151
|
Burek M, Kaupp V, Blecharz-Lang K, Dilling C, Meybohm P. Protocadherin gamma C3: a new player in regulating vascular barrier function. Neural Regen Res 2023. [PMID: 35799511 PMCID: PMC9241426 DOI: 10.4103/1673-5374.343896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Defects in the endothelial cell barrier accompany diverse malfunctions of the central nervous system such as neurodegenerative diseases, stroke, traumatic brain injury, and systemic diseases such as sepsis, viral and bacterial infections, and cancer. Compromised endothelial sealing leads to leaking blood vessels, followed by vasogenic edema. Brain edema as the most common complication caused by stroke and traumatic brain injury is the leading cause of death. Brain microvascular endothelial cells, together with astrocytes, pericytes, microglia, and neurons form a selective barrier, the so-called blood-brain barrier, which regulates the movement of molecules inside and outside of the brain. Mechanisms that regulate blood-brain barrier permeability in health and disease are complex and not fully understood. Several newly discovered molecules that are involved in the regulation of cellular processes in brain microvascular endothelial cells have been described in the literature in recent years. One of these molecules that are highly expressed in brain microvascular endothelial cells is protocadherin gamma C3. In this review, we discuss recent evidence that protocadherin gamma C3 is a newly identified key player involved in the regulation of vascular barrier function.
Collapse
|
152
|
Li Y, Yu H, Feng J. Role of chemokine-like factor 1 as an inflammatory marker in diseases. Front Immunol 2023; 14:1085154. [PMID: 36865551 PMCID: PMC9971601 DOI: 10.3389/fimmu.2023.1085154] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Immunoinflammatory mechanisms have been incrementally found to be involved in the pathogenesis of multiple diseases, with chemokines being the main drivers of immune cell infiltration in the inflammatory response. Chemokine-like factor 1 (CKLF1), a novel chemokine, is highly expressed in the human peripheral blood leukocytes and exerts broad-spectrum chemotactic and pro-proliferative effects by activating multiple downstream signaling pathways upon binding to its functional receptors. Furthermore, the relationship between CKLF1 overexpression and various systemic diseases has been demonstrated in both in vivo and in vitro experiments. In this context, it is promising that clarifying the downstream mechanism of CKLF1 and identifying its upstream regulatory sites can yield new strategies for targeted therapeutics of immunoinflammatory diseases.
Collapse
Affiliation(s)
- Yutong Li
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
153
|
James BA, Williams JL, Nemesure B. A systematic review of genetic ancestry as a risk factor for incidence of non-small cell lung cancer in the US. Front Genet 2023; 14:1141058. [PMID: 37082203 PMCID: PMC10110850 DOI: 10.3389/fgene.2023.1141058] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/14/2023] [Indexed: 04/22/2023] Open
Abstract
Background: Non-Small Cell Lung Cancer (NSCLC), the leading cause of cancer-related death in the United States, is the most diagnosed form of lung cancer. While lung cancer incidence has steadily declined over the last decade, disparities in incidence and mortality rates persist among African American (AA), Caucasian American (CA), and Hispanic American (HA) populations. Researchers continue to explore how genetic ancestry may influence differential outcomes in lung cancer risk and development. The purpose of this evaluation is to highlight experimental research that investigates the differential impact of genetic mutations and ancestry on NSCLC incidence. Methods: This systematic review was conducted using PubMed and Google Scholar search engines. The following key search terms were used to select articles published between 2011 and 2022: "African/European/Latin American Ancestry NSCLC"; "Racial Disparities NSCLC"; "Genetic Mutations NSCLC"; "NSCLC Biomarkers"; "African Americans/Hispanic Americans/Caucasian Americans NSCLC incidence." Systematic reviews, meta-analyses, and studies outside of the US were excluded. A total of 195 articles were initially identified and after excluding 156 which did not meet eligibility criteria, 38 were included in this investigation. Results: Studies included in this analysis focused on racial/ethnic disparities in the following common genetic mutations observed in NSCLC: KRAS, EGFR, TP53, PIK3CA, ALK Translocations, ROS-1 Rearrangements, STK11, MET, and BRAF. Results across studies varied with respect to absolute differential expression. No significant differences in frequencies of specific genetic mutational profiles were noted between racial/ethnic groups. However, for HAs, lower mutational frequencies in KRAS and STK11 genes were observed. In genetic ancestry level analyses, multiple studies suggest that African ancestry is associated with a higher frequency of EGFR mutations. Conversely, Latin ancestry is associated with TP53 mutations. At the genomic level, several novel predisposing variants associated with African ancestry and increased risk of NSCLC were discovered. Family history among all racial/ethnic groups was also considered a risk factor for NSCLC. Conclusion: Results from racially and ethnically diverse studies can elucidate driving factors that may increase susceptibility and subsequent lung cancer risk across different racial/ethnic groups. Identification of biomarkers that can be used as diagnostic, prognostic, and therapeutic tools may help improve lung cancer survival among high-risk populations.
Collapse
|
154
|
He H, Zhang S, Yang H, Xu P, Kutschick I, Pfeffer S, Britzen-Laurent N, Grützmann R, Fu D, Pilarsky C. Identification of Genes Associated with Liver Metastasis in Pancreatic Cancer Reveals PCSK6 as a Crucial Mediator. Cancers (Basel) 2022; 15:cancers15010241. [PMID: 36612240 PMCID: PMC9818395 DOI: 10.3390/cancers15010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Liver metastasis occurs frequently in patients with pancreatic cancer. We analyzed the molecular profiling in liver metastatic lesions aiming to uncover novel genes responsible for tumor progression. Bioinformatics analysis was applied to identify genes directing liver metastasis. CRISPR/Cas9 technology was used to knock out the candidate gene. Proliferation assays, colony formation assays, cell cycle analysis, migration assays, wound healing assays, Immunofluorescence analysis, and the tumor xenograft model of intrasplenic injection were adopted to evaluate the effects of PCSK6 inactivation on cell growth, migration and liver metastasis. GSEA and Western blot were used to investigate the corresponding signaling pathway. PCSK6 was one of the obtained liver-metastasis-related genes in pancreatic cancer. PCSK6 inactivation inhibited cell growth and cell migration, due to G0/G1 cell cycle arrest and the remodeling of cell-cell junctions or the cell skeleton, respectively. PCSK6 inactivation led to fewer counts and lower outgrowth rates of liver metastatic niches in vivo. The Raf-MEK1/2-ERK1/2 axis was repressed by PCSK6 inactivation. Accordingly, we found PCSK6 inactivation could inhibit cell growth, cell migration, and liver metastasis, and explored the role of the Raf-MEK1/2-ERK1/2 axis in PCSK6 inactivation. PCSK6-targeted therapy might represent a novel approach for combatting liver metastasis in pancreatic cancer.
Collapse
Affiliation(s)
- Hang He
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Shuman Zhang
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Hai Yang
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Pengyan Xu
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Isabella Kutschick
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Susanne Pfeffer
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Nathalie Britzen-Laurent
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Deliang Fu
- Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
155
|
Li Q, Li Z, Luo T, Shi H. Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. MOLECULAR BIOMEDICINE 2022; 3:47. [PMID: 36539659 PMCID: PMC9768098 DOI: 10.1186/s43556-022-00110-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
The PI3K/AKT/mTOR and RAF/MEK/ERK pathways are commonly activated by mutations and chromosomal translocation in vital targets. The PI3K/AKT/mTOR signaling pathway is dysregulated in nearly all kinds of neoplasms, with the component in this pathway alternations. RAF/MEK/ERK signaling cascades are used to conduct signaling from the cell surface to the nucleus to mediate gene expression, cell cycle processes and apoptosis. RAS, B-Raf, PI3K, and PTEN are frequent upstream alternative sites. These mutations resulted in activated cell growth and downregulated cell apoptosis. The two pathways interact with each other to participate in tumorigenesis. PTEN alterations suppress RAF/MEK/ERK pathway activity via AKT phosphorylation and RAS inhibition. Several inhibitors targeting major components of these two pathways have been supported by the FDA. Dozens of agents in these two pathways have attracted great attention and have been assessed in clinical trials. The combination of small molecular inhibitors with traditional regimens has also been explored. Furthermore, dual inhibitors provide new insight into antitumor activity. This review will further comprehensively describe the genetic alterations in normal patients and tumor patients and discuss the role of targeted inhibitors in malignant neoplasm therapy. We hope this review will promote a comprehensive understanding of the role of the PI3K/AKT/mTOR and RAF/MEK/ERK signaling pathways in facilitating tumors and will help direct drug selection for tumor therapy.
Collapse
Affiliation(s)
- Qingfang Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, China
| | - Zhihui Li
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, PR China
| | - Ting Luo
- Department of Breast, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| |
Collapse
|
156
|
Pingili D, Svum P, Raghavendra NM. Discovery of Novel 1,2,4‐Oxadiazolyl Triazole Hybrids as B‐Raf Inhibitors for the Treatment of Melanoma. ChemistrySelect 2022. [DOI: 10.1002/slct.202204248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Divya Pingili
- Department of Pharmaceutical Chemistry Sri Venkateshwara College of Pharmacy, Madhapur Hyderabad Telangana India
- Department of Pharmacy Jawaharlal Nehru Technological University Kakinada
| | - Prasad Svum
- Department of Pharmacy Jawaharlal Nehru Technological University Kakinada
| | - Nulgumnalli Manjunathaiah Raghavendra
- Department of Pharmaceutical Chemistry Acharya & BM Reddy College of Pharmacy Bengaluru Karnataka India
- Department of Pharmaceutical Chemistry College of Pharmaceutical Sciences Dayanand Sagar University Bengaluru Karnataka India
| |
Collapse
|
157
|
GTPase Pathways in Health and Diseases. Cells 2022; 11:cells11244055. [PMID: 36552819 PMCID: PMC9777353 DOI: 10.3390/cells11244055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
GTPases, the molecular switches toggling between an inactive GDP-bound state and an active GTP-bound state, play a pivotal role in controlling complex cellular processes (e [...].
Collapse
|
158
|
Long non-coding RNA LUCAT1 regulates the RAS pathway to promote the proliferation and invasion of malignant glioma cells through ABCB1. Exp Cell Res 2022; 421:113390. [PMID: 36270516 DOI: 10.1016/j.yexcr.2022.113390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/22/2022] [Accepted: 10/13/2022] [Indexed: 12/29/2022]
Abstract
Long non-coding RNAs (lncRNAs) are closely related to the occurrence and development of tumors and have gradually become a hot topic in the field of glioma research in recent years. In this study, the role of lung cancer associated transcript 1 (lncRNA LUCAT 1) in glioma occurrence and development, as well as its possible regulatory mechanism, was explored. We utilized the gene chip technology in the preliminary experiment, and based on the experiment results, selected LUCAT1(NONHSAT102745), which was significantly upregulated in glioma, and ATP-binding cassette Subfamily B member l (ABCB1), which was significantly down-regulated in co-expression analysis, for study. Next, the expression of LUCAT1 and ABCB1 in cells and tissues was immediately evaluated. Subsequently, the cells were transfected with scrambled siRNA, LUCAT1-siRNA/ABCB 1-siRNA, or overexpressed LUCAT1/ABCB1 plasmid + RAS signaling pathway inhibitor-farnesylthiosalicylic acid (FTS). By comparing with the normal combination negative control group, the cell proliferation and invasion ability were evaluated. Finally, subcutaneous tumor formation experiments in the nude mice confirmed the association between LUCAT1 and ABCB1 and RAS signaling pathways. The expression of LUCAT 1 was up-regulated with an increase in WHO grade, and the lncRNA-mRNA co-expression analysis showed that the expression of ABCB1 was low. LUCAT 1 gene knockout reduced the mRNA and protein levels of Ras signaling pathway related factors (Ras, Raf-1, p-AKT, and p-ERK) as regulating ABCB1 expression and inhibiting the ability of tumor in proliferation and invasion no matter in vitro or in vivo. For overexpressing of LUCAT 1, the opposite was true. After we knocked out ABCB1, the LUCAT1 expression was reversely regulated while the level of RAS signaling pathway related factors increased, and the ability of tumors in proliferation and invasion was enhanced. The abnormal LUCAT1 expression affected the biological behaviors of glioma cells, such as proliferation, invasion, etc. by regulating ABCB1 and promoting the activation of the RAS signaling pathway. This provided a new drug target and therapeutic approach for gene therapy of glioma, which is expected to significantly improve the prognosis of relevant patients.
Collapse
|
159
|
Bugatti K, Sartori A, Battistini L, Ruzzolini J, Nediani C, Curti C, Bianchini F, Zanardi F. Nintedanib‐α
V
β
3
Integrin Ligand Dual‐Targeting Conjugates towards Precision Treatment of Melanoma. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kelly Bugatti
- Department of Food and Drug University of Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Andrea Sartori
- Department of Food and Drug University of Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Lucia Battistini
- Department of Food and Drug University of Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence Viale Morgagni 50 50134 Florence Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence Viale Morgagni 50 50134 Florence Italy
| | - Claudio Curti
- Department of Food and Drug University of Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence Viale Morgagni 50 50134 Florence Italy
| | - Franca Zanardi
- Department of Food and Drug University of Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| |
Collapse
|
160
|
Liu Z, Xu Y, Liu X, Wang B. PCDH7 knockdown potentiates colon cancer cells to chemotherapy via inducing ferroptosis and changes in autophagy through restraining MEK1/2/ERK/c-Fos axis. Biochem Cell Biol 2022; 100:445-457. [PMID: 35926236 DOI: 10.1139/bcb-2021-0513] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Chemotherapy is a commonly utilized treatment strategy for colon cancer, a prevalent malignancy. The study intends to probe the function and mechanism of protocadherin 7 (PCDH7) in colon cancer. Gain or loss of functional assays of PCDH7 was performed. MTT and colony formation assay monitored cell proliferation. Transwell measured migration and invasion. Real-time quantitative polymerase chain reaction and western blot verified the profiles of PCDH7 and the MEK1/2/ERK/c-FOS pathway. Western blot was implemented to confirm the profiles of PP1α, MLC2, and p-MLC2 for evaluating the impact of PCDH7 on homotypic cells in cell (hocic) structures. Further, an in-vivo nude mouse model was engineered to figure out the function and mechanism of PCDH7 in tumor cell growth. As indicated by the data, PCDH7 knockdown boosted the cells' sensitivity to chemotherapy. PCDH7 overexpression facilitated their proliferation and invasion, altered autophagy, induced ferroptosis and hocic, and initiated the profile of the MEK1/2/ERK/c-FOS pathway. MEK1/2/ERK inhibition impaired the inhibitory impact of PCDH7 on colon cancer cells' chemotherapy sensitivity and dampened its pro-cancer function in the cells. In-vivo experiments displayed that PCDH7 overexpression stepped up tumor growth and pulmonary metastasis in colon cancer cells. All in all, the research has discovered that PCDH7 knockdown affects autophagy and induces ferroptosis, hence strengthening colon cancer cells' sensitivity to chemotherapy by repressing the MEK1/2/ERK/c-FOS axis.
Collapse
Affiliation(s)
- Zhendong Liu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Yuyang Xu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Xin Liu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Baochun Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| |
Collapse
|
161
|
Hou J, Chen Q, Huang Y, Wu Z, Ma D. Caudatin blocks the proliferation, stemness and glycolysis of non-small cell lung cancer cells through the Raf/MEK/ERK pathway. PHARMACEUTICAL BIOLOGY 2022; 60:764-773. [PMID: 35387566 PMCID: PMC9004493 DOI: 10.1080/13880209.2022.2050768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
CONTEXT The antitumor effects of caudatin have been explored in multiple cancers, but the research on lung cancer has not been fully understood. OBJECTIVE We explored the effects of caudatin on non-small cell lung cancer (NSCLC) in vitro and in vivo. MATERIALS AND METHODS In the in vitro experiments, 0, 25, 50 and 100 μM of caudatin were selected to examine the effects on stemness and glycolysis. Subcutaneous tumour xenografts were constructed by injecting the nude mice (BALB/C) with 5 × 106 H1299 cells. In the in vivo experiments, all nude mice were divided into the caudatin group (50 mg/kg/day, n = 5) and the sham group (equal amount of DMSO, n = 5). RESULTS The IC50 of caudatin for H1299 and H520 cells was 44.68 μM and 69.37 μM, respectively. Compared with caudatin 0 μM group, cell apoptosis rate was increased about 10 times and cell stemness was decreased by 75-85% in caudatin 100 μM group. Glucose uptake (65-80% reduction), lactic acid production (75-80% reduction), ATP level (70-80% reduction) and the expression of HK2 and LDHA (75-85% reduction) were decreased in caudatin 100 μM group. The expression of Raf/MEK/ERK pathway related proteins was decreased to 20-25% by caudatin. Tumour weight (about 70% reduction) and the expression of stemness, glycolysis and Raf/MEK/ERK pathway related proteins (about 50-75% reduction) were suppressed by caudatin in vivo. DISCUSSION AND CONCLUSIONS We revealed that caudatin blocked stemness and glycolysis in NSCLC for the first time. More experiments about exact dosage of caudatin in vivo should be conducted.
Collapse
Affiliation(s)
- Juan Hou
- Department of Oncology, Jingjiang People’s Hospital, Taizhou, Jiangsu, China
| | - Qing Chen
- Department of Oncology, Jingjiang People’s Hospital, Taizhou, Jiangsu, China
| | - Yufeng Huang
- Department of Oncology, Jingjiang People’s Hospital, Taizhou, Jiangsu, China
| | - Zhiwei Wu
- Department of Oncology, Jingjiang People’s Hospital, Taizhou, Jiangsu, China
| | - De Ma
- Department of Oncology, Jingjiang People’s Hospital, Taizhou, Jiangsu, China
- CONTACT De Ma Department of Oncology, Jingjiang People’s Hospital, No. 28 Zhongzhou Road, Jingjiang City, Jiangsu Province214500, China
| |
Collapse
|
162
|
Wu J, Lin Z. Non-Small Cell Lung Cancer Targeted Therapy: Drugs and Mechanisms of Drug Resistance. Int J Mol Sci 2022; 23:ijms232315056. [PMID: 36499382 PMCID: PMC9738331 DOI: 10.3390/ijms232315056] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The advent of precision medicine has brought light to the treatment of non-small cell lung cancer (NSCLC), expanding the options for patients with advanced NSCLC by targeting therapy through genetic and epigenetic cues. Tumor driver genes in NSCLC patients have been uncovered one by one, including epidermal growth factor receptor (EGFR), mesenchymal lymphoma kinase (ALK), and receptor tyrosine kinase ROS proto-oncogene 1 (ROS1) mutants. Antibodies and inhibitors that target the critical gene-mediated signaling pathways that regulate tumor growth and development are anticipated to increase patient survival and quality of life. Targeted drugs continue to emerge, with as many as two dozen approved by the FDA, and chemotherapy and targeted therapy have significantly improved patient prognosis. However, resistance due to cancer drivers' genetic alterations has given rise to significant challenges in treating patients with metastatic NSCLC. Here, we summarized the main targeted therapeutic sites of NSCLC drugs and discussed their resistance mechanisms, aiming to provide new ideas for follow-up research and clues for the improvement of targeted drugs.
Collapse
|
163
|
Orofiamma LA, Vural D, Antonescu CN. Control of cell metabolism by the epidermal growth factor receptor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119359. [PMID: 36089077 DOI: 10.1016/j.bbamcr.2022.119359] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The epidermal growth factor receptor (EGFR) triggers the activation of many intracellular signals that control cell proliferation, growth, survival, migration, and differentiation. Given its wide expression, EGFR has many functions in development and tissue homeostasis. Some of the cellular outcomes of EGFR signaling involve alterations of specific aspects of cellular metabolism, and alterations of cell metabolism are emerging as driving influences in many physiological and pathophysiological contexts. Here we review the mechanisms by which EGFR regulates cell metabolism, including by modulation of gene expression and protein function leading to control of glucose uptake, glycolysis, biosynthetic pathways branching from glucose metabolism, amino acid metabolism, lipogenesis, and mitochondrial function. We further examine how this regulation of cell metabolism by EGFR may contribute to cell proliferation and differentiation and how EGFR-driven control of metabolism can impact certain diseases and therapy outcomes.
Collapse
Affiliation(s)
- Laura A Orofiamma
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Dafne Vural
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada.
| |
Collapse
|
164
|
Success of Trametinib in the Treatment of Langerhans Cell Histiocytosis With Novel MAPK Pathway Mutations. J Pediatr Hematol Oncol 2022; 45:e534-e538. [PMID: 36730444 DOI: 10.1097/mph.0000000000002599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/27/2022] [Indexed: 02/04/2023]
Abstract
Approximately a third of patients with Langerhans cell histiocytosis (LCH) experience recurrence of disease. Genomic analysis has revealed that this condition is often driven by oncogenic mutations in the MAP kinase (MAPK) pathway, and agents that target components of this pathway have been explored as a second-line treatment for LCH. Here, we examine 2 pediatric patients with LCH and confirmed but rarely reported MAPK pathway mutations treated with trametinib, a MAP2K inhibitor approved to treat several cancers with a BRAFV600E mutation. Each patient achieved or maintained complete resolution of disease and remain on the drug with no adverse effects.
Collapse
|
165
|
Sturm N, Schuhbaur JS, Hüttner F, Perkhofer L, Ettrich TJ. Gallbladder Cancer: Current Multimodality Treatment Concepts and Future Directions. Cancers (Basel) 2022; 14:5580. [PMID: 36428670 PMCID: PMC9688543 DOI: 10.3390/cancers14225580] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Gallbladder cancer (GBC) is the most common primary tumor site of biliary tract cancer (BTC), accounting for 0.6% of newly diagnosed cancers and 0.9% of cancer-related deaths. Risk factors, including female sex, age, ethnic background, and chronic inflammation of the gallbladder, have been identified. Surgery is the only curative option for early-stage GBC, but only 10% of patients are primary eligible for curative treatment. After neoadjuvant treatment, up to one-third of locally advanced GBC patients could benefit from secondary surgical treatment. After surgery, only a high-risk subset of patients benefits from adjuvant treatment. For advanced-stage GBC, palliative chemotherapy with gemcitabine and cisplatin is the current standard of care in line with other BTCs. After the failure of gemcitabine and cisplatin, data for second-line treatment in non-resectable GBC is poor, and the only recommended chemotherapy regimen is FOLFOX (5-FU/folinic acid and oxaliplatin). Recent advances with the PD-L1 inhibitor durvalumab open the therapy landscape for immune checkpoint inhibition in GBC. Meanwhile, targeted therapy approaches are a cornerstone of GBC therapy based on molecular profiling and new evidence of molecular differences between different BTC forms and might further improve the prognosis of GBC patients.
Collapse
Affiliation(s)
- Niklas Sturm
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany
| | | | - Felix Hüttner
- Department of General and Visceral Surgery, Ulm University Hospital, 89081 Ulm, Germany
| | - Lukas Perkhofer
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany
| | - Thomas Jens Ettrich
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany
| |
Collapse
|
166
|
Wang Y, Shen X, Wang Q, Guo Z, Hu L, Dong Z, Hu W. Non-canonical Small GTPase RBJ Promotes NSCLC Progression Through the Canonical MEK/ERK Signaling Pathway. Curr Pharm Des 2022; 28:3446-3455. [PMID: 36397632 DOI: 10.2174/1381612829666221117124048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Although the majority of members belonging to the small GTPase Ras superfamily have been studied in several malignancies, the function of RBJ has remained unclear, particularly in non-small cell lung cancer (NSCLC). OBJECTIVE The research aims to determine the function of RBJ in NSCLC. METHODS The levels of RBJ protein in tumor tissue and para-carcinoma normal tissue were ascertained via immunohistochemistry (IHC). The growth, migration, and invasion of NSCLC cells were assessed by 5- ethynyl-2-deoxyuridine (EdU) assay, colony formation, cell counting kit-8 (CCK8), transwell and wound healing assays. Furthermore, a nude mouse xenograft model was established to study the function of RBJ in tumorigenesis in vivo. RESULTS The IHC analysis revealed that the protein levels of RBJ were notably increased in tumor tissue and positively associated with the clinical stage. In addition, the knockdown of RBJ restrained the growth, invasion, and migration of NSCLC cell lines by inhibiting the epithelial-mesenchymal transition (EMT) through the MEK/ERK signaling pathway. Accordingly, opposite results were observed when RBJ was overexpressed. In addition, the overexpression of RBJ accelerated tumor formation by A549 cells in nude mice. CONCLUSION RBJ promoted cancer progression in NSCLC by activating EMT via the MEK/ERK signaling. Thus, RBJ could be used as a potential therapeutic against NSCLC.
Collapse
Affiliation(s)
- Yujin Wang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoyan Shen
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingwen Wang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zixin Guo
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Liwen Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhe Dong
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weidong Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
167
|
Romani AM. Cisplatin in Cancer Treatment. Biochem Pharmacol 2022; 206:115323. [DOI: 10.1016/j.bcp.2022.115323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
|
168
|
Zheng X, Xu W, Ying Q, Ni J, Jia X, Zhou Y, Ye T, Li G, Chen K. Oncolytic Vaccinia Virus Carrying Aphrocallistes vastus Lectin (oncoVV-AVL) Enhances Inflammatory Response in Hepatocellular Carcinoma Cells. Mar Drugs 2022; 20:667. [PMID: 36354990 PMCID: PMC9696330 DOI: 10.3390/md20110667] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/11/2024] Open
Abstract
Aphrocallistes vastus lectin (AVL) is a C-type marine lectin derived from sponges. Our previous study demonstrated that oncolytic vaccinia virus carrying AVL (oncoVV-AVL) significantly enhanced the cytotoxicity of oncoVV in cervical cancer, colorectal cancer and hepatocellular carcinoma through the activation of Ras/ERK, MAPK/ERK and PI3K/Akt signaling pathways. In this study, the inflammatory response induced by oncoVV-AVL in a hepatocellular carcinoma cell (HCC) model was investigated. The results showed that oncoVV-AVL increased the levels of inflammatory cytokines including IL-6, IL-8 and TNF-α through activating the AP-1 signaling pathway in HCC. This study provides novel insights into the utilization of lectin AVL in the field of cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gongchu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tch University, Hangzhou 310018, China
| | - Kan Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tch University, Hangzhou 310018, China
| |
Collapse
|
169
|
Tatsumi A, Hirakochi H, Inoue S, Tanaka Y, Furuno H, Ikeda M, Ishibashi S, Taguchi T, Yamamoto K, Onishi I, Sachs Z, Largaespada DA, Kitagawa M, Kurata M. Identification of NRAS Downstream Genes with CRISPR Activation Screening. BIOLOGY 2022; 11:1551. [PMID: 36358254 PMCID: PMC9687188 DOI: 10.3390/biology11111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Mutations in NRAS constitutively activate cell proliferation signaling in malignant neoplasms, such as leukemia and melanoma, and the clarification of comprehensive downstream genes of NRAS might lead to the control of cell-proliferative signals of NRAS-driven cancers. We previously established that NRAS expression and proliferative activity can be controlled with doxycycline and named as THP-1 B11. Using a CRISPR activation library on THP-1 B11 cells with the NRAS-off state, survival clones were harvested, and 21 candidate genes were identified. By inducting each candidate guide RNA with the CRISPR activation system, DOHH, HIST1H2AC, KRT32, and TAF6 showed higher cell-proliferative activity. The expression of DOHH, HIST1H2AC, and TAF6 was definitely upregulated with NRAS expression. Furthermore, MEK inhibitors resulted in the decreased expression of DOHH, HIST1H2AC, and TAF6 proteins in parental THP-1 cells. The knockdown of DOHH, HIST1H2AC, and TAF6 was found to reduce proliferation in THP-1 cells, indicating that they are involved in the downstream proliferation of NRAS. These molecules are expected to be new therapeutic targets for NRAS-mutant leukemia cells.
Collapse
Affiliation(s)
- Akiya Tatsumi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Medical Technology & Sciences, School of Health Sciences at Narita, International University of Health and Welfare, Narita, Chiba 286-8686, Japan
| | - Haruka Hirakochi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Satomi Inoue
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yosuke Tanaka
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hidehiro Furuno
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masumi Ikeda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sachiko Ishibashi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Towako Taguchi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Iichiroh Onishi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Zohar Sachs
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
170
|
Characterization of the RAS/RAF/ERK Signal Cascade as a Novel Regulating Factor in Alpha-Amanitin-Induced Cytotoxicity in Huh-7 Cells. Int J Mol Sci 2022; 23:ijms232012294. [PMID: 36293151 PMCID: PMC9603094 DOI: 10.3390/ijms232012294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
The well-known hepatotoxicity mechanism resulting from alpha-amanitin (α-AMA) exposure arises from RNA polymerase II (RNAP II) inhibition. RNAP Ⅱ inhibition occurs through the dysregulation of mRNA synthesis. However, the signaling pathways in hepatocytes that arise from α-AMA have not yet been fully elucidated. Here, we identified that the RAS/RAF/ERK signaling pathway was activated through quantitative phosphoproteomic and molecular biological analyses in Huh-7 cells. Bioinformatics analysis showed that α-AMA exposure increased protein phosphorylation in a time-dependent α-AMA exposure. In addition, phosphorylation increased not only the components of the ERK signaling pathway but also U2AF65 and SPF45, known splicing factors. Therefore, we propose a novel mechanism of α-AMA as follows. The RAS/RAF/ERK signaling pathway involved in aberrant splicing events is activated by α-AMA exposure followed by aberrant splicing events leading to cell death in Huh-7 cells.
Collapse
|
171
|
Wang R, Shang Y, Chen B, Xu F, Zhang J, Zhang Z, Zhao X, Wan X, Xu A, Wu L, Zhao G. Protein disulfide isomerase blocks the interaction of LC3II-PHB2 and promotes mTOR signaling to regulate autophagy and radio/chemo-sensitivity. Cell Death Dis 2022; 13:851. [PMID: 36202782 PMCID: PMC9537141 DOI: 10.1038/s41419-022-05302-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022]
Abstract
Protein disulfide isomerase (PDI) is an endoplasmic reticulum (ER) enzyme that mediates the formation of disulfide bonds, and is also a therapeutic target for cancer treatment. Our previous studies found that PDI mediates apoptotic signaling by inducing mitochondrial dysfunction. Considering that mitochondrial dysfunction is a major contributor to autophagy, how PDI regulates autophagy remains unclear. Here, we provide evidence that high expression of PDI in colorectal cancer tumors significantly increases the risk of metastasis and poor prognosis of cancer patients. PDI inhibits radio/chemo-induced cell death by regulating autophagy signaling. Mechanistically, the combination of PDI and GRP78 was enhanced after ER stress, which inhibits the degradation of AKT by GRP78, and eventually activates the mTOR pathway to inhibit autophagy initiation. In parallel, PDI can directly interact with the mitophagy receptor PHB2 in mitochondrial, then competitively blocks the binding of LC3II and PHB2 and inhibits the mitophagy signaling. Collectively, our results identify that PDI can reduce radio/chemo-sensitivity by regulating autophagy, which could be served as a potential target for radio/chemo-therapy.
Collapse
Affiliation(s)
- Ruru Wang
- grid.9227.e0000000119573309High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China ,grid.59053.3a0000000121679639University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Yajing Shang
- grid.9227.e0000000119573309High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China ,grid.186775.a0000 0000 9490 772XAnhui Medical University, Hefei, Anhui 230032 China
| | - Bin Chen
- grid.9227.e0000000119573309High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China ,grid.59053.3a0000000121679639University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Feng Xu
- grid.9227.e0000000119573309High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China ,grid.59053.3a0000000121679639University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Jie Zhang
- grid.9227.e0000000119573309High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China ,grid.59053.3a0000000121679639University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Zhaoyang Zhang
- grid.9227.e0000000119573309High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China ,grid.59053.3a0000000121679639University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Xipeng Zhao
- grid.9227.e0000000119573309High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China ,grid.252245.60000 0001 0085 4987Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601 China
| | - Xiangbo Wan
- grid.488525.6The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275 China
| | - An Xu
- grid.9227.e0000000119573309High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China
| | - Lijun Wu
- grid.9227.e0000000119573309High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China ,grid.252245.60000 0001 0085 4987Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601 China
| | - Guoping Zhao
- grid.9227.e0000000119573309High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China
| |
Collapse
|
172
|
Michalak DJ, Unger B, Lorimer E, Grishaev A, Williams CL, Heinrich F, Lösche M. Structural and biophysical properties of farnesylated KRas interacting with the chaperone SmgGDS-558. Biophys J 2022; 121:3684-3697. [PMID: 35614853 PMCID: PMC9617131 DOI: 10.1016/j.bpj.2022.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 11/26/2022] Open
Abstract
KRas is a small GTPase and membrane-bound signaling protein. Newly synthesized KRas is post-translationally modified with a membrane-anchoring prenyl group. KRas chaperones are therapeutic targets in cancer due to their participation in trafficking oncogenic KRas to membranes. SmgGDS splice variants are chaperones for small GTPases with basic residues in their hypervariable domain (HVR), including KRas. SmgGDS-607 escorts pre-prenylated small GTPases, while SmgGDS-558 escorts prenylated small GTPases. We provide a structural description of farnesylated and fully processed KRas (KRas-FMe) in complex with SmgGDS-558 and define biophysical properties of this interaction. Surface plasmon resonance measurements on biomimetic model membranes quantified the thermodynamics of the interaction of SmgGDS with KRas, and small-angle x-ray scattering was used to characterize complexes of SmgGDS-558 and KRas-FMe structurally. Structural models were refined using Monte Carlo and molecular dynamics simulations. Our results indicate that SmgGDS-558 interacts with the HVR and the farnesylated C-terminus of KRas-FMe, but not its G-domain. Therefore, SmgGDS-558 interacts differently with prenylated KRas than prenylated RhoA, whose G-domain was found in close contact with SmgGDS-558 in a recent crystal structure. Using immunoprecipitation assays, we show that SmgGDS-558 binds the GTP-bound, GDP-bound, and nucleotide-free forms of farnesylated and fully processed KRas in cells, consistent with SmgGDS-558 not engaging the G-domain of KRas. We found that the dissociation constant, Kd, for KRas-FMe binding to SmgGDS-558 is comparable with that for the KRas complex with PDEδ, a well-characterized KRas chaperone that also does not interact with the KRas G-domain. These results suggest that KRas interacts in similar ways with the two chaperones SmgGDS-558 and PDEδ. Therapeutic targeting of the SmgGDS-558/KRas complex might prove as useful as targeting the PDEδ/KRas complex in KRas-driven cancers.
Collapse
Affiliation(s)
- Dennis J Michalak
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Bethany Unger
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ellen Lorimer
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alexander Grishaev
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland; Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Carol L Williams
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland.
| | - Mathias Lösche
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland
| |
Collapse
|
173
|
Yu JZ, Wen J, Ying Y, Yin W, Zhang SQ, Pang WL, Wang C, Bian Y, Yuan JL, Yan JY, Yang ZS. Astragaloside trigger autophagy: Implication a potential therapeutic strategy for pulmonary fibrosis. Biomed Pharmacother 2022; 154:113603. [PMID: 36942596 DOI: 10.1016/j.biopha.2022.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022] Open
Abstract
Pulmonary fibrosis is an abnormal wound-healing response to repeated alveolar injury, characterized by continuous inflammation and abnormal collagen deposition. Its treatment is problematic. Astragaloside (AST) is an active component of Astragalus membranaceus with anti-inflammatory and anti-tumor properties. Although the underlying mechanisms are unknown, AST is also used to treat fibrotic diseases. This study aimed to investigate the mechanisms of action of AST in pulmonary fibrosis treatment. We found that AST significantly improved restrictive ventilatory impairment, compliance, total lung capacity, and functional residual capacity. In mice with pulmonary fibrosis, extracellular matrix deposition in the pulmonary parenchyma and intemperate inflammation were reversed. This therapeutic effect can be attributed to autophagy, activating the genes for autophagy flux and autophagic vacuoles. Impaired autophagy increased susceptibility to pulmonary fibrosis by exacerbating collagen deposition in vitro and in vivo. Using a combination of molecular docking and network pharmacology, the Ras/Raf/MEK/ERK signaling pathway was identified as a possible candidate for the pharmacologic target of AST. Functional dephosphorylation of MEK and ERK inhibited the Ras/Raf/MEK/ERK signaling pathway, which converges at the rapamycin switch to initiate autophagy. Inhibitors of Ras and MEK regulated autophagy. These findings suggest that AST might treat pulmonary fibrosis by modulating the Ras/Raf/MEK/ERK signaling pathway mediated by depression.
Collapse
Affiliation(s)
- Jing-Ze Yu
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China; The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin, China
| | - Jing Wen
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yi Ying
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China; Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wen Yin
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Si-Qi Zhang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wen-Ling Pang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Cui Wang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yao Bian
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jia-Li Yuan
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jin-Yuan Yan
- Central Laboratory, Kunming Medical University Second Hospital, Kunming, Yunnan, China.
| | - Zhong-Shan Yang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| |
Collapse
|
174
|
Laskovs M, Partridge L, Slack C. Molecular inhibition of RAS signalling to target ageing and age-related health. Dis Model Mech 2022; 15:276620. [PMID: 36111627 PMCID: PMC9510030 DOI: 10.1242/dmm.049627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The RAS/MAPK pathway is a highly conserved signalling pathway with a well-established role in cancer. Mutations that hyperactivate this pathway are associated with unregulated cell proliferation. Evidence from a range of model organisms also links RAS/MAPK signalling to ageing. Genetic approaches that reduce RAS/MAPK signalling activity extend lifespan and also improve healthspan, delaying the onset and/or progression of age-related functional decline. Given its role in cancer, therapeutic interventions that target and inhibit this pathway's key components are under intense investigation. The consequent availability of small molecule inhibitors raises the possibility of repurposing these compounds to ameliorate the deleterious effects of ageing. Here, we review evidence that RAS/MAPK signalling inhibitors already in clinical use, such as trametinib, acarbose, statins, metformin and dihydromyricetin, lead to lifespan extension and to improved healthspan in a range of model systems. These findings suggest that the repurposing of small molecule inhibitors of RAS/MAPK signalling might offer opportunities to improve health during ageing, and to delay or prevent the development of age-related disease. However, challenges to this approach, including poor tolerance to treatment in older adults or development of drug resistance, first need to be resolved before successful clinical implementation. Summary: This Review critically discusses the links between RAS signalling and ageing, and how RAS inhibitors could extend lifespan and enhance healthspan.
Collapse
Affiliation(s)
- Mihails Laskovs
- School of Biosciences, College of Health and Life Sciences, Aston University 1 , Birmingham B4 7ET , UK
| | - Linda Partridge
- Institute of Healthy Ageing 2 , Department of Genetics, Evolution and Environment , , Darwin Building, Gower Street, London WC1E 6BT , UK
- University College London 2 , Department of Genetics, Evolution and Environment , , Darwin Building, Gower Street, London WC1E 6BT , UK
- Max Planck Institute for Biology of Ageing 3 , Joseph-Stelzmann-Strasse 9b, 50931 Cologne , Germany
| | - Cathy Slack
- School of Biosciences, College of Health and Life Sciences, Aston University 1 , Birmingham B4 7ET , UK
| |
Collapse
|
175
|
Abstract
PURPOSE Brain-derived neurotrophic factor (BDNF) belongs to the family of neurotrophic factors that can potentially increase cancer cell growth, survival, proliferation, anoikis, and migration by tyrosine kinase receptors TrkB and the p75NTR death receptor. The activation of BDNF/TrkB pathways leads to several downstream signaling pathways, including PI3K/Akt, Jak/STAT, PLCγ, Ras-Raf-MEK-ERK, NF-kB, and transactivation of EGFR. The current review aimed to provide an overview of the role of BDNF and its signaling in cancer. METHODS We searched a major medical database, PubMed, to identify eligible studies for a narrative synthesis. RESULTS Pathological examinations demonstrate BDNF overexpression in human cancer, notably involving the prostate, lung, breast, and underlying tissues, associated with a higher death rate and poor prognosis. Therefore, measurement of BDNF, either for identifying the disease or predicting response to therapy, can be helpful in cancer patients. Expression profiling studies have recognized the role of microRNAs (miR) in modulating BDNF/TrkB pathways, such as miR-101, miR-107, miR-134, miR-147, miR-191, miR-200a/c, miR-204, miR-206, miR-210, miR-214, miR-382, miR-496, miR-497, miR-744, and miR-10a-5p, providing a potential biological mechanism by which targeted therapies may correlate with decreased BDNF expression in cancers. Clinical studies investigating the use of agents targeting BDNF receptors and related signaling pathways and interfering with the related oncogenic effect, including Entrectinib, Larotrectinib, Cabozantinib, Repotrectinib, Lestaurtinib, and Selitrectinib, are in progress. CONCLUSION The aberrant signaling of BDNF is implicated in various cancers. Well-designed clinical trials are needed to clarify the BDNF role in cancer progression and target it as a therapeutic method.
Collapse
|
176
|
Dai M, Chen S, Teng X, Chen K, Cheng W. KRAS as a Key Oncogene in the Clinical Precision Diagnosis and Treatment of Pancreatic Cancer. J Cancer 2022; 13:3209-3220. [PMID: 36118526 PMCID: PMC9475360 DOI: 10.7150/jca.76695] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/19/2022] [Indexed: 11/06/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors, with a 5-year survival rate of less than 10%. At present, the comprehensive treatment based on surgery, radiotherapy and chemotherapy has encountered a bottleneck, and targeted immunotherapy turns to be the direction of future development. About 90% of PDAC patients have KRAS mutations, and KRAS has been widely used in the diagnosis, treatment, and prognosis of PDAC in recent years. With the development of liquid biopsy and gene testing, KRAS is expected to become a new biomarker to assist the stratification and prognosis of PDAC patients. An increasing number of small molecule inhibitors acting on the KRAS pathway are being developed and put into the clinic, providing more options for PDAC patients.
Collapse
Affiliation(s)
- Manxiong Dai
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| | - Shaofeng Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| | - Xiong Teng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| | - Kang Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| | - Wei Cheng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Xiangyue Hospital Affiliated to Hunan Institute of Parasitic Diseases, National Clinical Center for Schistosomiasis Treatment, Yueyang 414000, Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| |
Collapse
|
177
|
Qin R, You FM, Zhao Q, Xie X, Peng C, Zhan G, Han B. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: from molecular mechanisms to potential therapeutic targets. J Hematol Oncol 2022; 15:133. [PMID: 36104717 PMCID: PMC9471064 DOI: 10.1186/s13045-022-01350-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/03/2022] [Indexed: 12/11/2022] Open
Abstract
Regulated cell death (RCD) is a critical and active process that is controlled by specific signal transduction pathways and can be regulated by genetic signals or drug interventions. Meanwhile, RCD is closely related to the occurrence and therapy of multiple human cancers. Generally, RCD subroutines are the key signals of tumorigenesis, which are contributed to our better understanding of cancer pathogenesis and therapeutics. Indole alkaloids derived from natural sources are well defined for their outstanding biological and pharmacological properties, like vincristine, vinblastine, staurosporine, indirubin, and 3,3′-diindolylmethane, which are currently used in the clinic or under clinical assessment. Moreover, such compounds play a significant role in discovering novel anticancer agents. Thus, here we systemically summarized recent advances in indole alkaloids as anticancer agents by targeting different RCD subroutines, including the classical apoptosis and autophagic cell death signaling pathways as well as the crucial signaling pathways of other RCD subroutines, such as ferroptosis, mitotic catastrophe, necroptosis, and anoikis, in cancer. Moreover, we further discussed the cross talk between different RCD subroutines mediated by indole alkaloids and the combined strategies of multiple agents (e.g., 3,10-dibromofascaplysin combined with olaparib) to exhibit therapeutic potential against various cancers by regulating RCD subroutines. In short, the information provided in this review on the regulation of cell death by indole alkaloids against different targets is expected to be beneficial for the design of novel molecules with greater targeting and biological properties, thereby facilitating the development of new strategies for cancer therapy.
Collapse
|
178
|
Li M, Li X, Chen S, Zhang T, Song L, Pei J, Sun G, Guo L. IPO5 Mediates EMT and Promotes Esophageal Cancer Development through the RAS-ERK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6570879. [PMID: 36120598 PMCID: PMC9481360 DOI: 10.1155/2022/6570879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/07/2022] [Accepted: 07/31/2022] [Indexed: 11/21/2022]
Abstract
Objective In the development of many tumors, IPO5, as a member of the nuclear transporter family, exerts a significant function. Also, IPO5 is used as a therapeutic target for tumors based on some reports. By studying IPO5 expression in esophageal cancer tissues, the mechanism associated with IPO5 improving esophageal cancer development was explored in this study. Methods To gain differentially expressed genes, this study utilized mRNA microarray and TCGA database for comprehensive analysis of esophageal cancer tissues and normal esophageal cancer tissues, and then the differentially expressed gene IPO5 was screened by us. To assess esophageal cancer patients' prognosis, this study also applied the Kaplan-Meier analysis, and we also conducted the GSEA enrichment analysis to investigate IPO5-related signaling pathways. This study performed TISIDB and TIMER online analysis tools to study the correlation between IPO5 and immune regulation and infiltration. We took specimens of esophageal cancer from patients and detected the expression of IPO5 in tumor and normal tissues by immunohistochemistry. The IPO5 gene-silenced esophageal cancer cell model was constructed by lentivirus transfection. Through the Transwell invasion assay, CCK-8 assay, and cell scratch assay, this study investigated the effects of IPO5 on cell propagation, invasion, and transfer. What is more, we identified the influences of IPO5 on the cell cycle through flow cytometry and established a subcutaneous tumor-forming model in nude mice. Immunohistochemistry was used to verify the expression of KI-67, and this study detected the modifications of cell pathway-related proteins using Western blot and applied EMT-related proteins to explain the mechanism of esophageal cancer induced by IPO5. Results According to database survival analysis, IPO5 high-expression patients had shorter disease-free survival than IPO5 low-expression patients. Compared to normal tissues, the IPO5 expression in cancer tissues was significantly higher in clinical trials (P < 0.05). Through TISIDB and TIMER database studies, we found that IPO5 could affect immune regulation, and the age of IPO5 expression grows with the increase of immune infiltration level. The IPO5 expression in esophageal cancer cells was higher than normal, especially in ECA109 and OE33 cells (P < 0.01). After knocking out IPO5 gene expression, cell proliferation capacity and invasion capacity were reduced (P < 0.05) and decreased (P < 0.01) in the IPO5-interfered group rather than the negative control group. The growth cycle of esophageal carcinoma cells was arrested in the G2/M phase after IPO5 gene silencing (P < 0.01). Tumor-forming experiments in nude mice confirmed that after IPO5 deletion, the tumor shrank, the expression of KI67 decreased, the downstream protein expression level of the RAS pathway decreased after sh-IPO5 interference (P < 0.01), and the level of EMT marker delined (P < 0.05). Conclusion In esophageal cancer, IPO5 is highly expressed and correlates with survival rate. Esophageal cancer cell growth and migration were significantly affected by the inhibition of IPO5 in vitro and in vivo. IPO5 mediates EMT using the RAS-ERK signaling pathway activation and promotes esophageal cancer cell development in vivo and in vitro.
Collapse
Affiliation(s)
- Meiyu Li
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiaofei Li
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shujia Chen
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tianai Zhang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Liaoyuan Song
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jiayue Pei
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Guoyan Sun
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lianyi Guo
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
179
|
CCT196969 effectively inhibits growth and survival of melanoma brain metastasis cells. PLoS One 2022; 17:e0273711. [PMID: 36084109 PMCID: PMC9462752 DOI: 10.1371/journal.pone.0273711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Melanomas frequently metastasize to the brain. Despite recent progress in the treatment of melanoma brain metastasis, therapy resistance and relapse of disease remain unsolved challenges. CCT196969 is a SRC family kinase (SFK) and Raf proto-oncogene, serine/threonine kinase (RAF) inhibitor with documented effects in primary melanoma cell lines in vitro and in vivo. Using in vitro cell line assays, we studied the effects of CCT196969 in multiple melanoma brain metastasis cell lines. The drug effectively inhibited proliferation, migration, and survival in all examined cell lines, with viability IC50 doses in the range of 0.18–2.6 μM. Western blot analysis showed decreased expression of p-ERK, p-MEK, p-STAT3 and STAT3 upon CCT196969 treatment. Furthermore, CCT196969 inhibited viability in two B-Raf Proto-Oncogene (BRAF) inhibitor resistant metastatic melanoma cell lines. Further in vivo studies should be performed to determine the treatment potential of CCT196969 in patients with treatment-naïve and resistant melanoma brain metastasis.
Collapse
|
180
|
He X, Ma X, Wang J, Zou Z, Huang H, Ren J, Liu C, Zheng N, Ma J, Liu Y. Case report: Identification and clinical phenotypic analysis of novel mutation of the PPP1CB gene in NSLH2 syndrome. Front Behav Neurosci 2022; 16:987259. [PMID: 36160684 PMCID: PMC9492974 DOI: 10.3389/fnbeh.2022.987259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo screen and analyze the genetic mutations in the PPP1CB gene in a patient with Noonan syndrome with loose anagen hair-2 (NSLH2) in Yunnan Province, China and explore the possible molecular pathogenesis.MethodsAfter obtaining informed consent, we collected the patient's medical history and carried out physical and laboratory examinations for the NSLH2 proband and the family members. Genomic DNA was extracted from the peripheral blood of all individuals. The coding regions including all pathogenic exons, parts of introns, and promoters of genes were sequenced by next-generation sequencing. Pathogenic mutations, which were detected in the probands and their parents, were verified by Sanger sequencing.ResultsThe clinical manifestations of NSLH2 included prominent forehead, yellowish hair, slightly wide eye distance, sparse eyebrows, bilateral auricle deformity, reduced muscle tension, and cardiac and visual abnormalities. The proband carried a c.371A>G mutation in exon 3 of PPP1CB, which is a missense mutation. This was a de novo mutation as the parents of the proband showed no mutation at this site.ConclusionIn this study, we identified a novel mutation of PPP1CB, which enriched the mutation spectrum of the PPP1CB gene and provided a basis for the diagnosis of NSLH2.
Collapse
Affiliation(s)
- Xuemei He
- Department of Rehabilitation, Kunming Children's Hospital, Kunming Medical University, Yunnan, China
| | - Xiuli Ma
- Department of Otolaryngology, Head and Neck Surgery, Kunming Children's Hospital, Kunming Medical University, Yunnan, China
| | - Jing Wang
- Department of Rehabilitation, Kunming Children's Hospital, Kunming Medical University, Yunnan, China
| | - Zhuo Zou
- Department of Rehabilitation, Kunming Children's Hospital, Kunming Medical University, Yunnan, China
| | - Haoyu Huang
- Department of Rehabilitation, Kunming Children's Hospital, Kunming Medical University, Yunnan, China
| | - Jian Ren
- Department of Rehabilitation, Kunming Children's Hospital, Kunming Medical University, Yunnan, China
| | - Chunming Liu
- Department of Rehabilitation, Kunming Children's Hospital, Kunming Medical University, Yunnan, China
| | - Nan Zheng
- Department of Rehabilitation, Kunming Children's Hospital, Kunming Medical University, Yunnan, China
| | - Jing Ma
- Department of Otolaryngology, Head and Neck Surgery, Kunming Children's Hospital, Kunming Medical University, Yunnan, China
- *Correspondence: Jing Ma
| | - Yun Liu
- Department of Rehabilitation, Kunming Children's Hospital, Kunming Medical University, Yunnan, China
- Yun Liu
| |
Collapse
|
181
|
Butler M, Vervoort BM, van Ingen Schenau DS, Jongeneel L, van der Zwet JC, Marke R, Meijerink JP, Scheijen B, van der Meer LT, van Leeuwen FN. Reversal of IKZF1-induced glucocorticoid resistance by dual targeting of AKT and ERK signaling pathways. Front Oncol 2022; 12:905665. [PMID: 36119546 PMCID: PMC9478899 DOI: 10.3389/fonc.2022.905665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Although long-term survival in pediatric acute lymphoblastic leukemia (ALL) currently exceeds 90%, some subgroups, defined by specific genomic aberrations, respond poorly to treatment. We previously reported that leukemias harboring deletions or mutations affecting the B-cell transcription factor IKZF1 exhibit a tumor cell intrinsic resistance to glucocorticoids (GCs), one of the cornerstone drugs used in the treatment of ALL. Here, we identified increased activation of both AKT and ERK signaling pathways as drivers of GC resistance in IKZF1-deficient leukemic cells. Indeed, combined pharmacological inhibition of AKT and ERK signaling effectively reversed GC resistance in IKZF1-deficient leukemias. As inhibitors for both pathways are under clinical investigation, their combined use may enhance the efficacy of prednisolone-based therapy in this high-risk patient group.
Collapse
Affiliation(s)
- Miriam Butler
- Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | | | | | - René Marke
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Blanca Scheijen
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | | | - Frank N. van Leeuwen
- Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
- *Correspondence: Frank N. van Leeuwen,
| |
Collapse
|
182
|
Raimondi V, Iannozzi NT, Burroughs-Garcìa J, Toscani D, Storti P, Giuliani N. A personalized molecular approach in multiple myeloma: the possible use of RAF/RAS/MEK/ERK and BCL-2 inhibitors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:463-479. [PMID: 36071980 PMCID: PMC9446161 DOI: 10.37349/etat.2022.00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/08/2022] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM) is a blood cancer that derives from plasma cells (PCs), which will accumulate in the bone marrow (BM). Over time, several drugs have been developed to treat this disease that is still uncurable. The therapies used to treat the disease target immune activity, inhibit proteasome activity, and involve the use of monoclonal antibodies. However, MM is a highly heterogeneous disease, in fact, there are several mutations in signaling pathways that are particularly important for MM cell biology and that are possible therapeutic targets. Indeed, some studies suggest that MM is driven by mutations within the rat sarcoma virus (RAS) signaling cascade, which regulates cell survival and proliferation. The RAS/proto-oncogene, serine/threonine kinase (RAF)/mitogen-activated extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK signaling pathway is deregulated in several cancers, for which drugs have been developed to inhibit these pathways. In addition to the signaling pathways, the disease implements mechanisms to ensure the survival and consequently a high replicative capacity. This strategy consists in the deregulation of apoptosis. In particular, some cases of MM show overexpression of anti-apoptotic proteins belonging to the B cell lymphoma 2 (BCL-2) family that represent a possible druggable target. Venetoclax is an anti-BCL-2 molecule used in hematological malignancies that may be used in selected MM patients based on their molecular profile. We focused on the possible effects in MM of off-label drugs that are currently used for other cancers with the same molecular characteristics. Their use, combined with the current treatments, could be a good strategy against MM.
Collapse
Affiliation(s)
- Vincenzo Raimondi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | | | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Paola Storti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;Hematology, “Azienda Ospedaliero-Universitaria di Parma”, 43126 Parma, Italy
| |
Collapse
|
183
|
BRAF and MEK Targeted Therapies in Pediatric Central Nervous System Tumors. Cancers (Basel) 2022; 14:cancers14174264. [PMID: 36077798 PMCID: PMC9454417 DOI: 10.3390/cancers14174264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary This review is divided into two parts. The first analyzes the mechanisms of two important cellular pathways that are involved in tumoral proliferation, differentiation, migration, and angiogenesis: RAS/RAF/MEK/MAPK and PI3K/AKT/mTOR. The second part focuses on the currently available experience regarding targeted therapies against the mitogen-activated protein kinase (MAPK) pathway in pediatric CNS tumors, with the hope of offering a practical guide for consultation. Abstract BRAF is a component of the MAPK and PI3K/AKT/mTOR pathways that play a crucial role in cellular proliferation, differentiation, migration, and angiogenesis. Pediatric central nervous system tumors very often show mutations of the MAPK pathway, as demonstrated by next-generation sequencing (NGS), which now has an increasing role in cancer diagnostics. The MAPK mutated pathway in pediatric CNS tumors is the target of numerous drugs, approved or under investigation in ongoing clinical trials. In this review, we describe the main aspects of MAPK and PI3K/AKT/mTOR signaling pathways, with a focus on the alterations commonly involved in tumorigenesis. Furthermore, we reported the main available data about current BRAF and MEK targeted therapies used in pediatric low-grade gliomas (pLLGs), pediatric high-grade gliomas (pHGGs), and other CNS tumors that often present BRAF or MEK mutations. Further molecular stratification and clinical trial design are required for the treatment of pediatric CNS tumors with BRAF and MEK inhibitors.
Collapse
|
184
|
Leesombun A, Sariya L, Taowan J, Nakthong C, Thongjuy O, Boonmasawai S. Natural Antioxidant, Antibacterial, and Antiproliferative Activities of Ethanolic Extracts from Punica granatum L. Tree Barks Mediated by Extracellular Signal-Regulated Kinase. PLANTS (BASEL, SWITZERLAND) 2022; 11:2258. [PMID: 36079640 PMCID: PMC9460874 DOI: 10.3390/plants11172258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/21/2022] [Accepted: 08/27/2022] [Indexed: 05/02/2023]
Abstract
The nonedible parts of the pomegranate plant, such as tree barks and fruit peels, have pharmacological properties that are useful in traditional medicine. To increase their value, this study aimed to compare the antioxidative and antibacterial effects of ethanolic extracts from pomegranate barks (PBE) and peels (PPE). The antiproliferative effects on HeLa and HepG2 cells through the extracellular signal-regulated kinase pathway were also evaluated. The results indicated that the total amounts of phenolics and flavonoids of PBE and PPE were 574.64 and 242.60 mg equivalent gallic acid/g sample and 52.98 and 23.08 mg equivalent quercetin/g sample, respectively. Gas chromatography−mass spectrometry revealed that 5-hdroxymethylfurfural was the major component of both PBE (23.76%) and PPE (33.19%). The 2,2-diphenyl-1-picryl-hydrazyl-hydrate free radical scavenging capacities of PBE and PPE, in terms of the IC50 value, were 4.1 and 9.6 µg/mL, respectively. PBE had a greater potent antibacterial effect against Escherichia coli, Staphylococcus aureus, Salmonella Enteritidis, and S. Typhimurium. PBE and PPE (1000 µg/mL) had exhibited no cytotoxic effects on LLC-MK2. PBE and PPE (250 and 1000 µg/mL, respectively) treatments were safe for BHK-21. Both extracts significantly inhibited HepG2 and HeLa cell proliferations at 10 and 50 µg/mL, respectively (p < 0.001). The results indicated that PBE and PPE have remarkable efficiencies as free radical scavengers and antibacterial agents, with PBE exhibiting greater efficiency. The inhibitory effects on HepG2 might be through the modulation of the ERK1/2 expression. PBE and PPE have the potential for use as optional supplementary antioxidative, antibacterial, and anticancer agents.
Collapse
Affiliation(s)
- Arpron Leesombun
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Ladawan Sariya
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Jarupha Taowan
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chowalit Nakthong
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Orathai Thongjuy
- The Center of Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sookruetai Boonmasawai
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|
185
|
Penugurti V, Mishra YG, Manavathi B. AMPK: An odyssey of a metabolic regulator, a tumor suppressor, and now a contextual oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188785. [PMID: 36031088 DOI: 10.1016/j.bbcan.2022.188785] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Metabolic reprogramming is a unique but complex biochemical adaptation that allows solid tumors to tolerate various stresses that challenge cancer cells for survival. Under conditions of metabolic stress, mammalian cells employ adenosine monophosphate (AMP)-activated protein kinase (AMPK) to regulate energy homeostasis by controlling cellular metabolism. AMPK has been described as a cellular energy sensor that communicates with various metabolic pathways and networks to maintain energy balance. Earlier studies characterized AMPK as a tumor suppressor in the context of cancer. Later, a paradigm shift occurred in support of the oncogenic nature of AMPK, considering it a contextual oncogene. In support of this, various cellular and mouse models of tumorigenesis and clinicopathological studies demonstrated increased AMPK activity in various cancers. This review will describe AMPK's pro-tumorigenic activity in various malignancies and explain the rationale and context for using AMPK inhibitors in combination with anti-metabolite drugs to treat AMPK-driven cancers.
Collapse
Affiliation(s)
- Vasudevarao Penugurti
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yasaswi Gayatri Mishra
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Bramanandam Manavathi
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
186
|
Barzaman K, Vafaei R, Samadi M, Kazemi MH, Hosseinzadeh A, Merikhian P, Moradi-Kalbolandi S, Eisavand MR, Dinvari H, Farahmand L. Anti-cancer therapeutic strategies based on HGF/MET, EpCAM, and tumor-stromal cross talk. Cancer Cell Int 2022; 22:259. [PMID: 35986321 PMCID: PMC9389806 DOI: 10.1186/s12935-022-02658-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
As an intelligent disease, tumors apply several pathways to evade the immune system. It can use alternative routes to bypass intracellular signaling pathways, such as nuclear factor-κB (NF-κB), Wnt, and mitogen-activated protein (MAP)/phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR). Therefore, these mechanisms lead to therapeutic resistance in cancer. Also, these pathways play important roles in the proliferation, survival, migration, and invasion of cells. In most cancers, these signaling pathways are overactivated, caused by mutation, overexpression, etc. Since numerous molecules share these signaling pathways, the identification of key molecules is crucial to achieve favorable consequences in cancer therapy. One of the key molecules is the mesenchymal-epithelial transition factor (MET; c-Met) and its ligand hepatocyte growth factor (HGF). Another molecule is the epithelial cell adhesion molecule (EpCAM), which its binding is hemophilic. Although both of them are involved in many physiologic processes (especially in embryonic stages), in some cancers, they are overexpressed on epithelial cells. Since they share intracellular pathways, targeting them simultaneously may inhibit substitute pathways that tumor uses to evade the immune system and resistant to therapeutic agents.
Collapse
|
187
|
USP7 regulates the ERK1/2 signaling pathway through deubiquitinating Raf-1 in lung adenocarcinoma. Cell Death Dis 2022; 13:698. [PMID: 35948545 PMCID: PMC9365811 DOI: 10.1038/s41419-022-05136-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 01/21/2023]
Abstract
Ubiquitin-specific protease 7 (USP7) is one of the deubiquitinating enzymes (DUBs) in the ubiquitin-specific protease (USP) family. It is a key regulator of numerous cellular functions including immune response, cell cycle, DNA damage and repair, epigenetics, and several signaling pathways. USP7 acts by removing ubiquitin from the substrate proteins. USP7 also binds to a specific binding motif of substrate proteins having the [P/A/E]-X-X-S or K-X-X-X-K protein sequences. To date, numerous substrate proteins of USP7 have been identified, but no studies have been conducted using the binding motif that USP7 binds. In the current study, we analyzed putative substrate proteins of USP7 through the [P/A/E]-X-X-S and K-X-X-X-K binding motifs using bioinformatics tools, and confirmed that Raf-1 is one of the substrates for USP7. USP7 binds to the Pro-Val-Asp-Ser (PVDS) motif of the conserved region 2 (CR2) which contains phosphorylation sites of Raf-1 and decreased M1-, K6-, K11-, K27-, K33-, and K48-linked polyubiquitination of Raf-1. We further identified that the DUB activity of USP7 decreases the threonine phosphorylation level of Raf-1 and inhibits signaling transduction through Raf activation. This regulatory mechanism inhibits the activation of the ERK1/2 signaling pathway, thereby inhibiting the G2/M transition and the cell proliferation of lung adenocarcinoma cells. In summary, our results indicate that USP7 deubiquitinates Raf-1 and is a new regulator of the ERK1/2 signaling pathway in lung adenocarcinoma.
Collapse
|
188
|
Gentile MT, Muto G, Lus G, Lövblad KO, Svenningsen ÅF, Colucci-D’Amato L. Angiogenesis and Multiple Sclerosis Pathogenesis: A Glance at New Pharmaceutical Approaches. J Clin Med 2022; 11:jcm11164643. [PMID: 36012883 PMCID: PMC9410525 DOI: 10.3390/jcm11164643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis is a chronic disease of the central nervous system characterized by demyelination and destruction of axons. The most common form of the disease is the relapsing-remitting multiple sclerosis in which episodic attacks with typical neurological symptoms are followed by episodes of partial or complete recovery. One of the underestimated factors that contribute to the pathogenesis of multiple sclerosis is excessive angiogenesis. Here, we review the role of angiogenesis in the onset and in the development of the disease, the molecular mechanisms underlying angiogenesis, the current therapeutic approaches, and the potential therapeutic strategies with a look at natural compounds as multi-target drugs with both neuroprotective and anti-angiogenic properties.
Collapse
Affiliation(s)
- Maria Teresa Gentile
- Laboratory of Cellular and Molecular Neuropathology, Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “L. Vanvitelli”, 81100 Caserta, Italy
| | - Gianluca Muto
- Division of Diagnostic and Interventional Neuroradiology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Giacomo Lus
- Multiple Sclerosis Center, II Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, 81100 Caserta, Italy
| | - Karl-Olof Lövblad
- Division of Diagnostic and Interventional Neuroradiology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Åsa Fex Svenningsen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Luca Colucci-D’Amato
- Laboratory of Cellular and Molecular Neuropathology, Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “L. Vanvitelli”, 81100 Caserta, Italy
- InterUniversity Center for Research in Neurosciences (CIRN), University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-366-9763554
| |
Collapse
|
189
|
Yu GX, Hu Y, Zhang WX, Tian XY, Zhang SY, Zhang Y, Yuan S, Song J. Design, Synthesis and Biological Evaluation of [1,2,4]Triazolo[1,5- a]pyrimidine Indole Derivatives against Gastric Cancer Cells MGC-803 via the Suppression of ERK Signaling Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154996. [PMID: 35956943 PMCID: PMC9370682 DOI: 10.3390/molecules27154996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022]
Abstract
[1,2,4]Triazolo[1,5-a]pyrimidine and indole skeletons are widely used to design anticancer agents. Therefore, in this work, a series of [1,2,4]triazolo[1,5-a]pyrimidine indole derivatives were designed and synthesized by the molecular hybridization strategy. The antiproliferative activities of the target compounds H1-H18 against three human cancer cell lines, MGC-803, HCT-116 and MCF-7, were tested. Among them, compound H12 exhibited the most active antiproliferative activities against MGC-803, HCT-116 and MCF-7 cells, with IC50 values of 9.47, 9.58 and 13.1 μM, respectively, which were more potent than that of the positive drug 5-Fu. In addition, compound H12 could dose-dependently inhibit the growth and colony formation of MGC-803 cells. Compound H12 exhibited significant inhibitory effects on the ERK signaling pathway, resulting in the decreased phosphorylation levels of ERK1/2, c-Raf, MEK1/2 and AKT. Furthermore, compound 12 induced cell apoptosis and G2/M phase arrest, and regulated cell cycle-related and apoptosis-related proteins in MGC-803 cells. Taken together, we report here that [1,2,4]triazolo[1,5-a]pyrimidine indole derivatives, used as anticancer agents via the suppression of ERK signaling pathway and the most active compound, H12, might be a valuable hit compound for the development of anticancer agents.
Collapse
Affiliation(s)
- Guang-Xi Yu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Hu
- Guana’anmen Hospital, China Academy of Chinese Medicinal Sciences, Beijing 100053, China
| | - Wei-Xin Zhang
- Guana’anmen Hospital, China Academy of Chinese Medicinal Sciences, Beijing 100053, China
| | - Xin-Yi Tian
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (Y.Z.); (S.Y.); (J.S.)
| | - Shuo Yuan
- Children’s Hospital Affiliated of Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou 450018, China
- Correspondence: (Y.Z.); (S.Y.); (J.S.)
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (Y.Z.); (S.Y.); (J.S.)
| |
Collapse
|
190
|
Paleari L. Cancer Prevention with Molecular Targeted Therapies. Int J Mol Sci 2022; 23:ijms23158429. [PMID: 35955561 PMCID: PMC9369049 DOI: 10.3390/ijms23158429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Laura Paleari
- Research, Innovation and HTA Unit, A.Li.Sa., Liguria Health Authority, 16121 Genoa, Italy
| |
Collapse
|
191
|
Li X, Wang N, Wu Y, Liu Y, Wang R. ALDH6A1 weakens the progression of colon cancer via modulating the RAS/RAF/MEK/ERK pathway in cancer cell lines. Gene X 2022; 842:146757. [PMID: 35907565 DOI: 10.1016/j.gene.2022.146757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/23/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenase 6 family member A1 (ALDH6A1) is associated with multiple diseases, but its pathogenesis in colon cancer (CC) is ambiguous and needs further study so that this research explores the function of ALDH6A1 in CC. METHODS The level of ALDH6A1 in colon adenocarcinoma (COAD), CC tissues, and cells was measured by starBase v2.0, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot. Post transfection with overexpressed (oe)-ALDH6A1, cell biological behaviors, as well as apoptosis-, matrix metalloproteinase (MMP)-, and rat sarcoma virus (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway-related markers were measured by cell function experiments, qRT-PCR, and western blot. Next, the effects of small interfering RNA targeting ALDH6A1 (si-ALDH6A1) and RAS/RAF inhibitor (MCP110) on cell biological behaviors, as well as apoptosis-, MMP-, and RAS/RAF/MEK/ERK pathway-related markers were detected again. RESULTS ALDH6A1 was low-expressed in COAD, CC tissues, and cells . Oe-ALDH6A1 weakened cell vitality, migration and invasionbut facilitated apoptosis; while it reduced expression levels of Bcl-2, MMP-2, MMP-9 and the RAS/RAF/MEK/ERK pathway-related markers but promoted Bax level. However, the regulation of si-ALDH6A1 on cell biological behaviors and related genes was opposite to that of oe-ALDH6A1. Moreover, MCP110 rescued the regulation of si-ALDH6A1 on cell biological behaviors, expressions of apoptosis- MMP- as well as RAS/RAF/MEK/ERK pathway-related markers. To sum up, ALDH6A1 attenuated CC progression by down-regulating the expressions of RAS/RAF/MEK/ERK pathway-related markers.
Collapse
Affiliation(s)
- Xiang Li
- The Second Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, China
| | - Nan Wang
- The Tenth Department of Proctology Department, Dalian University Affiliated Xinhua Hospital, China
| | - Yutong Wu
- Graduate School, Dalian Medical University, China
| | - Yidan Liu
- Stomatology Department, Affiliated Zhongshan Hospital of Dalian University, China
| | - Ruoyu Wang
- Oncology Department, Affiliated Zhongshan Hospital of Dalian University, China.
| |
Collapse
|
192
|
Solorzano E, Alejo AL, Ball HC, Magoline J, Khalil Y, Kelly M, Safadi FF. Osteopathy in Complex Lymphatic Anomalies. Int J Mol Sci 2022; 23:ijms23158258. [PMID: 35897834 PMCID: PMC9332568 DOI: 10.3390/ijms23158258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Complex Lymphatic Anomalies (CLA) are lymphatic malformations with idiopathic bone and soft tissue involvement. The extent of the abnormal lymphatic presentation and boney invasion varies between subtypes of CLA. The etiology of these diseases has proven to be extremely elusive due to their rarity and irregular progression. In this review, we compiled literature on each of the four primary CLA subtypes and discuss their clinical presentation, lymphatic invasion, osseous profile, and regulatory pathways associated with abnormal bone loss caused by the lymphatic invasion. We highlight key proliferation and differentiation pathways shared between lymphatics and bone and how these systems may interact with each other to stimulate lymphangiogenesis and cause bone loss.
Collapse
Affiliation(s)
- Ernesto Solorzano
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Andrew L. Alejo
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Hope C. Ball
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Joseph Magoline
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Yusuf Khalil
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Michael Kelly
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Department of Pediatric Hematology Oncology and Blood, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Fayez F. Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH 44308, USA
- School of Biomedical Sciences, Kent State University, Kent, OH 44243, USA
- Correspondence: ; Tel.: +1-330-325-6619
| |
Collapse
|
193
|
Riegel K, Vijayarangakannan P, Kechagioglou P, Bogucka K, Rajalingam K. Recent advances in targeting protein kinases and pseudokinases in cancer biology. Front Cell Dev Biol 2022; 10:942500. [PMID: 35938171 PMCID: PMC9354965 DOI: 10.3389/fcell.2022.942500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Kinases still remain the most favorable members of the druggable genome, and there are an increasing number of kinase inhibitors approved by the FDA to treat a variety of cancers. Here, we summarize recent developments in targeting kinases and pseudokinases with some examples. Targeting the cell cycle machinery garnered significant clinical success, however, a large section of the kinome remains understudied. We also review recent developments in the understanding of pseudokinases and discuss approaches on how to effectively target in cancer.
Collapse
Affiliation(s)
- Kristina Riegel
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | | | - Petros Kechagioglou
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | - Katarzyna Bogucka
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
- *Correspondence: Krishnaraj Rajalingam,
| |
Collapse
|
194
|
Lamichhane S, Mo JS, Sharma G, Joung SM, Chae SC. MIR133A regulates cell proliferation, migration, and apoptosis by targeting SOX9 in human colorectal cancer cells. Am J Cancer Res 2022; 12:3223-3241. [PMID: 35968353 PMCID: PMC9360235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023] Open
Abstract
The human microRNA 133A (MIR133A) was identified as a CRC-associated miRNA. It was down-regulated in human CRC tissues. We identified the putative MIR133A1 and A2 target genes by comparing the transcriptome analysis data of MIR133A1 and A2 knock-in cells with the candidate MIR133A target genes predicted by bioinformatics tools. We identified 29 and 33 putative MIR133A and A2 direct target genes, respectively. Among them, we focused on the master transcription regulator gene SRY-box transcription factor 9 (SOX9), which exhibits a pleiotropic role in cancer. We confirmed that SOX9 is a direct target gene of MIR133A by luciferase reporter assay, quantitative RT-PCR, and western blot analysis. Overexpression of MIR133A in CRC cell lines significantly decreased SOX9 and its downstream PIK3CA-AKT1-GSK3B-CTNNB1 and KRAS-BRAF-MAP2K1-MAPK1/3 pathways and increased apoptosis. Furthermore, functional studies reveal that cell proliferation, colony formation, and migration ability were significantly decreased by MIR133A-overexpressed CRC cell lines. Knockdown of SOX9 in CRC cell lines by SOX9 gene silencing showed similar results. We also used a xenograft model to show that MIR133A overexpression suppresses tumor growth and proliferation. Our results suggest that MIR133A regulates cell proliferation, migration, and apoptosis by targeting SOX9 in human colorectal cancer.
Collapse
Affiliation(s)
- Santosh Lamichhane
- Department of Pathology, School of Medicine, Wonkwang UniversityIksan, Chonbuk 54538, Korea
| | - Ji-Su Mo
- Digestive Disease Research Institute, Wonkwang UniversityIksan, Chonbuk 54538, Korea
| | - Grinsun Sharma
- Department of Pathology, School of Medicine, Wonkwang UniversityIksan, Chonbuk 54538, Korea
| | - Sun-Myoung Joung
- Department of Pathology, School of Medicine, Wonkwang UniversityIksan, Chonbuk 54538, Korea
| | - Soo-Cheon Chae
- Department of Pathology, School of Medicine, Wonkwang UniversityIksan, Chonbuk 54538, Korea
- Digestive Disease Research Institute, Wonkwang UniversityIksan, Chonbuk 54538, Korea
| |
Collapse
|
195
|
Muhammad N, Usmani D, Tarique M, Naz H, Ashraf M, Raliya R, Tabrez S, Zughaibi TA, Alsaieedi A, Hakeem IJ, Suhail M. The Role of Natural Products and Their Multitargeted Approach to Treat Solid Cancer. Cells 2022; 11:cells11142209. [PMID: 35883653 PMCID: PMC9318484 DOI: 10.3390/cells11142209] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
Natural products play a critical role in the discovery and development of numerous drugs for the treatment of various types of cancer. These phytochemicals have demonstrated anti-carcinogenic properties by interfering with the initiation, development, and progression of cancer through altering various mechanisms such as cellular proliferation, differentiation, apoptosis, angiogenesis, and metastasis. Treating multifactorial diseases, such as cancer with agents targeting a single target, might lead to limited success and, in many cases, unsatisfactory outcomes. Various epidemiological studies have shown that the steady consumption of fruits and vegetables is intensely associated with a reduced risk of cancer. Since ancient period, plants, herbs, and other natural products have been used as healing agents. Likewise, most of the medicinal ingredients accessible today are originated from the natural resources. Regardless of achievements, developing bioactive compounds and drugs from natural products has remained challenging, in part because of the problem associated with large-scale sequestration and mechanistic understanding. With significant progress in the landscape of cancer therapy and the rising use of cutting-edge technologies, we may have come to a crossroads to review approaches to identify the potential natural products and investigate their therapeutic efficacy. In the present review, we summarize the recent developments in natural products-based cancer research and its application in generating novel systemic strategies with a focus on underlying molecular mechanisms in solid cancer.
Collapse
Affiliation(s)
- Naoshad Muhammad
- Department of Radiation Oncology, School of Medicine, Washington University, Saint Louis, MO 63130, USA;
| | | | - Mohammad Tarique
- Department of Child Health, University of Missouri, Columbia, MO 65211, USA;
| | - Huma Naz
- Department of Internal Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Mohammad Ashraf
- Department of Chemistry, Bundelkhand University Jhansi, Jhansi 284128, Uttar Pradesh, India;
| | - Ramesh Raliya
- IFFCO Nano Biotechnology Research Center, Kalol 382423, Gujarat, India;
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.T.); (T.A.Z.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.T.); (T.A.Z.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ahdab Alsaieedi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Israa J. Hakeem
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.T.); (T.A.Z.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence:
| |
Collapse
|
196
|
Novoa Díaz MB, Carriere P, Gigola G, Zwenger AO, Calvo N, Gentili C. Involvement of Met receptor pathway in aggressive behavior of colorectal cancer cells induced by parathyroid hormone-related peptide. World J Gastroenterol 2022; 28:3177-3200. [PMID: 36051345 PMCID: PMC9331538 DOI: 10.3748/wjg.v28.i26.3177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/21/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parathyroid hormone-related peptide (PTHrP) plays a key role in the development and progression of many tumors. We found that in colorectal cancer (CRC) HCT116 cells, the binding of PTHrP to its receptor PTHR type 1 (PTHR1) activates events associated with an aggressive phenotype. In HCT116 cell xenografts, PTHrP modulates the expression of molecular markers linked to tumor progression. Empirical evidence suggests that the Met receptor is involved in the development and evolution of CRC. Based on these data, we hypothesized that the signaling pathway trigged by PTHrP could be involved in the transactivation of Met and consequently in the aggressive behavior of CRC cells.
AIM To elucidate the relationship among PTHR1, PTHrP, and Met in CRC models.
METHODS For in vitro assays, HCT116 and Caco-2 cells derived from human CRC were incubated in the absence or presence of PTHrP (1-34) (10-8 M). Where indicated, cells were pre-incubated with specific kinase inhibitors or dimethylsulfoxide, the vehicle of the inhibitors. The protein levels were evaluated by Western blot technique. Real-time polymerase chain reaction (RT-qPCR) was carried out to determine the changes in gene expression. Wound healing assay and morphological monitoring were performed to evaluate cell migration and changes related to the epithelial-mesenchymal transition (EMT), respectively. The number of viable HCT116 cells was counted by trypan blue dye exclusion test to evaluate the effects of irinotecan (CPT-11), oxaliplatin (OXA), or doxorubicin (DOXO) with or without PTHrP. For in vivo tests, HCT116 cell xenografts on 6-wk-old male N:NIH (S)_nu mice received daily intratumoral injections of PTHrP (40 μg/kg) in 100 μL phosphate-buffered saline (PBS) or the vehicle (PBS) as a control during 20 d. Humanitarian slaughter was carried out and the tumors were removed, weighed, and fixed in a 4% formaldehyde solution for subsequent treatment by immunoassays. To evaluate the expression of molecular markers in human tumor samples, we studied 23 specimens obtained from CRC patients which were treated at the Hospital Interzonal de Graves y Agudos Dr. José Penna (Bahía Blanca, Buenos Aires, Argentina) and the Hospital Provincial de Neuquén (Neuquén, Neuquén, Argentina) from January 1990 to December 2007. Seven cases with normal colorectal tissues were assigned to the control group. Tumor tissue samples and clinical histories of patients were analyzed. Paraffin-embedded blocks from primary tumors were reviewed by hematoxylin-eosin staining technique; subsequently, representative histological samples were selected from each patient. From each paraffin block, tumor sections were stained for immunohistochemical detection. The statistical significance of differences was analyzed using proper statistical analysis. The results were considered statistically significant at P < 0.05.
RESULTS By Western blot analysis and using total Met antibody, we found that PTHrP regulated Met expression in HCT116 cells but not in Caco-2 cells. In HCT116 cells, Met protein levels increased at 30 min (P < 0.01) and at 20 h (P < 0.01) whereas the levels diminished at 3 min (P < 0.05), 10 min (P < 0.01), and 1 h to 5 h (P < 0.01) of PTHrP treatment. Using an active Met antibody, we found that where the protein levels of total Met decreased (3 min, 10 min, and 60 min of PTHrP exposure), the status of phosphorylated/activated Met increased (P < 0.01) at the same time, suggesting that Met undergoes proteasomal degradation after its phosphorylation/activation by PTHrP. The increment of its protein level after these decreases (at 30 min and 20 h) suggests a modulation of Met expression by PTHrP in order to improve Met levels and this idea is supported by our observation that the cytokine increased Met mRNA levels at least at 15 min in HCT116 cells as revealed by RT-qPCR analysis (P < 0.05). We then proceeded to evaluate the signaling pathways that mediate the phosphorylation/ activation of Met induced by PTHrP in HCT116 cells. By Western blot technique, we observed that PP1, a specific inhibitor of the activation of the proto-oncogene protein tyrosine kinase Src, blocked the effect of PTHrP on Met phosphorylation (P < 0.05). Furthermore, the selective inhibition of the ERK 1/2 mitogen-activated protein kinase (ERK 1/2 MAPK) using PD98059 and the p38 MAPK using SB203580 diminished the effect of PTHrP on Met phosphorylation/activation (P < 0.05). Using SU11274, the specific inhibitor of Met activation, and trypan blue dye exclusion test, Western blot, wound healing assay, and morphological analysis with a microscope, we observed the reversal of cell events induced by PTHrP such as cell proliferation (P < 0.05), migration (P < 0.05), and the EMT program (P < 0.01) in HCT116 cells. Also, PTHrP favored the chemoresistance to CPT-11 (P < 0.001), OXA (P < 0.01), and DOXO (P < 0.01) through the Met pathway. Taken together, these findings suggest that Met activated by PTHrP participates in events associated with the aggressive phenotype of CRC cells. By immunohistochemical analysis, we found that PTHrP in HCT116 cell xenografts enhanced the protein expression of Met (0.190 ± 0.014) compared to tumors from control mice (0.110 ± 0.012; P < 0.05) and of its own receptor (2.27 ± 0.20) compared to tumors from control mice (1.98 ± 0.14; P < 0.01). Finally, assuming that the changes in the expression of PTHrP and its receptor are directly correlated, we investigated the expression of both Met and PTHR1 in biopsies of CRC patients by immunohistochemical analysis. Comparing histologically differentiated tumors with respect to those less differentiated, we found that the labeling intensity for Met and PTHR1 increased and diminished in a gradual manner, respectively (P < 0.05).
CONCLUSION PTHrP acts through the Met pathway in CRC cells and regulates Met expression in a CRC animal model. More basic and clinical studies are needed to further evaluate the PTHrP/Met relationship.
Collapse
Affiliation(s)
- María Belén Novoa Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Pedro Carriere
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Graciela Gigola
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | | | - Natalia Calvo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Claudia Gentili
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
197
|
Wang L, Yang D, Zhang Y, Jiao Y. GPR12 Inhibits Apoptosis in Epithelial Ovarian Cancer via the Activation of ERK1/2 Signaling. Front Oncol 2022; 12:932689. [PMID: 35903681 PMCID: PMC9316591 DOI: 10.3389/fonc.2022.932689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancies in women worldwide. G protein–coupled receptor 12 (GPR12) is a member of G protein–coupled receptors (GPCRs) and plays an important role in the regulation of cell proliferation and survival. However, its role in EOC is underappreciated. In this study, we found that GPR12 is highly expressed in the EOC tissues and can be an ideal biomarker to predict the prognosis of patients with EOC. GPR12 knockdown obviously inhibits the proliferation of EOC cells by inducing cellular apoptosis in vitro and in vivo. Meanwhile, bioinformatic analysis showed that the inhibitory effect of GPR12 knockdown on the cell viability is closely related with Extracellular signal-regulated kinases 1/2 (ERK1/2) pathway, which has been confirmed by the fact that the activity of ERK1/2 pathway has been significantly blocked in the GPR12 knockdown cells. LM22B-10, ERK1/2 pathway activator, could reverse the inhibited proliferation caused by GPR12 knockdown in the EOC cells. Our findings suggest that GPR12 is involved in the EOC process and is a potential therapeutic target for EOC.
Collapse
Affiliation(s)
- Lu Wang
- Department of General Medicine, Liaoning Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Da Yang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yao Zhang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yisheng Jiao
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Yisheng Jiao,
| |
Collapse
|
198
|
Wang H, Chi L, Yu F, Dai H, Si X, Gao C, Wang Z, Liu L, Zheng J, Ke Y, Liu H, Zhang Q. The overview of Mitogen-activated extracellular signal-regulated kinase (MEK)-based dual inhibitor in the treatment of cancers. Bioorg Med Chem 2022; 70:116922. [PMID: 35849914 DOI: 10.1016/j.bmc.2022.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
Mitogen-activated extracellular signal-regulated kinase 1 and 2 (MEK1/2) are the critical components of the mitogen-activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MAPK/ERK1/2) signaling pathway which is one of the well-characterized kinase cascades regulating cell proliferation, differentiation, growth, metabolism, survival and mobility both in normal and cancer cells. The aberrant activation of MAPK/ERK1/2 pathway is a hallmark of numerous human cancers, therefore targeting the components of this pathway to inhibit its dysregulation is a promising strategy for cancer treatment. Enormous efforts have been done in the development of MEK1/2 inhibitors and encouraging advancements have been made, including four inhibitors approved for clinical use. However, due to the multifactorial property of cancer and rapidly arising drug resistance, the clinical efficacy of these MEK1/2 inhibitors as monotherapy are far from ideal. Several alternative strategies have been developed to improve the limited clinical efficacy, including the dual inhibitor which is a single drug molecule able to simultaneously inhibit two targets. In this review, we first introduced the activation and function of the MAPK/ERK1/2 components and discussed the advantages of MEK1/2-based dual inhibitors compared with the single inhibitors and combination therapy in the treatment of cancers. Then, we overviewed the MEK1/2-based dual inhibitors for the treatment of cancers and highlighted the theoretical basis of concurrent inhibition of MEK1/2 and other targets for development of these dual inhibitors. Besides, the status and results of these dual inhibitors in both preclinical and clinical studies were also the focus of this review.
Collapse
Affiliation(s)
- Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Lingling Chi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Fuqiang Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Hongling Dai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Xiaojie Si
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Chao Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Zhengjie Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Limin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Jiaxin Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| | - Qiurong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| |
Collapse
|
199
|
Fu B, Dou X, Zou M, Lu H, Wang K, Liu Q, Liu Y, Wang W, Jin M, Kong D. Anticancer Effects of Amlodipine Alone or in Combination With Gefitinib in Non-Small Cell Lung Cancer. Front Pharmacol 2022; 13:902305. [PMID: 35721193 PMCID: PMC9198715 DOI: 10.3389/fphar.2022.902305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/17/2022] [Indexed: 11/15/2022] Open
Abstract
Amlodipine is a Ca2+ channel blocker commonly used to cardiovascular diseases such as hypertension and angina; however, its anticancer effects in lung cancer A549 cells remain unknown. In the present study, we explored the antitumor effects and molecular mechanisms underlying the action of amlodipine in non-small cell lung cancer (NSCLC) A549 cells in vitro and in vivo. We observed that amlodipine suppressed the proliferation of A549 lung cancer cells by arresting the tumor cell cycle. Mechanistically, our results revealed that amlodipine could attenuate the phosphoinositide 3 kinase (PI3K)/Akt and Raf/MEK/extracellular signal-regulated kinase (ERK) pathways through epidermal growth factor receptor (EGFR) and modulated cell cycle-related proteins such as cyclin D1, p-Rb, p27, and p21. Subsequently, amlodipine combined with gefitinib could synergistically inhibit cell proliferation by arresting the cell cycle. Moreover, amlodipine combined with gefitinib effectively attenuated the growth of A549 lung cancer xenografts when compared with monotherapy, affording an excellent therapeutic effect. Collectively, our results indicate that amlodipine alone or combined with the novel anticancer drug gefitinib might be a potential therapeutic strategy for NSCLC patients with wild-type EGFR.
Collapse
Affiliation(s)
- Bingjie Fu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Xiaojing Dou
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Miao Zou
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Hao Lu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Kaixuan Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Qingxia Liu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Yao Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Key Laboratory of Auditory Speech and Balance Medicine, Institute of Otolaryngology of Tianjin, Tianjin First Central Hospital, Tianjin, China
| | - Wei Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Key Laboratory of Auditory Speech and Balance Medicine, Institute of Otolaryngology of Tianjin, Tianjin First Central Hospital, Tianjin, China
| | - Meihua Jin
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Dexin Kong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| |
Collapse
|
200
|
Cao YC, Shan SK, Guo B, Li CC, Li FXZ, Zheng MH, Xu QS, Wang Y, Lei LM, Tang KX, Ou-Yang WL, Duan JY, Wu YY, Ullah MHE, Zhou ZA, Xu F, Lin X, Wu F, Liao XB, Yuan LQ. Histone Lysine Methylation Modification and Its Role in Vascular Calcification. Front Endocrinol (Lausanne) 2022; 13:863708. [PMID: 35784574 PMCID: PMC9243330 DOI: 10.3389/fendo.2022.863708] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/06/2022] [Indexed: 01/10/2023] Open
Abstract
Histone methylation is an epigenetic change mediated by histone methyltransferase, and has been connected to the beginning and progression of several diseases. The most common ailments that affect the elderly are cardiovascular and cerebrovascular disorders. They are the leading causes of death, and their incidence is linked to vascular calcification (VC). The key mechanism of VC is the transformation of vascular smooth muscle cells (VSMCs) into osteoblast-like phenotypes, which is a highly adjustable process involving a variety of complex pathophysiological processes, such as metabolic abnormalities, apoptosis, oxidative stress and signalling pathways. Many researchers have investigated the mechanism of VC and related targets for the prevention and treatment of cardiovascular and cerebrovascular diseases. Their findings revealed that histone lysine methylation modification may play a key role in the various stages of VC. As a result, a thorough examination of the role and mechanism of lysine methylation modification in physiological and pathological states is critical, not only for identifying specific molecular markers of VC and new therapeutic targets, but also for directing the development of new related drugs. Finally, we provide this review to discover the association between histone methylation modification and VC, as well as diverse approaches with which to investigate the pathophysiology of VC and prospective treatment possibilities.
Collapse
Affiliation(s)
- Ye-Chi Cao
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ou-Yang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yue Duan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Hasnain Ehsan Ullah
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Ang Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Bo Liao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|