151
|
Doxorubicin conjugated AuNP/biopolymer composites facilitate cell cycle regulation and exhibit superior tumor suppression potential in KRAS mutant colorectal cancer. J Biotechnol 2019; 306:149-158. [DOI: 10.1016/j.jbiotec.2019.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023]
|
152
|
Lee HW, Son E, Lee K, Lee Y, Kim Y, Lee JC, Lim Y, Hur M, Kim D, Nam DH. Promising Therapeutic Efficacy of GC1118, an Anti-EGFR Antibody, against KRAS Mutation-Driven Colorectal Cancer Patient-Derived Xenografts. Int J Mol Sci 2019; 20:ijms20235894. [PMID: 31771279 PMCID: PMC6928876 DOI: 10.3390/ijms20235894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-targeted monoclonal antibodies, including cetuximab and panitumumab, are used to treat metastatic colorectal cancer (mCRC). However, this treatment is only effective for a small subset of mCRC patients positive for the wild-type KRAS GTPase. GC1118 is a novel, fully humanized anti-EGFR IgG1 antibody that displays potent inhibitory effects on high-affinity EGFR ligand-induced signaling and enhanced antibody-mediated cytotoxicity. In this study, using 51 CRC patient-derived xenografts (PDXs), we showed that KRAS mutants expressed remarkably elevated autocrine levels of high-affinity EGFR ligands compared with wild-type KRAS. In three KRAS-mutant CRCPDXs, GC1118 was more effective than cetuximab, whereas the two agents demonstrated comparable efficacy against three wild-type KRAS PDXs. Persistent phosphatidylinositol-3-kinase (PI3K)/AKT signaling was thought to underlie resistance to GC1118. In support of these findings, a preliminary improved anti-cancer response was observed in a CRC PDX harboring mutated KRAS with intrinsically high AKT activity using GC1118 combined with the dual PI3K/mammalian target of rapamycin (mTOR)/AKT inhibitor BEZ-235, without observed toxicity. Taken together, the superior antitumor efficacy of GC1118 alone or in combination with PI3K/mTOR/AKT inhibitors shows great therapeutic potential for the treatment of KRAS-mutant mCRC with elevated ratios of high- to low-affinity EGFR ligands and PI3K-AKT pathway activation.
Collapse
Affiliation(s)
- Hye Won Lee
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16149, Korea;
- Single Cell Network Research Center, Sungkyunkwan University, Suwon 16149, Korea
| | - Eunju Son
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea; (E.S.); (K.L.); (Y.L.); (Y.K.)
| | - Kyoungmin Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea; (E.S.); (K.L.); (Y.L.); (Y.K.)
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul 06351, Korea
| | - Yeri Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea; (E.S.); (K.L.); (Y.L.); (Y.K.)
- Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
| | - Yejin Kim
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea; (E.S.); (K.L.); (Y.L.); (Y.K.)
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul 06351, Korea
| | - Jae-Chul Lee
- Translational Research 1 Team, MOGAM Institute for Biomedical Research, Yongin 16924, Korea; (J.-C.L.); (Y.L.); (M.H.)
| | - Yangmi Lim
- Translational Research 1 Team, MOGAM Institute for Biomedical Research, Yongin 16924, Korea; (J.-C.L.); (Y.L.); (M.H.)
| | - Minkyu Hur
- Translational Research 1 Team, MOGAM Institute for Biomedical Research, Yongin 16924, Korea; (J.-C.L.); (Y.L.); (M.H.)
| | - Donggeon Kim
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea; (E.S.); (K.L.); (Y.L.); (Y.K.)
- Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
- Correspondence: (D.K.); (D.-H.N.); Tel.: +82-02-2148-7723 (D.K.); +82-02-3410-3497 (D.-H.N.)
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea; (E.S.); (K.L.); (Y.L.); (Y.K.)
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul 06351, Korea
- Department of Neurosurgery, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul 06531, Korea
- Correspondence: (D.K.); (D.-H.N.); Tel.: +82-02-2148-7723 (D.K.); +82-02-3410-3497 (D.-H.N.)
| |
Collapse
|
153
|
Gupta R, Othman T, Chen C, Sandhu J, Ouyang C, Fakih M. Guardant360 Circulating Tumor DNA Assay Is Concordant with FoundationOne Next-Generation Sequencing in Detecting Actionable Driver Mutations in Anti-EGFR Naive Metastatic Colorectal Cancer. Oncologist 2019; 25:235-243. [PMID: 32162812 DOI: 10.1634/theoncologist.2019-0441] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Direct comparisons between Guardant360 (G360) circulating tumor DNA (ctDNA) and FoundationOne (F1) tumor biopsy genomic profiling in metastatic colorectal cancer (mCRC) are limited. We aim to assess the concordance across overlapping genes tested in both F1 and G360 in patients with mCRC. MATERIALS AND METHODS We retrospectively analyzed 75 patients with mCRC who underwent G360 and F1 testing. We evaluated the concordance among gene mutations tested by both G360 and F1 among three categories of patients: untreated, treated without, and treated with EGFR inhibitors, while considering the clonal and/or subclonal nature of each genomic alteration. RESULTS There was a high rate of concordance in APC, TP53, KRAS, NRAS, and BRAF mutations in the treatment-naive and non-anti-EGFR-treated cohorts. There was increased discordance in the anti-EGFR treated patients in three drivers of anti-EGFR resistance: KRAS, NRAS, and EGFR somatic mutations. Based on percentage of ctDNA, discordant somatic mutations were mostly subclonal instead of clonal and may have limited clinical significance. Most discordant amplifications noted on G360 showed the magnitude below the top decile, occurred in all three cohorts of patients, and were of unknown clinical significance. Serial ctDNA in anti-EGFR treated patients showed the emergence of multiple new alterations that affected the EGFR pathway: EGFR and RAS mutations and MET, RAS, and BRAF amplifications. CONCLUSION G360 Next-Generation Sequencing platform may be used as an alternative to F1 to detect targetable somatic alterations in non-anti-EGFR treated mCRC, but larger prospective studies are needed to further validate our findings. IMPLICATIONS FOR PRACTICE Genomic analysis of tissue biopsy is currently the optimal method for identifying DNA genomic alterations to help physicians target specific genes but has many disadvantages that may be mitigated by a circulating free tumor DNA (ctDNA) assay. This study showed a high concordance rate in certain gene mutations in patients who were treatment naive and treated with non-anti-EGFR therapy prior to ctDNA testing. This suggests that ctDNA genomic analysis may potentially be used as an alternative to tumor biopsy to identify appropriate patients for treatment selection in mCRC, but larger prospective studies are needed to further validate concordance among tissue and ctDNA tumor profiling.
Collapse
Affiliation(s)
- Rohan Gupta
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, California, USA
| | - Tamer Othman
- Department of Internal Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Chen Chen
- Center for Informatics, City of Hope National Medical Center, Duarte, California, USA
| | - Jaideep Sandhu
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, California, USA
| | - Ching Ouyang
- Center for Informatics, City of Hope National Medical Center, Duarte, California, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope National Medical Center, Duarte, California, USA
| | - Marwan Fakih
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
154
|
Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol Ther 2019; 206:107447. [PMID: 31756363 DOI: 10.1016/j.pharmthera.2019.107447] [Citation(s) in RCA: 477] [Impact Index Per Article: 95.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
5-Fluorouracil (5-FU) is an essential component of systemic chemotherapy for colorectal cancer (CRC) in the palliative and adjuvant settings. Over the past four decades, several modulation strategies including the implementation of 5-FU-based combination regimens and 5-FU pro-drugs have been developed and tested to increase the anti-tumor activity of 5-FU and to overcome the clinical resistance. Despite the encouraging progress in CRC therapy to date, the patients' response rates to therapy continue to remain low and the patients' benefit from 5-FU-based therapy is frequently compromised by the development of chemoresistance. Inter-individual differences in the treatment response in CRC patients may originate in the unique genetic and epigenetic make-up of each individual. The critical element in the current trend of personalized medicine is the proper comprehension of causes and mechanisms contributing to the low or lack of sensitivity of tumor tissue to 5-FU-based therapy. The identification and validation of predictive biomarkers for existing 5-FU-based and new targeted therapies for CRC treatment will likely improve patients' outcomes in the future. Herein we present a comprehensive review summarizing options of CRC treatment and the mechanisms of 5-FU action at the molecular level, including both anabolic and catabolic ways. The main part of this review comprises the currently known molecular mechanisms underlying the chemoresistance in CRC patients. We also focus on various 5-FU pro-drugs developed to increase the amount of circulating 5-FU and to limit toxicity. Finally, we propose future directions of personalized CRC therapy according to the latest published evidence.
Collapse
Affiliation(s)
- Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruska 2411/87, 100 00 Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic
| | - Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Veronika Veskrnova
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic.
| |
Collapse
|
155
|
Beer PA, Cooke SL, Chang DK, Biankin AV. Reasons to be testing: the dawn of complex molecular profiling in routine oncology practice. Ann Oncol 2019; 30:1691-1694. [PMID: 31665210 DOI: 10.1093/annonc/mdz392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Affiliation(s)
- Philip A Beer
- Sanger Institute, Wellcome Trust Genome Campus, Cambridge; Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow
| | - Susanna L Cooke
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK; South Western Sydney Clinical School, Liverpool, NSW, Australia.
| |
Collapse
|
156
|
Al-Turkmani MR, Godwin KN, Peterson JD, Tsongalis GJ. Rapid Somatic Mutation Testing in Colorectal Cancer by Use of a Fully Automated System and Single-Use Cartridge: A Comparison with Next-Generation Sequencing. J Appl Lab Med 2019; 3:178-184. [DOI: 10.1373/jalm.2018.026278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/26/2018] [Indexed: 12/12/2022]
Abstract
AbstractBackgroundMolecular tests have been increasingly used in the management of various cancers as more targeted therapies are becoming available as treatment options. The Idylla™ system is a fully integrated, cartridge-based platform that provides automated sample processing (deparaffinization, tissue digestion, and DNA extraction) and real-time PCR-based mutation detection with all reagents included in a single-use cartridge. This retrospective study aimed at evaluating both the Idylla KRAS and NRAS-BRAF-EGFR492 Mutation Assay cartridges (research use only) against next-generation sequencing (NGS) by using colorectal cancer (CRC) tissue samples.MethodsForty-four archived formalin-fixed paraffin-embedded (FFPE) CRC tissue samples previously analyzed by targeted NGS were tested on the Idylla system. Among these samples, 17 had a mutation in KRAS proto-oncogene, GTPase (KRAS), 5 in NRAS proto-oncogene, GTPase (NRAS), and 12 in B-Raf proto-oncogene, serine/threonine kinase (BRAF) as determined using the Ion AmpliSeq 50-gene Cancer Hotspot Panel v2. The remaining 10 samples were wild-type for KRAS, NRAS, and BRAF. Two 10-μm FFPE tissue sections were used for each Idylla run, 1 for the KRAS cartridge, and 1 for the NRAS-BRAF-EGFR492 cartridge. All cases met the Idylla minimum tumor content requirement for KRAS, NRAS, and BRAF (≥10%). Assay reproducibility was evaluated by testing commercial controls derived from human cell lines, which had an allelic frequency of 50% and were run in triplicate.ResultsThe Idylla system successfully detected all mutations previously identified by NGS in KRAS (G12C, G12D, G12V, G13D, Q61K, Q61R, A146T), NRAS (G12V, G13R, Q61H), and BRAF (V600E). Compared with NGS, Idylla had a sensitivity of 100%. Analysis of the mutated commercial controls demonstrated agreement with the expected result for all samples and 100% reproducibility. The Idylla system produced results quickly with a turnaround time of approximately 2 h.ConclusionThe Idylla system offers reliable and sensitive testing of clinically actionable mutations in KRAS, NRAS, and BRAF directly from FFPE tissue sections.
Collapse
Affiliation(s)
- M Rabie Al-Turkmani
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Kelley N Godwin
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Jason D Peterson
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Gregory J Tsongalis
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
157
|
Maeda H, Hazama S, Iwamoto S, Oba K, Tsunedomi R, Okayama N, Suehiro Y, Yamasaki T, Nakagami Y, Suzuki N, Nagano H, Sakamoto J, Mishima H, Nagata N. Association between polymorphisms in EGFR and tumor response during cetuximab and oxaliplatin-based combination therapy in metastatic colorectal cancer: Analysis of data from two clinical trials. Oncol Lett 2019; 18:4555-4562. [PMID: 31611963 PMCID: PMC6781779 DOI: 10.3892/ol.2019.10787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Predicting tumor response prior to starting anti-epidermal growth factor receptor (EGFR) antibody therapy would benefit patients with advanced/metastatic colorectal cancer (mCRC). The present study investigated the association between efficacy of cetuximab treatment and gene polymorphisms of fragment C γ receptor (FcγR) 2A, FcγR3A and EGFR in patients with extended RAS/BRAF wild-type mCRC. Clinical data and specimens were obtained from 90 patients who participated in either of two clinical studies evaluating the first-line, cetuximab plus oxaliplatin-based treatment. It was hypothesized that polymorphisms H/H of FcγR2A, V/V of FcγR3A, K/K of EGFR and <36 CA repeats in the EGFR gene may be associated with a favorable tumor response. Multivariate analysis demonstrated that patients with the H/H polymorphism tended to have an improved tumor response compared with the non-H/H population, although the result was not significant [odds ratio, 2.25; 95% confidence interval (CI), 0.89–5.66; P=0.09]. Univariate analysis revealed increased tumor shrinkage in patients with the K/K polymorphism of EGFR compared with the other polymorphisms (mean ± standard deviation, −55.3±28.4 vs. −39.6±40.8%; P=0.04). Subsequent multivariate analysis confirmed that the K/K polymorphism of EGFR predicted greater tumor shrinkage (multiple linear regression analysis estimate, −19.3; 95% CI, −35.5 to 3.0; P=0.02), with the tendency toward a preferable response in patients with <36 CA EGFR gene repeats (estimate, −16.9; 95% CI; −34.4 to 0.6; P=0.06). However, other polymorphisms and clinical variables did not predict tumor shrinkage. In conclusion, the present study demonstrated that polymorphisms of EGFR, FcγR2A and FcγR3A may differentiate the patients that obtain the maximum benefit from cetuximab treatment.
Collapse
Affiliation(s)
- Hiromichi Maeda
- Cancer Treatment Center, Kochi Medical School Hospital, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan.,Department of Translational Research and Developmental Therapeutics Against Cancer, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Shigeyoshi Iwamoto
- Cancer Center, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Koji Oba
- Department of Biostatistics, Graduate School of Medicine, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Naoko Okayama
- Division of Laboratory, Yamaguchi University Hospital, Ube, Yamaguchi 755-8505, Japan
| | - Yutaka Suehiro
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Takahiro Yamasaki
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Yuki Nakagami
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan.,Department of Translational Research and Developmental Therapeutics Against Cancer, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | | | - Hideyuki Mishima
- Cancer Center, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Naoki Nagata
- Kitakyushu General Hospital, Kitakyushu, Fukuoka 802-8517, Japan
| |
Collapse
|
158
|
Prevalence, prognosis and predictive status of HER2 amplification in anti-EGFR-resistant metastatic colorectal cancer. Clin Transl Oncol 2019; 22:813-822. [PMID: 31587152 DOI: 10.1007/s12094-019-02213-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
Numerous inherent and acquired genetic alterations have been demonstrated with resistance to anti-epidermal growth factor receptor (anti-EGFR) therapy in metastatic colorectal cancer (mCRC) patients. Although the common oncogenic driver mutations identified include KRAS, NRAS, BRAF, and PI3K, recent studies report a vital role played by human epithelial growth factor receptor-2 (HER2) amplification in acquired resistance to anti-EGFR therapy. HER2 amplification has been associated with poor prognosis in many malignancies including breast and gastric cancer and is also a negative predictor of anti-EGFR therapy. Given the relevance of HER2 amplification in conferring an anti-EGFR resistance, this paper reviews the prevalence of HER2 amplification in mCRC while exploring the prognostic and predictive values of this biomarker. Further, we also discuss the results of the studies that explored the utilization of anti-HER2-targeted therapies in mCRC. HER2-directed therapies have the ability to change the treatment algorithm in clinically relevant small subset of patients with HER2-amplified mCRC.
Collapse
|
159
|
Li G, Pavlick D, Chung JH, Bauer T, Tan BA, Peguero J, Ward P, Kallab A, Bufill J, Hoffman A, Sadiq A, Edenfield J, He J, Cooke M, Hughes J, Forcier B, Nahas M, Stephens P, Ali SM, Schrock AB, Ross JS, Miller VA, Gregg JP. Genomic profiling of cell-free circulating tumor DNA in patients with colorectal cancer and its fidelity to the genomics of the tumor biopsy. J Gastrointest Oncol 2019; 10:831-840. [PMID: 31602320 DOI: 10.21037/jgo.2019.05.05] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Liquid biopsy offers the ability to non-invasively analyze the genome of a tumor through circulating tumor DNA (ctDNA) to identify targetable and prognostic genomic alterations. Few studies have rigorously analyzed ctDNA results and determined the fidelity with which they recapitulate the genomics of a sequenced tissue sample obtained from the same tumor. The clinical utility study (CUS) for the FoundationACT™ ctDNA assay (Foundation Medicine, Cambridge, MA, USA; NCT02620527) is a multi-center prospective clinical study for multiple solid tumor types to compare genomic profiling of paired tissue and blood samples from the same patient. In this subset of the study, paired specimens from 96 patients with colorectal cancer (CRC) were analyzed with comprehensive genomic profiling (CGP) of the tumor tissue sample (FoundationOne®) and blood sample (FoundationACT™). Methods Both samples underwent CGP using the hybrid capture-based Illumina Hi-Seq technology. Maximum somatic allele frequency (MSAF) was used to estimate the fraction of ctDNA in the sample. The set of genes and targeted regions common to both tumor and liquid were compared for each subject. Results Among these patients, 61% were male; 74% had clinical stage IV disease, 19% had clinical stage III disease, and 7% had clinical stage II disease. Time between the tissue biopsy and liquid biopsy (range, 0-709 days) had a significant impact on the positive percent agreement (PPA) between the two assays. Eighty percent of cases had evidence of ctDNA in the blood (MSAF >0). For all cases with MSAF >0, 171 base substitutions and insertions/deletions (indels) were identified in the tumor, and 79% (PPA) of these identical alterations were also identified in matched ctDNA samples; PPA increased to 87% for cases <270 days between the tissue and liquid biopsy, 95% for <90 days, and 100% PPA for <30 days. All known and likely short variants in KRAS, NRAS, and BRAF were analyzed independently as testing of these genes is recommended by the National Comprehensive Cancer Network (NCCN) for patients with CRC and have therapeutic implications. For NCCN genes, PPA was 80% for all time points for short variants; PPA increased to 90% for cases <270 days between the tissue and liquid biopsy. There was high concordance for KRAS G12X between tissue and liquid: overall percent agreement (97%), PPA (93%), negative percent agreement (NPA) (100%), positive predictive value (PPV) (100%), and negative predictive value (NPV) (96%) for the <270 day cohort. Conclusions In cases where tumor tissue profiling is not possible, these results provide compelling evidence that genomic profiling of ctDNA in late stage CRC shows a high concordance with tumor tissue sequencing results and can be used to identify most clinically relevant alterations capable of guiding therapy for these patients.
Collapse
Affiliation(s)
- Gerald Li
- Foundation Medicine, Cambridge, MA, USA
| | | | | | - Todd Bauer
- Sarah Cannon Research Institute, Nashville, TN, USA
| | | | | | | | - Andre Kallab
- Northeast Georgia Medical Center, Gainesville, GA, USA
| | - Jose Bufill
- Northern Indiana Cancer Research Consortium (Michiana), Mishawaka, Indiana, USA
| | | | - Ahad Sadiq
- Fort Wayne Health, Fort Wayne, Indiana, USA
| | | | - Jie He
- Foundation Medicine, Cambridge, MA, USA
| | | | | | | | | | | | | | | | - Jeffrey S Ross
- Foundation Medicine, Cambridge, MA, USA.,Upstate Medical University, Syracuse, NY, USA
| | | | - Jeffrey P Gregg
- Foundation Medicine, Cambridge, MA, USA.,UC Davis Health, Department of Pathology and Laboratory Medicine, Sacramento, CA, USA
| |
Collapse
|
160
|
Cuomo F, Altucci L, Cobellis G. Autophagy Function and Dysfunction: Potential Drugs as Anti-Cancer Therapy. Cancers (Basel) 2019; 11:cancers11101465. [PMID: 31569540 PMCID: PMC6826381 DOI: 10.3390/cancers11101465] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a highly conserved catabolic and energy-generating process that facilitates the degradation of damaged organelles or intracellular components, providing cells with components for the synthesis of new ones. Autophagy acts as a quality control system, and has a pro-survival role. The imbalance of this process is associated with apoptosis, which is a “positive” and desired biological choice in some circumstances. Autophagy dysfunction is associated with several diseases, including neurodegenerative disorders, cardiomyopathy, diabetes, liver disease, autoimmune diseases, and cancer. Here, we provide an overview of the regulatory mechanisms underlying autophagy, with a particular focus on cancer and the autophagy-targeting drugs currently approved for use in the treatment of solid and non-solid malignancies.
Collapse
Affiliation(s)
- Francesca Cuomo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", via L. De Crecchio, 7, 80138 Naples, Italy.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "L. Vanvitelli", via L. De Crecchio, 7, 80138 Naples, Italy.
| | - Gilda Cobellis
- Department of Precision Medicine, University of Campania "L. Vanvitelli", via L. De Crecchio, 7, 80138 Naples, Italy.
| |
Collapse
|
161
|
Russo R, Matrone N, Belli V, Ciardiello D, Valletta M, Esposito S, Pedone PV, Ciardiello F, Troiani T, Chambery A. Macrophage Migration Inhibitory Factor Is a Molecular Determinant of the Anti-EGFR Monoclonal Antibody Cetuximab Resistance in Human Colorectal Cancer Cells. Cancers (Basel) 2019; 11:cancers11101430. [PMID: 31557914 PMCID: PMC6826402 DOI: 10.3390/cancers11101430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Background: The clinical impact of the monoclonal antibody cetuximab targeting the EGFR in colorectal cancer (CRC) is widely recognized. Nevertheless, the onset of cetuximab resistance is a serious issue that limits the effectiveness of this drug in targeted therapies. Unraveling the molecular players involved in cancer resistance is the first step towards the identification of alternative signaling pathways that can be targeted to circumvent resistance mechanisms restoring the efficacy of therapeutic treatments in a tailored manner. Methods: By applying a nanoLC-MS/MS TMT isobaric labeling-based approach, we have delineated a molecular hallmark of cetuximab-resistance in CRC. Results: We identified macrophage migration inhibitory factor (MIF) as a molecular determinant capable of triggering cancer resistance in sensitive human CRC cells. Blocking the MIF axis in resistant cells by a selective MIF inhibitor restores cell sensitivity to cetuximab. The combined treatment with cetuximab and the MIF inhibitor further enhanced cell growth inhibition in CRC resistant cell lines with a synergistic effect depending on inhibition of key downstream effectors of the MAPK and AKT signaling pathways. Conclusions: Collectively, our results suggest the association of MIF signaling and its dysregulation to cetuximab drug resistance, paving the way to the development of personalized combination therapies targeting the MIF axis.
Collapse
Affiliation(s)
- Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Nunzia Matrone
- Department of Precision Medicine, Università degli studi della Campania "Luigi Vanvitelli", 80131 Naples, Italy.
| | - Valentina Belli
- Department of Precision Medicine, Università degli studi della Campania "Luigi Vanvitelli", 80131 Naples, Italy.
| | - Davide Ciardiello
- Department of Precision Medicine, Università degli studi della Campania "Luigi Vanvitelli", 80131 Naples, Italy.
| | - Mariangela Valletta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Sabrina Esposito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Fortunato Ciardiello
- Department of Precision Medicine, Università degli studi della Campania "Luigi Vanvitelli", 80131 Naples, Italy.
| | - Teresa Troiani
- Department of Precision Medicine, Università degli studi della Campania "Luigi Vanvitelli", 80131 Naples, Italy.
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| |
Collapse
|
162
|
Nguyen BT, Pyun JC, Lee SG, Kang MJ. Identification of new binding proteins of focal adhesion kinase using immunoprecipitation and mass spectrometry. Sci Rep 2019; 9:12908. [PMID: 31501460 PMCID: PMC6733923 DOI: 10.1038/s41598-019-49145-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/03/2019] [Indexed: 02/07/2023] Open
Abstract
Focal adhesion kinase (FAK) is a 125 kDa protein recruited as a participant in focal adhesion dynamics and serves as a signaling scaffold for the assembly and subsequent maturation of focal contact. Identification of new FAK binding proteins could reveal potential signaling targets and contribute to further development of therapeutic drugs in the treatment of colon cancer. Here, we applied a functional proteomic strategy to identify proteins that interact with FAK in human colon cancer cell line HCT-116. Proteins were targeted by coimmunoprecipitation with an anti-FAK antibody and resolved on 1D-SDS-PAGE. The gel was excised, reduced, alkylated, and trypsin digested. Tryptic peptides were separated by nano-LC-MS/MS by an LTQ-Orbitrap-Velos spectrometer. We identified 101 proteins in the immunocomplex under epithelial growth factor (EGF) stimulation. Three proteins, zyxin, nesprin-1, and desmoplakin, were discovered and validated using reciprocal immunoprecipitation and Western blot analysis. Then, we sought to study the biological relevance of these proteins by siRNA transfection of HCT-116 cells. According to the results, zyxin might play a central role as an upstream regulator to mediate critical cancer-related signaling pathways. Zyxin and nesprin-1 depletion significantly impaired cell migration and invasion capabilities. Additionally, we performed ELISA assays on serum samples from patients with colon cancer instead of cell models to quantify the protein levels of zyxin and nesprin-1. Our results suggested that zyxin and nesprin-1 are not only promising therapeutic targets but also potential diagnostic biomarkers for colon cancer.
Collapse
Affiliation(s)
- Binh Thanh Nguyen
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.,Division of Bio-Medical Science and Technology (Biological Chemistry), Korea University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Jae-Chul Pyun
- Department of Materials and Sciences, Yonsei University, Seoul, 120-749, South Korea
| | - Sang-Guk Lee
- Department of Laboratory Medicine, Severance Hospital, Seoul, 120-752, South Korea. .,Yonsei University College of Medicine, Seoul, 120-752, South Korea.
| | - Min-Jung Kang
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea. .,Division of Bio-Medical Science and Technology (Biological Chemistry), Korea University of Science and Technology (UST), Daejeon, 34113, South Korea.
| |
Collapse
|
163
|
Ottaiano A, Scala S, Normanno N, Napolitano M, Capozzi M, Rachiglio AM, Roma C, Trotta AM, D’Alterio C, Portella L, Romano C, Cassata A, Casaretti R, Silvestro L, Nappi A, Tafuto S, Avallone A, De Stefano A, Tamburini M, Picone C, Petrillo A, Izzo F, Palaia R, Albino V, Amore A, Belli A, Pace U, Di Marzo M, Chiodini P, Botti G, De Feo G, Delrio P, Nasti G. Cetuximab, irinotecan and fluorouracile in fiRst-line treatment of immunologically-selected advanced colorectal cancer patients: the CIFRA study protocol. BMC Cancer 2019; 19:899. [PMID: 31500586 PMCID: PMC6734266 DOI: 10.1186/s12885-019-6109-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Combination of chemotherapies (fluoropirimidines, oxaliplatin and irinotecan) with biologic drugs (bevacizumab, panitumumab, cetuximab) have improved clinical responses and survival of metastatic colorectal cancer (mCRC). However, patients' selection thorough the identification of predictive factors still represent a challange. Cetuximab (Erbitux®), a chimeric monoclonal antibody binding to the Epidermal Growth Factor Receptor (EGFR), belongs to the Immunoglobulins (Ig) grade 1 subclass able to elicite both in vitro and in vivo the Antibody-Dependent Cell-mediated Cytotoxicity (ADCC). ADCC is the cytotoxic killing of antibody-coated target cells by immunologic effectors. The effector cells express a receptor for the Fc portion of these antibodies (FcγR); genetic polymorphisms of FcγR modify the binding affinity with the Fc of IgG1. Interestingly, the high-affinity FcγRIIIa V/V is associated with increased ADCC in vitro and in vivo. Thus, ADCC could partially account for cetuximab activity. METHODS/DESIGN CIFRA is a single arm, open-label, phase II study assessing the activity of cetuximab in combination with irinotecan and fluorouracile in FcγRIIIa V/V patients with KRAS, NRAS, BRAF wild type mCRC. The study is designed with a two-stage Simon model based on a hypothetical higher response rate (+ 10%) of FcγRIIIa V/V patients as compared to previous trials (about 60%) assuming ADCC as one of the possible mechanisms of cetuximab action. The test power is 95%, the alpha value of the I-type error is 5%. With these assumptions the sample for passing the first stage is 14 patients with > 6 responses and the final sample is 34 patients with > 18 responses to draw positive conclusions. Secondary objectives include toxicity, responses' duration, progression-free and overall survival. Furthermore, an associated translational study will assess the patients' cetuximab-mediated ADCC and characterize the tumor microenvironment. DISCUSSION The CIFRA study will determine whether ADCC contributes to cetuximab activity in mCRC patients selected on an innovative immunological screening. Data from the translational study will support results' interpretation as well as provide new insights in host-tumor interactions and cetuximab activity. TRIAL REGISTRATION The CIFRA trial (version 0.0, June 21, 2018) has been registered into the NIH-US National Library of Medicine, ClinicalTrials.gov database with the identifier number ( NCT03874062 ).
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Innovative Therapies for Abdominal Metastases Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Stefania Scala
- Molecular Immunology and Immunoregulation Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Maria Napolitano
- Molecular Immunology and Immunoregulation Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Monica Capozzi
- Abdominal Oncology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Anna Maria Rachiglio
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Cristin Roma
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Anna Maria Trotta
- Molecular Immunology and Immunoregulation Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Crescenzo D’Alterio
- Molecular Immunology and Immunoregulation Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Luigi Portella
- Molecular Immunology and Immunoregulation Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Carmela Romano
- Abdominal Oncology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Antonino Cassata
- Abdominal Oncology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Rossana Casaretti
- Abdominal Oncology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Lucrezia Silvestro
- Abdominal Oncology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Anna Nappi
- Abdominal Oncology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Salvatore Tafuto
- Abdominal Oncology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Antonio Avallone
- Abdominal Oncology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Alfonso De Stefano
- Abdominal Oncology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Mario Tamburini
- Scientific Directorate, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Carmine Picone
- Radiology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Antonella Petrillo
- Radiology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Francesco Izzo
- Hepatobiliary Surgical Oncology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Raffaele Palaia
- Hepatobiliary Surgical Oncology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Vittorio Albino
- Hepatobiliary Surgical Oncology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Alfonso Amore
- Melanoma and Sarcoma Surgery Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Andrea Belli
- Colorectal Cancer Surgery Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Ugo Pace
- Colorectal Cancer Surgery Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Massimiliano Di Marzo
- Colorectal Cancer Surgery Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Paolo Chiodini
- Medical Statistics Unit, University of Campania, Luigi Vanvitelli, Naples, Italy
| | - Gerardo Botti
- Scientific Directorate, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Gianfranco De Feo
- Scientific Directorate, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Paolo Delrio
- Colorectal Cancer Surgery Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| | - Guglielmo Nasti
- Innovative Therapies for Abdominal Metastases Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy
| |
Collapse
|
164
|
Fong W, To KKW. Drug repurposing to overcome resistance to various therapies for colorectal cancer. Cell Mol Life Sci 2019; 76:3383-3406. [PMID: 31087119 PMCID: PMC11105507 DOI: 10.1007/s00018-019-03134-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/06/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Emergence of novel treatment modalities provides effective therapeutic options, apart from conventional cytotoxic chemotherapy, to fight against colorectal cancer. Unfortunately, drug resistance remains a huge challenge in clinics, leading to invariable occurrence of disease progression after treatment initiation. While novel drug development is unfavorable in terms of time frame and costs, drug repurposing is one of the promising strategies to combat resistance. This approach refers to the application of clinically available drugs to treat a different disease. With the well-established safety profile and optimal dosing of these approved drugs, their combination with current cancer therapy is suggested to provide an economical, safe and efficacious approach to overcome drug resistance and prolong patient survival. Here, we review both preclinical and clinical efficacy, as well as cellular mechanisms, of some extensively studied repurposed drugs, including non-steroidal anti-inflammatory drugs, statins, metformin, chloroquine, disulfiram, niclosamide, zoledronic acid and angiotensin receptor blockers. The three major treatment modalities in the management of colorectal cancer, namely classical cytotoxic chemotherapy, molecular targeted therapy and immunotherapy, are covered in this review.
Collapse
Affiliation(s)
- Winnie Fong
- Faculty of Medicine, School of Pharmacy, Room 801N, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Area 39, Shatin, New Territories, Hong Kong SAR, China
| | - Kenneth K W To
- Faculty of Medicine, School of Pharmacy, Room 801N, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Area 39, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
165
|
Boons G, Vandamme T, Peeters M, Van Camp G, Op de Beeck K. Clinical applications of (epi)genetics in gastroenteropancreatic neuroendocrine neoplasms: Moving towards liquid biopsies. Rev Endocr Metab Disord 2019; 20:333-351. [PMID: 31368038 DOI: 10.1007/s11154-019-09508-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
High-throughput analysis, including next-generation sequencing and microarrays, have strongly improved our understanding of cancer biology. However, genomic data on rare cancer types, such as neuroendocrine neoplasms, has been lagging behind. Neuroendocrine neoplasms (NENs) develop from endocrine cells spread throughout the body and are highly heterogeneous in biological behavior. In this challenging disease, there is an urgent need for new therapies and new diagnostic, prognostic, follow-up and predictive biomarkers to aid patient management. The last decade, molecular data on neuroendocrine neoplasms of the gastrointestinal tract and pancreas, termed gastroenteropancreatic NENs (GEP-NENs), has strongly expanded. The aim of this review is to give an overview of the recent advances on (epi)genetic level and highlight their clinical applications to address the current needs in GEP-NENs. We illustrate how molecular alterations can be and are being used as therapeutic targets, how mutations in DAXX/ATRX and copy number variations could be used as prognostic biomarkers, how far we are in identifying predictive biomarkers and how genetics can contribute to GEP-NEN classification. Finally, we discuss recent studies on liquid biopsies in the field of GEP-NENs and illustrate how liquid biopsies can play a role in patient management. In conclusion, molecular studies have suggested multiple potential biomarkers, but further validation is ongoing.
Collapse
Affiliation(s)
- Gitta Boons
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
| | - Timon Vandamme
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Dr. Molewaterplein 50, 3015GE, Rotterdam, The Netherlands
| | - Marc Peeters
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Guy Van Camp
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium.
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium.
| | - Ken Op de Beeck
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
| |
Collapse
|
166
|
Mohamed A, Twardy B, AbdAllah N, Akhras A, Ismail H, Zordok M, Schrapp K, Attumi T, Tesfaye A, El-Rayes B. Clinical Impact of PI3K/BRAF Mutations in RAS Wild Metastatic Colorectal Cancer: Meta-analysis Results. J Gastrointest Cancer 2019; 50:269-275. [PMID: 29388061 DOI: 10.1007/s12029-018-0062-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Understanding the molecular mechanisms of colorectal cancer has evolved during the last decade ushering the era of personalized medicine. Alteration of BRAF and PI3K is common in colorectal cancer, and can affect several signaling pathways including EGFR (epidermal growth factor receptor). The aim of this meta-analysis is to evaluate the clinical role of PI3K and BRAF mutations in patients with KRAS wild-type metastatic colorectal cancer (MCRC) receiving an EGFR monoclonal antibody (anti-EGFR) inhibitor as first-line therapy. METHODS A literature search was performed to identify studies exploring the association between PI3K/BRAF mutations and clinical outcomes of KRAS wild-type mCRC patients treated with anti-EGFR as a first-line therapy. The primary clinical outcome was overall response rate (ORR). The secondary outcomes included progression-free survival (PFS) and overall survival (OS). The pooled relative risk (RR) or hazard ratio (HR) was estimated by using fixed-effect model or random effect model according to heterogeneity between studies. RESULTS Ten studies with 1470 mCRC patients (357 for PI3K studies and 1113 from BRAF studies) met selection criteria. We observed a trend towards lower ORR in patients with PI3K mutations (3 studies, 357 patients; ORR = 14.3% in mutant-type PI3K vs. 52.4% in wild-type PIK3CA [95% CI - 0.12-0.02]; P = 0.13). Patients with mutant-type PI3K have significant shorter PFS (3 studies, 357 patients, 3.8 vs. 4.15 months, HR = 1.36; [95% CI 1.04-1.77]; P = 0.02]), and OS (3 studies, 357 patients, 14.17 vs. 16.3 months, HR = 1.50; [95% CI 1.14-1.97]; P = 0.004) compared to those with wild PI3K. For BRAF, patients with mutant type have significantly lower ORR (7 studies, 1113 patients; ORR = 33% vs. 39%; [95% CI - 0.16-0.01]; P = 0.03), shorter PFS (5 studies, 814 patients, 3.9 vs. 5.7 months, HR = 1.72; [95% CI 1.47-2.01]; P = 0.00001), and shorter OS (4 studies, 766 pts., 9.1 vs. 18.9 months, HR = 1.22; [95% CI 1.04-1.44]; P = 0.01) compared to those with wild-type. CONCLUSION This analysis suggests that patients with mCRC and either PI3K or BRAF mutation may have a lower response and worse outcome when treated with anti-EGFR in the first line. Given their worse outcome, routine testing for BRAF and PI3K mutational status should be considered. Novel therapeutic approaches are needed for patients with mutations in BRAF or PI3K.
Collapse
Affiliation(s)
- Amr Mohamed
- Department of Medical Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Brandon Twardy
- Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Nadine AbdAllah
- Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Alaa Akhras
- Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Hibah Ismail
- Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Magdi Zordok
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kelly Schrapp
- Department of Medicine, Morehouse School of Medicine, Atlanta, GA, USA
| | - Taraq Attumi
- Department of Medicine, Morehouse School of Medicine, Atlanta, GA, USA
| | - Anteneh Tesfaye
- Department of Medical Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Bassel El-Rayes
- Department of Hematology and Medical Oncology, Winship Cancer Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
167
|
Piawah S, Venook AP. Targeted therapy for colorectal cancer metastases: A review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer 2019; 125:4139-4147. [PMID: 31433498 DOI: 10.1002/cncr.32163] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/18/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Despite recent advances in the management of colorectal cancer, metastatic disease remains challenging, and patients are rarely cured. However, a better understanding of the pathways implicated in the evolution and proliferation of cancer cells has led to the development of targeted therapies, that is, agents with action directed at these pathways/features. This approach is more specific to cells within which these pathways, such as epidermal growth factor receptor (EGFR), are overactive; this is in contrast to the relatively indiscriminate mechanism by which cytotoxic chemotherapy tends to affect rapidly dividing cells, regardless of their role. Although factors unique to a given patient, such as the location of the primary tumor (sidedness) or the presence of mutations that confer resistance, may limit the utility of these agents, targeted therapies are now a part of the treatment paradigm for metastatic colorectal cancer, and survival outcomes have significantly improved. This review provides an overview of the role of targeted therapy in the management of patients with colorectal cancer metastases as well as a discussion of issues in patient selection, with a focus on inhibitors of angiogenesis, EGFR-targeted therapy, BRAF mutation-targeted therapies, and other novel strategies, including immunotherapy.
Collapse
Affiliation(s)
| | - Alan P Venook
- University of California San Francisco, San Francisco, California
| |
Collapse
|
168
|
Saliani M, Jalal R, Ahmadian MR. From basic researches to new achievements in therapeutic strategies of KRAS-driven cancers. Cancer Biol Med 2019; 16:435-461. [PMID: 31565476 PMCID: PMC6743616 DOI: 10.20892/j.issn.2095-3941.2018.0530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
Among the numerous oncogenes involved in human cancers, KRAS represents the most studied and best characterized cancer-related genes. Several therapeutic strategies targeting oncogenic KRAS (KRAS onc ) signaling pathways have been suggested, including the inhibition of synthetic lethal interactions, direct inhibition of KRAS onc itself, blockade of downstream KRAS onc effectors, prevention of post-translational KRAS onc modifications, inhibition of the induced stem cell-like program, targeting of metabolic peculiarities, stimulation of the immune system, inhibition of inflammation, blockade of upstream signaling pathways, targeted RNA replacement, and oncogene-induced senescence. Despite intensive and continuous efforts, KRAS onc remains an elusive target for cancer therapy. To highlight the progress to date, this review covers a collection of studies on therapeutic strategies for KRAS published from 1995 to date. An overview of the path of progress from earlier to more recent insights highlight novel opportunities for clinical development towards KRASonc-signaling targeted therapeutics.
Collapse
Affiliation(s)
- Mahsa Saliani
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Razieh Jalal
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Department of Research Cell and Molecular Biology, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf 40225, Germany
| |
Collapse
|
169
|
Espinosa-Cotton M, Fertig EJ, Stabile LP, Gaither-Davis A, Bauman JE, Schmitz S, Gibson-Corley KN, Cheng Y, Jensen IJ, Badovinac VP, Laux D, Simons AL. A preliminary analysis of interleukin-1 ligands as potential predictive biomarkers of response to cetuximab. Biomark Res 2019; 7:14. [PMID: 31346466 PMCID: PMC6636109 DOI: 10.1186/s40364-019-0164-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) monoclonal IgG1 antibody cetuximab is approved for first-line treatment of recurrent and metastatic (R/M) HNSCC as a part of the standard of care EXTREME regimen (platinum/5-fluorouracil/cetuximab). This regimen has relatively high response and disease control rates but is generally not curative and many patients will experience recurrent disease and/or metastasis. Therefore, there is a great need to identify predictive biomarkers for recurrence and disease progression in cetuximab-treated HNSCC patients to facilitate patient management and allow for treatment modification. The goal of this work is to assess the potential of activating interleukin-1 (IL-1) ligands (IL-1 alpha [IL-1α], IL-1 beta [IL-1β]) as predictive biomarkers of survival outcomes in HNSCC patients treated with cetuximab-based chemotherapy. METHODS Baseline gene, serum and tumor expression of interleukin-1 (IL-1) ligands were analyzed from The Cancer Genome Atlas (TCGA) database or clinical trials of cetuximab-based therapies and interrogated for associations with clinical outcome data. RESULTS High tumor gene expression of IL-1β was associated with a more favorable overall survival in cetuximab-treated HNSCC patients but not in non-cetuximab-treated patients. In HNSCC patients treated with cetuximab-based chemotherapy, higher gene and circulating levels of IL-1α and IL-1β were correlated with a more favorable progression free survival compared to patients with low or undetectable levels of IL-1 ligands. CONCLUSIONS These findings suggest that IL-1 ligands may function as predictive biomarkers for tumor response to cetuximab-based chemotherapy in HNSCC patients and warrants further investigation and validation in larger clinical studies.
Collapse
Affiliation(s)
- Madelyn Espinosa-Cotton
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA USA
- Department of Pathology, 1161 Medical Laboratories, University of Iowa, Iowa City, IA 52242 USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA USA
| | - Elana J. Fertig
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
| | - Laura P. Stabile
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA USA
| | - Autumn Gaither-Davis
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA USA
| | - Julie E. Bauman
- Division of Hematology and Oncology, University of Arizona Cancer Center, Tucson, AZ USA
| | - Sandra Schmitz
- Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Katherine N. Gibson-Corley
- Department of Pathology, 1161 Medical Laboratories, University of Iowa, Iowa City, IA 52242 USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA USA
| | - Yinwen Cheng
- Department of Pathology, 1161 Medical Laboratories, University of Iowa, Iowa City, IA 52242 USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA USA
| | - Isaac J. Jensen
- Department of Pathology, 1161 Medical Laboratories, University of Iowa, Iowa City, IA 52242 USA
- Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA USA
| | - Vladimir P. Badovinac
- Department of Pathology, 1161 Medical Laboratories, University of Iowa, Iowa City, IA 52242 USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA USA
- Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA USA
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA USA
| | - Douglas Laux
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA USA
- Department of Internal Medicine - Hematology, Oncology and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA USA
| | - Andrean L. Simons
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA USA
- Department of Pathology, 1161 Medical Laboratories, University of Iowa, Iowa City, IA 52242 USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA USA
- Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA USA
| |
Collapse
|
170
|
Zilberg C, Lee MW, Kraitsek S, Ashford B, Ranson M, Shannon K, Iyer NG, Ch'ng S, Low THH, Palme C, Clark J, Gupta R, Yu B. Is high-risk cutaneous squamous cell carcinoma of the head and neck a suitable candidate for current targeted therapies? J Clin Pathol 2019; 73:17-22. [PMID: 31300530 DOI: 10.1136/jclinpath-2019-206038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Cutaneous squamous cell carcinoma (cSCC) is the second most common malignancy, most frequently affecting the head and neck. Treatment often requires surgery and can have significant functional morbidity. Research into disease pathogenesis and second line medical management of cSCC is limited. We assess genetic mutations in high-risk, primary head and neck cutaneous squamous cell carcinomas (HNcSCC) that may hinder or be beneficial for use of targeted therapy in disease management. METHODS Genetic alterations and variant allele frequencies (VAFs) were analysed using a clinically relevant 48 gene panel in 10 primary high-risk non-metastatic treatment-naïve HNcSCC to evaluate applicability of targeted therapeutics. Variants present at all VAFs were evaluated for pathogenicity. Somatic mutation patterns of individual tumours were analysed. RESULTS High-risk HNcSCC showed a high proportion (82%) of C to T transitions in keeping with ultraviolet-mediated damage. There was significant intratumour genetic heterogeneity in this cohort (MATH scores 20-89) with the two patients <45 years of age showing highest intratumour heterogeneity. TP53 was altered at VAF >22% in all cases, and mutations with highest VAF were observed in tumour suppressor genes in 80%. 70% of cases demonstrated at least one mutation associated with treatment resistance (KIT S821F, KIT T670I, RAS mutations at codons 12 and 13). CONCLUSION We demonstrate high proportion tumour suppressor loss of function mutations, high intratumour genetic heterogeneity, and presence of well recognised resistance mutations in treatment naïve primary HNcSCC. These factors pose challenges for successful utilisation of targeted therapies.
Collapse
Affiliation(s)
- Catherine Zilberg
- Medicine, Gosford Hospital, Gosford, New South Wales, Australia .,Medicine, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Spiridoula Kraitsek
- Medical Genomics, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Bruce Ashford
- Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Marie Ranson
- Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Kerwin Shannon
- The Sydney Head and Neck Cancer Institute, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - N Gopalakrishna Iyer
- Sinnghealth/Duke-NUS Head and Neck Centre, National Cancer Centre Singapore, Singapore, Singapore
| | - Sydney Ch'ng
- The Sydney Head and Neck Cancer Institute, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia.,Central Clinical School Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Tsu-Hui Hubert Low
- The Sydney Head and Neck Cancer Institute, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia.,Central Clinical School Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Carsten Palme
- The Sydney Head and Neck Cancer Institute, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia.,Central Clinical School Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Jonathan Clark
- The Sydney Head and Neck Cancer Institute, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Ruta Gupta
- Anatomic Pathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Bing Yu
- Molecular and Clinical Genetics, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
171
|
Harthimmer MR, Stolborg U, Pfeiffer P, Mortensen MB, Fristrup C, Detlefsen S. Mutational profiling and immunohistochemical analysis of a surgical series of ampullary carcinomas. J Clin Pathol 2019; 72:762-770. [DOI: 10.1136/jclinpath-2019-205912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Abstract
AimsKnowledge regarding the genetic features of ampullary carcinoma (AC) in European patients is limited. The utility of tumour markers for the establishment of a malignant diagnosis in biopsies from the ampullary region has not been fully elucidated. We aimed to describe the clinical, pathological, immunohistochemical (IHC) and genetic features of a Danish series of surgically resected ACs.MethodsSurgically resected ACs (n=59) were examined regarding (1) clinicopathological features, (2) histological subtypes, (3) expression of IMP3, maspin, MUC5AC and S100P and (4) next-generation sequencing using a hybrid capture-based platform (Illumina HiSeq2500), including 315 cancer-related genes plus introns from 28 genes often rearranged or altered in cancer. Tumour mutational burden (TMB) and microsatellite instability (MSI) were also evaluated.ResultsPancreatobiliary adenocarcinomas (PB-AC), intestinal adenocarcinomas (INT-AC), other ampullary tumours and mixed adenocarcinomas represented 45.8%, 23.7%, 16.9% and 13.6%. The proportion of IHC-positive ACs (score ≥2) was: Maspin (94.9%), IMP3 (67.8%), S100P (39.0%) and MUC5AC (18.6%). Most frequently altered genes were TP53 (59.3%), KRAS (40.7%), APC (27.8%), SMAD4 (20.4%), CDKN2A (16.7%) and ARID2/PIK3CA (each 11.1%). MUC5AC and S100P were frequently expressed in PB-AC, APC alterations frequent in INT-AC, SOX9 alterations were exclusive in INT-AC and MDM2 and FRS2 alterations in PB-AC. Four of 49 ACs (8.2%) were TMB-high/MSI-high and showed loss of MLH1 and PMS2.ConclusionsPB-AC was the most frequent histological subtype of AC. Maspin and IMP3 were the IHC tumour markers with the highest sensitivity. Adenocarcinoma subtypes differed regarding several genetic alterations, whose predictive value remains to be evaluated.
Collapse
|
172
|
Mannavola F, Salerno T, Passarelli A, Tucci M, Internò V, Silvestris F. Revisiting the Role of Exosomes in Colorectal Cancer: Where Are We Now?. Front Oncol 2019; 9:521. [PMID: 31275854 PMCID: PMC6593071 DOI: 10.3389/fonc.2019.00521] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022] Open
Abstract
Exosomes (Exos) are nano-sized extracellular vesicles constitutively released by both prokaryotic and eukaryotic cells. Their role as inter-cellular messengers involved in both physiological and pathological processes has overwhelmingly come to light in the last decade, and their contribution to cancerogenesis and tumor metastasis is under intensive investigation. Here we review the most recent information concerning Exos in colorectal cancer (CRC) and focus on their effects on tumor microenvironment and the immune system, as well as unravel their role in the formation of the pre-metastatic niche and in drug resistance. Such a recent knowledge on Exos depicts their potential translations into the clinical arena, either as an alternative tool of “liquid biopsy” or novel therapeutic approaches for CRC. However, due to the limited data available from clinical trials, they need further validations before addressing their putative application in oncology.
Collapse
Affiliation(s)
- Francesco Mannavola
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Tina Salerno
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Anna Passarelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Valeria Internò
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
173
|
Angeles AKJ, Yu RTD, Cutiongco-De La Paz EM, Garcia RL. Phenotypic characterization of the novel, non-hotspot oncogenic KRAS mutants E31D and E63K. Oncol Lett 2019; 18:420-432. [PMID: 31289513 PMCID: PMC6540134 DOI: 10.3892/ol.2019.10325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
KRAS proto-oncogene, GTPase (KRAS) functions as a molecular switch at the apex of multiple signaling pathways controlling cell proliferation, differentiation, migration, and survival. Canonical KRAS mutants, such as those in codons 12 and 13, produce constitutively active oncoproteins that short-circuit epidermal growth factor receptor (EGFR)-initiated signaling, resulting in dysregulated downstream effectors associated with cellular transformation. Therefore, anti-EGFR therapy provides little to no clinical benefit to patients with activating KRAS mutations. Current genotyping procedures based on canonical mutation detection only account for ~40% of non-responders, highlighting the need to identify additional predictive biomarkers. In the present study, two novel non-hotspot KRAS mutations were functionally characterized in vitro: KRAS E31D was identified from a genetic screen of colorectal cancer specimens at the UP-National Institutes of Health. KRAS E63K is curated in the Catalogue of Somatic Mutations in Cancer database. Similar to the canonical mutants KRAS G12D and KRAS G13D, NIH3T3 cells overexpressing KRAS E31D and KRAS E63K showed altered morphology and were characteristically smaller, rounder, and highly refractile compared with their non-transformed counterparts. Filamentous actin staining also indicated cytoplasmic shrinkage, membrane ruffling, and formation of pseudopod protrusions. Further, they displayed higher proliferative rates and higher migratory rates in scratch wound assays compared with negative controls. These empirical findings suggest the activating impact of the novel KRAS mutations, which may contribute to resistance to anti-EGFR therapy. Complementary studies to elucidate the molecular mechanisms underlying the transforming effect of the rare mutants are required. In parallel, their oncogenic capacity in vivo should also be investigated.
Collapse
Affiliation(s)
- Arlou Kristina J Angeles
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Ryan Timothy D Yu
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Eva Maria Cutiongco-De La Paz
- Institute of Human Genetics, National Institutes of Health, University of the Philippines Manila, Manila 1000, Philippines.,Philippine Genome Center, University of the Philippines System, Quezon City 1101, Philippines
| | - Reynaldo L Garcia
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City 1101, Philippines.,Philippine Genome Center, University of the Philippines System, Quezon City 1101, Philippines
| |
Collapse
|
174
|
Cruz E, Kayser V. Monoclonal antibody therapy of solid tumors: clinical limitations and novel strategies to enhance treatment efficacy. Biologics 2019; 13:33-51. [PMID: 31118560 PMCID: PMC6503308 DOI: 10.2147/btt.s166310] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
Monoclonal antibodies (mAbs) have become a cornerstone in the therapeutic guidelines of a wide range of solid tumors. The targeted nature of these biotherapeutics has improved treatment outcomes by offering enhanced specificity to reduce severe side effects experienced with conventional chemotherapy. Notwithstanding, poor tumor tissue penetration and the heterogeneous distribution achieved therein are prominent drawbacks that hamper the clinical efficacy of therapeutic antibodies. Failure to deliver efficacious doses throughout the tumor can lead to treatment failure and the development of acquired resistance mechanisms. Comprehending the morphological and physiological characteristics of solid tumors and their microenvironment that affect tumor penetration and distribution is a key requirement to improve clinical outcomes and realize the full potential of monoclonal antibodies in oncology. This review summarizes the essential architectural characteristics of solid tumors that obstruct macromolecule penetration into the targeted tissue following systemic delivery. It further describes mechanisms of resistance elucidated for blockbuster antibodies for which extensive clinical data exists, as a way to illustrate various modes in which cancer cells can overcome the anticancer activity of therapeutic antibodies. Thereafter, it describes novel strategies designed to improve clinical outcomes of mAbs by increasing potency and/or improving tumor delivery; focusing on the recent clinical success and growing clinical pipeline of antibody-drug conjugates, immune checkpoint inhibitors and nanoparticle-based delivery systems.
Collapse
Affiliation(s)
- Esteban Cruz
- School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Veysel Kayser
- School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
175
|
Nakajima TE, Boku N, Doi A, Arai H, Mizukami T, Horie Y, Izawa N, Hirakawa M, Ogura T, Tsuda T, Sunakawa Y. Phase I study of the anti-heparin-binding epidermal growth factor-like growth factor antibody U3-1565 with cetuximab in patients with cetuximab- or panitumumab-resistant metastatic colorectal cancer. Invest New Drugs 2019; 38:410-418. [PMID: 31020609 DOI: 10.1007/s10637-019-00782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/12/2019] [Indexed: 10/27/2022]
Abstract
KRAS wild-type colorectal cancers initially responsive to anti-endothelial growth factor receptor (EGFR) antibodies [cetuximab (Cetu)/panitumumab (Pani)] develop acquired resistance. Overexpression of EGFR ligands such as heparin-binding EGF-like growth factor (HB-EGF) may be one resistance mechanism. This phase I study of U3-1565, anti-HB-EGF antibody, and Cetu combination therapy enrolled patients with KRAS wild-type metastatic colorectal cancer who had received two ≤ regimens with fluoropyrimidine, oxaliplatin, irinotecan, and Cetu/Pani and had disease progression on Cetu/Pani. Recommended dose (RD) was determined in the 1st stage, followed by evaluation of efficacy at the RD level in the 2nd-stage. Cetu was given at a loading dose of 400 mg/m2 followed by weekly infusions of 250 mg/m2 in levels 1 and 0. U3-1565 was administered at a loading dose of 24 mg/m2 followed by biweekly infusions of 16 mg/m2 in level 1 and 16-12 mg/m2 in level 0. Twenty-two patients were enrolled. No dose-limiting toxicities were observed among three patients in level 1 in the first stage, which was determined as RD. Grade 3 or higher adverse events occurred in 59.1%; those in ≥5% of patients were anemia, γ-GTP elevation, and acneiform rash. Overall response rate was 0.0% [95% confidence interval (CI): 0.0%-15.4%] and disease control was achieved in 17 patients (77.3%, 95% CI: 54.6%-92.2%). Median progression-free survival time was 85.0 days (95% CI: 54.0-91.0) and median survival time was 196 days (95% CI: 113.0-306.0). RD was determined as level 1. The efficacy of this combination therapy after progression on Cetu/Pani was negligible. Trial Registration: UMIN000013006.
Collapse
Affiliation(s)
- Takako Eguchi Nakajima
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Narikazu Boku
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Ayako Doi
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Hiroyuki Arai
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Takuro Mizukami
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yoshiki Horie
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Naoki Izawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Mami Hirakawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Takashi Ogura
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Takashi Tsuda
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yu Sunakawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
176
|
Divergent Dynamics and Functions of ERK MAP Kinase Signaling in Development, Homeostasis and Cancer: Lessons from Fluorescent Bioimaging. Cancers (Basel) 2019; 11:cancers11040513. [PMID: 30974867 PMCID: PMC6520755 DOI: 10.3390/cancers11040513] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
The extracellular signal-regulated kinase (ERK) signaling pathway regulates a variety of biological processes including cell proliferation, survival, and differentiation. Since ERK activation promotes proliferation of many types of cells, its deregulated/constitutive activation is among general mechanisms for cancer. Recent advances in bioimaging techniques have enabled to visualize ERK activity in real-time at the single-cell level. Emerging evidence from such approaches suggests unexpectedly complex spatiotemporal dynamics of ERK activity in living cells and animals and their crucial roles in determining cellular responses. In this review, we discuss how ERK activity dynamics are regulated and how they affect biological processes including cell fate decisions, cell migration, embryonic development, tissue homeostasis, and tumorigenesis.
Collapse
|
177
|
Meric-Bernstam F, Hurwitz H, Raghav KPS, McWilliams RR, Fakih M, VanderWalde A, Swanton C, Kurzrock R, Burris H, Sweeney C, Bose R, Spigel DR, Beattie MS, Blotner S, Stone A, Schulze K, Cuchelkar V, Hainsworth J. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol 2019; 20:518-530. [PMID: 30857956 PMCID: PMC6781620 DOI: 10.1016/s1470-2045(18)30904-5] [Citation(s) in RCA: 355] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Therapies targeting HER2 have improved clinical outcomes in HER2-positive breast and gastric cancers, and are emerging as potential treatments for HER2-positive metastatic colorectal cancer. MyPathway evaluates the activity of targeted therapies in non-indicated tumour types with potentially predictive molecular alterations. We aimed to assess the activity of pertuzumab and trastuzumab in patients with HER2-amplified metastatic colorectal cancer. METHODS MyPathway is an ongoing, phase 2a, multiple basket study. Patients in this subset analysis were aged 18 years or older and had treatment-refractory, histologically confirmed HER2-amplified metastatic colorectal cancer with measurable or evaluable disease and an Eastern Cooperative Oncology Group performance status score of 2 or less, enrolled from 25 hospitals or clinics in 16 states of the USA. Patients received pertuzumab (840 mg loading dose, then 420 mg every 3 weeks, intravenously) and trastuzumab (8 mg/kg loading dose, then 6 mg/kg every 3 weeks, intravenously). The primary endpoint was the proportion of patients who achieved an objective response based on investigator-reported tumour responses. Analyses were done per protocol. This ongoing trial is registered with ClinicalTrials.gov, number NCT02091141. FINDINGS Between Oct 20, 2014, and June 22, 2017, 57 patients with HER2-amplified metastatic colorectal cancer were enrolled in the MyPathway study and deemed eligible for inclusionin this cohort analysis. Among these 57 evaluable patients, as of Aug 1, 2017, one (2%) patient had a complete response and 17 (30%) had partial responses; thus overall 18 of 57 patients achieved an objective response (32%, 95% CI 20-45). The most common treatment-emergent adverse events were diarrhoea (19 [33%] of 57 patients), fatigue (18 [32%] patients), and nausea (17 [30%] patients). Grade 3-4 treatment-emergent adverse events were recorded in 21 (37%) of 57 patients, most commonly hypokalaemia and abdominal pain (each three [5%] patients). Serious treatment-emergent adverse events were reported in ten (18%) patients and two (4%) of these adverse events (ie, chills and infusion-related reaction) were considered treatment related. There were no treatment-related deaths. INTERPRETATION Dual HER2-targeted therapy with pertuzumab plus trastuzumab is well tolerated and could represent a therapeutic opportunity for patients with heavily pretreated, HER2-amplified metastatic colorectal cancer. FUNDING F Hoffmann-La Roche/Genentech.
Collapse
Affiliation(s)
- Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Herbert Hurwitz
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Kanwal Pratap Singh Raghav
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Marwan Fakih
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | | | | | - Razelle Kurzrock
- Division of Hematology and Oncology, Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Howard Burris
- Sarah Cannon Research Institute, Nashville, TN, USA; Tennessee Oncology, PLLC, Nashville, TN, USA
| | | | - Ron Bose
- Washington University School of Medicine, St Louis, MO, USA
| | - David R Spigel
- Sarah Cannon Research Institute, Nashville, TN, USA; Tennessee Oncology, PLLC, Nashville, TN, USA
| | | | | | | | | | | | - John Hainsworth
- Sarah Cannon Research Institute, Nashville, TN, USA; Tennessee Oncology, PLLC, Nashville, TN, USA
| |
Collapse
|
178
|
Knebel FH, Bettoni F, da Fonseca LG, Camargo AA, Sabbaga J, Jardim DL. Circulating Tumor DNA Detection in the Management of Anti-EGFR Therapy for Advanced Colorectal Cancer. Front Oncol 2019; 9:170. [PMID: 30967998 PMCID: PMC6439419 DOI: 10.3389/fonc.2019.00170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Anti-EGFR antibodies are a standard care for advanced KRAS-wild type colorectal cancers. Circulating tumor DNA (ctDNA) monitoring during therapy can detect emergence of KRAS mutant clones and early resistance to therapy. Case Presentation: We describe a 61-years-old man presenting a metastatic and recurrent rectal cancer treated with different chemotherapy regimens. His tumor was KRAS wild-type based on tissue analysis and he was treated sequentially with cetuximab-based chemotherapy, chemotherapy alone and panitumumab-based chemotherapy. We performed sequential analysis of ctDNA using droplet digital PCR (ddPCR) and a commercial assay designed for the detection of frequent KRAS mutations during his clinical follow-up. Prior to the first cetuximab-based chemotherapy ctDNA analysis demonstrated an absence of KRAS mutations. Emergence of KRAS mutations in ctDNA occurred ~3 months after treatment initiation and preceded clinical and imaging progression in about 2 months. Fractional abundance of KRAS mutation rapidly increased to 70.7% immediately before a chemotherapy alone regimen was initiated. Interestingly, KRAS mutation abundance decreased significantly during the first two months of chemotherapy, reaching a fractional abundance of 3.0%, despite minimal clinical benefit with this therapy. Re-challenge with a different anti-EGFR antibody was attempted as later line, but high levels of KRAS mutations in ctDNA before therapy correlated with an absence of clinical benefit. Conclusions: The monitoring of resistance mutations in KRAS using ctDNA during the treatment of KRAS wild-type advanced colorectal cancers can detect the emergence of resistant clones prior to clinical progression. Dynamics of resistant clones may alter during periods on and off anti-EGFR antibodies, detecting window of opportunities for a re-challenge with these therapies.
Collapse
Affiliation(s)
- Franciele H Knebel
- Sociedade Beneficente de Senhoras-Hospital Sírio Libanês, São Paulo, Brazil
| | - Fabiana Bettoni
- Sociedade Beneficente de Senhoras-Hospital Sírio Libanês, São Paulo, Brazil
| | | | - Anamaria A Camargo
- Sociedade Beneficente de Senhoras-Hospital Sírio Libanês, São Paulo, Brazil.,Ludwig Institute for Cancer Research, São Paulo, Brazil
| | - Jorge Sabbaga
- Sociedade Beneficente de Senhoras-Hospital Sírio Libanês, São Paulo, Brazil.,Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Denis L Jardim
- Sociedade Beneficente de Senhoras-Hospital Sírio Libanês, São Paulo, Brazil
| |
Collapse
|
179
|
Plattner C, Hackl H. Modeling therapy resistance via the EGFR signaling pathway. FEBS J 2019; 286:1284-1286. [PMID: 30892828 PMCID: PMC6850018 DOI: 10.1111/febs.14809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/19/2022]
Abstract
Mutations in KRAS are often associated with resistance to EGFR-targeting antibody therapy. Using comprehensive systems analyses, GNB5 has been identified as a potential target to overcome therapy resistance targeting the EGFR signaling pathways, whereby the AKT signaling pathway (PI3K) rather than the ERK signaling pathway (RAS) might be dominantly affected. Personalized mathematical modeling and simulations of this signaling pathway/network and respective perturbations are of great utility to customize therapy for patients.
Collapse
Affiliation(s)
- Christina Plattner
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Austria
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Austria
| |
Collapse
|
180
|
Jouini R, Ferchichi M, BenBrahim E, Ayari I, Khanchel F, Koubaa W, Saidi O, Allani R, Chadli-Debbiche A. KRAS and NRAS pyrosequencing screening in Tunisian colorectal cancer patients in 2015. Heliyon 2019; 5:e01330. [PMID: 30949599 PMCID: PMC6430077 DOI: 10.1016/j.heliyon.2019.e01330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/23/2019] [Accepted: 03/06/2019] [Indexed: 02/07/2023] Open
Abstract
Background Mutations in KRAS and NRAS often result in constitutive activation of RAS in the epidermal growth factor receptor (EGFR) signaling pathway. Mutations in KRAS exon 2 (codon 12–13) predict resistance to anti-EGFR targeted therapy in patients with metastatic colorectal carcinoma (mCRC). However, it's currently known that a significant proportion of mCRC have RAS mutations outside KRAS exon 2, particularly in exons 3 and 4 of KRAS and exons 2, 3 and 4 of NRAS. No data about RAS mutations outside KRAS exon 2 are available for Tunisian mCRC. The aim of this study was to analyze RAS, using pyrosequencing, in nine hotspots mutations in Tunisian patients with mCRC. Methods A series of 131 mCRC was enrolled. Nine hotspots sites mutations of KRAS and NRAS were analyzed (KRAS: codons 12–13, codons 59–61, codon 117 and codon 146, NRAS: codons 12–13, codon 59, codon 61, codon 117 and codon 146) using Therascreen KRAS and RAS extension pyrosequencing kits. Results Analysis was successful in 129 cases (98.5%). Mutations were observed in 97 cases (75.2%) dominated by those in KRAS exon 2 (86.6%). KRAS G12V was the most dominated mutation, observed in 25 cases (25.8%), and followed by KRAS G12S and KRAS G12D, each in 17 cases (17.5%). Mutations outside of KRAS exon 2 presented 13.4% of mutated cases and almost a third (28.8%) of KRAS exon 2 wild type mCRC. Among those, 9 cases (69.3%) carried mutations in NRAS exons 2, 3 and 4 and 4 cases (30.7%) in KRAS exons 3 and 4. Conclusions RAS mutations outside exon 2 of KRAS should be included in routine practice, since they predict also response to anti-EGFR. That would make certain these patients benefit from appropriate testing and treatment. In addition unjustified expenses of anti-EGFR targeted therapy could be avoided.
Collapse
Affiliation(s)
- Raja Jouini
- Pathology Department, Habib Thameur Hospital, Tunis, Tunisia
- University of Medicine, Farhat Hached Campus, Tunis El Manar, Tunisia
| | - Marwa Ferchichi
- Pathology Department, Habib Thameur Hospital, Tunis, Tunisia
- University of Sciences, Farhat Hached Campus, Tunis El Manar, Tunisia
- Corresponding author.
| | - Ehsen BenBrahim
- Pathology Department, Habib Thameur Hospital, Tunis, Tunisia
| | - Imen Ayari
- Pathology Department, Habib Thameur Hospital, Tunis, Tunisia
- University of Sciences, Farhat Hached Campus, Tunis El Manar, Tunisia
| | - Fatma Khanchel
- Pathology Department, Habib Thameur Hospital, Tunis, Tunisia
| | - Wafa Koubaa
- Pathology Department, Habib Thameur Hospital, Tunis, Tunisia
| | | | - Riadh Allani
- University of Medicine, Farhat Hached Campus, Tunis El Manar, Tunisia
| | | |
Collapse
|
181
|
Akbarzadeh Khiavi M, Safary A, Somi MH. Recent advances in targeted therapy of colorectal cancer: impacts of monoclonal antibodies nanoconjugates. ACTA ACUST UNITED AC 2019; 9:123-127. [PMID: 31508327 PMCID: PMC6726747 DOI: 10.15171/bi.2019.16] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
Despite rapid advances in diagnostic and treatment approaches, the overall survival rate of cancer has not been improved. Colorectal cancer (CRC) is recognized as the third leading cause of neoplasm-related deaths worldwide, in large part due to its considerable metastasis and drug resistance. For developing new anticancer strategies, rapid progression of multimodal nanomedicines and nanoconjugates has provided promising treatment modalities for effective therapy of cancer. The limitations of cancer chemotherapy might be overcome through the use of such nanosized therapeutics, including nanoconjugates of monoclonal antibodies (mAbs) along with drugs and organic/inorganic nanoparticles. CRC cells express various molecular markers against which mAbs can be designed and used as targeting/therapeutic agents. This editorial highlights the importance of such targeted nanosystems against CRC.
Collapse
Affiliation(s)
- Mostafa Akbarzadeh Khiavi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Azam Safary
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
182
|
Kienle DL, Dietrich D, Ribi K, Wicki A, Quagliata L, Winterhalder RC, Koeberle D, Horber D, Bastian S, Kueng M, Saletti P, Helbling D, Baertschi D, Lugli A, Bernhard J, Andrieu C, von Moos R. Cetuximab monotherapy and cetuximab plus capecitabine as first-line treatment in older patients with RAS- and BRAF wild-type metastatic colorectal cancer. Results of the multicenter phase II trial SAKK 41/10. J Geriatr Oncol 2019; 10:304-310. [DOI: 10.1016/j.jgo.2018.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/23/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023]
|
183
|
BRM270 Inhibits the Proliferation of CD44 Positive Pancreatic Ductal Adenocarcinoma Cells via Downregulation of Sonic Hedgehog Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8620469. [PMID: 31049070 PMCID: PMC6462339 DOI: 10.1155/2019/8620469] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/26/2018] [Accepted: 01/16/2019] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer has a poor survival rate as compared to other types of cancer. Surface marker CD44 plays important role in epithelial-mesenchymal transition and cancer stem cell phenotype. Therefore, targeting CD44 positive pancreatic cancer cells might enhance therapies effectiveness. Our previous studies indicated the antitumorigenesis effect of BRM270 in osteosarcoma, lung cancer, and glioblastoma; however there is no evidence on BRM270 impacts on pancreatic cancer growth. In this study, we investigated the effect of BRM270 on the isolated CD44 positive pancreatic ductal adenocarcinoma cells (CD44+ PDAC). Results showed that CD44 positive cells undergo apoptosis induced by BRM270. Moreover, BRM270 also inhibits stemness and metastasis traits in CD44+ PDAC via Sonic hedgehog signaling pathway and SALL4 expression. In vivo study indicated that tumor growth derived from CD44+ PDAC was suppressed as daily uptake by BRM270 5 mg/kg. These data suggest the alternative approach in antipancreatic tumorigenesis via herbal plants extract and selectively targeting CD44+ PDAC cells in tumor.
Collapse
|
184
|
Eng C, Rogers JE. Current synthetic pharmacotherapy for treatment-resistant colorectal cancer: when urgent action is required. Expert Opin Pharmacother 2019; 20:523-534. [DOI: 10.1080/14656566.2018.1561866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cathy Eng
- Gastrointestinal Medical Oncology Department, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Jane E. Rogers
- Gastrointestinal Medical Oncology Department, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
185
|
Large DE, Soucy JR, Hebert J, Auguste DT. Advances in Receptor-Mediated, Tumor-Targeted Drug Delivery. ADVANCED THERAPEUTICS 2019; 2:1800091. [PMID: 38699509 PMCID: PMC11064891 DOI: 10.1002/adtp.201800091] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Indexed: 02/06/2023]
Abstract
Receptor-mediated drug delivery presents an opportunity to enhance therapeutic efficiency by accumulating drug within the tissue of interest and reducing undesired, off-target effects. In cancer, receptor overexpression is a platform for binding and inhibiting pathways that shape biodistribution, toxicity, cell binding and uptake, and therapeutic function. This review will identify tumor-targeted drug delivery vehicles and receptors that show promise for clinical translation based on quantitative in vitro and in vivo data. The authors describe the rationale to engineer a targeted drug delivery vehicle based on the ligand, chemical conjugation method, and type of drug delivery vehicle. Recent advances in multivalent targeting and ligand organization on tumor accumulation are discussed. Revolutionizing receptor-mediated drug delivery may be leveraged in the therapeutic delivery of chemotherapy, gene editing tools, and epigenetic drugs.
Collapse
Affiliation(s)
- Danielle E Large
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Jonathan R Soucy
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Jacob Hebert
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Debra T Auguste
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| |
Collapse
|
186
|
A Novel Multiplex Droplet Digital PCR Assay to Identify and Quantify KRAS Mutations in Clinical Specimens. J Mol Diagn 2018; 21:214-227. [PMID: 30472330 DOI: 10.1016/j.jmoldx.2018.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/03/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Recurrent activating point mutations in KRAS are critical drivers in pancreatic cancer and have been attributed to resistance to anti-epidermal growth factor receptor therapy in colorectal cancer. Although KRAS genotyping provides limited clinical utility in the diagnosis and management of pancreatic cancer patients at present, inferences about the fractional abundance of KRAS mutations may inform on tumor purity in traditionally challenging clinical specimens and their potential use in precision medicine. KRAS genetic testing has indeed become an essential tool to guide treatment decisions in colorectal cancer, but an unmet need for methods standardization exists. Here, we present a unique droplet digital PCR method that enables the simultaneous detection and quantification of KRAS exon 2, 3, and 4 point mutations and copy number alterations. We have validated 13 mutations (G12S, G12R, G12D, G12A, G12V, G12C, G13D, G60V, Q61H, Q61L, A146V, A146T, and A146P) and focal KRAS amplifications by conducting this assay in a cohort of 100 DNA samples extracted from fresh frozen tumor biopsies, formaldehyde-fixed, paraffin-embedded tissue, and liquid biopsy specimens. Despite its modest lower limit of detection (approximately 1%), this assay will be a rapid cost-effective means to infer the purity of biopsy specimens carrying KRAS mutations and can be used in noninvasive serial monitoring of circulating tumor DNA to evaluate clinical response and/or detect early signs of relapse.
Collapse
|
187
|
Kanat O, Ertas H, Caner B. Dual HER2 inhibition strategies in the management of treatment-refractory metastatic colorectal cancer: History and status. World J Clin Cases 2018; 6:418-425. [PMID: 30294606 PMCID: PMC6163141 DOI: 10.12998/wjcc.v6.i11.418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/15/2018] [Accepted: 06/08/2018] [Indexed: 02/05/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) signaling pathway activation has been identified as a contributor to de novo or acquired resistance to epidermal growth factor receptor (EGFR) inhibitors in a small subset of patients with metastatic colorectal cancer (mCRC). Dual anti-HER2-targeted treatment exhibits strong antitumor activity in preclinical models of HER2-positive mCRC, supporting its testing in clinical trials. The HERACLES trial at four Italian academic cancer centers has confirmed the effectiveness of dual blockage of HER2 with trastuzumab plus lapatinib in patients with heavily pretreated HER2-positive mCRC, refractory to the anti-EGFR antibodies cetuximab or panitumumab. Here, we reviewed the preclinical studies exploring the role of HER2 signaling in the development of anti-EGFR therapy resistance and discussed the status of clinical trials assessing the activity of HER2 inhibitors in this setting.
Collapse
Affiliation(s)
- Ozkan Kanat
- Department of Medical Oncology, Faculty of Medicine, Uludag University, Bursa 16059, Turkey
| | - Hulya Ertas
- Department of Medical Oncology, Faculty of Medicine, Uludag University, Bursa 16059, Turkey
| | - Burcu Caner
- Department of Medical Oncology, Faculty of Medicine, Uludag University, Bursa 16059, Turkey
| |
Collapse
|
188
|
An Update of Efficacy and Safety of Cetuximab in Metastatic Colorectal Cancer: A Narrative Review. Adv Ther 2018; 35:1497-1509. [PMID: 30218345 DOI: 10.1007/s12325-018-0791-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Indexed: 02/06/2023]
Abstract
Colorectal cancer is the second most common cancer, representing 13% of all diagnosed cancers. Cetuximab is a recombinant chimeric monoclonal IgG1 antibody and epidermal growth factor receptor (EGFR) inhibitor. Cetuximab is approved for the first-line treatment in combination with chemotherapy or as a single agent in patients who have failed or are intolerant to chemotherapy in patients with EGFR-expressing, RAS wild-type metastatic colorectal cancer. Cetuximab efficacy emerged from studies that were conducted to approve the drug. Cetuximab is well tolerated; its toxicities are caused by its mechanism of action and the most common adverse reaction is skin toxicity. The main purpose of this manuscript is to present an update on the evidence-based summary of efficacy and safety and on the cost-effectiveness of cetuximab. Furthermore, it suggests a management of adverse drug reactions to improve the tolerability of the drug.
Collapse
|
189
|
Yu Y, Blokhuis B, Derks Y, Kumari S, Garssen J, Redegeld F. Human mast cells promote colon cancer growth via bidirectional crosstalk: studies in 2D and 3D coculture models. Oncoimmunology 2018; 7:e1504729. [PMID: 30377568 PMCID: PMC6205014 DOI: 10.1080/2162402x.2018.1504729] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation drives the development of colorectal cancer (CRC), where tumor-infiltrating immune cells interact with cancer cells in a dynamic crosstalk. Mast cells (MC), one of earliest recruited immune cells, accumulate in CRC tissues and their density is correlated with cancer progression. However, the exact contribution of MC in CRC and their interaction with colon cancer cells is poorly understood. Here, we investigated the impact of primary human MC and their mediators on colon cancer growth using 2D and 3D coculture models. Primary human MC were generated from peripheral CD34+ stem cells. Transwell chambers were used to analyze MC chemotaxis to colon cancer. Colon cancer cells HT29 and Caco2 differentially recruited MC by releasing CCL15 or SCF, respectively. Using BrdU proliferation assays, we demonstrated that MC can directly support colon cancer proliferation and this effect was mediated by their cellular crosstalk. 3D coculture models with cancer spheroids further confirmed the pro-tumor effect of MC on colon cancer growth, where direct cell-cell contact is dispensable and increased production of multiple soluble mediators was detected. Moreover, TLR2 stimulation of MC promoted stronger growth of colon cancer spheroids. By examining the transcriptome profile of colon cancer-cocultured MC versus control MC, we identified several MC marker genes, which were deregulated in expression. Our study provides an advanced in vitro model to investigate the role of human MC in cancer. Our data support the detrimental role of MC in CRC development and provide a molecular insight into the cellular crosstalk between MC and colon cancer cells.
Collapse
Affiliation(s)
- Yingxin Yu
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Bart Blokhuis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Yvonne Derks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sangeeta Kumari
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Department of Immunology, Nutricia Research, Utrecht, The Netherlands
| | - Frank Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
190
|
Habban Akhter M, Sateesh Madhav N, Ahmad J. Epidermal growth factor receptor based active targeting: a paradigm shift towards advance tumor therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1188-1198. [PMID: 29991287 DOI: 10.1080/21691401.2018.1481863] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a cell surface receptor belonging to erythroblastic leukemia viral oncogene homologue (ErbB) family of tyrosine kinase. It plays critical role in the regulation of cell proliferation, survival and differentiation. The EGFR receptor is crucial in a variety of tumor development due to unlikely triggered by receptor overexpression, chromosomal mutation and or ligand-dependent receptor dimerization. The EGFR inhibition established a major therapeutic target in cancer therapy. The signal transduction pathway of EGFR is directly involved in tumor pathogenesis and progression. The combinatorial approach with EGFR inhibitors bring novel therapeutic regime with proved clinical efficacy. This critique briefly addressed EGFR receptor characteristics, worldwide report on various cancers and EGFR based potential targeting modalities in skin, breast, ovary, brain, lungs, pancreas, gastric and colorectal tumors and molecular pathways involved in EGFR targeting.
Collapse
Affiliation(s)
- Md Habban Akhter
- a Faculty of Pharmacy , DIT University , Dehradun , India.,b School of Pharmaceutical Education and Research , Jamia Hamdard , New Delhi , India
| | | | - Javed Ahmad
- c Department of Pharmaceutics , Najran University , Najran , Saudi Arabia
| |
Collapse
|
191
|
Muta Y, Fujita Y, Sumiyama K, Sakurai A, Taketo MM, Chiba T, Seno H, Aoki K, Matsuda M, Imajo M. Composite regulation of ERK activity dynamics underlying tumour-specific traits in the intestine. Nat Commun 2018; 9:2174. [PMID: 29872037 PMCID: PMC5988836 DOI: 10.1038/s41467-018-04527-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
Acting downstream of many growth factors, extracellular signal-regulated kinase (ERK) plays a pivotal role in regulating cell proliferation and tumorigenesis, where its spatiotemporal dynamics, as well as its strength, determine cellular responses. Here, we uncover the ERK activity dynamics in intestinal epithelial cells (IECs) and their association with tumour characteristics. Intravital imaging identifies two distinct modes of ERK activity, sustained and pulse-like activity, in IECs. The sustained and pulse-like activities depend on ErbB2 and EGFR, respectively. Notably, activation of Wnt signalling, the earliest event in intestinal tumorigenesis, augments EGFR signalling and increases the frequency of ERK activity pulses through controlling the expression of EGFR and its regulators, rendering IECs sensitive to EGFR inhibition. Furthermore, the increased pulse frequency is correlated with increased cell proliferation. Thus, ERK activity dynamics are defined by composite inputs from EGFR and ErbB2 signalling in IECs and their alterations might underlie tumour-specific sensitivity to pharmacological EGFR inhibition. The ERK signalling pathway regulates homeostasis of the intestinal epithelium. Here the authors identify two modes of ERK activity generated independently from EGFR and ErbB2 receptor and whose balance in cancer is shifted by Wnt pathway activation, resulting in enhanced sensitivity to EGFR inhibitors.
Collapse
Affiliation(s)
- Yu Muta
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, 606-8051, Japan.,Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yoshihisa Fujita
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, Quantitative Biology Center, RIKEN, Osaka, 565-0874, Japan
| | - Atsuro Sakurai
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - M Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.,Kansai Electric Power Hospital, Osaka, 553-0003, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Kazuhiro Aoki
- Division of Quantitative Biology, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, 606-8051, Japan.,Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Masamichi Imajo
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
192
|
Taniguchi H, Baba Y, Sagiya Y, Gotou M, Nakamura K, Sawada H, Yamanaka K, Sakakibara Y, Mori I, Hikichi Y, Soeda J, Baba H. Biologic Response of Colorectal Cancer Xenograft Tumors to Sequential Treatment with Panitumumab and Bevacizumab. Neoplasia 2018; 20:668-677. [PMID: 29802988 PMCID: PMC6030230 DOI: 10.1016/j.neo.2018.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023] Open
Abstract
Recent studies in RAS wild-type (WT) metastatic colorectal cancer (mCRC) suggest that the survival benefits of therapy using anti-epidermal growth factor receptor (anti-EGFR) and anti-vascular endothelial growth factor (anti-VEGF) antibodies combined with chemotherapy are maximized when the anti-EGFR antibody is given as first-line, followed by subsequent anti-VEGF antibody therapy. We report reverse-translational research using LIM1215 xenografts of RAS WT mCRC to elucidate the biologic mechanisms underlying this clinical observation. Sequential administration of panitumumab then bevacizumab (PB) demonstrated a stronger tendency to inhibit tumor growth than bevacizumab then panitumumab (BP). Cell proliferation was reduced significantly with PB (P < .01) but not with BP based on Ki-67 index. Phosphoproteomic analysis demonstrated reduced phosphorylation of EGFR and EPHA2 with PB and BP compared with control. Western blotting showed reduced EPHA2 expression and S897-phosphorylation with PB; RSK phosphorylation was largely unaffected by PB but increased significantly with BP. In quantitative real-time PCR analyses, PB significantly reduced the expression of both lipogenic (FASN, MVD) and hypoxia-related (CA9, TGFBI) genes versus control. These results suggest that numerous mechanisms at the levels of gene expression, protein expression, and protein phosphorylation may explain the improved clinical activity of PB over BP in patients with RAS WT mCRC.
Collapse
Affiliation(s)
- Hiroya Taniguchi
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan
| | - Yuji Baba
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoji Sagiya
- Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, Tokyo 103-8668, Japan
| | - Masamitsu Gotou
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazuhide Nakamura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroshi Sawada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazunori Yamanaka
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Yukiko Sakakibara
- Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, Tokyo 103-8668, Japan
| | - Ikuo Mori
- Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, Tokyo 103-8668, Japan
| | - Yukiko Hikichi
- Product Information Group, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, Tokyo 103-8668, Japan
| | - Junpei Soeda
- Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, Tokyo 103-8668, Japan.
| | - Hideo Baba
- Department of Gastroenterological Surgery, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
193
|
Colorectal Cancer Subtypes - The Current Portrait. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1110:1-6. [PMID: 30623362 DOI: 10.1007/978-3-030-02771-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one prominent example for how chemotherapy has been changing by moving from the use of general cytotoxic agents to more tumour-specific drugs. For example, antibody-based drugs neutralize a growth factor receptor protein on the surface of tumour cells. The development of such new therapeutic opportunities requires a more thorough and systematic subclassification of CRC because tumour cells can exploit several alternative genetic pathways for their survival. This chapter gives an overview on CRC subtypes as an introduction to the following book chapters that will describe aspects of specific subtypes, and how these may lead to the development of novel pathway-specific drugs for a more precise therapeutic intervention.
Collapse
|
194
|
Albuquerque C, Pebre Pereira L. Wnt Signalling-Targeted Therapy in the CMS2 Tumour Subtype: A New Paradigm in CRC Treatment? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1110:75-100. [PMID: 30623367 DOI: 10.1007/978-3-030-02771-1_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancers (CRC) belonging to the consensus molecular subtype 2 (CMS2) have the highest incidence rate, affect mainly the distal colon and rectum, and are characterized by marked Wnt/β-catenin/Transcription Factor 7-Like 2 (TCF7L2) pathway activation and also by activation of epidermal growth factor receptor (EGFR) signalling. Despite having the highest overall survival, CMS2 tumours are often diagnosed at stage III when an adjuvant chemotherapy-based regimen is recommended. Nevertheless, colorectal cancer stem cells (CSCs) and circulating tumour cells may still evade the current therapeutic options and metastasize, stressing the need to develop more tailored therapeutic strategies. For example, activation of EGFR signalling is being used as a target for tailored therapy, however, therapy resistance is frequently observed. Therefore, targeting the Wnt signalling axis represents an additional therapeutic strategy, considering that CMS2 tumours are "Wnt-addicted". Several efforts have been made to identify Wnt antagonists, either of synthetic or natural origin. However, an inverse gradient of Wnt/β-catenin/TCF7L2 signalling activity during CRC progression has been suggested, with early stage and metastatic tumours displaying high and low Wnt signalling activities, respectively, which lead us to revisit the "just-right" signalling model. This may pinpoint the use of Wnt signalling agonists instead of antagonists for treatment of metastatic stages, in a context-dependent fashion. Moreover, the poor immunogenicity of these tumours challenges the use of recently emerged immunotherapies. This chapter makes a journey about CMS2 tumour characterization, their conventional treatment, and how modulation of Wnt signalling or immune response may be applied to CRC therapy. It describes the newest findings in this field and indicates where more research is required.
Collapse
Affiliation(s)
- Cristina Albuquerque
- Molecular Pathobiology Research Unit, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E., Lisbon, Portugal.
| | - Lucília Pebre Pereira
- Molecular Pathobiology Research Unit, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E., Lisbon, Portugal
| |
Collapse
|
195
|
Guardiola S, Seco J, Varese M, Díaz-Lobo M, García J, Teixidó M, Nevola L, Giralt E. Toward a Novel Drug To Target the EGF-EGFR Interaction: Design of Metabolically Stable Bicyclic Peptides. Chembiochem 2017; 19:76-84. [DOI: 10.1002/cbic.201700519] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Salvador Guardiola
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Baldiri Reixac 10 08028 Barcelona Spain
| | - Jesús Seco
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Baldiri Reixac 10 08028 Barcelona Spain
| | - Monica Varese
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Baldiri Reixac 10 08028 Barcelona Spain
| | - Mireia Díaz-Lobo
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Baldiri Reixac 10 08028 Barcelona Spain
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Baldiri Reixac 10 08028 Barcelona Spain
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Baldiri Reixac 10 08028 Barcelona Spain
| | - Laura Nevola
- IDP Discovery Pharma SL; Barcelona Science Park; Baldiri Reixac 4 08028 Barcelona Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Baldiri Reixac 10 08028 Barcelona Spain
- Department of Organic Chemistry; University of Barcelona; Martí i Franquès 1-11 08028 Barcelona Spain
| |
Collapse
|
196
|
Fratamico RS, Cohen SJ. Molecular Profiling in Colon Cancer: Where Are We Now? CURRENT COLORECTAL CANCER REPORTS 2017. [DOI: 10.1007/s11888-017-0385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
197
|
Liang Y, Xu X, Wang T, Li Y, You W, Fu J, Liu Y, Jin S, Ji Q, Zhao W, Song Q, Li L, Hong T, Huang J, Lyu Z, Ye Q. The EGFR/miR-338-3p/EYA2 axis controls breast tumor growth and lung metastasis. Cell Death Dis 2017; 8:e2928. [PMID: 28703807 PMCID: PMC5550870 DOI: 10.1038/cddis.2017.325] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/30/2017] [Accepted: 06/12/2017] [Indexed: 02/07/2023]
Abstract
Dysregulation of the epidermal growth factor receptor (EGFR) promotes cancer cell growth, invasion and metastasis. However, its relevant downstream effectors are still limited. Here, we show that EGFR promotes breast tumor growth and metastasis by downregulating the tumor suppressor micoRNA-338-3p (miR-338-3p) and activating the EYA2 (EYA transcriptional coactivator and phosphatase 2) oncoprotein. EGFR represses miR-338-3p expression largely through HIF1α transcription factor. miR-338-3p inhibits EYA2 expression by binding to the 3'-untranslated region of EYA2. EGFR increases EYA2 expression via HIF1α repression of miR-338-3p. Through the miR-338-3p/EYA2 pathway, EGFR increases breast cancer cell growth, epithelial-to-mesenchymal transition, migration, invasion and lung metastasis in vitro and in a allograft tumor mouse model in vivo. In breast cancer patients, miR-338-3p expression negatively correlates with the expression of EGFR and EYA2, EGFR status positively associates with EYA2 expression, and miR-338-3p and EYA2 predict breast cancer lung metastasis when expressed in primary breast cancers. These data suggest that the miR-338-3p/EYA2 axis contributes to EGFR-mediated tumor growth and lung metastasis and that miR-338-3p activation or EYA2 inhibition or combination therapy targeting EGFR/miR-338-3p/EYA2 axis may be a promising way to treat patients with metastatic cancer.
Collapse
Affiliation(s)
- Yingchun Liang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Tao Wang
- Department of Oncology, 307 Hospital of People's Liberation Army, Beijing, China
| | - Ying Li
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, China
- Department of Oncology, PLA General Hospital, Beijing, China
| | - Wenye You
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, China
- Department of Oncology, PLA General Hospital, Beijing, China
| | - Jing Fu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Yang Liu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, China
- Department of Thoracic Surgery, PLA General Hospital, Beijing, China
| | - Shuai Jin
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, China
- Department of Thoracic Surgery, PLA General Hospital, Beijing, China
| | - Quanbo Ji
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, China
- Department of Orthopedics, PLA General Hospital, Beijing, China
| | - Wei Zhao
- Department of Oncology, The General Hospital of the PLA Rocket Force, Beijing, China
| | - Qi Song
- Department of Oncology, PLA General Hospital, Beijing, China
| | - Ling Li
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Tian Hong
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Junjian Huang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Zhaohui Lyu
- Department of Endocrinology, PLA General Hospital, Beijing, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| |
Collapse
|
198
|
|
199
|
Efficacy of Low-Molecular-Weight Fucoidan as a Supplemental Therapy in Metastatic Colorectal Cancer Patients: A Double-Blind Randomized Controlled Trial. Mar Drugs 2017; 15:md15040122. [PMID: 28430159 PMCID: PMC5408268 DOI: 10.3390/md15040122] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Low-molecular-weight fucoidan (LMF) is widely used as a food supplement for cancer patients. However, all of the studies are in vitro or were conducted using mice. Therefore, powerful clinical evidence for LMF use is relatively weak. This study aimed to evaluate the efficacy of LMF as a supplemental therapy to chemo-target agents in metastatic colorectal cancer (mCRC) patients. Methods: We conducted a prospective, randomized, double-blind, controlled trial to evaluate the efficacy of LMF as a supplemental therapy to chemotarget agents in patients with metastatic colorectal cancer (mCRC). Sixty eligible patients with mCRC were included. Finally, 54 patients were enrolled, of whom 28 were included in the study group and 26 in the control group. The primary endpoint was the disease control rate (DCR), and secondary endpoints included the overall response rate (ORR), progression-free survival (PFS), overall survival (OS), adverse effects (AEs), and quality of life (QOL). Results: The DCRs were 92.8% and 69.2% in the study and control groups, respectively (p = 0.026), in a median follow-up period of 11.5 months. The OS, PFS, ORR, AEs, and QOL did not significantly differ between the two groups. Conclusion: This is the first clinical trial evaluating the efficacy of LMF as a supplemental therapy in the management of patients with mCRC. The results indicate that LMF combined with chemotarget agents significantly improved the DCR.
Collapse
|
200
|
Koustas E, Karamouzis MV, Mihailidou C, Schizas D, Papavassiliou AG. Co-targeting of EGFR and autophagy signaling is an emerging treatment strategy in metastatic colorectal cancer. Cancer Lett 2017; 396:94-102. [PMID: 28323034 DOI: 10.1016/j.canlet.2017.03.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023]
Abstract
The epidermal growth factor receptor (EGFR) and its associated pathway is a critical key regulator of CRC development and progression. The monoclonal antibodies (MoAbs) cetuximab and panitumumab, directed against EGFR, represent a major step forward in the treatment of metastatic colorectal cancer (mCRC), in terms of progression-free survival and overall survival in several clinical trials. However, the activity of anti-EGFR MoAbs appears to be limited to a subset of patients with mCRC. Studies have highlighted that acquired-resistance to anti-EGFR MoAbs biochemically converge into Ras/Raf/Mek/Erk and PI3K/Akt/mTOR pathways. Recent data also suggest that acquired-resistance to anti-EGFR MoAbs is accompanied by inhibition of EGFR internalization, ubiqutinization, degradation and prolonged downregulation. It is well established that autophagy, a self-cannibalization process, is considered to be associated with resistance to the anti-EGFR MoAbs therapy. Additionally, autophagy induced by anti-EGFR MoAbs acts as a protective response in cancer cells. Thus, inhibition of autophagy after treatment with EGFR MoAbs can result in autophagic cell death. A combination therapy comprising of anti-EGFR MoAbs and autophagy inhibitors would represent a multi-pronged approach that could be evolved into an active therapeutic strategy in mCRC patients.
Collapse
Affiliation(s)
- Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Chrysovalantou Mihailidou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|