151
|
Huang X, Lao Y, Pan Y, Chen Y, Zhao H, Gong L, Xie N, Mo CH. Synergistic Antimicrobial Effectiveness of Plant Essential Oil and Its Application in Seafood Preservation: A Review. Molecules 2021; 26:molecules26020307. [PMID: 33435286 PMCID: PMC7827451 DOI: 10.3390/molecules26020307] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 11/23/2022] Open
Abstract
The synergistic potential of plant essential oils (EOs) with other conventional and non-conventional antimicrobial agents is a promising strategy for increasing antimicrobial efficacy and controlling foodborne pathogens. Spoilage microorganisms are one of main concerns of seafood products, while the prevention of seafood spoilage principally requires exclusion or inactivation of microbial activity. This review provides a comprehensive overview of recent studies on the synergistic antimicrobial effect of EOs combined with other available chemicals (such as antibiotics, organic acids, and plant extracts) or physical methods (such as high hydrostatic pressure, irradiation, and vacuum-packaging) utilized to reduce the growth of foodborne pathogens and/or to extend the shelf-life of seafood products. This review highlights the synergistic ability of EOs when used as a seafood preservative, discovering the possible routes of the combined techniques for the development of a novel seafood preservation strategy.
Collapse
Affiliation(s)
- Xianpei Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (X.H.); (H.Z.)
- Shanwei Marine Industry Institute, Shanwei Polytechnic, Shanwei 516600, China; (Y.P.); (Y.C.); (N.X.)
| | - Yuli Lao
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China;
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Yifeng Pan
- Shanwei Marine Industry Institute, Shanwei Polytechnic, Shanwei 516600, China; (Y.P.); (Y.C.); (N.X.)
| | - Yiping Chen
- Shanwei Marine Industry Institute, Shanwei Polytechnic, Shanwei 516600, China; (Y.P.); (Y.C.); (N.X.)
| | - Haiming Zhao
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (X.H.); (H.Z.)
| | - Liang Gong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Nanbin Xie
- Shanwei Marine Industry Institute, Shanwei Polytechnic, Shanwei 516600, China; (Y.P.); (Y.C.); (N.X.)
| | - Ce-Hui Mo
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (X.H.); (H.Z.)
- Correspondence: ; Tel.: +86-20-85223405
| |
Collapse
|
152
|
McClements DJ. Advances in edible nanoemulsions: Digestion, bioavailability, and potential toxicity. Prog Lipid Res 2020; 81:101081. [PMID: 33373615 DOI: 10.1016/j.plipres.2020.101081] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
The design, fabrication, and application of edible nanoemulsions for the encapsulation and delivery of bioactive agents has been a highly active research field over the past decade or so. In particular, they have been widely used for the encapsulation and delivery of hydrophobic bioactive substances, such as hydrophobic drugs, lipids, vitamins, and phytochemicals. A great deal of progress has been made in creating stable edible nanoemulsions that can increase the stability and efficacy of these bioactive agents. This article highlights some of the most important recent advances within this area, including increasing the water-dispersibility of bioactives, protecting bioactives from chemical degradation during storage, increasing the bioavailability of bioactives after ingestion, and targeting the release of bioactives within the gastrointestinal tract. Moreover, it highlights progress that is being made in creating plant-based edible nanoemulsions. Finally, the potential toxicity of edible nanoemulsions is considered.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
153
|
Nie X, Chen Z, Pang L, Wang L, Jiang H, Chen Y, Zhang Z, Fu C, Ren B, Zhang J. Oral Nano Drug Delivery Systems for the Treatment of Type 2 Diabetes Mellitus: An Available Administration Strategy for Antidiabetic Phytocompounds. Int J Nanomedicine 2020; 15:10215-10240. [PMID: 33364755 PMCID: PMC7751584 DOI: 10.2147/ijn.s285134] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
In view of the worldwide serious health threat of type 2 diabetes mellitus (T2DM), natural sources of chemotherapies have been corroborated as the promising alternatives, with the excellent antidiabetic activities, bio-safety, and more cost-effective properties. However, their clinical application is somewhat limited, because of the poor solubility, instability in the gastrointestinal tract (GIT), low bioavailability, and so on. Nowadays, to develop nanoscaled systems has become a prominent strategy to improve the drug delivery of phytochemicals. In this review, we primarily summarized the intervention mechanisms of phytocompounds against T2DM and presented the recent advances in various nanosystems of antidiabetic phytocompounds. Selected nanosystems were grouped depending on their classification and structures, including polymeric NPs, lipid-based nanosystems, vesicular systems, inorganic nanocarriers, and so on. Based on this review, the state-of-the-art nanosystems for phytocompounds in T2DM treatment have been presented, suggesting the preponderance and potential of nanotechnologies.
Collapse
Affiliation(s)
- Xin Nie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999087, People’s Republic of China
| | - Lan Pang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Huajuan Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Yi Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Zhen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Bo Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| |
Collapse
|
154
|
Sharma S, Loach N, Gupta S, Mohan L. Phyto-nanoemulsion: An emerging nano-insecticidal formulation. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.enmm.2020.100331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
155
|
Figueroa-Lopez KJ, Torres-Giner S, Angulo I, Pardo-Figuerez M, Escuin JM, Bourbon AI, Cabedo L, Nevo Y, Cerqueira MA, Lagaron JM. Development of Active Barrier Multilayer Films Based on Electrospun Antimicrobial Hot-Tack Food Waste Derived Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) and Cellulose Nanocrystal Interlayers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2356. [PMID: 33260904 PMCID: PMC7761208 DOI: 10.3390/nano10122356] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022]
Abstract
Active multilayer films based on polyhydroxyalkanoates (PHAs) with and without high barrier coatings of cellulose nanocrystals (CNCs) were herein successfully developed. To this end, an electrospun antimicrobial hot-tack layer made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from cheese whey, a by-product from the dairy industry, was deposited on a previously manufactured blown film of commercial food contact PHA-based resin. A hybrid combination of oregano essential oil (OEO) and zinc oxide nanoparticles (ZnONPs) were incorporated during the electrospinning process into the PHBV nanofibers at 2.5 and 2.25 wt%, respectively, in order to provide antimicrobial properties. A barrier CNC coating was also applied by casting from an aqueous solution of nanocellulose at 2 wt% using a rod at 1m/min. The whole multilayer structure was thereafter assembled in a pilot roll-to-roll laminating system, where the blown PHA-based film was located as the outer layers while the electrospun antimicrobial hot-tack PHBV layer and the barrier CNC coating were placed as interlayers. The resultant multilayer films, having a final thickness in the 130-150 µm range, were characterized to ascertain their potential in biodegradable food packaging. The multilayers showed contact transparency, interlayer adhesion, improved barrier to water and limonene vapors, and intermediate mechanical performance. Moreover, the films presented high antimicrobial and antioxidant activities in both open and closed systems for up to 15 days. Finally, the food safety of the multilayers was assessed by migration and cytotoxicity tests, demonstrating that the films are safe to use in both alcoholic and acid food simulants and they are also not cytotoxic for Caco-2 cells.
Collapse
Affiliation(s)
- Kelly J. Figueroa-Lopez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), CSIC, Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (K.J.F.-L.); (S.T.-G.); (M.P.-F.)
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), CSIC, Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (K.J.F.-L.); (S.T.-G.); (M.P.-F.)
| | - Inmaculada Angulo
- Gaiker Technological Centre, Department of Plastics and Composites, Parque Tecnológico Edificio 202, 48170 Zamudio, Spain;
| | - Maria Pardo-Figuerez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), CSIC, Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (K.J.F.-L.); (S.T.-G.); (M.P.-F.)
- Bioinicia R&D, Bioinicia S.L., Calle Algepser 65, Nave 3, 46980 Paterna, Valencia, Spain
| | - Jose Manuel Escuin
- Tecnopackaging S.L., Poligono Industrial Empresarium, Calle Romero 12, 50720 Zaragoza, Spain;
| | - Ana Isabel Bourbon
- Food Processing and Nutrition Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (M.A.C.)
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), School of Technology and Experimental Sciences, Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castellón, Spain;
| | - Yuval Nevo
- Melodea Bio-Based Solutions, Faculty of Agriculture-Hebrew University, Rehovot 76100, Israel;
| | - Miguel A. Cerqueira
- Food Processing and Nutrition Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (M.A.C.)
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), CSIC, Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (K.J.F.-L.); (S.T.-G.); (M.P.-F.)
| |
Collapse
|
156
|
Motta Felício I, Limongi de Souza R, de Oliveira Melo C, Gervázio Lima KY, Vasconcelos U, Olímpio de Moura R, Eleamen Oliveira E. Development and characterization of a carvacrol nanoemulsion and evaluation of its antimicrobial activity against selected food-related pathogens. Lett Appl Microbiol 2020; 72:299-306. [PMID: 33037668 DOI: 10.1111/lam.13411] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022]
Abstract
Carvacrol has been recognized as an efficient growth inhibitor of food pathogens. However, carvacrol oil is poorly water-soluble and can be oxidized, decomposed or evaporated when exposed to the air, light, or heat. To overcome these limitations, a carvacrol nanoemulsion was developed and its antimicrobial activity against food pathogens evaluated in this study. The nanoemulsion containing 3% carvacrol oil, 9% surfactants (HLB 11) and 88% water, presented good stability over a period of 90 days. In general, the carvacrol nanoemulsion (MIC: 256 µg ml-1 for E. coli and Salmonella spp., 128 µg ml-1 for Staphylococcus aureus and Pseudomonas aeruginosa) exhibited improved antimicrobial activity compared to the free oil. The carvacrol nanoemulsion additionally displayed bactericidal activity against Escherichia coli, P. aeruginosa and Salmonella spp. Therefore, the results of this study indicated that carvacrol oil nanoemulsions can potentially be incorporated into food formulations, wherein their efficacy for the prevention and control of microbial growth could be evaluated.
Collapse
Affiliation(s)
- I Motta Felício
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, Paraíba, Brazil
| | - R Limongi de Souza
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, Paraíba, Brazil
| | - C de Oliveira Melo
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, Paraíba, Brazil
| | - K Y Gervázio Lima
- Laboratório de Microbiologia Ambiental, Federal University of Paraíba, Paraíba, Brazil
| | - U Vasconcelos
- Laboratório de Microbiologia Ambiental, Federal University of Paraíba, Paraíba, Brazil
| | - R Olímpio de Moura
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, Paraíba, Brazil
| | - E Eleamen Oliveira
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, Paraíba, Brazil
| |
Collapse
|
157
|
Talianu MT, Dinu-Pîrvu CE, Ghica MV, Anuţa V, Jinga V, Popa L. Foray into Concepts of Design and Evaluation of Microemulsions as a Modern Approach for Topical Applications in Acne Pathology. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2292. [PMID: 33228156 PMCID: PMC7699607 DOI: 10.3390/nano10112292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/19/2023]
Abstract
With a fascinating complexity, governed by multiple physiological processes, the skin is considered a mantle with protective functions which during lifetime are frequently impaired, triggering dermatologic disorders. As one of the most prevalent dermatologic conditions worldwide, characterized by a complex pathogenesis and a high recurrence, acne can affect the patient's quality of life. Smart topical vehicles represent a good option in the treatment of a versatile skin condition. By surpassing the stratum corneum known for diffusional resistance, a superior topical bioavailability can be obtained at the affected place. In this direction, the literature study presents microemulsions as a part of a condensed group of modern formulations. Microemulsions are appreciated for their superior profile in matters of drug delivery, especially for challenging substances with hydrophilic or lipophilic structures. Formulated as transparent and thermodynamically stable systems, using simplified methods of preparation, microemulsions have a simple and clear appearance. Their unique structures can be explained as a function of the formulation parameters which were found to be the mainstay of a targeted therapy.
Collapse
Affiliation(s)
- Marina-Theodora Talianu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Valentina Anuţa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Viorel Jinga
- Department of Clinical Sciences, no.3, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| |
Collapse
|
158
|
Felix da Silva Barbosa R, Gabrieli de Souza A, Rangari V, Rosa DDS. The influence of PBAT content in the nanocapsules preparation and its effect in essential oils release. Food Chem 2020; 344:128611. [PMID: 33221104 DOI: 10.1016/j.foodchem.2020.128611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/13/2020] [Accepted: 11/07/2020] [Indexed: 12/18/2022]
Abstract
Nanoencapsulation provides new alternatives for the food industry, enabling a controlled and slow release of active antimicrobial agents, such as essential oils (EO). Poly (butylene adipate-co-terephthalate) (PBAT) nanocapsules loaded with linalool EO were prepared using an extrusion method with 1, 3, and 5% w/v (PBAT to chloroform). Nanocapsules' sizes ranged from 100 to 250 nm and were spherical. The release profile was studied using an ethanoic medium over 24 h, and according to the Korsmeyer-Peppas model, a Fick diffusion mechanism was involved. FT-IR and thermogravimetric analyses confirmed EO encapsulation with an encapsulation efficiency of 55%, 71%, and 74% for 1, 3, and 5%, respectively. The results indicated that encapsulation depended on organic phase concentration, with higher PBAT contents achieving better results. The resulting nanocapsules had antimicrobial activity against E. coli, which could be extended to develop active packaging systems.
Collapse
Affiliation(s)
- Rennan Felix da Silva Barbosa
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas - CECS/Universidade Federal do ABC (UFABC) - Santo André, Avenida dos Estados, 5001, CEP: 09210-580, SP, Brazil
| | - Alana Gabrieli de Souza
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas - CECS/Universidade Federal do ABC (UFABC) - Santo André, Avenida dos Estados, 5001, CEP: 09210-580, SP, Brazil
| | - Vijaya Rangari
- Department of Materials Science and Engineering, Tuskegee University, Tuskegee, AL 36088, USA
| | - Derval Dos Santos Rosa
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas - CECS/Universidade Federal do ABC (UFABC) - Santo André, Avenida dos Estados, 5001, CEP: 09210-580, SP, Brazil.
| |
Collapse
|
159
|
Ovidi E, Masci VL, Taddei AR, Paolicelli P, Petralito S, Trilli J, Mastrogiovanni F, Tiezzi A, Casadei MA, Giacomello P, Garzoli S. Chemical Investigation and Screening of Anti-Proliferative Activity on Human Cell Lines of Pure and Nano-Formulated Lavandin Essential Oil. Pharmaceuticals (Basel) 2020; 13:ph13110352. [PMID: 33138099 PMCID: PMC7692866 DOI: 10.3390/ph13110352] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 01/17/2023] Open
Abstract
Lavandin essential oil (LEO), a natural sterile hybrid obtained by crossbreeding L. angustifolia × L. latifolia, is mainly composed by active components belonging to the family of terpenes endowed with relevant anti-proliferative activity, which can be enhanced by proper application of nanotechnology. In particular, this study reports the chemical characterization and the screening of the anti-proliferative activity on different human cell lines of pure and nano-formulated lavandin essential oil (EO). LEO and its formulation (NanoLEO) were analyzed by HS/GC-MS (Headspace/Gas Chromatography-Mass Spectrometry) to describe and compare their chemical volatile composition. The most abundant compounds were linalool and 1,8-cineole (LEO: 28.6%; 27.4%) (NanoLEO: 60.4%; 12.6%) followed by α-pinene (LEO: 9.6%; NanoLEO: 4.5%), camphor (LEO: 6.5%; NanoLEO: 7.0%) and linalyl acetate (LEO: 6.5%; NanoLEO: 3.6%). The cytotoxic effects of LEO and NanoLEO were investigated on human neuroblastoma cells (SHSY5Y), human breast adenocarcinoma cells (MCF-7), human lymphoblastic leukemia cells (CCRF CEM), human colorectal adenocarcinoma cells (Caco-2) and one normal breast epithelial cell (MCF10A) by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide)-assay. Caco-2, MCF7 and MCF10A normal cells resulted more resistant to the treatment with LEO, while CCRF-CEM and SHSY5Y cells were more sensitive. The antiproliferative effect of LEO resulted amplified when the essential oil was supplied as nanoformulation, mainly in Caco-2 cells. Scanning and transmission electron microscopy investigations were carried out on Caco-2 cells to outline at ultrastructural level possible affections induced by LEO and NanoLEO treatments.
Collapse
Affiliation(s)
- Elisa Ovidi
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (E.O.); (V.L.M.); (F.M.); (A.T.)
| | - Valentina Laghezza Masci
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (E.O.); (V.L.M.); (F.M.); (A.T.)
| | | | - Patrizia Paolicelli
- Department of Drug Chemistry and Technology, Sapienza University, 00185 Roma RM, Italy; (P.P.); (S.P.); (J.T.); (M.A.C.); (P.G.)
| | - Stefania Petralito
- Department of Drug Chemistry and Technology, Sapienza University, 00185 Roma RM, Italy; (P.P.); (S.P.); (J.T.); (M.A.C.); (P.G.)
| | - Jordan Trilli
- Department of Drug Chemistry and Technology, Sapienza University, 00185 Roma RM, Italy; (P.P.); (S.P.); (J.T.); (M.A.C.); (P.G.)
| | - Fabio Mastrogiovanni
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (E.O.); (V.L.M.); (F.M.); (A.T.)
| | - Antonio Tiezzi
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (E.O.); (V.L.M.); (F.M.); (A.T.)
| | - Maria Antonietta Casadei
- Department of Drug Chemistry and Technology, Sapienza University, 00185 Roma RM, Italy; (P.P.); (S.P.); (J.T.); (M.A.C.); (P.G.)
| | - Pierluigi Giacomello
- Department of Drug Chemistry and Technology, Sapienza University, 00185 Roma RM, Italy; (P.P.); (S.P.); (J.T.); (M.A.C.); (P.G.)
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, 00185 Roma RM, Italy; (P.P.); (S.P.); (J.T.); (M.A.C.); (P.G.)
- Correspondence:
| |
Collapse
|
160
|
Essoung FRE, Tadjong AT, Chhabra SC, Mohamed SA, Hassanali A. Repellence and fumigant toxicity of essential oils of Ocimum gratissimum and Ocimum kilimandscharicum on Tuta absoluta (Lepidoptera: Gelechiidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37963-37976. [PMID: 32613512 DOI: 10.1007/s11356-020-09773-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Tuta absoluta Meyrick originates in South America and is now one of the most important insect pests of Solanaceae in different parts of the world, including Africa. Its control has relied primarily on chemical insecticides, which are associated with negative ecological effects. In the present study, essential oils of Ocimum gratissimum and O. kilimandscharicum were tested for repellence and fumigant toxicity on the adult stages under laboratory conditions. The oil of O. gratissimum was more repellent, but its toxicity was comparable with that of O. kilimandscharicum. The major constituents of O. gratissimum were methyl eugenol (39.5%) and eugenol (29.7%). Those of O. kilimandscharicum were camphor (47.1%) and 1.8-cineole (19.3%). Eugenol (LC50 of 0.24 μl/ml, 83.3%, RI50 = 0.15) and camphor (LC50 of 0.23 μl/ml, 89.5%, RI50 = 0.13) were more toxic (at 1 μl/ml for 24 h) and repellent than the other constituents. The results show potential of the essential oils for use in integrated management of the tomato pest.
Collapse
Affiliation(s)
| | - Alain Tcho Tadjong
- Department of Chemistry, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Sumesh Chander Chhabra
- Chemistry Department, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | | | - Ahmed Hassanali
- Chemistry Department, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| |
Collapse
|
161
|
Akrawi SH, Gorain B, Nair AB, Choudhury H, Pandey M, Shah JN, Venugopala KN. Development and Optimization of Naringenin-Loaded Chitosan-Coated Nanoemulsion for Topical Therapy in Wound Healing. Pharmaceutics 2020; 12:E893. [PMID: 32962195 PMCID: PMC7558164 DOI: 10.3390/pharmaceutics12090893] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
The potential role of naringenin (NAR), a natural flavonoid, in the treatment of chronic wound has prompted the present research to deliver the drug in nanoemulsion (NE) form, where synergistic role of chitosan was achieved through development of chitosan-coated NAR NE (CNNE). The NE consisted of Capryol 90, Tween 20 and Transcutol P, which was fabricated by low-energy emulsification method to encapsulate NAR within the oil core. The optimization of the formulated NEs was performed using Box-Behnken statistical design to obtain crucial variable parameters that influence globule size, size distribution and surface charge. Finally, the optimized formulation was coated with different concentrations of chitosan and subsequently characterized in vitro. The size of the CNNE was found to be increased when the drug-loaded formulation was coated with chitosan. Controlled release characteristics depicted 67-81% release of NAR from the CNNE, compared to 89% from the NE formulation. Cytotoxicity study of the formulation was performed in vitro using fibroblast cell line (NIH-3T3), where no inhibition in proliferation of the cells was observed with CNNE. Finally, the wound healing potential of the CNNE was evaluated in an abrasion-created wound model in experimental animals where the animals were treated and compared histologically at 0 and 14 days. Significant improvement in construction of the abrasion wound was observed when the animals were treated with formulated CNNE, whereas stimulation of skin regeneration was depicted in the histological examination. Therefore, it could be summarized that the chitosan coating of the developed NAR NE is a potential platform to accelerate healing of wounds.
Collapse
Affiliation(s)
- Sabah H. Akrawi
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Hira Choudhury
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (H.C.); (M.P.)
| | - Manisha Pandey
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (H.C.); (M.P.)
| | - Jigar N. Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| |
Collapse
|
162
|
Benelli G, Pavoni L, Zeni V, Ricciardi R, Cosci F, Cacopardo G, Gendusa S, Spinozzi E, Petrelli R, Cappellacci L, Maggi F, Pavela R, Bonacucina G, Lucchi A. Developing a Highly Stable Carlina acaulis Essential Oil Nanoemulsion for Managing Lobesia botrana. NANOMATERIALS 2020; 10:nano10091867. [PMID: 32961890 PMCID: PMC7559805 DOI: 10.3390/nano10091867] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 01/25/2023]
Abstract
The growing interest in the development of green pest management strategies is leading to the exploitation of essential oils (EOs) as promising botanical pesticides. In this respect, nanotechnology could efficiently support the use of EOs through their encapsulation into stable nanoformulations, such as nanoemulsions (NEs), to improve their stability and efficacy. This technology assures the improvement of the chemical stability, hydrophilicity, and environmental persistence of EOs, giving an added value for the fabrication of natural insecticides effective against a wide spectrum of insect vectors and pests of public and agronomical importance. Carlina acaulis (Asteraceae) root EO has been recently proposed as a promising ingredient of a new generation of botanical insecticides. In the present study, a highly stable C. acaulis-based NE was developed. Interestingly, such a nanosystem was able to encapsulate 6% (w/w) of C. acaulis EO, showing a mean diameter of around 140 nm and a SOR (surfactant-to-oil ratio) of 0.6. Its stability was evaluated in a storage period of six months and corroborated by an accelerated stability study. Therefore, the C. acaulis EO and C. acaulis-based NE were evaluated for their toxicity against 1st instar larvae of the European grapevine moth (EGVM), Lobesia botrana (Denis & Schiffermüller, 1775) (Lepidoptera: Tortricidae), a major vineyard pest. The chemical composition of C. acaulis EO was investigated by gas chromatography-mass spectrometry (GC-MS) revealing carlina oxide, a polyacetylene, as the main constituent. In toxicity assays, both the C. acaulis EO and the C. acaulis-based NE were highly toxic to L. botrana larvae, with LC50 values of 7.299 and 9.044 µL/mL for C. acaulis EO and NE, respectively. The C. acaulis-based NE represents a promising option to develop highly stable botanical insecticides for pest management. To date, this study represents the first evidence about the insecticidal toxicity of EOs and EO-based NEs against this major grapevine pest.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (R.R.); (F.C.); (G.C.); (A.L.)
- Correspondence: ; Tel.: +39-0502216141
| | - Lucia Pavoni
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (S.G.); (E.S.); (R.P.); (L.C.); (F.M.); (G.B.)
| | - Valeria Zeni
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (R.R.); (F.C.); (G.C.); (A.L.)
| | - Renato Ricciardi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (R.R.); (F.C.); (G.C.); (A.L.)
| | - Francesca Cosci
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (R.R.); (F.C.); (G.C.); (A.L.)
| | - Gloria Cacopardo
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (R.R.); (F.C.); (G.C.); (A.L.)
| | - Saverio Gendusa
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (S.G.); (E.S.); (R.P.); (L.C.); (F.M.); (G.B.)
| | - Eleonora Spinozzi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (S.G.); (E.S.); (R.P.); (L.C.); (F.M.); (G.B.)
| | - Riccardo Petrelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (S.G.); (E.S.); (R.P.); (L.C.); (F.M.); (G.B.)
| | - Loredana Cappellacci
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (S.G.); (E.S.); (R.P.); (L.C.); (F.M.); (G.B.)
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (S.G.); (E.S.); (R.P.); (L.C.); (F.M.); (G.B.)
| | - Roman Pavela
- Crop Research Institute, Drnovska 507, 161 06 Prague, Czech Republic;
- Department of Plant Protection, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Praha 6, Suchdol, Czech Republic
| | - Giulia Bonacucina
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (S.G.); (E.S.); (R.P.); (L.C.); (F.M.); (G.B.)
| | - Andrea Lucchi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (R.R.); (F.C.); (G.C.); (A.L.)
| |
Collapse
|
163
|
Miguel MG, Lourenço JP, Faleiro ML. Superparamagnetic Iron Oxide Nanoparticles and Essential Oils: A New Tool for Biological Applications. Int J Mol Sci 2020; 21:E6633. [PMID: 32927821 PMCID: PMC7555169 DOI: 10.3390/ijms21186633] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
Essential oils are complex mixtures of volatile compounds with diverse biological properties. Antimicrobial activity has been attributed to the essential oils as well as their capacity to prevent pathogenic microorganisms from forming biofilms. The search of compounds or methodologies with this capacity is of great importance due to the fact that the adherence of these pathogenic microorganisms to surfaces largely contributes to antibiotic resistance. Superparamagnetic iron oxide nanoparticles have been assayed for diverse biomedical applications due to their biocompatibility and low toxicity. Several methods have been developed in order to obtain functionalized magnetite nanoparticles with adequate size, shape, size distribution, surface, and magnetic properties for medical applications. Essential oils have been evaluated as modifiers of the surface magnetite nanoparticles for improving their stabilization but particularly to prevent the growth of microorganisms. This review aims to provide an overview on the current knowledge about the use of superparamagnetic iron oxide nanoparticles and essential oils on the prevention of microbial adherence and consequent biofilm formation with the goal of being applied on the surface of medical devices. Some limitations found in the studies are discussed.
Collapse
Affiliation(s)
- Maria Graça Miguel
- Mediterranean Institute for Agriculture, Environment and Development, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - João Paulo Lourenço
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Centro de Investigação em Química do Algarve (CIQA), Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria Leonor Faleiro
- CBMR, Algarve Biomedical Center, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| |
Collapse
|
164
|
Li S, Sun J, Yan J, Zhang S, Shi C, McClements DJ, Liu X, Liu F. Development of antibacterial nanoemulsions incorporating thyme oil: Layer-by-layer self-assembly of whey protein isolate and chitosan hydrochloride. Food Chem 2020; 339:128016. [PMID: 33152858 DOI: 10.1016/j.foodchem.2020.128016] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
The aim of this study was to develop a thyme oil emulsion with good physicochemical properties and antibacterial activity. Initially, oil-in-water emulsions containing whey protein-coated essential oil droplets were prepared by high-pressure homogenization. The double-layer emulsions were formed around the oil droplets by electrostatic deposition of cationic chitosan hydrochloride onto the anionic protein-coated droplets. Then, the structure, physicochemical properties, and storage stability of the emulsions were determined. Emulsions formulated using 1% v/v thyme oil, 0.7 wt% whey protein, and 0.25 wt% of chitosan hydrochloride contained relatively small cationic droplets. Moreover, the emulsions containing double-layer coatings were shear-thinning fluids. Storage tests indicated that double-layer emulsions had better stability than the single-layer. Antibacterial tests indicated that the double-layer emulsions exhibited prolonged antibacterial activity against two model food pathogens: E. coli and S. aureus. These results provide a scientific basis for the rational design of antimicrobial delivery systems for use in foods.
Collapse
Affiliation(s)
- Siqi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jialin Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jun Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Sairui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | | | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
165
|
Oftadeh M, Jalali Sendi J, Ebadollahi A. Biologically active toxin identified from Artemisia annua against lesser mulberry pyralid, Glyphodes pyloalis. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1811345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Marziyeh Oftadeh
- Faculty of Agricultural Sciences, Department of Plant Protection, University of Guilan, Rasht, Iran
| | - Jalal Jalali Sendi
- Faculty of Agricultural Sciences, Department of Plant Protection, University of Guilan, Rasht, Iran
- Faculty of Agricultural Sciences, Department of Silk research, University of Guilan, Rasht, Iran
| | - Asgar Ebadollahi
- Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
166
|
Feng SM, Zhao Y, Xu Q, Li HM, Huang YX, Liu HH, Xu CB. Development and Characterization of A New Dimethicone Nanoemulsion and its Application for Electronic Gastroscopy Examination. Int J Nanomedicine 2020; 15:5405-5416. [PMID: 32801696 PMCID: PMC7401323 DOI: 10.2147/ijn.s251113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/18/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose Although the effective and safe medical defoamers, dimethicone (DM) and simethicone (SM) are widely used in electronic gastroscope examination (EGE), their preparations are presented in the form of suspensions or emulsions, these are untransparent or milk-like in appearance and can easily cause misdiagnosis as a result of an unclear field of vision if the doctor does not master the amount of defoamer or operates incorrectly. At the same time, it is also difficult to wash out the camera and pipeline, due to the large oil droplets of preparations. The purpose of this study was to develop a new clear and transparent oil in water (O/W) DM nanoemulsions (DMNs) and observe the effect of application in EGE. Methods The oil phase was chosen for its antifoaming activity and viscosity. The emulsifier and co-emulsifier were selected according to the solubility of the oil phase in them. The water titration method was used to make the pseudoternary phase diagrams of nanoemulsions and optimize the prescription composition. DM-in-water nanoemulsion was prepared by the low energy method and evaluated for appearance, antifoaming ability, droplet size, and stability. The effect of DMNs utilized in EGEs was also observed. Results The optimal formulation of DMNs contained CRH-40 as an emulsifier, PEG-400 as a co-emulsifier, DM as oil phase with the viscosity of 10 mPa.s, and their proportion was 4.5:4.5:1, respectively. DMNs obtained the average particle size of 67.98 nm with the polydispersity index (PDI) of 0.332, and 57.14% defoaming rate. The result of using an EGE showed that DMNs were superior in comparison to the emulsions with regard to the defoaming effect, visual clarity, and easy cleanup. Conclusion DMNs were found to provide excellent visual clarity to its other preparations. The novel DMNs is a promising substitute for DM emulsions or suspensions in EGEs.
Collapse
Affiliation(s)
- Suo-Min Feng
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an 710021, People's Republic of China.,School of Pharmacy, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Ying Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Qing Xu
- College of Life Sciences, Northwest University, Xi'an 710069, People's Republic of China
| | - Hui-Min Li
- Public Course Teaching Department, Shangluo Vocational and Technical College, Shangzhou, 726000, People's Republic of China
| | - Yu-Xiu Huang
- Department of English, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Huan-Huan Liu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Cang-Bao Xu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an 710021, People's Republic of China
| |
Collapse
|
167
|
Mustafa IF, Hussein MZ. Synthesis and Technology of Nanoemulsion-Based Pesticide Formulation. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1608. [PMID: 32824489 PMCID: PMC7466655 DOI: 10.3390/nano10081608] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
Abstract
Declines in crop yield due to pests and diseases require the development of safe, green and eco-friendly pesticide formulations. A major problem faced by the agricultural industry is the use of conventional agrochemicals that contribute broad-spectrum effects towards the environment and organisms. As a result of this issue, researchers are currently developing various pesticide formulations using different nanotechnology approaches. The progress and opportunities in developing nanoemulsions as carriers for plant protection or nanodelivery systems for agrochemicals in agricultural practice have been the subject of intense research. New unique chemical and biologic properties have resulted in a promising pesticide nanoformulations for crop protection. These innovations-particularly the nanoemulsion-based agrochemicals-are capable of enhancing the solubility of active ingredients, improving agrochemical bioavailability, and improving stability and wettability properties during the application, thus resulting in better efficacy for pest control and treatment. All of these-together with various preparation methods towards a greener and environmentally friendly agrochemicals-are also discussed and summarized in this review.
Collapse
Affiliation(s)
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
| |
Collapse
|
168
|
Quadros DG, Johnson TL, Whitney TR, Oliver JD, Oliva Chávez AS. Plant-Derived Natural Compounds for Tick Pest Control in Livestock and Wildlife: Pragmatism or Utopia? INSECTS 2020; 11:insects11080490. [PMID: 32752256 PMCID: PMC7469192 DOI: 10.3390/insects11080490] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022]
Abstract
Ticks and tick-borne diseases are a significant economic hindrance for livestock production and a menace to public health. The expansion of tick populations into new areas, the occurrence of acaricide resistance to synthetic chemical treatments, the potentially toxic contamination of food supplies, and the difficulty of applying chemical control in wild-animal populations have created greater interest in developing new tick control alternatives. Plant compounds represent a promising avenue for the discovery of such alternatives. Several plant extracts and secondary metabolites have repellent and acaricidal effects. However, very little is known about their mode of action, and their commercialization is faced with multiple hurdles, from the determination of an adequate formulation to field validation and public availability. Further, the applicability of these compounds to control ticks in wild-animal populations is restrained by inadequate delivery systems that cannot guarantee accurate dosage delivery at the right time to the target animal populations. More work, financial support, and collaboration with regulatory authorities, research groups, and private companies are needed to overcome these obstacles. Here, we review the advancements on known plant-derived natural compounds with acaricidal potential and discuss the road ahead toward the implementation of organic control in managing ticks and tick-borne diseases.
Collapse
Affiliation(s)
- Danilo G. Quadros
- Texas A&M AgriLife Research, San Angelo, TX 76901, USA; (D.G.Q.); (T.R.W.)
| | - Tammi L. Johnson
- Department of Rangelands, Wildlife and Fisheries Management, Texas A&M AgriLife Research, Texas A&M University, Uvalde, TX 78801, USA;
| | - Travis R. Whitney
- Texas A&M AgriLife Research, San Angelo, TX 76901, USA; (D.G.Q.); (T.R.W.)
| | - Jonathan D. Oliver
- Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Adela S. Oliva Chávez
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Correspondence: ; Tel.: +1-979-845-1946
| |
Collapse
|
169
|
Pucek A, Tokarek B, Waglewska E, Bazylińska U. Recent Advances in the Structural Design of Photosensitive Agent Formulations Using "Soft" Colloidal Nanocarriers. Pharmaceutics 2020; 12:E587. [PMID: 32599791 PMCID: PMC7356306 DOI: 10.3390/pharmaceutics12060587] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
The growing demand for effective delivery of photosensitive active compounds has resulted in the development of colloid chemistry and nanotechnology. Recently, many kinds of novel formulations with outstanding pharmaceutical potential have been investigated with an expansion in the design of a wide variety of "soft" nanostructures such as simple or multiple (double) nanoemulsions and lipid formulations. The latter can then be distinguished into vesicular, including liposomes and "smart" vesicles such as transferosomes, niosomes and ethosomes, and non-vesicular nanosystems with solid lipid nanoparticles and nanostructured lipid carriers. Encapsulation of photosensitive agents such as drugs, dyes, photosensitizers or antioxidants can be specifically formulated by the self-assembly of phospholipids or other amphiphilic compounds. They are intended to match unique pharmaceutic and cosmetic requirements and to improve their delivery to the target site via the most common, i.e., transdermal, intravenous or oral administration routes. Numerous surface modifications and functionalization of the nanostructures allow increasing their effectiveness and, consequently, may contribute to the treatment of many diseases, primarily cancer. An increasing article number is evidencing significant advances in applications of the different classes of the photosensitive agents incorporated in the "soft" colloidal nanocarriers that deserved to be highlighted in the present review.
Collapse
Affiliation(s)
| | | | | | - Urszula Bazylińska
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; (A.P.); (B.T.); (E.W.)
| |
Collapse
|
170
|
Influence of Terpene Type on the Release from an O/W Nanoemulsion: Experimental and Theoretical Studies. Molecules 2020; 25:molecules25122747. [PMID: 32545817 PMCID: PMC7356279 DOI: 10.3390/molecules25122747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 01/25/2023] Open
Abstract
The interaction between a drug molecule and its carrier’s components is an important factor which influences the drug release profile. For this purpose, molecular dynamics (MD) may be the in silico tool which can help to understand the mechanism of drug loading/release. The aim of this work is to explain the effect of interactions between different types of terpenes, namely perillyl alcohol, forskolin, ursolic acid, and the nanoemulsion droplet core, on the release by means of experimental and theoretical studies. The basic nanoemulsion was composed of caprylic/capric triglyceride as the oil phase, polysorbate 80 as the emulsifier, and water. The in vitro release tests from a terpene-loaded nanoemulsion were carried out to determine the release profiles. The behavior of terpenoids in the nanoemulsion was also theoretically investigated using the molecular dynamics method. The forskolin-loaded nanoemulsion showed the highest percentage of drug release (almost 80% w/w) in contrast to ursolic acid and perillyl alcohol-loaded nanoemulsions (about 53% w/w and 19% w/w, respectively). The results confirmed that the kinetic model of release was terpene-type dependent. The zero-order model was the best to describe the ursolic acid release profile, while the forskolin and the perillyl alcohol followed a first-order and Higuchi model, respectively. Molecular dynamics simulations, especially energetical analysis, confirmed that the driving force of terpenes diffusion from nanoemulsion interior was their interaction energy with a surfactant.
Collapse
|