151
|
Reperant LA, Kuiken T, Osterhaus ADME. Influenza viruses: from birds to humans. Hum Vaccin Immunother 2012; 8:7-16. [PMID: 22251997 DOI: 10.4161/hv.8.1.18672] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Avian influenza viruses are the precursors of human influenza A viruses. They may be transmitted directly from avian reservoirs, or infect other mammalian species before subsequent transmission to their human host. So far, avian influenza viruses have caused sporadic-yet increasingly more frequently recognized-cases of infection in humans. They have to adapt to and circulate efficiently in human populations, before they may trigger a worldwide human influenza outbreak or pandemic. Cross-species transmission of avian influenza viruses from their reservoir hosts-wild waterbirds-to terrestrial poultry and to humans is based on different modes of transmission and results in distinctive pathogenetic manifestations, which are reviewed in this paper.
Collapse
|
152
|
Oseltamivir inhibits H7 influenza virus replication in mice inoculated by the ocular route. Antimicrob Agents Chemother 2011; 56:1616-8. [PMID: 22155827 DOI: 10.1128/aac.06101-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The majority of human infections associated with H7 influenza viruses have resulted in ocular and not respiratory disease. While oseltamivir has been prescribed to individuals presenting with conjunctivitis following H7 virus exposure, it is unknown if oseltamivir inhibits virus replication in ocular tissue. We demonstrate that H7 viruses possess sensitivity to neuraminidase inhibitors and that administration of oseltamivir before ocular virus challenge in mice inhibits H7N7 and H7N3 virus replication in ocular and respiratory tissues.
Collapse
|
153
|
Shoham D. The modes of evolutionary emergence of primal and late pandemic influenza virus strains from viral reservoir in animals: an interdisciplinary analysis. INFLUENZA RESEARCH AND TREATMENT 2011; 2011:861792. [PMID: 23074663 PMCID: PMC3447294 DOI: 10.1155/2011/861792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/30/2011] [Indexed: 11/17/2022]
Abstract
Based on a wealth of recent findings, in conjunction with earliest chronologies pertaining to evolutionary emergences of ancestral RNA viruses, ducks, Influenzavirus A (assumingly within ducks), and hominids, as well as to the initial domestication of mallard duck (Anas platyrhynchos), jungle fowl (Gallus gallus), wild turkey (Meleagris gallopavo), wild boar (Sus scrofa), and wild horse (Equus ferus), presumed genesis modes of primordial pandemic influenza strains have multidisciplinarily been configured. The virological fundamentality of domestication and farming of those various avian and mammalian species has thereby been demonstrated and broadly elucidated, within distinctive coevolutionary paradigms. The mentioned viral genesis modes were then analyzed, compatibly with common denominators and flexibility that mark the geographic profile of the last 18 pandemic strains, which reputedly emerged since 1510, the antigenic profile of the last 10 pandemic strains since 1847, and the genomic profile of the last 5 pandemic strains since 1918, until present. Related ecophylogenetic and biogeographic aspects have been enlightened, alongside with the crucial role of spatial virus gene dissemination by avian hosts. A fairly coherent picture of primary and late evolutionary and genomic courses of pandemic strains has thus been attained, tentatively. Specific patterns underlying complexes prone to generate past and future pandemic strains from viral reservoir in animals are consequentially derived.
Collapse
Affiliation(s)
- Dany Shoham
- The Begin-Sadat Center for Strategic Studies, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
154
|
Bavagnoli L, Dundon WG, Garbelli A, Zecchin B, Milani A, Parakkal G, Baldanti F, Paolucci S, Volmer R, Tu Y, Wu C, Capua I, Maga G. The PDZ-ligand and Src-homology type 3 domains of epidemic avian influenza virus NS1 protein modulate human Src kinase activity during viral infection. PLoS One 2011; 6:e27789. [PMID: 22110760 PMCID: PMC3215730 DOI: 10.1371/journal.pone.0027789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/25/2011] [Indexed: 01/29/2023] Open
Abstract
The Non-structural 1 (NS1) protein of avian influenza (AI) viruses is important for pathogenicity. Here, we identify a previously unrecognized tandem PDZ-ligand (TPL) domain in the extreme carboxy terminus of NS1 proteins from a subset of globally circulating AI viruses. By using protein arrays we have identified several human PDZ-cellular ligands of this novel domain, one of which is the RIL protein, a known regulator of the cellular tyrosine kinase Src. We found that the AI NS1 proteins bind and stimulate human Src tyrosine kinase, through their carboxy terminal Src homology type 3-binding (SHB) domain. The physical interaction between NS1 and Src and the ability of AI viruses to modulate the phosphorylation status of Src during the infection, were found to be influenced by the TPL arrangement. These results indicate the potential for novel host-pathogen interactions mediated by the TPL and SHB domains of AI NS1 protein.
Collapse
Affiliation(s)
- Laura Bavagnoli
- Institute of Molecular Genetics National Research Council, Pavia, Italy
| | - William G. Dundon
- World Organization for Animal Health, Food and Agriculture Organization and National Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Anna Garbelli
- Institute of Molecular Genetics National Research Council, Pavia, Italy
| | - Bianca Zecchin
- World Organization for Animal Health, Food and Agriculture Organization and National Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Adelaide Milani
- World Organization for Animal Health, Food and Agriculture Organization and National Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Geetha Parakkal
- Institute of Molecular Genetics National Research Council, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Virology and Microbiology, Fondazione Istituto Ricovero e Cura a Carattere Scientifico Policlinico S. Matteo, Pavia, Italy
| | - Stefania Paolucci
- Molecular Virology Unit, Virology and Microbiology, Fondazione Istituto Ricovero e Cura a Carattere Scientifico Policlinico S. Matteo, Pavia, Italy
| | - Romain Volmer
- Université de Toulouse, Institut National Polytechnique, Ecole Nationale de Veterinaire, Unitè Mixte de Recherche 1225, Interactions Hotes-Agents Pathogènes, Toulouse, France
| | - Yizeng Tu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ilaria Capua
- World Organization for Animal Health, Food and Agriculture Organization and National Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics National Research Council, Pavia, Italy
| |
Collapse
|
155
|
Li Y, Reddy K, Reid SM, Cox WJ, Brown IH, Britton P, Nair V, Iqbal M. Recombinant herpesvirus of turkeys as a vector-based vaccine against highly pathogenic H7N1 avian influenza and Marek's disease. Vaccine 2011; 29:8257-66. [PMID: 21907750 DOI: 10.1016/j.vaccine.2011.08.115] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 08/19/2011] [Accepted: 08/28/2011] [Indexed: 10/17/2022]
Abstract
A major challenge for poultry vaccination is the design of vaccines that protect against multiple pathogens via a single protective dose delivered through mass vaccination methods. In this investigation, we examined herpesvirus of turkeys (HVT) as a vaccine vector for delivery of haemagglutinin (HA) antigen of highly pathogenic H7N1 avian influenza virus that can act as a dual vaccine against avian influenza and Marek's disease. The HVT vector was developed using reverse genetics based on an infectious bacterial artificial chromosome (BAC) clone of HVT. The BAC carrying the HVT genome was genetically modified to express the HA gene of a highly pathogenic H7N1 virus. The resultant recombinant BAC construct containing the modified HVT sequence was transfected into chicken embryo fibroblast (CEF) cells, and HVT recombinants (rHVT-H7HA) harbouring the H7N1 HA were recovered. Analysis of cultured CEF cells infected with the rHVT-H7HA showed that HA was expressed and that the rescued rHVT-H7HA stocks were stable during several in vitro passages with no difference in growth kinetics compared with the parent HVT. Immunisation of one-day-old chicks with rHVT-H7HA induced H7-specific antibodies and protected chickens challenged with homologous H7N1 virus against virus shedding, clinical disease and death. This vaccine supports differentiation between infected and vaccinated animals (DIVA) vaccination strategies because no nucleoprotein-(NP) specific antibodies were detected in the rHVT-H7HA vaccinated birds. The rHVT-H7HA not only provided protection against a lethal challenge with highly pathogenic H7N1 virus but also against highly virulent Marek's disease virus and can be used as a DIVA vaccine.
Collapse
Affiliation(s)
- Yongqing Li
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Ocular tropism of influenza A viruses: identification of H7 subtype-specific host responses in human respiratory and ocular cells. J Virol 2011; 85:10117-25. [PMID: 21775456 DOI: 10.1128/jvi.05101-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) H7 virus infection in humans frequently results in conjunctivitis as a major symptom. However, our understanding of what properties govern virus subtype-specific tropism, and of the host responses responsible for eliciting ocular inflammation and pathogenicity following influenza virus infection, are not well understood. To study virus-host interactions in ocular tissue, we infected primary human corneal and conjunctival epithelial cells with H7, H5, and H1 subtype viruses. We found that numerous virus subtypes were capable of infecting and replicating in multiple human ocular cell types, with the highest titers observed with highly pathogenic H7N7 and H5N1 viruses. Similar patterns of proinflammatory cytokine and chemokine production following influenza virus infection were observed in ocular and respiratory cells. However, primary ocular cells infected with HPAI H7N7 viruses were found to have elevated levels of interleukin-1β (IL-1β), a cytokine previously implicated in ocular disease pathology. Furthermore, H7N7 virus infection of corneal epithelial cells resulted in enhanced and significant increases in the expression of genes related to NF-κB signal transduction compared with that after H5N1 or H1N1 virus infection. The differential induction of cytokines and signaling pathways in human ocular cells following H7 virus infection marks the first association of H7 subtype-specific host responses with ocular tropism and pathogenicity. In particular, heightened expression of genes related to NF-κB-mediated signaling transduction following HPAI H7N7 virus infection in primary corneal epithelial cells, but not respiratory cells, identifies activation of a signaling pathway that correlates with the ocular tropism of influenza viruses within this subtype.
Collapse
|
157
|
Kwon TY, Lee SS, Kim CY, Shin JY, Sunwoo SY, Lyoo YS. Genetic characterization of H7N2 influenza virus isolated from pigs. Vet Microbiol 2011; 153:393-7. [PMID: 21741185 DOI: 10.1016/j.vetmic.2011.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/02/2011] [Accepted: 06/06/2011] [Indexed: 11/26/2022]
Abstract
Because pigs have respiratory epitheliums which express both α2-3 and α2-6 linked sialic acid as receptors to influenza A viruses, they are regarded as mixing vessel for the generation of pandemic influenza viruses through genetic reassortment. A H7N2 influenza virus (A/swine/KU/16/2001) was isolated from pig lungs collected from the slaughterhouse. All eight genes of the influenza virus were sequenced and phylogenetic analysis indicated that A/swine/KU/16/2001 originated in Hong Kong and genetic reassortment had occurred between the avian H7N2 and H5N3 influenza viruses. The first isolation of H7 influenza virus in pigs provides the opportunity for genetic reassortment of influenza viruses with pandemic potential and emphasizes the importance of surveillance for atypical swine influenza viruses.
Collapse
Affiliation(s)
- Tae Yong Kwon
- Immunopathology Laboratory, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Kwangjin-gu, Seoul 143-701, South Korea
| | | | | | | | | | | |
Collapse
|
158
|
Belser JA, Zeng H, Katz JM, Tumpey TM. Infection with highly pathogenic H7 influenza viruses results in an attenuated proinflammatory cytokine and chemokine response early after infection. J Infect Dis 2011; 203:40-8. [PMID: 21148495 DOI: 10.1093/infdis/jiq018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Avian influenza A viruses of the H7 subtype have resulted in more than 100 cases of human infection since 2002. Highly pathogenic avian influenza (HPAI) H7 viruses have the capacity to cause severe respiratory disease and even death; however, the induction of the human innate immune response to H7 virus infection has not been well characterized. To better understand H7 virus pathogenesis in the human respiratory tract, we employed a polarized human bronchial epithelial cell model and primary human monocyte-derived macrophages. Here, we show that infection with HPAI H7 viruses resulted in a delayed and weakened production of cytokines, including the type I interferon response, compared with infections of other influenza A subtypes, including H7 viruses of low pathogenicity. These studies revealed that H7 viruses vary greatly in their ability to activate host innate responses and may contribute to the virulence of these viruses observed in humans.
Collapse
Affiliation(s)
- Jessica A Belser
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30033, USA
| | | | | | | |
Collapse
|
159
|
Shi W, Lei F, Zhu C, Sievers F, Higgins DG. A complete analysis of HA and NA genes of influenza A viruses. PLoS One 2010; 5:e14454. [PMID: 21209922 PMCID: PMC3012125 DOI: 10.1371/journal.pone.0014454] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 11/29/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND More and more nucleotide sequences of type A influenza virus are available in public databases. Although these sequences have been the focus of many molecular epidemiological and phylogenetic analyses, most studies only deal with a few representative sequences. In this paper, we present a complete analysis of all Haemagglutinin (HA) and Neuraminidase (NA) gene sequences available to allow large scale analyses of the evolution and epidemiology of type A influenza. METHODOLOGY/PRINCIPAL FINDINGS This paper describes an analysis and complete classification of all HA and NA gene sequences available in public databases using multivariate and phylogenetic methods. CONCLUSIONS/SIGNIFICANCE We analyzed 18,975 HA sequences and divided them into 280 subgroups according to multivariate and phylogenetic analyses. Similarly, we divided 11,362 NA sequences into 202 subgroups. Compared to previous analyses, this work is more detailed and comprehensive, especially for the bigger datasets. Therefore, it can be used to show the full and complex phylogenetic diversity and provides a framework for studying the molecular evolution and epidemiology of type A influenza virus. For more than 85% of type A influenza HA and NA sequences into GenBank, they are categorized in one unambiguous and unique group. Therefore, our results are a kind of genetic and phylogenetic annotation for influenza HA and NA sequences. In addition, sequences of swine influenza viruses come from 56 HA and 45 NA subgroups. Most of these subgroups also include viruses from other hosts indicating cross species transmission of the viruses between pigs and other hosts. Furthermore, the phylogenetic diversity of swine influenza viruses from Eurasia is greater than that of North American strains and both of them are becoming more diverse. Apart from viruses from human, pigs, birds and horses, viruses from other species show very low phylogenetic diversity. This might indicate that viruses have not become established in these species. Based on current evidence, there is no simple pattern of inter-hemisphere transmission of avian influenza viruses and it appears to happen sporadically. However, for H6 subtype avian influenza viruses, such transmissions might have happened very frequently and multiple and bidirectional transmission events might exist.
Collapse
Affiliation(s)
- Weifeng Shi
- The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
160
|
Kasowski EJ, Garten RJ, Bridges CB. Influenza Pandemic Epidemiologic and Virologic Diversity: Reminding Ourselves of the Possibilities. Clin Infect Dis 2010; 52 Suppl 1:S44-9. [DOI: 10.1093/cid/ciq010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
161
|
Influenza A virus transmission: contributing factors and clinical implications. Expert Rev Mol Med 2010; 12:e39. [PMID: 21144091 DOI: 10.1017/s1462399410001705] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Efficient human-to-human transmission is a necessary property for the generation of a pandemic influenza virus. To date, only influenza A viruses within the H1-H3 subtypes have achieved this capacity. However, sporadic cases of severe disease in individuals following infection with avian influenza A viruses over the past decade, and the emergence of a pandemic H1N1 swine-origin virus in 2009, underscore the need to better understand how influenza viruses acquire the ability to transmit efficiently. In this review, we discuss the biological constraints and molecular features known to affect virus transmissibility to and among humans. Factors influencing the behaviour of aerosols in the environment are described, and the mammalian models used to study virus transmission are presented. Recent progress in understanding the molecular determinants that confer efficient transmission has identified crucial roles for the haemagglutinin and polymerase proteins; nevertheless, influenza virus transmission remains a polygenic trait that is not completely understood. The clinical implications of this research, including methods currently under investigation to mitigate influenza virus human-to-human transmission, are discussed. A better understanding of the viral determinants necessary for efficient transmission will allow us to identify avian influenza viruses with pandemic potential.
Collapse
|
162
|
Heldens JGM, Glansbeek HL, Hilgers LAT, Haenen B, Stittelaar KJ, Osterhaus ADME, van den Bosch JF. Feasibility of single-shot H5N1 influenza vaccine in ferrets, macaques and rabbits. Vaccine 2010; 28:8125-31. [PMID: 20950729 DOI: 10.1016/j.vaccine.2010.09.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 09/20/2010] [Accepted: 09/28/2010] [Indexed: 01/18/2023]
Abstract
The feasibility of a single-shot, low-dose vaccination against pandemic influenza was investigated. The immunogenicity and safety of whole inactivated, cell culture-derived H5N1 virus plus CoVaccine HT™ as adjuvant was tested in various animal species. In ferrets, doses of 4.0 and 7.5 μg H5N1 (NIBRG-14; A/Vietnam/1194/04; clade 1) without adjuvant gave low geometric mean haemagglutination inhibition (HI) titres (GMTs) of 21-65 three weeks after intramuscular (IM) injection. The addition of 0.25-4 mg CoVaccine HT™ resulted in GMTs of 255-1470 corresponding with 4-25-fold increases. A second immunization caused GMTs of 8914-23,525 two weeks later, which confirmed strong priming. One out of 8 ferrets injected with antigen alone and 5 out of 32 ferrets injected with adjuvanted H5N1 demonstrated minimal transient, local reactions and two animals immunized with adjuvanted H5N1 exhibited increased body temperature one day after injection. In macaques, 5 μg H5N1 with CoVaccine HT™ or aluminium hydroxide as adjuvant elicited GMTs of 172 and 11, respectively three weeks later. A second immunization resulted in GMTs of 1751 and 123, respectively four weeks later. Analysis of cross-reactivity of antibodies after the first immunization with NIBRG-14 adjuvanted plus CoVaccine HT™ revealed GMTs of 69 against NIBRG-23 (A/turkey/Turkey/1/05; clade 2.2) and 42 against IBCDC-RG-2 (A/Indonesia/5/05-like; clade 2.1.3) while titres with aluminium hydroxide were <10. After the second immunization with CoVaccine HT™, GMT against NIBRG-23 was 599 and against IBCDC-RG-2 254, while those with aluminium hydroxide were 23 and 13, respectively. No local or systemic adverse events were detected in macaques. Safety of 5 μg H5N1 plus 0, 2 or 4 mg CoVaccine HT™ was investigated in a repeated dose study in rabbits. Groups of 6 or 9 male and female animals were immunized IM three times at three week intervals. None of the animals exerted treatment-related adverse reactions during the study or at necropsy 3 or 4 days after treatment. We concluded that a low dose of whole inactivated influenza virus plus CoVaccine HT™ is a promising, single-shot vaccine against pandemic influenza.
Collapse
Affiliation(s)
- J G M Heldens
- Nobilon Part of MSD Laboratories, W. de Körverstraat 35, 5830 AN Boxmeer, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
163
|
Human antibodies reveal a protective epitope that is highly conserved among human and nonhuman influenza A viruses. Proc Natl Acad Sci U S A 2010; 107:12658-63. [PMID: 20615945 DOI: 10.1073/pnas.0911806107] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG(+) memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains.
Collapse
|
164
|
Rigoni M, Toffan A, Viale E, Mancin M, Cilloni F, Bertoli E, Salomoni A, Marciano S, Milani A, Zecchin B, Capua I, Cattoli G. The mouse model is suitable for the study of viral factors governing transmission and pathogenesis of highly pathogenic avian influenza (HPAI) viruses in mammals. Vet Res 2010; 41:66. [PMID: 20546698 PMCID: PMC2908239 DOI: 10.1051/vetres/2010038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 06/11/2010] [Indexed: 01/10/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) viruses of the H5 and H7 subtype pose a major public health threat due to their capacity to cross the species barrier and infect mammals, for example dogs, cats and humans. In the present study we tested the capacity of selected H7 and H5 HPAI viruses to infect and to be transmitted from infected BALB/c mice to contact sentinels. Previous experiments have shown that viruses belonging to both H5 and H7 subtypes replicate in the respiratory tract and central nervous system of experimentally infected mice. In this study we show that selected H7N1 and H5N1 HPAI viruses can be transmitted from mouse-to-mouse by direct contact, and that in experimentally infected animals they exhibit a different pattern of replication and transmission. Our results can be considered as a starting point for transmission experiments involving other influenza A viruses with α 2-3 receptor affinity in order to better understand the viral factors influencing transmissibility of these viruses in selected mammalian species.
Collapse
Affiliation(s)
- Michela Rigoni
- OIE/FAO and National Reference Laboratory for Avian Influenza and Newcastle disease, OIE Collaborating Centre for Diseases at the Animal-Human Interface, Research & Development Department, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Abstract
Avian influenza A viruses continue to cause disease outbreaks in humans, and extrapulmonary infection is characteristic. In vitro studies demonstrate the activity of oseltamivir against avian viruses of the H5, H7 and H9 subtypes. In animal models of lethal infection, oseltamivir treatment and prophylaxis limit viral replication and improve survival. Outcomes are influenced by the virulence of the viral strain, dosage regimen and treatment delay; it is also critical for the compound to act systemically. Observational data on oseltamivir treatment in the early stages of disease suggest it is useful for improving survival in patients infected with H5 viruses, and drug-selected resistance has only rarely been reported. The WHO strongly recommends oseltamivir for the treatment of confirmed or suspected cases of human H5 infection and prophylaxis of those at high risk of infection. In addition to oral dosing, nasogastric administration appears to be a viable option for the management of severely ill patients, as is the use of higher doses and prolonged schedules. F. Hoffmann-La Roche Ltd, the manufacturer of oseltamivir, is developing a mathematical model to allow rapid prediction of appropriate dosage regimens for any future pandemic. Roche is also funding the Avian Influenza Registry, an online database that aims to collect information from clinicians worldwide on the course of avian influenza in humans.
Collapse
|
166
|
Driskell EA, Jones CA, Stallknecht DE, Howerth EW, Tompkins SM. Avian influenza virus isolates from wild birds replicate and cause disease in a mouse model of infection. Virology 2010; 399:280-9. [PMID: 20123144 DOI: 10.1016/j.virol.2010.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/09/2009] [Accepted: 01/05/2010] [Indexed: 12/09/2022]
Abstract
The direct transmission of highly pathogenic avian influenza (HPAI) viruses to humans in Eurasia and subsequent disease has sparked research efforts leading to better understanding of HPAI virus transmission and pathogenicity in mammals. There has been minimal focus on examining the capacity of circulating low pathogenic wild bird avian influenza viruses to infect mammals. We have utilized a mouse model for influenza virus infection to examine 28 North American wild bird avian influenza virus isolates that include the hemagglutinin subtypes H2, H3, H4, H6, H7, and H11. We demonstrate that many wild bird avian influenza viruses of several different hemagglutinin types replicate in this mouse model without adaptation and induce histopathologic lesions similar to other influenza virus infections but cause minimal morbidity. These findings demonstrate the potential of wild avian influenza viruses to directly infect mice without prior adaptation and support their potential role in emergence of pandemic influenza.
Collapse
|