151
|
Toledano-Fonseca M, Cano MT, Inga E, Gómez-España A, Guil-Luna S, García-Ortiz MV, Mena-Osuna R, De la Haba-Rodriguez JR, Rodríguez-Ariza A, Aranda E. The Combination of Neutrophil-Lymphocyte Ratio and Platelet-Lymphocyte Ratio with Liquid Biopsy Biomarkers Improves Prognosis Prediction in Metastatic Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13061210. [PMID: 33802006 PMCID: PMC7998484 DOI: 10.3390/cancers13061210] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a highly inflammatory microenvironment and liquid biopsy has emerged as a promising tool for the noninvasive analysis of this tumor. In this study, plasma was obtained from 58 metastatic PDAC patients, and neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), circulating cell-free DNA (cfDNA) concentration, and circulating RAS mutation were determined. We found that NLR was significantly associated with both overall survival (OS) and progression-free survival. Remarkably, NLR was an independent risk factor for poor OS. Moreover, NLR and PLR positively correlated, and combination of both inflammatory markers significantly improved the prognostic stratification of metastatic PDAC patients. NLR also showed a positive correlation with cfDNA levels and RAS mutant allelic fraction (MAF). Besides, we found that neutrophil activation contributed to cfDNA content in the plasma of metastatic PDAC patients. Finally, a multi-parameter prognosis model was designed by combining NLR, PLR, cfDNA levels, RAS mutation, RAS MAF, and CA19-9, which performs as a promising tool to predict the prognosis of metastatic PDAC patients. In conclusion, our study supports the idea that the use of systemic inflammatory markers along with circulating tumor-specific markers may constitute a valuable tool for the clinical management of metastatic PDAC patients.
Collapse
Affiliation(s)
- Marta Toledano-Fonseca
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Centre (CIBERONC), 28029 Madrid, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
| | - M. Teresa Cano
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
| | - Elizabeth Inga
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
| | - Auxiliadora Gómez-España
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
| | - Silvia Guil-Luna
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Centre (CIBERONC), 28029 Madrid, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
| | - María Victoria García-Ortiz
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
| | - Rafael Mena-Osuna
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
| | - Juan R. De la Haba-Rodriguez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Centre (CIBERONC), 28029 Madrid, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
- Department of Medicine, Faculty of Medicine, University of Córdoba, 14004 Córdoba, Spain
| | - Antonio Rodríguez-Ariza
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Centre (CIBERONC), 28029 Madrid, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
- Correspondence:
| | - Enrique Aranda
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Centre (CIBERONC), 28029 Madrid, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
- Department of Medicine, Faculty of Medicine, University of Córdoba, 14004 Córdoba, Spain
| |
Collapse
|
152
|
Ponath V, Hoffmann N, Bergmann L, Mäder C, Alashkar Alhamwe B, Preußer C, Pogge von Strandmann E. Secreted Ligands of the NK Cell Receptor NKp30: B7-H6 Is in Contrast to BAG6 Only Marginally Released via Extracellular Vesicles. Int J Mol Sci 2021; 22:ijms22042189. [PMID: 33671836 PMCID: PMC7926927 DOI: 10.3390/ijms22042189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
NKp30 (Natural Cytotoxicity Receptor 1, NCR1) is a powerful cytotoxicity receptor expressed on natural killer (NK) cells which is involved in tumor cell killing and the regulation of antitumor immune responses. Ligands for NKp30, including BAG6 and B7-H6, are upregulated in virus-infected and tumor cells but rarely detectable on healthy cells. These ligands are released by tumor cells as part of the cellular secretome and interfere with NK cell activity. BAG6 is secreted via the exosomal pathway, and BAG6-positive extracellular vesicles (EV-BAG6) trigger NK cell cytotoxicity and cytokine release, whereas the soluble protein diminishes NK cell activity. However, the extracellular format and activity of B7-H6 remain elusive. Here, we used HEK293 as a model cell line to produce recombinant ligands and to study their impact on NK cell activity. Using this system, we demonstrate that soluble B7-H6 (sB7-H6), like soluble BAG6 (sBAG6), inhibits NK cell-mediated target cell killing. This was associated with a diminished cell surface expression of NKG2D and NCRs (NKp30, NKp40, and NKp46). Strikingly, a reduced NKp30 mRNA expression was observed exclusively in response to sBAG6. Of note, B7-H6 was marginally released in association with EVs, and EVs collected from B7-H6 expressing cells did not stimulate NK cell-mediated killing. The molecular analysis of EVs on a single EV level using nano flow cytometry (NanoFCM) revealed a similar distribution of vesicle-associated tetraspanins within EVs purified from wildtype, BAG6, or B7-H6 overexpressing cells. NKp30 is a promising therapeutic target to overcome NK cell immune evasion in cancer patients, and it is important to unravel how extracellular NKp30 ligands inhibit NK cell functions.
Collapse
|
153
|
Jaworek C, Verel-Yilmaz Y, Driesch S, Ostgathe S, Cook L, Wagner S, Bartsch DK, Slater EP, Bartsch JW. Cohort Analysis of ADAM8 Expression in the PDAC Tumor Stroma. J Pers Med 2021; 11:jpm11020113. [PMID: 33578644 PMCID: PMC7916368 DOI: 10.3390/jpm11020113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a cancer type with one of the highest mortalities. The metalloprotease-disintegrin ADAM8 is highly expressed in pancreatic cancer cells and is correlated with an unfavorable patient prognosis. However, no information is available on ADAM8 expression in cells of the tumor microenvironment. We used immunohistochemistry (IHC) to describe the stromal cell types expressing ADAM8 in PDAC patients using a cohort of 72 PDAC patients. We found ADAM8 expressed significantly in macrophages (6%), natural killer cells (40%), and neutrophils (63%), which showed the highest percentage of ADAM8 expressing stromal cells. We quantified the amount of ADAM8+ neutrophils in post-capillary venules in PDAC sections by IHC. Notably, the amount of ADAM8+ neutrophils could be correlated with post-operative patient survival times. In contrast, neither the total neutrophil count in peripheral blood nor the neutrophil-to-lymphocyte ratio showed a comparable correlation. We conclude from our data that ADAM8 is, in addition to high expression levels in tumor cells, present in tumor-associated stromal macrophages, NK cells, and neutrophils and, in addition to functional implications, the ADAM8-expressing neutrophil density in post-capillary venules is a diagnostic parameter for PDAC patients when the numbers of ADAM8+ neutrophils are quantified.
Collapse
Affiliation(s)
- Christian Jaworek
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (C.J.); (S.O.); (L.C.)
| | - Yesim Verel-Yilmaz
- Department of Visceral Surgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (Y.V.-Y.); (S.D.); (D.K.B.); (E.P.S.)
| | - Sarah Driesch
- Department of Visceral Surgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (Y.V.-Y.); (S.D.); (D.K.B.); (E.P.S.)
| | - Sarah Ostgathe
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (C.J.); (S.O.); (L.C.)
| | - Lena Cook
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (C.J.); (S.O.); (L.C.)
| | - Steffen Wagner
- Head and Neck Surgery, Department of Otorhinolaryngology, Justus Liebig University Giessen, Aulweg 128 (ForMED), 35392 Giessen, Germany;
| | - Detlef K. Bartsch
- Department of Visceral Surgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (Y.V.-Y.); (S.D.); (D.K.B.); (E.P.S.)
| | - Emily P. Slater
- Department of Visceral Surgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (Y.V.-Y.); (S.D.); (D.K.B.); (E.P.S.)
| | - Jörg W. Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (C.J.); (S.O.); (L.C.)
- Correspondence: ; Tel.: +49-6421-58-61173
| |
Collapse
|
154
|
Niland S, Eble JA. Hold on or Cut? Integrin- and MMP-Mediated Cell-Matrix Interactions in the Tumor Microenvironment. Int J Mol Sci 2020; 22:ijms22010238. [PMID: 33379400 PMCID: PMC7794804 DOI: 10.3390/ijms22010238] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) has become the focus of interest in cancer research and treatment. It includes the extracellular matrix (ECM) and ECM-modifying enzymes that are secreted by cancer and neighboring cells. The ECM serves both to anchor the tumor cells embedded in it and as a means of communication between the various cellular and non-cellular components of the TME. The cells of the TME modify their surrounding cancer-characteristic ECM. This in turn provides feedback to them via cellular receptors, thereby regulating, together with cytokines and exosomes, differentiation processes as well as tumor progression and spread. Matrix remodeling is accomplished by altering the repertoire of ECM components and by biophysical changes in stiffness and tension caused by ECM-crosslinking and ECM-degrading enzymes, in particular matrix metalloproteinases (MMPs). These can degrade ECM barriers or, by partial proteolysis, release soluble ECM fragments called matrikines, which influence cells inside and outside the TME. This review examines the changes in the ECM of the TME and the interaction between cells and the ECM, with a particular focus on MMPs.
Collapse
|