult stem cells, suppressing reprogramming into induced pluripotent stem cells, or inhibiting cancer stemness (i.e., cancer stem cells, CSCs), which underlies the development of therapy-resistant tumors. This review addresses these noncanonical roles of p53 and their implications in sarcoma initiation and progression. Indeed, dysregulation of p53 family proteins is a common event in sarcomas and is associated with poor survival. Additionally, emerging studies have demonstrated that loss of wild-type p53 activity hinders the terminal differentiation of mesenchymal stem cells and leads to the development of aggressive sarcomas. This review summarizes recent findings on the roles of aberrant p53 in sarcoma development and stemness and further describes therapeutic approaches to restore normal p53 activity as a promising anti-CSC strategy to treat refractory sarcomas.
Collapse
|
152
|
Zargar P, Koochakkhani S, Hassanzadeh M, Ashouri Taziani Y, Nasrollahi H, Eftekhar E. Downregulation of topoisomerase 1 and 2 with acriflavine sensitizes bladder cancer cells to cisplatin-based chemotherapy. Mol Biol Rep 2022; 49:2755-2763. [PMID: 35088375 DOI: 10.1007/s11033-021-07087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Resistance to cisplatin is a major obstacle to effective treatment of bladder cancer (BC). The present study aimed to determine whether a combination of acriflavine (ACF) with cisplatin could potentiate the antitumor property of cisplatin against the BC cells. Furthermore, the molecular mechanism behind the anticancer action of ACF was considered. METHODS AND RESULTS Two human BC cells (5637 and EJ138) contain mutated form of p53 was culture in standard condition. Cotreatment protocol (simultaneous combination of IC30 value of ACF + various dose of cisplatin for 72 h) and pretreatment protocol (pretreatment with IC15 value of ACF for 24 h + various dose of cisplatin for 48 h) was used to determine the effect of ACF on the cells' sensitivity to main drug cisplatin. To assess the mechanism of action of ACF, real-time PCR was used to evaluate mRNA levels of hypoxia-inducible factor-1α (HIF-1α), Bax, Bcl-2, topoisomerase1 (TOP1) and topoisomerase 2 (TOP2A). Combination of ACF with cisplatin either as cotreatment or opretreatment protocol could significantly reduce the IC50 values of cisplatin as compared to the IC50 of cisplatin when use as a single drug. In addition, ACF could markedly decrease mRNA expression of TOP1 and TOP2A without changing the expression of HIF-1ɑ, Bax and Bcl-2. CONCLUSIONS Our findings indicate that combination of cisplatin with ACF was able to significantly enhance the sensitivity of BC cells to cisplatin. The antitumor activity of ACF is exerted through the downregulation of TOP1 and TOP2A genes expression. ACF may serve as an adjuvant to boost cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Parisa Zargar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Shabnaz Koochakkhani
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Marziyeh Hassanzadeh
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Yaghoub Ashouri Taziani
- Department of Medical Physics, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hamid Nasrollahi
- Radio-Oncology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ebrahim Eftekhar
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
153
|
Kinome-Wide Profiling Identifies Human WNK3 as a Target of Cajanin Stilbene Acid from Cajanus cajan (L.) Millsp. Int J Mol Sci 2022; 23:ijms23031506. [PMID: 35163434 PMCID: PMC8835736 DOI: 10.3390/ijms23031506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/09/2023] Open
Abstract
Pigeon Pea (Cajanus cajan (L.) Millsp.) is a common food crop used in many parts of the world for nutritional purposes. One of its chemical constituents is cajanin stilbene acid (CSA), which exerts anticancer activity in vitro and in vivo. In an effort to identify molecular targets of CSA, we performed a kinome-wide approach based on the measurement of the enzymatic activities of 252 human kinases. The serine-threonine kinase WNK3 (also known as protein kinase lysine-deficient 3) was identified as the most promising target of CSA with the strongest enzymatic activity inhibition in vitro and the highest binding affinity in molecular docking in silico. The lowest binding affinity and the predicted binding constant pKi of CSA (−9.65 kcal/mol and 0.084 µM) were comparable or even better than those of the known WNK3 inhibitor PP-121 (−9.42 kcal/mol and 0.123 µM). The statistically significant association between WNK3 mRNA expression and cellular responsiveness to several clinically established anticancer drugs in a panel of 60 tumor cell lines and the prognostic value of WNK3 mRNA expression in sarcoma biopsies for the survival time of 230 patients can be taken as clues that CSA-based inhibition of WNK3 may improve treatment outcomes of cancer patients and that CSA may serve as a valuable supplement to the currently used combination therapy protocols in oncology.
Collapse
|
154
|
Wang CZ, Wan C, Luo Y, Zhang CF, Zhang QH, Chen L, Liu Z, Wang DH, Lager M, Li CH, Jiang TL, Hou L, Yuan CS. Effects of dihydroartemisinin, a metabolite of artemisinin, on colon cancer chemoprevention and adaptive immune regulation. Mol Biol Rep 2022; 49:2695-2709. [PMID: 35040004 DOI: 10.1007/s11033-021-07079-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Artemisinin (ART) is an anti-malaria natural compound with a moderate anticancer action. As a metabolite of ART, dihydroartemisinin (DHA) may have stronger anti-colorectal cancer (CRC) bioactivities. However, the effects of DHA and ART on CRC chemoprevention, including adaptive immune regulation, have not been systematically evaluated and compared. METHODS Coupled with a newly-established HPLC analytical method, enteric microbiome biotransformation was conducted to identify if the DHA is a gut microbial metabolite of ART. The anti-CRC potential of these compounds was compared using two different human CRC cell lines for cell cycle arrest, apoptotic induction, and anti-inflammation activities. Naive CD4+ T cells were also obtained for testing the compounds on the differentiation of Treg, Th1 and Th17. RESULTS Using compound extraction and analytical methods, we observed for the first time that ART completely converted into its metabolites by gut microbiome within 24 h, but no DHA was detected. Although ART did not obviously influence cancer cell growth in the concentration tested, DHA very significantly inhibited the cancer cell growth at relatively low concentrations. DHA included G2/M cell cycle arrest via upregulation of cyclin A and apoptosis. Both ART and DHA downregulated the pro-inflammatory cytokine expression. The DHA significantly promoted Treg cell proliferation, while both ART and DHA inhibited Th1 and Th17 cell differentiation. CONCLUSIONS As a metabolite of ART, DHA possessed stronger anti-CRC activities. The DHA significantly inhibited cell growth via cell cycle arrest, apoptosis induction and anti-inflammation actions. The adaptive immune regulation is a related mechanism of actions for the observed effects.
Collapse
Affiliation(s)
- Chong-Zhi Wang
- Central Laboratory, The No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China.
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, IL, 60637, USA.
| | - Chunping Wan
- Central Laboratory, The No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, IL, 60637, USA
| | - Yun Luo
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, IL, 60637, USA
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Qi-Hui Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Lina Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Zhi Liu
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, IL, 60637, USA
| | - Daniel H Wang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, IL, 60637, USA
| | - Mallory Lager
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, IL, 60637, USA
| | - Cang-Hai Li
- Tang Center for Traditional Chinese Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ting-Liang Jiang
- Tang Center for Traditional Chinese Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lifei Hou
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, IL, 60637, USA
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
155
|
Bailey S, André N, Gandola L, Massimino M, Wheatley K, Gates S, Homer V, Rutkowski S, Clifford SC. Clinical Trials in High-Risk Medulloblastoma: Evolution of the SIOP-Europe HR-MB Trial. Cancers (Basel) 2022; 14:374. [PMID: 35053536 PMCID: PMC8773789 DOI: 10.3390/cancers14020374] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Medulloblastoma patients receive adapted therapies stratified according to their risk-profile. Favourable, standard, and high disease-risk groups are each defined by the status of clinical and pathological risk factors, alongside an evolving repertoire of diagnostic and prognostic biomarkers. Medulloblastoma clinical trials in Europe are coordinated by the International Society for Paediatric Oncology (SIOP-Europe) brain tumour group. Favourable and standard-risk patients are eligible for the SIOP-PNET5-MB clinical trial protocol. In contrast, therapies for high-risk disease worldwide have, to date, encompassed a range of different treatment philosophies, with no clear consensus on approach. Higher radiotherapy doses are typically deployed, delivered either conventionally or in hyper-fractionated/accelerated regimens. Similarly, both standard and high-dose chemotherapies were assessed. However, trials to date in high-risk medulloblastoma have commonly been institutional or national, based on modest cohort sizes, and have not evaluated the relative performance of different strategies in a randomised fashion. We describe the concepts and design of the SIOP-E high-risk medulloblastoma clinical trial (SIOP-HR-MB), the first international biomarker-driven, randomised, clinical trial for high-risk medulloblastoma. SIOP-HR-MB is programmed to recruit >800 patients in 16 countries across Europe; its primary objectives are to assess the relative efficacies of the alternative established regimens. The HR-MB patient population is molecularly and clinically defined, and upfront assessments incorporate a standardised central review of molecular pathology, radiology, and radiotherapy quality assurance. Secondary objectives include the assessment of (i) novel therapies within an upfront 'window' and (ii) therapy-associated neuropsychology, toxicity, and late effects, alongside (iii) the collection of materials for comprehensive integrated studies of biological determinants within the SIOP-HR-MB cohort.
Collapse
Affiliation(s)
- Simon Bailey
- Great North Children’s Hospital, Queen Victoria Road, Newcastle upon Tyne NE1 4LP, UK
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Nicolas André
- Pediatric Hematology and Oncology Department, Hôpital Pour Enfants de La Timone, AP-HM, 13005 Marseille, France;
- Centre de Recherche en Cancérologie de Marseille, SMARTc Unit, Inserm U1068, Aix Marseille University, 13005 Marseille, France
| | - Lorenza Gandola
- Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Maura Massimino
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Keith Wheatley
- Cancer Research UK Clinical Trials Unit, University of Birimingham, Birmingham B15 2TT, UK; (K.W.); (S.G.); (V.H.)
| | - Simon Gates
- Cancer Research UK Clinical Trials Unit, University of Birimingham, Birmingham B15 2TT, UK; (K.W.); (S.G.); (V.H.)
| | - Victoria Homer
- Cancer Research UK Clinical Trials Unit, University of Birimingham, Birmingham B15 2TT, UK; (K.W.); (S.G.); (V.H.)
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Steven C. Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| |
Collapse
|
156
|
Effects of Anti-Cancer Drug Sensitivity-Related Genetic Differences on Therapeutic Approaches in Refractory Papillary Thyroid Cancer. Int J Mol Sci 2022; 23:ijms23020699. [PMID: 35054884 PMCID: PMC8776099 DOI: 10.3390/ijms23020699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Thyroid cancer (TC) includes tumors of follicular cells; it ranges from well differentiated TC (WDTC) with generally favorable prognosis to clinically aggressive poorly differentiated TC (PDTC) and undifferentiated TC (UTC). Papillary thyroid cancer (PTC) is a WDTC and the most common type of thyroid cancer that comprises almost 70–80% of all TC. PTC can present as a solid, cystic, or uneven mass that originates from normal thyroid tissue. Prognosis of PTC is excellent, with an overall 10-year survival rate >90%. However, more than 30% of patients with PTC advance to recurrence or metastasis despite anti-cancer therapy; consequently, systemic therapy is limited, which necessitates expansion of improved clinical approaches. We strived to elucidate genetic distinctions due to patient-derived anti-cancer drug-sensitive or -resistant PTC, which can support in progress novel therapies. Patients with histologically proven PTC were evaluated. PTC cells were gained from drug-sensitive and -resistant patients and were compared using mRNA-Seq. We aimed to assess the in vitro and in vivo synergistic anti-cancer effects of a novel combination therapy in patient-derived refractory PTC. This combination therapy acts synergistically to promote tumor suppression compared with either agent alone. Therefore, genetically altered combination therapy might be a novel therapeutic approach for refractory PTC.
Collapse
|
157
|
What Are the Prospects for Treating TP53 Mutated Myelodysplastic Syndromes and Acute Myeloid Leukemia? Cancer J 2022; 28:51-61. [DOI: 10.1097/ppo.0000000000000569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
158
|
Single-cell transcriptomics of neuroblastoma identifies chemoresistance-associated genes and pathways. Comput Struct Biotechnol J 2022; 20:4437-4445. [PMID: 36051886 PMCID: PMC9418686 DOI: 10.1016/j.csbj.2022.08.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
High-Risk neuroblastoma (NB) survival rate is still <50%, despite treatments being more and more aggressive. The biggest hurdle liable to cancer therapy failure is the drug resistance by tumor cells that is likely due to the intra-tumor heterogeneity (ITH). To investigate the link between ITH and therapy resistance in NB, we performed a single cell RNA sequencing (scRNAseq) of etoposide and cisplatin resistant NB and their parental cells. Our analysis showed a clear separation of resistant and parental cells for both conditions by identifying 8 distinct tumor clusters in etoposide-resistant/parental and 7 in cisplatin-resistant/parental cells. We discovered that drug resistance can affect NB cell identities; highlighting the bi-directional ability of adrenergic-to-mesenchymal transition of NB cells. The biological processes driving the identified resistant cell subpopulations revealed genes such as (BARD1, BRCA1, PARP1, HISTH1 axis, members of RPL family), suggesting a potential drug resistance due to the acquisition of DNA repair mechanisms and to the modification of the drug targets. Deconvolution analysis of bulk RNAseq data from 498 tumors with cell subpopulation signatures showed that the transcriptional heterogeneity of our cellular models reflected the ITH of NB tumors and allowed the identification of clusters associated with worse/better survival. Our study demonstrates the distinct cell populations characterized by genes involved in different biological processes can have a role in NB drug treatment failure. These findings evidence the importance of ITH in NB drug resistance studies and the chance that scRNA-seq analysis offers in the identification of genes and pathways liable for drug resistance.
Collapse
|
159
|
Stati G, Passaretta F, Gindraux F, Centurione L, Di Pietro R. The Role of the CREB Protein Family Members and the Related Transcription Factors in Radioresistance Mechanisms. Life (Basel) 2021; 11:life11121437. [PMID: 34947968 PMCID: PMC8706059 DOI: 10.3390/life11121437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 02/05/2023] Open
Abstract
In the framework of space flight, the risk of radiation carcinogenesis is considered a "red" risk due to the high likelihood of occurrence as well as the high potential impact on the quality of life in terms of disease-free survival after space missions. The cyclic AMP response element-binding protein (CREB) is overexpressed both in haematological malignancies and solid tumours and its expression and function are modulated following irradiation. The CREB protein is a transcription factor and member of the CREB/activating transcription factor (ATF) family. As such, it has an essential role in a wide range of cell processes, including cell survival, proliferation, and differentiation. Among the CREB-related nuclear transcription factors, NF-κB and p53 have a relevant role in cell response to ionising radiation. Their expression and function can decide the fate of the cell by choosing between death or survival. The aim of this review was to define the role of the CREB/ATF family members and the related transcription factors in the response to ionising radiation of human haematological malignancies and solid tumours.
Collapse
Affiliation(s)
- Gianmarco Stati
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
- Correspondence: ; Tel.: +39-08713554567
| | - Francesca Passaretta
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Florelle Gindraux
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, 25030 Besançon, France;
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU, 25030 Besançon, France
| | - Lucia Centurione
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| |
Collapse
|
160
|
Abdul Razak AR, Bauer S, Suarez C, Lin CC, Quek R, Hütter-Krönke ML, Cubedo R, Ferretti S, Guerreiro N, Jullion A, Orlando EJ, Clementi G, Sand Dejmek J, Halilovic E, Fabre C, Blay JY, Italiano A. Co-Targeting of MDM2 and CDK4/6 with Siremadlin and Ribociclib for the Treatment of Patients with Well-Differentiated or Dedifferentiated Liposarcoma: Results From a Proof-of-Concept, Phase Ib Study. Clin Cancer Res 2021; 28:1087-1097. [PMID: 34921024 DOI: 10.1158/1078-0432.ccr-21-1291] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/28/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Well-differentiated (WDLPS) and dedifferentiated (DDLPS) liposarcoma are characterized by co-amplification of the murine double minute-2 (MDM2) and cyclin-dependent kinase-4 (CDK4) oncogenes. Siremadlin, a p53-MDM2 inhibitor, was combined with ribociclib, a CDK4/6 inhibitor, in patients with locally advanced/metastatic WDLPS or DDLPS who had radiologically progressed on, or despite, prior systemic therapy. METHODS In this proof-of-concept, phase Ib, dose-escalation study, patients received siremadlin and ribociclib across different regimens until unacceptable toxicity, disease progression, and/or treatment discontinuation: Regimen A (4-week cycle: siremadlin once daily [QD] and ribociclib QD, [2 weeks on, 2 weeks off]); Regimen B (3-week cycle: siremadlin once every 3 weeks; ribociclib QD [2 weeks on, 1 week off]); Regimen C (4-week cycle: siremadlin once every 4 weeks; ribociclib QD [2 weeks on, 2 weeks off]). The primary objective was to determine the maximum tolerated dose and/or recommended dose for expansion (RDE) of siremadlin plus ribociclib in one or more regimens. RESULTS As of 16 October 2019 (last patient last visit), 74 patients had enrolled. Median duration of exposure was 13 (range, 1-174) weeks. Dose-limiting toxicities occurred in 10 patients, most of which were Grade 3/4 hematologic events. The RDE was siremadlin 120 mg every 3 weeks plus ribociclib 200 mg QD (Regimen B). Three patients achieved a partial response, and 38 achieved stable disease. One patient (Regimen C) died as a result of treatment-related hematotoxicity. CONCLUSION Siremadlin plus ribociclib demonstrated manageable toxicity and early signs of antitumor activity in patients with advanced WDLPS or DDLPS.
Collapse
Affiliation(s)
| | - Sebastian Bauer
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany; DKTK partner site Essen and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Cristina Suarez
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO)
| | - Chia-Chi Lin
- Department of Oncology, National Taiwan University Hospital
| | | | | | - Ricardo Cubedo
- Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda
| | | | | | | | | | - Giorgia Clementi
- Translational Clinical Oncology, Novartis Institutes for BioMedical Research
| | | | | | | | - Jean-Yves Blay
- Medecine, Centre Leon Bérard, Univ Claude Bernard, Unicancer
| | | |
Collapse
|
161
|
Munisamy M, Mukherjee N, Thomas L, Pham AT, Shakeri A, Zhao Y, Kolesar J, Rao PPN, Rangnekar VM, Rao M. Therapeutic opportunities in cancer therapy: targeting the p53-MDM2/MDMX interactions. Am J Cancer Res 2021; 11:5762-5781. [PMID: 35018225 PMCID: PMC8727821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/22/2021] [Indexed: 06/14/2023] Open
Abstract
Ubiquitination is a key enzymatic post-translational modification that influences p53 stability and function. p53 protein regulates the expression of MDM2 (mouse double-minute 2 protein) E3 ligase and MDMX (double-minute 4 protein), through proteasome-based degradation. Exploration of targeting the ubiquitination pathway offers a potentially promising strategy for precision therapy in a variety of cancers. The p53-MDM2-MDMX pathway provides multiple molecular targets for small molecule screening as potential therapies for wild-type p53. As a result of its effect on molecular carcinogenesis, a personalized therapeutic approach based on the wild-type and mutant p53 protein is desirable. We highlighted the implications of p53 mutations in cancer, p53 ubiquitination mechanistic details, targeting p53-MDM2/MDMX interactions, significant discoveries related to MDM2 inhibitor drug development, MDM2 and MDMX dual target inhibitors, and clinical trials with p53-MDM2/MDMX-targeted drugs. We also investigated potential therapeutic repurposing of selective estrogen receptor modulators (SERMs) in targeting p53-MDM2/MDMX interactions. Molecular docking studies of SERMs were performed utilizing the solved structures of the p53/MDM2/MDMX proteins. These studies identified ormeloxifene as a potential dual inhibitor of p53/MDM2/MDMX interaction, suggesting that repurposing SERMs for dual targeting of p53/MDM2 and p53/MDMX interactions is an attractive strategy for targeting wild-type p53 tumors and warrants further preclinical research.
Collapse
Affiliation(s)
- Murali Munisamy
- Department of Translational Medicine Centre, All India Institute of Medical SciencesBhopal, Madhya Pradesh 462020, India
- Department of Pharmacy Practice, Center for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher EducationManipal, Karnataka 576104, India
| | - Nayonika Mukherjee
- Department of Pharmacy Practice, Center for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher EducationManipal, Karnataka 576104, India
| | - Levin Thomas
- Department of Pharmacy Practice, Center for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher EducationManipal, Karnataka 576104, India
| | - Amy Trinh Pham
- Medicinal and Bioorganic Chemistry Lab, School of Pharmacy, Health Sciences Campus, 200 University Avenue West, University of WaterlooWaterloo, ON N2L 3G1, Canada
| | - Arash Shakeri
- Medicinal and Bioorganic Chemistry Lab, School of Pharmacy, Health Sciences Campus, 200 University Avenue West, University of WaterlooWaterloo, ON N2L 3G1, Canada
| | - Yusheng Zhao
- Medicinal and Bioorganic Chemistry Lab, School of Pharmacy, Health Sciences Campus, 200 University Avenue West, University of WaterlooWaterloo, ON N2L 3G1, Canada
| | - Jill Kolesar
- Department of Pharmacy Practice & Science, University of Kentucky567 TODD Building, 789 South Limestone Street, Lexington, Kentucky 40539-0596, USA
| | - Praveen P N Rao
- Medicinal and Bioorganic Chemistry Lab, School of Pharmacy, Health Sciences Campus, 200 University Avenue West, University of WaterlooWaterloo, ON N2L 3G1, Canada
| | - Vivek M Rangnekar
- Markey Cancer Center, University of KentuckyLexington, Kentucky 40536, USA
| | - Mahadev Rao
- Department of Pharmacy Practice, Center for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher EducationManipal, Karnataka 576104, India
| |
Collapse
|
162
|
Connelly JA. Diagnosis and therapeutic decision-making for the neutropenic patient. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:492-503. [PMID: 34889413 PMCID: PMC8791128 DOI: 10.1182/hematology.2021000284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Determining the cause of a low neutrophil count in a pediatric or adult patient is essential for the hematologist's clinical decision-making. Fundamental to this diagnostic process is establishing the presence or lack of a mature neutrophil storage pool, as absence places the patient at higher risk for infection and the need for supportive care measures. Many diagnostic tests, eg, a peripheral blood smear and bone marrow biopsy, remain important tools, but greater understanding of the diversity of neutropenic disorders has added new emphasis on evaluating for immune disorders and genetic testing. In this article, a structure is provided to assess patients based on the mechanism of neutropenia and to prioritize testing based on patient age and hypothesized pathophysiology. Common medical quandaries including fever management, need for growth factor support, risk of malignant transformation, and curative options in congenital neutropenia are reviewed to guide medical decision-making in neutropenic patients.
Collapse
Affiliation(s)
- James A. Connelly
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
163
|
Malik MA, Raza MK, Mohammed A, Wani MY, Al-Bogami AS, Hashmi AA. Unravelling the anticancer potential of a square planar copper complex: toward non-platinum chemotherapy. RSC Adv 2021; 11:39349-39361. [PMID: 35492449 PMCID: PMC9044439 DOI: 10.1039/d1ra06227a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/20/2021] [Indexed: 12/17/2022] Open
Abstract
Coordination compounds from simple transition metals are robust substitutes for platinum-based complexes due to their remarkable anticancer properties. In a quest to find new metal complexes that could substitute or augment the platinum based chemotherapy we synthesized three transition metal complexes C1-C3 with Cu(ii), Ni(ii), and Co(ii) as the central metal ions, respectively, and evaluated them for their anticancer activity against the human keratinocyte (HaCaT) cell line and human cervical cancer (HeLa) cell lines. These complexes showed different activity profiles with the square planar copper complex C1 being the most active with IC50 values lower than those of the widely used anticancer drug cisplatin. Assessment of the morphological changes by DAPI staining and ROS generation by DCFH-DA assay exposed that the cell death occurred by caspase-3 mediated apoptosis. C1 displayed interesting interactions with Ct-DNA, evidenced by absorption spectroscopy and validated by docking studies. Together, our results suggest that binding of the ligand to the DNA-binding domain of the p53 tumor suppressor (p53DBD) protein and the induction of the apoptotic hallmark protein, caspase-3, upon treatment with the metal complex could be positively attributed to a higher level of ROS and the subsequent DNA damage (oxidation), generated by the complex C1, that could well explain the interesting anticancer activity observed for this complex.
Collapse
Affiliation(s)
- Manzoor Ahmad Malik
- Bioinorganic Lab., Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
- Department of Chemistry, University of Kashmir Srinagar Jammu and Kashmir India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Arif Mohammed
- Department of Biology, College of Science, University of Jeddah Jeddah 21589 Saudi Arabia
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah Jeddah 21589 Saudi Arabia
| | | | - Athar Adil Hashmi
- Bioinorganic Lab., Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| |
Collapse
|
164
|
Response of MCF-7 Breast Cancer Cells Overexpressed with P-Glycoprotein to Apoptotic Induction after Photodynamic Therapy. Molecules 2021; 26:molecules26237412. [PMID: 34885994 PMCID: PMC8658844 DOI: 10.3390/molecules26237412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance (MDR) has posed a significant threat to cancer treatment and has led to the emergence of a new therapeutic regime of photodynamic therapy (PDT) to curb the menace. The PDT modality employs a photosensitiser (PS), excited at a specific wavelength of light to kill cancer cells. In the present study, we used a zinc phthalocyanine tetrasulfonic acid PS to mediate the photodynamic killing of MCF-7 cells overexpressed with P-glycoprotein (P-gp) and investigate the response to cell death induction. After photodynamic treatment, MCF-7 cells undergo cell death, and indicators like Annexin V/PI staining, DNA fragmentation, and measurement of apoptotic protein expression were investigated. Results showed increased externalisation of phosphatidylserine protein, measured as a percentage in flow cytometry indicative of apoptotic induction. This expression was significant (p < 0.006) for the untreated control cells, and there was no detection of DNA fragments after a laser fluence of 20 J/cm2. In addition, a statistically significant difference (p < 0.05) was seen in caspase 8 activity and Bax protein expression. These findings were indicative of apoptotic induction and thus seem to represent the extrinsic apoptotic pathway. This study shows the role of PDT in the treatment of a resistant phenotype breast cancer.
Collapse
|
165
|
Synthesis, characterization and in vitro evaluation of cytotoxicity and antibacterial properties of vanadyl complexes of the pyridoxal Schiff bases. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
166
|
Rath S, Jagadeb M, Bhuyan R. Molecular docking of bioactive compounds derived from Moringa oleifera with p53 protein in the apoptosis pathway of oral squamous cell carcinoma. Genomics Inform 2021; 19:e46. [PMID: 35012289 PMCID: PMC8752987 DOI: 10.5808/gi.21062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
Moringa oleifera is nowadays raising as the most preferred medicinal plant, as every part of the moringa plant has potential bioactive compounds which can be used as herbal medicines. Some bioactive compounds of M. oleifera possess potential anti-cancer properties which interact with the apoptosis protein p53 in cancer cell lines of oral squamous cell carcinoma. This research work focuses on the interaction among the selected bioactive compounds derived from M. oleifera with targeted apoptosis protein p53 from the apoptosis pathway to check whether the bioactive compound will induce apoptosis after the mutation in p53. To check the toxicity and drug-likeness of the selected bioactive compound derived from M. oleifera based on Lipinski's Rule of Five. Detailed analysis of the 3D structure of apoptosis protein p53. To analyze protein's active site by CASTp 3.0 server. Molecular docking and binding affinity were analyzed between protein p53 with selected bioactive compounds in order to find the most potential inhibitor against the target. This study shows the docking between the potential bioactive compounds with targeted apoptosis protein p53. Quercetin was the most potential bioactive compound whereas kaempferol shows poor affinity towards the targeted p53 protein in the apoptosis pathway. Thus, the objective of this research can provide an insight prediction towards M. oleifera derived bioactive compounds and target apoptosis protein p53 in the structural analysis for compound isolation and in-vivo experiments on the cancer cell line.
Collapse
Affiliation(s)
- Sonali Rath
- Department of Medical Research Health Sciences, IMS and SUM Hospital, Siksha ‘O’ Anusandhan (Deemed to be) University, Bhubaneswar 751003, India
| | - Manaswini Jagadeb
- Department of Bioinformatics, Centre for Post Graduate Studies, Odisha University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Ruchi Bhuyan
- Department of Medical Research Health Sciences, IMS and SUM Hospital, Siksha ‘O’ Anusandhan (Deemed to be) University, Bhubaneswar 751003, India
- Department of Oral Pathology and Microbiology and Department of Medical Research Health Sciences, IMS and SUM Hospital, Siksha ‘O’ Anusandhan (Deemed to be) University, Bhubaneswar 751003, India
| |
Collapse
|
167
|
Neal A, Lai T, Singh T, Rahseparian N, Grogan T, Elashoff D, Scott P, Pellegrini M, Memarzadeh S. Combining ReACp53 with Carboplatin to Target High-Grade Serous Ovarian Cancers. Cancers (Basel) 2021; 13:5908. [PMID: 34885017 PMCID: PMC8657291 DOI: 10.3390/cancers13235908] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 01/19/2023] Open
Abstract
Ovarian malignancies are a leading cause of cancer-related death for US women. High-grade serous ovarian carcinomas (HGSOCs), the most common ovarian cancer subtype, are aggressive tumors with poor outcomes. Mutations in TP53 are common in HGSOCs, with a subset resulting in p53 aggregation and misregulation. ReACp53 is a peptide designed to inhibit mutant p53 aggregation and has been shown efficacious in targeting cancer cells in vitro and in vivo. As p53 regulates apoptosis, combining ReACp53 with carboplatin represents a logical therapeutic strategy. The efficacy of this combinatorial approach was tested in eight ovarian cancer cell lines and 10 patient HGSOC samples using an in vitro organoid drug assay, with the SynergyFinder tool utilized for calculating drug interactions. Results demonstrate that the addition of ReACp53 to carboplatin enhanced tumor cell targeting in the majority of samples tested, with synergistic effects measured in 2 samples, additivity measured in 14 samples, and antagonism measured in 1 sample. This combination was found to be synergistic in OVCAR3 ovarian cancer cells in vitro through enhanced apoptosis, and survival of mice bearing OVCAR3 intraperitoneal xenografts was extended when treated with the addition of ReACp53 to carboplatin versus carboplatin alone. Results suggest that carboplatin and ReACp53 may be a potential strategy in targeting a subset of HGSOCs.
Collapse
Affiliation(s)
- Adam Neal
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.N.); (T.L.); (T.S.); (N.R.)
- UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Tiffany Lai
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.N.); (T.L.); (T.S.); (N.R.)
| | - Tanya Singh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.N.); (T.L.); (T.S.); (N.R.)
- UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Neela Rahseparian
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.N.); (T.L.); (T.S.); (N.R.)
- UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Tristan Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (T.G.); (D.E.)
| | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (T.G.); (D.E.)
| | - Peter Scott
- Department of Life, Earth, and Environmental Sciences, West Texas A&M University, Canyon, TX 79016, USA;
| | - Matteo Pellegrini
- UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sanaz Memarzadeh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.N.); (T.L.); (T.S.); (N.R.)
- UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
- The VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
168
|
Zhou H, Bian T, Qian L, Zhao C, Zhang W, Zheng M, Zhou H, Liu L, Sun H, Li X, Zhang J, Liu Y. Prognostic model of lung adenocarcinoma constructed by the CENPA complex genes is closely related to immune infiltration. Pathol Res Pract 2021; 228:153680. [PMID: 34798483 DOI: 10.1016/j.prp.2021.153680] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is still one of the primary malignant diseases leading to higher mortality worldwide. It has been previously reported that multiple genes in the CENPA-nucleosome associated complex (NAC) complex in lung cancer can be used as prognostic markers; however, there is lack of comprehensive research on the CENPA-NAC complex. METHODS The hub genes of lung cancer were obtained by analyzing multiple gene expression omnibus (GEO) lung cancer datasets. The key genes of the CENPA-NAC complex in the evolution of LUAD were identified according to lung cancer data obtained from The Cancer Genome Atlas (TCGA) database, and the key genes were constructed as a survival prognostic model. The relationship between the model and immune cell infiltration was studied by the Tumor Immune Estimation Resource (TIMER) and single-sample gene set enrichment analysis (ssGSEA) studies.Droplet Digital polymerase chain reaction (ddPCR) was used to verify the effectiveness of the prognostic model to predict survival using clinical samples. RESULTS A comprehensive study showed that CENPA, CENPH, CENPM, CENPN and CENPU were key genes in the development and evolution of LUAD. The constructed survival prognosis model was an independent risk factor for LUAD and can be used to assess the survival of LUAD patients. The risk score was closely related to the infiltration of multiple immune cells. The independent cohorts GSE31210 and GSE50081 further confirmed the validity of the prognostic model, and finally, the model was validated with clinical samples. CONCLUSIONS In conclusion, the results of the present study showed that CENPA, CENPH, CENPM, CENPN, and CENPU are a group of potential prognostic markers in LUAD. The constructed model has been confirmed to be applicable in the clinical setting in evaluating the survival of patients with LUAD, and providing more evidence on immunotherapy for LUAD.
Collapse
Affiliation(s)
- Haomiao Zhou
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China; Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Tingting Bian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Li Qian
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Cui Zhao
- Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Weiju Zhang
- Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Miaosen Zheng
- Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Hao Zhou
- Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Hui Sun
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaoli Li
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China; Medical School of Nantong University, Nantong 226001, Jiangsu, China.
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China; Medical School of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
169
|
Porpaczy E, Wohlfarth P, Königsbrügge O, Rabitsch W, Skrabs C, Staber P, Worel N, Müllauer L, Simonitsch-Klupp I, Kornauth C, Rohrbeck J, Jaeger U, Schiefer AI. Influence of TP53 Mutation on Survival of Diffuse Large B-Cell Lymphoma in the CAR T-Cell Era. Cancers (Basel) 2021; 13:cancers13225592. [PMID: 34830747 PMCID: PMC8616128 DOI: 10.3390/cancers13225592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The genetic landscape of diffuse large B-cell lymphoma (DLBCL) is heterogenous. So far, detailed studies about TP53 mutations in DLBCL treated with anti-CD19 chimeric antigen receptor T-cell (CAR T cells) therapy are still missing. Chemotherapy resistance is one of the challenges in TP53 mutated tumors. New immunomodulatory agents, such as different inhibitors or CAR T cells, have shown durable responses in refractory/relapsed DLBCL in recent years. Although our CAR T cell treated cohort was small, we aimed to investigate the influence of TP53 mutations on overall survival of patients treated with CAR T cells compared to DLBCL patients without CAR T-cell therapy. Identification of risk factors for treatment failure may aid in choosing the most promising treatment in every setting. Abstract Refractory/relapsed diffuse large B-cell lymphoma (DLBCL) is associated with poor outcome. The clinical behavior and genetic landscape of DLBCL is heterogeneous and still not fully understood. TP53 mutations in DLBCL have been identified as markers of poor prognosis and are often associated with therapeutic resistance. Chimeric antigen receptor T-cell therapy is an innovative therapeutic concept and represents a game-changing therapeutic option by supporting the patient’s own immune system to kill the tumor cells. We investigated the impact of TP53 mutations on the overall survival of refractory/relapsed DLBCL patients treated with comparable numbers of therapy lines. The minimum number of therapy lines was 2 (median 4), including either anti-CD19 CAR T-cell therapy or conventional salvage therapy. A total of 170 patients with DLBCL and high-grade B-cell lymphoma with MYC, BCL2, and/or BCL6 rearrangements (DHL/THL), diagnosed and treated in our hospital between 2000 and 2021, were included. Twenty-nine of them received CAR T-cell therapy. TP53 mutations were found in 10/29 (35%) and 31/141 (22%) of patients in the CAR T-cell and conventional groups, respectively. Among the 141 patients not treated with CAR T cells, TP53 mutation was an independent prognostic factor for overall survival (OS) (median 12 months with TP53 vs. not reached without TP53 mutation, p < 0.005), but in the CAR T cell treated group, this significance could not be shown (median OS 30 vs. 120 months, p = 0.263). The findings from this monocentric retrospective study indicate that TP53 mutation status does not seem to affect outcomes in DLBCL patients treated with CAR T-cell therapy. Detailed evaluation in large cohorts is warranted.
Collapse
Affiliation(s)
- Edit Porpaczy
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (E.P.); (O.K.); (C.S.); (P.S.); (U.J.)
| | - Philipp Wohlfarth
- Department of Internal Medicine I, Hematopoietic Stem Cell Transplantation Unit, Medical University of Vienna, 1090 Vienna, Austria; (P.W.); (W.R.)
| | - Oliver Königsbrügge
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (E.P.); (O.K.); (C.S.); (P.S.); (U.J.)
| | - Werner Rabitsch
- Department of Internal Medicine I, Hematopoietic Stem Cell Transplantation Unit, Medical University of Vienna, 1090 Vienna, Austria; (P.W.); (W.R.)
| | - Cathrin Skrabs
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (E.P.); (O.K.); (C.S.); (P.S.); (U.J.)
| | - Philipp Staber
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (E.P.); (O.K.); (C.S.); (P.S.); (U.J.)
| | - Nina Worel
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (L.M.); (I.S.-K.); (C.K.); (J.R.)
| | - Ingrid Simonitsch-Klupp
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (L.M.); (I.S.-K.); (C.K.); (J.R.)
| | - Christoph Kornauth
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (L.M.); (I.S.-K.); (C.K.); (J.R.)
| | - Johannes Rohrbeck
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (L.M.); (I.S.-K.); (C.K.); (J.R.)
| | - Ulrich Jaeger
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (E.P.); (O.K.); (C.S.); (P.S.); (U.J.)
| | - Ana-Iris Schiefer
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (L.M.); (I.S.-K.); (C.K.); (J.R.)
- Correspondence:
| |
Collapse
|
170
|
Niu Z, Li X, Dong S, Gao J, Huang Q, Yang H, Qian H, Zhuo S, Zhuang T, Zhu J, Ding Y, Xu W. The E3 Ubiquitin Ligase HOIP inhibits Cancer Cell Apoptosis via modulating PTEN stability. J Cancer 2021; 12:6553-6562. [PMID: 34659546 PMCID: PMC8489130 DOI: 10.7150/jca.61996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022] Open
Abstract
Chemotherapy is widely used in a variety of solid tumors, such as lung cancer, gastric cancer and breast cancer. The genotoxic drugs, such as cisplatin, suppress cancer progression either by inhibition cell proliferation or facilitating apoptosis. However, the chemotherapy resistance remains an urgent challenge in cancer therapy, especially in advanced stages. Several studies showed that the activation of pro-survival pathways, such as PI3K-AKT, participated in mediating chemotherapy resistance. The insights into the molecular mechanisms for underlying chemotherapy resistance are of great importance to improve cancer patient survival in advanced stages. The HOIP protein belongs to the RING family E3 ubiquitin ligases and modulates several atypical ubiquitination processes in cellular signaling. Previous studies showed that HOIP might be an important effector in modulating cancer cell death under genotoxic drugs. Here, we report that HOIP associates with PTEN and facilitates PTEN degradation in cancer cells. Depletion of HOIP causes cell cycle arrest and apoptosis, which effects could be rescued by PTEN silencing. Besides, the survival data from public available database show that HOIP expression correlates with poor survival in several types of chemotherapy-treated cancer patients. In conclusion, our study establishes a novel mechanism by which HOIP modulates PTEN stability and facilitates chemotherapy resistance in malignancies.
Collapse
Affiliation(s)
- Zhiguo Niu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212000, China.,Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Xin Li
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Shuxiao Dong
- Department of Gastroenterology surgery, Shandong Provincial Third Hospital, Jinan, 250000, China
| | - Jianhui Gao
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Qingsong Huang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Huijie Yang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Shu Zhuo
- Signet Therapeutics Inc, Shenzhen, China. Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518000, China
| | - Ting Zhuang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Jian Zhu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China.,Department of general surgery, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Yinlu Ding
- Department of general surgery, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| |
Collapse
|
171
|
Wang JY, Chen CM, Chen CF, Wu PK, Chen WM. Suppression of Estrogen Receptor Alpha Inhibits Cell Proliferation, Differentiation and Enhances the Chemosensitivity of P53-Positive U2OS Osteosarcoma Cell. Int J Mol Sci 2021; 22:ijms222011238. [PMID: 34681897 PMCID: PMC8540067 DOI: 10.3390/ijms222011238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022] Open
Abstract
Osteosarcoma is a highly malignant musculoskeletal tumor that is commonly noticed in adolescent children, young children, and elderly adults. Due to advances in surgery, chemotherapy and imaging technology, survival rates have improved to 70–80%, but chemical treatments do not enhance patient survival; in addition, the survival rate after chemical treatments is still low. The most obvious clinical feature of osteosarcoma is new bone formation, which is called “sun burst”. Estrogen receptor alpha (ERα) is an essential feature of osteogenesis and regulates cell growth in various tumors, including osteosarcoma. In this study, we sought to investigate the role of ERα in osteosarcoma and to determine if ERα can be used as a target to facilitate the chemosensitivity of osteosarcoma to current treatments. The growth rate of each cell clone was assayed by MTT and trypan blue cell counting, and cell cycle analysis was conducted by flow cytometry. Osteogenic differentiation was induced by osteogenic induction medium and quantified by ARS staining. The effects of ERα on the chemoresponse of OS cells treated with doxorubicin were evaluated by colony formation assay. Mechanistic studies were conducted by examining the levels of proteins by Western blot. The role of ERα on OS prognosis was investigated by an immunohistochemical analysis of OS tissue array. The results showed an impaired growth rate and a decreased osteogenesis ability in the ERα-silenced P53(+) OS cell line U2OS, but not in P53(−) SAOS2 cells, compared with the parental cell line. Cotreatment with tamoxifen, an estrogen receptor inhibitor, increased the sensitivity to doxorubicin, which decreased the colony formation of P53(+) U2OS cells. Cell cycle arrest in the S phase was observed in P53(+) U2OS cells cotreated with low doses of doxorubicin and tamoxifen, while increased levels of apoptosis factors indicated cell death. Moreover, patients with ER−/P53(+) U2OS showed better chemoresponse rates (necrosis rate > 90%) and impaired tumor sizes, which were compatible with the findings of basic research. Taken together, ERα may be a potential target of the current treatments for osteosarcoma that can control tumor growth and improve chemosensitivity. In addition, the expression of ERα in osteosarcoma can be a prognostic factor to predict the response to chemotherapy.
Collapse
Affiliation(s)
- Jir-You Wang
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chao-Ming Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Cheng-Fong Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
| | - Po-Kuei Wu
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence:
| | - Wei-Ming Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
| |
Collapse
|
172
|
Identification of Novel Anthracycline Resistance Genes and Their Inhibitors. Pharmaceuticals (Basel) 2021; 14:ph14101051. [PMID: 34681275 PMCID: PMC8540045 DOI: 10.3390/ph14101051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
Differentially expressed genes have been previously identified by us in multidrug-resistant tumor cells mainly resistant to doxorubicin. In the present study, we exemplarily focused on some of these genes to investigate their causative relationship with drug resistance. HMOX1, NEIL2, and PRKCA were overexpressed by lentiviral-plasmid-based transfection of HEK293 cells. An in silico drug repurposing approach was applied using virtual screening and molecular docking of FDA-approved drugs to identify inhibitors of these new drug-resistant genes. Overexpression of the selected genes conferred resistance to doxorubicin and daunorubicin but not to vincristine, docetaxel, and cisplatin, indicating the involvement of these genes in resistance to anthracyclines but not to a broader MDR phenotype. Using virtual drug screening and molecular docking analyses, we identified FDA-approved compounds (conivaptan, bexarotene, and desloratadine) that were interacting with HMOX1 and PRKCA at even stronger binding affinities than 1-(adamantan-1-yl)-2-(1H-imidazol-1-yl)ethenone and ellagic acid as known inhibitors of HMOX1 and PRKCA, respectively. Conivaptan treatment increased doxorubicin sensitivity of both HMOX1- and PRKCA-transfected cell lines. Bexarotene treatment had a comparable doxorubicin-sensitizing effect in HMOX1-transfected cells and desloratadine in PRKCA-transfected cells. Novel drug resistance mechanisms independent of ABC transporters have been identified that contribute to anthracycline resistance in MDR cells.
Collapse
|
173
|
BET Proteins as Attractive Targets for Cancer Therapeutics. Int J Mol Sci 2021; 22:ijms222011102. [PMID: 34681760 PMCID: PMC8538173 DOI: 10.3390/ijms222011102] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Transcriptional dysregulation is a hallmark of cancer and can be an essential driver of cancer initiation and progression. Loss of transcriptional control can cause cancer cells to become dependent on certain regulators of gene expression. Bromodomain and extraterminal domain (BET) proteins are epigenetic readers that regulate the expression of multiple genes involved in carcinogenesis. BET inhibitors (BETis) disrupt BET protein binding to acetylated lysine residues of chromatin and suppress the transcription of various genes, including oncogenic transcription factors. Phase I and II clinical trials demonstrated BETis’ potential as anticancer drugs against solid tumours and haematological malignancies; however, their clinical success was limited as monotherapies. Emerging treatment-associated toxicities, drug resistance and a lack of predictive biomarkers limited BETis’ clinical progress. The preclinical evaluation demonstrated that BETis synergised with different classes of compounds, including DNA repair inhibitors, thus supporting further clinical development of BETis. The combination of BET and PARP inhibitors triggered synthetic lethality in cells with proficient homologous recombination. Mechanistic studies revealed that BETis targeted multiple essential homologous recombination pathway proteins, including RAD51, BRCA1 and CtIP. The exact mechanism of BETis’ anticancer action remains poorly understood; nevertheless, these agents provide a novel approach to epigenome and transcriptome anticancer therapy.
Collapse
|
174
|
Copper-imidazo[1,2-a]pyridines differentially modulate pro- and anti-apoptotic protein and gene expression in HL-60 and K562 leukaemic cells to cause apoptotic cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119160. [PMID: 34634376 DOI: 10.1016/j.bbamcr.2021.119160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/22/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022]
Abstract
Despite the availability of a myriad targeted treatments, resistance and treatment failures remains common in cancer treatment. Moreover, the high cost of targeted antibodies excludes a large cohort of patients from their benefits. In this context, copper-imidazo[1,2-a]pyridines were evaluated as alternative drug candidates against two common leukaemias, represented by HL-60 and K562 cells. A previous study identified JD88(21), JD47(29) and JD49(28) to be active against these cell lines with IC50 values between 1.9 and 6 μM and low leukocyte toxicity. To better understand their mechanism of action, their mode of cell death, effects on expression of apoptotic regulatory proteins and their respective genes were investigated. In both cell lines, the copper-imidazo[1,2-a]pyridines, at IC75 concentrations, caused membrane blebbing, raised phosphatidyl-serine levels on cell membranes and increased caspase-3 activity. A loss of mitochondrial membrane potential and activation of caspase-9, combined with poor caspase-8 activity indicated activation of intrinsic apoptosis. Apoptotic proteome analysis showed that the copper-imidazo[1,2-a] pyridines elevated protein levels of pro-apoptotic Bax and Smac/DIABLO in both cell lines, confirming their importance in apoptotic cell death. Conversely, though survivin was increased, this was counteracted by high levels of HTRA2/Omi expression. Effects on apoptotic regulatory proteins Bad, Bcl-2, XIAP and cIAP-1 was inconsistent between the copper-imidazo[1,2-a]pyridines and between the two cell lines, suggesting that the effect of the complexes was modulated by the molecular signature of each cell line. Analysis of mRNA transcripts showed a poor correlation between mRNA levels and associated proteins, implying that copper-imidazo[1,2-a]pyridines compromised protein synthesis and degradation.
Collapse
|
175
|
Ho CJ, Ko HJ, Liao TS, Zheng XR, Chou PH, Wang LT, Lin RW, Chen CH, Wang C. Severe cellular stress activates apoptosis independently of p53 in osteosarcoma. Cell Death Discov 2021; 7:275. [PMID: 34608124 PMCID: PMC8490387 DOI: 10.1038/s41420-021-00658-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/25/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022] Open
Abstract
Apoptosis induced by doxorubicin, bortezomib, or paclitaxel, targeting DNA, 26S proteasome, and microtubules respectively, was assessed in two osteosarcoma cells, p53 wild-type U2OS and p53-null MG63 cells. Doxorubicin-induced apoptosis only occurred in U2OS, not in MG63. In contrast, bortezomib and paclitaxel could drive U2OS or MG63 toward apoptosis effectively, suggesting that apoptosis induced by bortezomib or paclitaxel is p53-independent. The expressions of Bcl2 family members such as Bcl2, Bcl-xl, and Puma could be seen in U2OS and MG63 cells with or without doxorubicin, bortezomib, or paclitaxel treatment. In contrast, another member, Bim, only could be observed in U2OS, not in MG63, under the same conditions. Bim knockdown did not affect the doxorubicin-induced apoptosis in U2OS, suggested that a BH3-only protein other than Bim might participate in apoptosis induced by doxorubicin. Using a BH3-mimetic, ABT-263, to inhibit Bcl2 or Bcl-xl produced a limited apoptotic response in U2OS and MG63 cells, suggesting that this BH3-mimetic cannot activate the Bax/Bak pathway efficiently. Significantly, ABT-263 enhanced doxorubicin- and bortezomib-induced apoptosis synergistically in U2OS and MG63 cells. These results implied that the severe cellular stress caused by doxorubicin or bortezomib might be mediated through a dual process to control apoptosis. Respectively, doxorubicin or bortezomib activates a BH3-only protein in one way and corresponding unknown factors in another way to affect mitochondrial outer membrane permeability, resulting in apoptosis. The combination of doxorubicin with ABT-263 could produce synergistic apoptosis in MG63 cells, which lack p53, suggesting that p53 has no role in doxorubicin-induced apoptosis in osteosarcoma. In addition, ABT-263 enhanced paclitaxel to induce moderate levels of apoptosis.
Collapse
Affiliation(s)
- Cheng-Jung Ho
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Huey-Jiun Ko
- Department of Biochemistry & Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tzu-Shao Liao
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Xiang-Ren Zheng
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Po-Hsu Chou
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Li-Ting Wang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ru-Wei Lin
- Department of Plant Industry, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Chung-Hwan Chen
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Chihuei Wang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
176
|
Synthesis, characterization, and biological evaluation of doxorubicin containing silk fibroin micro- and nanoparticles. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
177
|
Lu X, Yan G, Klauck SM, Fleischer E, Klinger A, Sugimoto Y, Shan L, Efferth T. Cytotoxicity of 4-hydroxy-N-(naphthalen-1-yl)-2-oxo-2H-chromene-3-carboxamide in multidrug-resistant cancer cells through activation of PERK/eIF2α/ATF4 pathway. Biochem Pharmacol 2021; 193:114788. [PMID: 34582772 DOI: 10.1016/j.bcp.2021.114788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023]
Abstract
After decades of research, multidrug resistance (MDR) remains a huge challenge in cancer treatment. In this study, the cytotoxic of 4-hydroxy-N-(naphthalen-1-yl)-2-oxo-2H-chromene-3-carboxamide (MCC1734) has been investigated towards multidrug-resistant cancer cell lines. MCC1734 exerted cytotoxicity on cell lines expressing different mechanisms of drug resistance (P-glycoprotein, BCRP, ABCB5, EGFR, p53 knockout) to a different extent. Interestingly, sensitive CCRF-CEM cells and multidrug-resistant P-gp-overexpressing CEM/ADR5000 cells represented similar sensitivity towards MCC1734, indicating MCC1734 can bypass P-gp-mediated resistance. Microarray-based mRNA expression revealed that MCC1734 affected cells by multiple pathways, including cell cycle regulation, mitochondrial dysfunction, apoptosis signaling, and EIF2 signaling. MCC1734 stimulated the generation of excessive reactive oxygen species and the collapse of mitochondria membrane potential in CCRF-CEM cells, companied by the arrest of the cell cycle in the G2M phase and apoptosis induction as determined by flow cytometry. In addition, our immunoblotting analysis highlighted that MCC1734 triggered endoplasmic reticulum (ER) stress, evidenced by the activation of p-PERK, p-eIF2α, ATF4 and CHOP. The anti-cancer effects of MCC1734 were further observed in vivo using human xenograft tumors transplanted to zebrafish, providing further support for MCC1734 as a promising new candidate for cancer drug development.
Collapse
Affiliation(s)
- Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ge Yan
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | | | | | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
178
|
Park HJ, Park SH. Root Bark of Morus Alba L. Induced p53-Independent Apoptosis in Human Colorectal Cancer Cells by Suppression of STAT3 Activity. Nutr Cancer 2021; 74:1837-1848. [PMID: 34533079 DOI: 10.1080/01635581.2021.1968444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The root bark of Morus alba L. (MA) used in traditional oriental medicine exerts various bioactivities including anticancer effects. In this study, we investigated the molecular mechanism underlying the methylene chloride extract of MA (MEMA)-induced apoptosis in colorectal cancer (CRC) cells. We observed that MEMA decreased cell viability and colony formation in both HCT116 p53+/+ cells and HCT116 p53-/- cells. In addition, MEMA increased the sub-G1 phase DNA content, the annexin V-positive cell population, and the expression of apoptosis marker proteins in both cell lines, indicating that MEMA induced apoptosis regardless of the p53 status. Interestingly, the phosphorylation level, transcriptional activity, and target genes expression of signal transducer and activator of transcription 3 (STAT3) were commonly decreased by MEMA. The overexpression of constitutively active STAT3 in HCT116 cells reversed MEMA-induced apoptosis, demonstrating that MEMA-triggered apoptosis was mediated by the inactivation of STAT3. Taken together, we suggest that MEMA can be applied not only to p53 wild-type CRC in the early stages but also to p53-mutant advanced CRC with hyperactivated STAT3. Even though a wide range of studies are required to validate the anticancer effects of MEMA, we propose MEMA as a novel material for the treatment of CRC.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| |
Collapse
|
179
|
Venkatasamy A, Guerin E, Blanchet A, Orvain C, Devignot V, Jung M, Jung AC, Chenard MP, Romain B, Gaiddon C, Mellitzer G. Ultrasound and Transcriptomics Identify a Differential Impact of Cisplatin and Histone Deacetylation on Tumor Structure and Microenvironment in a Patient-Derived In Vivo Model of Gastric Cancer. Pharmaceutics 2021; 13:1485. [PMID: 34575561 PMCID: PMC8467189 DOI: 10.3390/pharmaceutics13091485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/06/2023] Open
Abstract
The reasons behind the poor efficacy of transition metal-based chemotherapies (e.g., cisplatin) or targeted therapies (e.g., histone deacetylase inhibitors, HDACi) on gastric cancer (GC) remain elusive and recent studies suggested that the tumor microenvironment could contribute to the resistance. Hence, our objective was to gain information on the impact of cisplatin and the pan-HDACi SAHA (suberanilohydroxamic acid) on the tumor substructure and microenvironment of GC, by establishing patient-derived xenografts of GC and a combination of ultrasound, immunohistochemistry, and transcriptomics to analyze. The tumors responded partially to SAHA and cisplatin. An ultrasound gave more accurate tumor measures than a caliper. Importantly, an ultrasound allowed a noninvasive real-time access to the tumor substructure, showing differences between cisplatin and SAHA. These differences were confirmed by immunohistochemistry and transcriptomic analyses of the tumor microenvironment, identifying specific cell type signatures and transcription factor activation. For instance, cisplatin induced an "epithelial cell like" signature while SAHA favored a "mesenchymal cell like" one. Altogether, an ultrasound allowed a precise follow-up of the tumor progression while enabling a noninvasive real-time access to the tumor substructure. Combined with transcriptomics, our results underline the different intra-tumoral structural changes caused by both drugs that impact differently on the tumor microenvironment.
Collapse
Affiliation(s)
- Aina Venkatasamy
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
- IHU-Strasbourg (Institut Hospitalo-Universitaire), 67091 Strasbourg, France
| | - Eric Guerin
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
| | - Anais Blanchet
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
| | - Christophe Orvain
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
| | - Véronique Devignot
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
| | | | - Alain C. Jung
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
- Laboratoire de Biologie Tumorale, ICANS, 67200 Strasbourg, France
| | - Marie-Pierre Chenard
- Pathology Department, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France;
| | - Benoit Romain
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
- Digestive Surgery Department, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Christian Gaiddon
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
| | - Georg Mellitzer
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
| |
Collapse
|
180
|
Sanches LJ, Marinello PC, da Silva Brito WA, Lopes NMD, Luiz RC, Cecchini R, Cecchini AL. Metformin pretreatment reduces effect to dacarbazine and suppresses melanoma cell resistance. Cell Biol Int 2021; 46:73-82. [PMID: 34506671 DOI: 10.1002/cbin.11700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/24/2021] [Accepted: 09/05/2021] [Indexed: 11/11/2022]
Abstract
Oxidative stress role on metformin process of dacarbazine (DTIC) inducing resistance of B16F10 melanoma murine cells are investigated. To induce resistance to DTIC, murine melanoma cells were exposed to increasing concentrations of dacarabazine (DTIC-res group). Metformin was administered before and during the induction of resistance to DTIC (MET-DTIC). The oxidative stress parameters of the DTIC-res group showed increased levels of malondialdehyde (MDA), thiol, and reduced nuclear p53, 8-hydroxy-2'-deoxyguanosine (8-OH-DG), nuclear factor kappa B (NF-ĸB), and Nrf2. In presence of metformin in the resistant induction process to DTIC, (MET-DTIC) cells had increased antioxidant thiols, MDA, nuclear p53, 8-OH-DG, Nrf2, and reducing NF-ĸB, weakening the DTIC-resistant phenotype. The exclusive administration of metformin (MET group) also induced the cellular resistance to DTIC. The MET group presented high levels of total thiols, MDA, and reduced percentage of nuclear p53. It also presented reduced nuclear 8-OH-DG, NF-ĸB, and Nrf2 when compared with the control. Oxidative stress and the studied biomarkers seem to be part of the alterations evidenced in DTIC-resistant B16F10 cells. In addition, metformin administration is able to play a dual role according to the experimental protocol, preventing or inducing a DTIC-resistant phenotype. These findings should help future research with the aim of investigating DTIC resistance in melanoma.
Collapse
Affiliation(s)
- Larissa J Sanches
- Department of Pathological Sciences, Laboratory of Molecular Pathology, Londrina State University, UEL, Londrina, Parana, Brazil
| | - Poliana C Marinello
- Department of Pathological Sciences, Laboratory of Molecular Pathology, Londrina State University, UEL, Londrina, Parana, Brazil
| | - Walison A da Silva Brito
- Department of Pathological Sciences, Laboratory of Molecular Pathology, Londrina State University, UEL, Londrina, Parana, Brazil.,Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK plasmatis "Plasma Redox Effects", Greifswald, Germany
| | - Natália M D Lopes
- Department of Pathological Sciences, Laboratory of Molecular Pathology, Londrina State University, UEL, Londrina, Parana, Brazil
| | - Rodrigo C Luiz
- Department of Pathological Sciences, Laboratory of Pathophysiology and Free radicals, Londrina State University, UEL, Londrina, Parana, Brazil
| | - Rubens Cecchini
- Department of Pathological Sciences, Laboratory of Pathophysiology and Free radicals, Londrina State University, UEL, Londrina, Parana, Brazil
| | - Alessandra L Cecchini
- Department of Pathological Sciences, Laboratory of Molecular Pathology, Londrina State University, UEL, Londrina, Parana, Brazil
| |
Collapse
|
181
|
He YH, Yeh MH, Chen HF, Wang TS, Wong RH, Wei YL, Huynh TK, Hu DW, Cheng FJ, Chen JY, Hu SW, Huang CC, Chen Y, Yu J, Cheng WC, Shen PC, Liu LC, Huang CH, Chang YJ, Huang WC. ERα determines the chemo-resistant function of mutant p53 involving the switch between lincRNA-p21 and DDB2 expressions. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:536-553. [PMID: 34589276 PMCID: PMC8463322 DOI: 10.1016/j.omtn.2021.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022]
Abstract
Mutant p53 (mutp53) commonly loses its DNA binding affinity to p53 response elements (p53REs) and fails to induce apoptosis fully. However, the p53 mutation does not predict chemoresistance in all subtypes of breast cancers, and the critical determinants remain to be identified. In this study, mutp53 was found to mediate chemotherapy-induced long intergenic noncoding RNA-p21 (lincRNA-p21) expression by targeting the G-quadruplex structure rather than the p53RE on its promoter to promote chemosensitivity. However, estrogen receptor alpha (ERα) suppressed mutp53-mediated lincRNA-p21 expression by hijacking mutp53 to upregulate damaged DNA binding protein 2 (DDB2) transcription for subsequent DNA repair and chemoresistance. Levels of lincRNA-p21 positively correlated with the clinical responses of breast cancer patients to neoadjuvant chemotherapy and had an inverse correlation with the ER status and DDB2 level. In contrast, the carboplatin-induced DDB2 expression was higher in ER-positive breast tumor tissues. These results demonstrated that ER status determines the oncogenic function of mutp53 in chemoresistance by switching its target gene preference from lincRNA-p21 to DDB2 and suggest that induction of lincRNA-p21 and targeting DDB2 would be effective strategies to increase the chemosensitivity of mutp53 breast cancer patients.
Collapse
Affiliation(s)
- Yu-Hao He
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Ming-Hsin Yeh
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Hsiao-Fan Chen
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Drug Development Center, China Medical University, Taichung 40402, Taiwan
| | - Tsu-Shing Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Ruey-Hong Wong
- Department of Public Health, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ya-Ling Wei
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Thanh Kieu Huynh
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Dai-Wei Hu
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Fang-Ju Cheng
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Basic Medical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Jhen-Yu Chen
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Shu-Wei Hu
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Chia-Chen Huang
- Department of Public Health, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Yeh Chen
- Drug Development Center, China Medical University, Taichung 40402, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Jiaxin Yu
- AI Innovation Center, China Medical University Hospital, Taiwan 40402, Taiwan
| | - Wei-Chung Cheng
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
| | - Pei-Chun Shen
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
| | - Liang-Chih Liu
- Division of Breast Surgery, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chih-Hao Huang
- Division of Breast Surgery, China Medical University Hospital, Taichung 40402, Taiwan
| | - Ya-Jen Chang
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Chien Huang
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Drug Development Center, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
182
|
Harakandi C, Nininahazwe L, Xu H, Liu B, He C, Zheng YC, Zhang H. Recent advances on the intervention sites targeting USP7-MDM2-p53 in cancer therapy. Bioorg Chem 2021; 116:105273. [PMID: 34474304 DOI: 10.1016/j.bioorg.2021.105273] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 01/29/2023]
Abstract
The ubiquitin-specific protease 7 (USP7)-murine double minute 2 (MDM2)-p53 network plays an important role in the regulation of p53, a tumor suppressor which plays critical roles in regulating cell growth, proliferation, cell cycle progression, apoptosis and immune response. The overexpression of USP7 and MDM2 in human cancers contributes to cancer initiation and progression, and their inhibition reactivates p53 signalings and causes cell cycle arrest and apoptosis. Herein, the current state of pharmacological characterization, potential applications in cancer treatment and mechanism of action of small molecules used to target and inhibit MDM2 and USP7 proteins are highlighted, along with the outcomes in clinical and preclinical settings. Moreover, challenges and advantages of these strategies, as well as perspectives in USP7-MDM2-p53 field are analyzed in detail. The investigation and application of MDM2 and USP7 inhibitors will deepen our understanding of the function of USP7-MDM2-p53 network, and feed in the development of effective and safe cancer therapies where USP7-MDM2-p53 network is implicated.
Collapse
Affiliation(s)
- Chrisanta Harakandi
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lauraine Nininahazwe
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Bingrui Liu
- College of Public Health, North China University of Science and Technology, Tangshan 063503, China
| | - Chenghua He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
183
|
Koushki M, Khedri A, Aberomand M, Akbari Baghbani K, Mohammadzadeh G. Synergistic anti-cancer effects of silibinin-etoposide combination against human breast carcinoma MCF-7 and MDA-MB-231 cell lines. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1211-1219. [PMID: 35083008 PMCID: PMC8751753 DOI: 10.22038/ijbms.2021.56341.12575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/19/2021] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Recently, there is a significant focus on combination chemotherapy for cancer using a cytotoxic drug and a phytochemical compound. We investigated the effect of silibinin on etoposide-induced apoptosis in MCF-7 and MDA-MB-231 breast carcinoma cell lines. MATERIALS AND METHODS The cytotoxic effects of silibinin and etoposide were determined using MTT assay after 24 and 48 hr incubation with these drugs individually and combined. The mRNA expression of Bax and Bcl2, and protein levels of P53, phosphorylated p53 (P-P53), and P21 were determined using real-time PCR and western blot analysis, respectively. The caspase 9 activity was measured using an ELISA kit. RESULTS Silibinin and etoposide alone and combined significantly inhibit cell growth in a dose and time-dependent manner in both cell lines. The strongest synergistic effects in terms of MCF-7 cell growth inhibition [combination index (CI) = 0.066] were evident. The silibinin-etoposide combinations cause a much powerful apoptotic death (47% and 40%) compared with each compound individually in MCF-7 and MDA-MB 231 cells, respectively. Additionally, the silibinin-etoposide combinations significantly increased the expression of P53, P-P53, and P21 in MCF-7 cells. Neither silibinin nor etoposide individually increased the level of P53 and P-P53 in MDA-MB-231 cells, but both of them individually and combined increased the level of P21. CONCLUSION Since the silibinin-etoposide combination induces apoptosis in both cell lines with and without expression of p53, thus, it is suggested that this combination may be a successful therapeutic strategy for breast cancer regardless of P53 status.
Collapse
Affiliation(s)
- Mahdie Koushki
- Department of Clinical Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azam Khedri
- Department of Clinical Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Aberomand
- Toxicology Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Ghorban Mohammadzadeh
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
184
|
Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance. Cancers (Basel) 2021; 13:cancers13174363. [PMID: 34503172 PMCID: PMC8430856 DOI: 10.3390/cancers13174363] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Despite recent therapeutic advances against cancer, many patients do not respond well or respond poorly, to treatment and develop resistance to more than one anti-cancer drug, a term called multi-drug resistance (MDR). One of the main factors that contribute to MDR is the deregulation of apoptosis or programmed cell death. Herein, we describe the major apoptotic pathways and discuss how pro-apoptotic and anti-apoptotic proteins are modified in cancer cells to convey drug resistance. We also focus on our current understanding related to the interactions between survival and cell death pathways, as well as on mechanisms underlying the balance shift towards cancer cell growth and drug resistance. Moreover, we highlight the role of the tumor microenvironment components in blocking apoptosis in MDR tumors, and we discuss the significance and potential exploitation of epigenetic modifications for cancer treatment. Finally, we summarize the current and future therapeutic approaches for overcoming MDR. Abstract The ability of tumor cells to evade apoptosis is established as one of the hallmarks of cancer. The deregulation of apoptotic pathways conveys a survival advantage enabling cancer cells to develop multi-drug resistance (MDR), a complex tumor phenotype referring to concurrent resistance toward agents with different function and/or structure. Proteins implicated in the intrinsic pathway of apoptosis, including the Bcl-2 superfamily and Inhibitors of Apoptosis (IAP) family members, as well as their regulator, tumor suppressor p53, have been implicated in the development of MDR in many cancer types. The PI3K/AKT pathway is pivotal in promoting survival and proliferation and is often overactive in MDR tumors. In addition, the tumor microenvironment, particularly factors secreted by cancer-associated fibroblasts, can inhibit apoptosis in cancer cells and reduce the effectiveness of different anti-cancer drugs. In this review, we describe the main alterations that occur in apoptosis-and related pathways to promote MDR. We also summarize the main therapeutic approaches against resistant tumors, including agents targeting Bcl-2 family members, small molecule inhibitors against IAPs or AKT and agents of natural origin that may be used as monotherapy or in combination with conventional therapeutics. Finally, we highlight the potential of therapeutic exploitation of epigenetic modifications to reverse the MDR phenotype.
Collapse
|
185
|
Beltran JF, Viafara-Garcia SM, Labrador AP, Basterrechea J. The Role of Periodontopathogens and Oral Microbiome in the Progression of Oral Cancer. A Review. Open Dent J 2021. [DOI: 10.2174/1874210602115010367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic periodontal disease and oral bacteria dysbiosis can lead to the accumulation of genetic mutations that eventually stimulate Oral Squamous Cell Cancer (OSCC). The annual incidence of OSCC is increasing significantly, and almost half of the cases are diagnosed in an advanced stage. Worldwide there are more than 380,000 new cases diagnosed every year, and a topic of extensive research in the last few years is the alteration of oral bacteria, their compositional changes and microbiome. This review aims to establish the relationship between bacterial dysbiosis and OSCC. Several bacteria implicated in periodontal disease, including Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, and some Streptococcus species, promote angiogenesis, cell proliferation, and alteration in the host defense process; these same bacteria have been present in different stages of OSCC. Our review showed that genes involved in bacterial chemotaxis, the lipopolysaccharide (LPS) of the cell wall membrane of gram negatives bacteria, were significantly increased in patients with OSCC. Additionally, some bacterial diversity, particularly with Firmicutes, and Actinobacteria species, has been identified in pre-cancerous stage samples. This review suggests the importance of an early diagnosis and more comprehensive periodontal therapy for patients by the dental care professional.
Collapse
|
186
|
Ahmed S, Mirzaei H, Aschner M, Khan A, Al-Harrasi A, Khan H. Marine peptides in breast cancer: Therapeutic and mechanistic understanding. Biomed Pharmacother 2021; 142:112038. [PMID: 34411915 DOI: 10.1016/j.biopha.2021.112038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most prevalent invasive form of cancer in females and posing a great challenge for overcoming disease burden. The growth in global cancer deaths mandates the discovery of new efficacious natural anti-tumor treatments. In this regard, aquatic species offer a rich supply of possible drugs. Studies have shown that several marine peptides damage cancer cells by a broad range of pathways, including apoptosis, microtubule balance disturbances, and suppression of angiogenesis. Traditional chemotherapeutic agents are characterized by a plethora of side effects, including immune response suppression. The discovery of novel putative anti-cancer peptides with lesser toxicity is therefore necessary and timely, especially those able to thwart multi drug resistance (MDR). This review addresses marine anti-cancer peptides for the treatment of breast cancer.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code, 616, Birkat Al Mauz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code, 616, Birkat Al Mauz, Nizwa, Oman.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
187
|
Tang Y, Yao Y, Wei G. Unraveling the Allosteric Mechanism of Four Cancer-related Mutations in the Disruption of p53-DNA Interaction. J Phys Chem B 2021; 125:10138-10148. [PMID: 34403252 DOI: 10.1021/acs.jpcb.1c05638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The p53 protein plays active roles in the physiological regulation of cell cycle as well as in cancer developments. In more than half of human cancers, the protein is inactivated by mutations located primarily in its DNA-binding domain (DBD), and some mutations located in the β-sandwich region of DBD are reported to decrease p53-DNA binding affinities. To understand the long-range correlation between p53 β-sandwich and DNA, and the allosteric mechanism of β-sandwich mutations in the disruption of p53-DNA interactions, we first identify three regions with a strong correlation with DNA based on microsecond molecular dynamics (MD) simulations of wild-type p53-DNA complex and then perform multiple MD simulations on four cancer-related mutants L145Q, P151S, Y220C, and G266R, which are located in these three regions. Our simulations show that these mutations allosterically destabilize the structural stability of the DNA-binding groove in p53 and disrupt the p53-DNA interactions. Network analyses reveal optimal correlation paths through which the mutation-induced allosteric signal passes to DNA, and the disturbance effect of these mutations on the global connectivity and dynamical correlation of the p53-DNA complex. This work paves the way for the in-depth understanding of the mutation-induced loss in p53's DNA-recognition ability and the pathological mechanism of cancer development.
Collapse
Affiliation(s)
- Yiming Tang
- Department of Physics, State Key Laboratory of Surface physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Fudan University, Shanghai 200433, People's Republic of China
| | - Yifei Yao
- Department of Physics, State Key Laboratory of Surface physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Fudan University, Shanghai 200433, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
188
|
Hao D, Zhang Z, Ji Y. Responsive polymeric drug delivery systems for combination anticancer therapy: experimental design and computational insights. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1960340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dule Hao
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Zheng Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
189
|
Tomicic MT, Dawood M, Efferth T. Epigenetic Alterations Upstream and Downstream of p53 Signaling in Colorectal Carcinoma. Cancers (Basel) 2021; 13:cancers13164072. [PMID: 34439227 PMCID: PMC8394868 DOI: 10.3390/cancers13164072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) belongs to the most common tumor types, and half of all CRC harbor missense mutations in the TP53 tumor suppressor gene. In addition to genetically caused loss of function of p53, epigenetic alterations (DNA methylation, histone modifications, micro-RNAs) contribute to CRC development. In this review, we focused on epigenetic alterations related to the entire p53 signaling pathway upstream and downstream of p53. Methylation of genes which activate p53 function has been reported, and methylation of APC and MGMT was associated with increased mutation rates of TP53. The micro-RNA 34a activates TP53 and was methylated in CRC. Proteins that regulate TP53 DNA methylation, mutations, and acetylation of TP53-related histones were methylated in CRC. P53 regulates the activity of numerous downstream proteins. Even if TP53 is not mutated, the function of wildtype p53 may be compromised if corresponding downstream genes are epigenetically inactivated. Thus, the role of p53 for CRC development, therapy response, and survival prognosis of patients may be much more eminent than previously estimated. Therefore, we propose that novel diagnostic devices measuring the entirety of genetic and epigenetic changes in the "p53 signalome" have the potential to improve the predictive and prognostic power in CRC diagnostics and management.
Collapse
Affiliation(s)
- Maja T. Tomicic
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany;
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany;
- Correspondence: ; Tel.: +49-6131-3925751; Fax: +49-6131-3923752
| |
Collapse
|
190
|
Pearson JD, Huang K, Pacal M, McCurdy SR, Lu S, Aubry A, Yu T, Wadosky KM, Zhang L, Wang T, Gregorieff A, Ahmad M, Dimaras H, Langille E, Cole SPC, Monnier PP, Lok BH, Tsao MS, Akeno N, Schramek D, Wikenheiser-Brokamp KA, Knudsen ES, Witkiewicz AK, Wrana JL, Goodrich DW, Bremner R. Binary pan-cancer classes with distinct vulnerabilities defined by pro- or anti-cancer YAP/TEAD activity. Cancer Cell 2021; 39:1115-1134.e12. [PMID: 34270926 PMCID: PMC8981970 DOI: 10.1016/j.ccell.2021.06.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/17/2020] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Cancer heterogeneity impacts therapeutic response, driving efforts to discover over-arching rules that supersede variability. Here, we define pan-cancer binary classes based on distinct expression of YAP and YAP-responsive adhesion regulators. Combining informatics with in vivo and in vitro gain- and loss-of-function studies across multiple murine and human tumor types, we show that opposite pro- or anti-cancer YAP activity functionally defines binary YAPon or YAPoff cancer classes that express or silence YAP, respectively. YAPoff solid cancers are neural/neuroendocrine and frequently RB1-/-, such as retinoblastoma, small cell lung cancer, and neuroendocrine prostate cancer. YAP silencing is intrinsic to the cell of origin, or acquired with lineage switching and drug resistance. The binary cancer groups exhibit distinct YAP-dependent adhesive behavior and pharmaceutical vulnerabilities, underscoring clinical relevance. Mechanistically, distinct YAP/TEAD enhancers in YAPoff or YAPon cancers deploy anti-cancer integrin or pro-cancer proliferative programs, respectively. YAP is thus pivotal across cancer, but in opposite ways, with therapeutic implications.
Collapse
Affiliation(s)
- Joel D Pearson
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Katherine Huang
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Marek Pacal
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Sean R McCurdy
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Suying Lu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Arthur Aubry
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tao Yu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Kristine M Wadosky
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Letian Zhang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Tao Wang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alex Gregorieff
- Department of Pathology, McGill University and Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, ON H4A 3J1, Canada
| | - Mohammad Ahmad
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Helen Dimaras
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; The Department of Ophthalmology & Vision Sciences, Child Health Evaluative Sciences Program, and Center for Global Child Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Clinical Public Health, Dalla Lana School of Public Health, The University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Ellen Langille
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Susan P C Cole
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, ON K7L 3N6, Canada
| | - Philippe P Monnier
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, ON M5T 2S8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Benjamin H Lok
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ming-Sound Tsao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Nagako Akeno
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Daniel Schramek
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Perinatal Institute Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Agnieszka K Witkiewicz
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jeffrey L Wrana
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David W Goodrich
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
191
|
Rode MP, Silva AH, Cisilotto J, Rosolen D, Creczynski-Pasa TB. miR-425-5p as an exosomal biomarker for metastatic prostate cancer. Cell Signal 2021; 87:110113. [PMID: 34371055 DOI: 10.1016/j.cellsig.2021.110113] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Prostate cancer-related deaths are mostly caused by metastasis, which indicates the importance of identifying clinical prognostic biomarkers. In this study, we evaluated the expression profile of exosomal microRNAs (miRNAs) derived from metastatic prostate cancer (mPCa) cell lines (LNCaP and PC-3). miRNA signatures in exosomes and cells were evaluated by miRNA microarray analysis. Fourteen miRNAs were identified as candidates for specific noninvasive biomarkers. The expression of five miRNAs was validated using RT-qPCR, which confirmed that miR-205-5p, miR-148a-3p, miR-125b-5p, miR-183-5p, and miR-425-5p were differentially expressed in mPCa exosomes. Bioinformatic analyses showed that miR-425-5p was associated with residual tumor, pathologic T and N stages, and TP53 status in PCa samples. Gene ontology analysis of negatively correlated and predicted targeted genes showed enrichment of genes related to bone development pathways. The LinkedOmics database indicated that the potential target HSPB8 has a significant negative correlation with miR-425-5p. In conclusion, this study identified a panel of exosomal miRNAs with potential value as prognostic biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Michele Patrícia Rode
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Adny Henrique Silva
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Júlia Cisilotto
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Daiane Rosolen
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | | |
Collapse
|
192
|
Ge W, Wang Y, Zheng S, Zhao D, Wang X, Zhang X, Hu Y. Nuclear iASPP determines cell fate by selectively inhibiting either p53 or NF-κB. Cell Death Discov 2021; 7:195. [PMID: 34312379 PMCID: PMC8313550 DOI: 10.1038/s41420-021-00582-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/05/2021] [Indexed: 01/15/2023] Open
Abstract
p53 and NF-κBp65 are essential transcription factors (TFs) in the cellular response to stress. Two signaling systems can often be entwined together and generally produce opposing biological outcomes in a cell context-dependent manner. Inhibitor of apoptosis-stimulating protein of p53 (iASPP) has the potential to inhibit both p53 and NF-κBp65, yet how such activities of iASPP are integrated with cancer remains unknown. Here, we utilized different cell models with diverse p53/NF-κBp65 activities. An iASPP(295–828) mutant, which is exclusively located in the nucleus and has been shown to be essential for its inhibitory effects on p53/NF-κBp65, was used to investigate the functional interaction between iASPP and the two TFs. The results showed that iASPP inhibits apoptosis under conditions when p53 is activated, while it can also elicit a proapoptotic effect when NF-κBp65 alone is activated. Furthermore, we demonstrated that iASPP inhibited the transcriptional activity of p53/NF-κBp65, but with a preference toward p53, thereby producing an antiapoptotic outcome when both TFs were simultaneously activated. This may be due to stronger binding between p53 and iASPP than NF-κBp65 and iASPP. Overall, these findings provide important insights into how the activities of p53 and NF-κBp65 are modulated by iASPP. Despite being a well-known oncogene, iASPP may have a proapoptotic role, which will guide the development of iASPP-targeted therapies to reach optimal outcomes in the future.
Collapse
Affiliation(s)
- Wenjie Ge
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Yudong Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Shanliang Zheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Dong Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Xiaoshi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China. .,Shenzhen Graduate School of Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
193
|
Kheradmand P, Vallian Boroojeni S, Esmaeili-Mahani S. MiR-221 Expression Level Correlates with Insulin-Induced Doxorubicin Resistance in MCF-7 Breast Cancer Cells. CELL JOURNAL 2021; 23:329-334. [PMID: 34308576 PMCID: PMC8286461 DOI: 10.22074/cellj.2021.7153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022]
Abstract
Objective Insulin induces anti-cancer drugs resistance in tumor cells. However, the mechanism by which insulin
induces its drug resistance effects is not clear. In the present study, the expression of miR-221 in insulin-treated MCF-7
cells in response to the anti-cancer drug doxorubicin, was investigated.
Materials and Methods In this experimental study, cell viability was evaluated using MTT (3-[4,5 dimethylthiazol-2-
yl]-2,5-diphenyl tetrazolium bromide) assay. The expression level of miR-221 was determined by real time polymerase
chain reaction (RT-PCR). Furthermore, the expression of insulin receptor (IR) and cleaved caspase-3 protein was
assessed by Western blotting.
Results The results showed that treatment of the MCF-7 cells with insulin reduced the anti-cancer effects of
doxorubicin. Viability of naive and insulin-treated cells following doxorubicin (DOX) treatment was 62.9 ± 5.7% and 79
± 7.2%, respectively. Furthermore, the expression of miR-221 in insulin-treated cells was significantly increased (2.6
± 0.37-fold change) as compared with the control group. A significant decrease (26%) in the expression of caspase-3
protein and a significant increase (24%) in IR were observed in insulin-induced drug resistant MCF-7 cells as compared
to the naive cells.
Conclusion Together, the data showed a positive correlation between the expression of miR-221 and IR expression,
but a negative correlation with caspase3 expression, in insulin-induced drug resistant MCF-7 breast cancer cells. This
could suggest a new mechanism for the role of miR-221 in cancer drugs resistance induced by insulin.
Collapse
Affiliation(s)
- Parisa Kheradmand
- Department of Cellular and Molecular Biology and Microbology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sadeq Vallian Boroojeni
- Department of Cellular and Molecular Biology and Microbology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran.
| | | |
Collapse
|
194
|
Kong WY, Ngai SC, Goh BH, Lee LH, Htar TT, Chuah LH. Is Curcumin the Answer to Future Chemotherapy Cocktail? Molecules 2021; 26:4329. [PMID: 34299604 PMCID: PMC8303331 DOI: 10.3390/molecules26144329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
The rise in cancer cases in recent years is an alarming situation worldwide. Despite the tremendous research and invention of new cancer therapies, the clinical outcomes are not always reassuring. Cancer cells could develop several evasive mechanisms for their survivability and render therapeutic failure. The continuous use of conventional cancer therapies leads to chemoresistance, and a higher dose of treatment results in even greater toxicities among cancer patients. Therefore, the search for an alternative treatment modality is crucial to break this viscous cycle. This paper explores the suitability of curcumin combination treatment with other cancer therapies to curb cancer growth. We provide a critical insight to the mechanisms of action of curcumin, its role in combination therapy in various cancers, along with the molecular targets involved. Curcumin combination treatments were found to enhance anticancer effects, mediated by the multitargeting of several signalling pathways by curcumin and the co-administered cancer therapies. The preclinical and clinical evidence in curcumin combination therapy is critically analysed, and the future research direction of curcumin combination therapy is discussed.
Collapse
Affiliation(s)
- Wei-Yang Kong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Selangor, Malaysia; (W.-Y.K.); (S.C.N.)
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Selangor, Malaysia; (W.-Y.K.); (S.C.N.)
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (B.-H.G.); (T.-T.H.)
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
| | - Thet-Thet Htar
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (B.-H.G.); (T.-T.H.)
| | - Lay-Hong Chuah
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (B.-H.G.); (T.-T.H.)
| |
Collapse
|
195
|
Lu X, Yan G, Dawood M, Klauck SM, Sugimoto Y, Klinger A, Fleischer E, Shan L, Efferth T. A novel moniliformin derivative as pan-inhibitor of histone deacetylases triggering apoptosis of leukemia cells. Biochem Pharmacol 2021; 194:114677. [PMID: 34265280 DOI: 10.1016/j.bcp.2021.114677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022]
Abstract
New and potent agents that evade multidrug resistance (MDR) and inhibit epigenetic modifications are of great interest in cancer drug development. Here, we describe that a moniliformin derivative (IUPAC name: 3-(naphthalen-2-ylsulfanyl)-4-{[(2Z)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]methyl}cyclobut-3-ene-1,2-dione; code: MCC1381) bypasses P-gp-mediated MDR. Using transcriptomics, we identified a large number of genes significantly regulated in response to MCC1381, which affected the cell cycle and disturbed cellular death and survival. The potential targets of MCC1381 might be histone deacetylases (HDACs) as predicted by SwissTargetPrediction. In silico studies confirmed that MCC1381 presented comparable affinity with HDAC1, 2, 3, 6, 8 and 11. Besides, the inhibition activity of HDACs was dose-dependently inhibited by MCC1381. Particularly, a strong binding affinity was observed between MCC1381 and HDAC6 by microscale thermophoresis analysis. MCC1381 decreased the expression of HDAC6, inversely correlated with the increase of acetylated HDAC6 substrates, acetylation p53 and α-tubulin. Furthermore, MCC1381 arrested the cell cycle at the G2/M phase, induced the generation of reactive oxygen species and collapse of the mitochondrial membrane potential. MCC1381 exhibited in vivo anti-cancer activity in xenografted zebrafish. Collectively, MCC1381 extended cytotoxicity towards P-gp-resistant leukemia cancer cells and may act as a pan-HDACs inhibitor, indicating that MCC1381 is a novel candidate for cancer therapy.
Collapse
Affiliation(s)
- Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ge Yan
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; Department of Molecular Biology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | | | | | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
196
|
Özkan A, Stolley DL, Cressman ENK, McMillin M, DeMorrow S, Yankeelov TE, Rylander MN. Tumor Microenvironment Alters Chemoresistance of Hepatocellular Carcinoma Through CYP3A4 Metabolic Activity. Front Oncol 2021; 11:662135. [PMID: 34262860 PMCID: PMC8273608 DOI: 10.3389/fonc.2021.662135] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
Variations in tumor biology from patient to patient combined with the low overall survival rate of hepatocellular carcinoma (HCC) present significant clinical challenges. During the progression of chronic liver diseases from inflammation to the development of HCC, microenvironmental properties, including tissue stiffness and oxygen concentration, change over time. This can potentially impact drug metabolism and subsequent therapy response to commonly utilized therapeutics, such as doxorubicin, multi-kinase inhibitors (e.g., sorafenib), and other drugs, including immunotherapies. In this study, we utilized four common HCC cell lines embedded in 3D collagen type-I gels of varying stiffnesses to mimic normal and cirrhotic livers with environmental oxygen regulation to quantify the impact of these microenvironmental factors on HCC chemoresistance. In general, we found that HCC cells with higher baseline levels of cytochrome p450-3A4 (CYP3A4) enzyme expression, HepG2 and C3Asub28, exhibited a cirrhosis-dependent increase in doxorubicin chemoresistance. Under the same conditions, HCC cell lines with lower CYP3A4 expression, HuH-7 and Hep3B2, showed a decrease in doxorubicin chemoresistance in response to an increase in microenvironmental stiffness. This differential therapeutic response was correlated with the regulation of CYP3A4 expression levels under the influence of stiffness and oxygen variation. In all tested HCC cell lines, the addition of sorafenib lowered the required doxorubicin dose to induce significant levels of cell death, demonstrating its potential to help reduce systemic doxorubicin toxicity when used in combination. These results suggest that patient-specific tumor microenvironmental factors, including tissue stiffness, hypoxia, and CYP3A4 activity levels, may need to be considered for more effective use of chemotherapeutics in HCC patients.
Collapse
Affiliation(s)
- Alican Özkan
- Department of Mechanical Engineering, The University of Texas, Austin, TX, United States
| | - Danielle L. Stolley
- Department of Biomedical Engineering, The University of Texas, Austin, TX, United States
| | - Erik N. K. Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Matthew McMillin
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Central Texas Veterans Health Care System, Temple, TX, United States
| | - Sharon DeMorrow
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Central Texas Veterans Health Care System, Temple, TX, United States
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Thomas E. Yankeelov
- Department of Biomedical Engineering, The University of Texas, Austin, TX, United States
- Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX, United States
- Departments of Diagnostic Medicine, The University of Texas, Austin, TX, United States
- Department of Oncology, The University of Texas, Austin, TX, United States
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas, Austin, TX, United States
| | - Marissa Nichole Rylander
- Department of Mechanical Engineering, The University of Texas, Austin, TX, United States
- Department of Biomedical Engineering, The University of Texas, Austin, TX, United States
- Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX, United States
| |
Collapse
|
197
|
You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:589. [PMID: 34207383 PMCID: PMC8233743 DOI: 10.3390/ph14060589] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancer with aggressive characteristics and few therapeutic options. The lack of an appropriate therapeutic target is a challenging issue in treating TNBC. Although a high level expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis among patients with TNBC, targeted anti-EGFR therapies have demonstrated limited efficacy for TNBC treatment in both clinical and preclinical settings. However, with the advantage of a number of clinically approved EGFR inhibitors (EGFRis), combination strategies have been explored as a promising approach to overcome the intrinsic resistance of TNBC to EGFRis. In this review, we analyzed the literature on the combination of EGFRis with other molecularly targeted therapeutics or conventional chemotherapeutics to understand the current knowledge and to provide potential therapeutic options for TNBC treatment.
Collapse
Affiliation(s)
- Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| |
Collapse
|
198
|
Han B, He XH, Liu YQ, He G, Peng C, Li JL. Asymmetric organocatalysis: an enabling technology for medicinal chemistry. Chem Soc Rev 2021; 50:1522-1586. [PMID: 33496291 DOI: 10.1039/d0cs00196a] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The efficacy and synthetic versatility of asymmetric organocatalysis have contributed enormously to the field of organic synthesis since the early 2000s. As asymmetric organocatalytic methods mature, they have extended beyond the academia and undergone scale-up for the production of chiral drugs, natural products, and enantiomerically enriched bioactive molecules. This review provides a comprehensive overview of the applications of asymmetric organocatalysis in medicinal chemistry. A general picture of asymmetric organocatalytic strategies in medicinal chemistry is firstly presented, and the specific applications of these strategies in pharmaceutical synthesis are systematically described, with a focus on the preparation of antiviral, anticancer, neuroprotective, cardiovascular, antibacterial, and antiparasitic agents, as well as several miscellaneous bioactive agents. The review concludes with a discussion of the challenges, limitations and future prospects for organocatalytic asymmetric synthesis of medicinally valuable compounds.
Collapse
Affiliation(s)
- Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yan-Qing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. and Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
199
|
Liang W, Shi J, Xia H, Wei X. A Novel Ruthenium-Fluvastatin Complex Downregulates SNCG Expression to Modulate Breast Carcinoma Cell Proliferation and Apoptosis via Activating the PI3K/Akt/mTOR/VEGF/MMP9 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5537737. [PMID: 34221232 PMCID: PMC8221895 DOI: 10.1155/2021/5537737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/16/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer is the most common cause of malignancy and cancer-related morbidity and death worldwide that requests effective and safe chemotherapy. Evaluation of metallodrug-based anticancer agents and statins as chemotherapeutics with fewer side effects is a largely unexplored research field. Synthesis and characterization of the ruthenium-fluvastatin complex were achieved using multiple spectroscopic techniques and thus further examined to evaluate its chemotherapeutic prospects in both MDA-MB-231 and MCF-7 cancer lines and eventually in vivo models of DMBA-induced mammary carcinogenesis in rodents. Our studies indicate that the metal and ligand chelation was materialized by the ligand's functional groups of carbonyl (=O) oxygen and hydroxyl (-OH), and the complex has been observed to be crystalline and able to chelate with CT-DNA. The complex was able to reduce cell proliferation and activate apoptotic events in breast carcinoma cell lines MCF-7 and MDA-MB-231. In addition, the complex was able to modify p53 expressions to interfere with apoptosis in the carcinoma of the breast, stimulated by the intrinsic apoptotic path assisted by Bcl2 and Bax in vivo, yet at the same point, controlling the PI3K/Akt/mTOR/VEGF pathway, as obtained from western blotting, correlates with the MMP9-regulated tumor mechanisms. Our research reveals that ruthenium-fluvastatin chemotherapy may disrupt, rescind, or interrupt breast carcinoma progression by modifying intrinsic apoptosis as well as the antiangiogenic cascade, thereby taking the role of a potential candidate in cancer therapy for the immediate future.
Collapse
Affiliation(s)
- Wei Liang
- Department of Oncology, Nanjing First Hospital Nanjing Medical University, Nanjing 210006, China
| | - Junfeng Shi
- Department of Oncology, Nanjing First Hospital Nanjing Medical University, Nanjing 210006, China
| | - Haiyan Xia
- Department of Oncology, Nanjing First Hospital Nanjing Medical University, Nanjing 210006, China
| | - Xiaowei Wei
- Department of Oncology, Nanjing First Hospital Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
200
|
Navalkar A, Pandey S, Singh N, Patel K, Datta D, Mohanty B, Jadhav S, Chaudhari P, Maji SK. Direct evidence of cellular transformation by prion-like p53 amyloid infection. J Cell Sci 2021; 134:269011. [PMID: 34085695 DOI: 10.1242/jcs.258316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/21/2021] [Indexed: 11/20/2022] Open
Abstract
Tumor suppressor p53 mutations are associated with more than 50% of cancers. Aggregation and amyloid formation of p53 is also implicated in cancer pathogenesis, but direct evidence for aggregated p53 amyloids acting as an oncogene is lacking. Here, we conclusively demonstrate that wild-type p53 amyloid formation imparts oncogenic properties to non-cancerous cells. p53 amyloid aggregates were transferred through cell generations, contributing to enhanced survival, apoptotic resistance with increased proliferation and migration. The tumorigenic potential of p53 amyloid-transformed cells was further confirmed in mouse xenografts, wherein the tumors showed p53 amyloids. p53 disaggregation rescued the cellular transformation and inhibited tumor development in mice. We propose that wild-type p53 amyloid formation contributes to tumorigenesis and can be a potential target for therapeutic intervention. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ambuja Navalkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India400076
| | - Satyaprakash Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India400076
| | - Namrata Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India400076
| | - Komal Patel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India400076
| | - Debalina Datta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India400076
| | - Bhabani Mohanty
- Small Animal Imaging Facility, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, India410210
| | | | - Pradip Chaudhari
- Small Animal Imaging Facility, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, India410210.,Department of Life Sciences, Homi Bhabha National Institute, Anushaktinagar, Mumbai, India400094
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India400076
| |
Collapse
|