151
|
Polyamidoamine dendrimer–digoxin impregnated PVC film in the fingerprint detection of herbs’ essential oil coupled to gas chromatography–mass spectrometry. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01949-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
152
|
Ahmadi S, Rabiee N, Bagherzadeh M, Elmi F, Fatahi Y, Farjadian F, Baheiraei N, Nasseri B, Rabiee M, Dastjerd NT, Valibeik A, Karimi M, Hamblin MR. Stimulus-Responsive Sequential Release Systems for Drug and Gene Delivery. NANO TODAY 2020; 34:100914. [PMID: 32788923 PMCID: PMC7416836 DOI: 10.1016/j.nantod.2020.100914] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In recent years, a range of studies have been conducted with the aim to design and characterize delivery systems that are able to release multiple therapeutic agents in controlled and programmed temporal sequences, or with spatial resolution inside the body. This sequential release occurs in response to different stimuli, including changes in pH, redox potential, enzyme activity, temperature gradients, light irradiation, and by applying external magnetic and electrical fields. Sequential release (SR)-based delivery systems, are often based on a range of different micro- or nanocarriers and may offer a silver bullet in the battle against various diseases, such as cancer. Their distinctive characteristic is the ability to release one or more drugs (or release drugs along with genes) in a controlled sequence at different times or at different sites. This approach can lengthen gene expression periods, reduce the side effects of drugs, enhance the efficacy of drugs, and induce an anti-proliferative effect on cancer cells due to the synergistic effects of genes and drugs. The key objective of this review is to summarize recent progress in SR-based drug/gene delivery systems for cancer and other diseases.
Collapse
Affiliation(s)
- Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Faranak Elmi
- Department of Biotechnology, School of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
- Department of Biology, Faculty of science, Marand Branch, Islamic Azad University, Marand, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Center (USERN), Tehran, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behzad Nasseri
- Chemical Engineering Department, Bioengineering Division and Bioengineering Centre, Hacettepe University, 06800, Ankara, Turkey
- Chemical Engineering and Applied Chemistry Department, Atilim University, 06830, Ankara, Turkey
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Niloufar Tavakoli Dastjerd
- Department of Medical Biotechnology, School of Allied Medical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Valibeik
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
153
|
Maysinger D, Zhang Q, Kakkar A. Dendrimers as Modulators of Brain Cells. Molecules 2020; 25:E4489. [PMID: 33007959 PMCID: PMC7582352 DOI: 10.3390/molecules25194489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
Nanostructured hyperbranched macromolecules have been extensively studied at the chemical, physical and morphological levels. The cellular structural and functional complexity of neural cells and their cross-talk have made it rather difficult to evaluate dendrimer effects in a mixed population of glial cells and neurons. Thus, we are at a relatively early stage of bench-to-bedside translation, and this is due mainly to the lack of data valuable for clinical investigations. It is only recently that techniques have become available that allow for analyses of biological processes inside the living cells, at the nanoscale, in real time. This review summarizes the essential properties of neural cells and dendrimers, and provides a cross-section of biological, pre-clinical and early clinical studies, where dendrimers were used as nanocarriers. It also highlights some examples of biological studies employing dendritic polyglycerol sulfates and their effects on glia and neurons. It is the aim of this review to encourage young scientists to advance mechanistic and technological approaches in dendrimer research so that these extremely versatile and attractive nanostructures gain even greater recognition in translational medicine.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada;
| | - Qiaochu Zhang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada;
- Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, QC H3A 0B8, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
154
|
Studzian M, Działak P, Pułaski Ł, Hedstrand DM, Tomalia DA, Klajnert-Maculewicz B. Synthesis, Internalization and Visualization of N-(4-Carbomethoxy) Pyrrolidone Terminated PAMAM [G5:G3-TREN] Tecto(dendrimers) in Mammalian Cells. Molecules 2020; 25:molecules25194406. [PMID: 32992824 PMCID: PMC7583011 DOI: 10.3390/molecules25194406] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 11/25/2022] Open
Abstract
Tecto(dendrimers) are well-defined, dendrimer cluster type covalent structures. In this article, we present the synthesis of such a PAMAM [G5:G3-(TREN)]-N-(4-carbomethoxy) pyrrolidone terminated tecto(dendrimer). This tecto(dendrimer) exhibits nontraditional intrinsic luminescence (NTIL; excitation 376 nm; emission 455 nm) that has been attributed to three fluorescent components characterized by different fluorescence lifetimes. Furthermore, it has been shown that this PAMAM [G5:G3-(TREN)]-N-(4-carbomethoxy) pyrrolidone terminated tecto(dendrimer) is able to form a polyplex with double stranded DNA, and is nontoxic for HeLa and HMEC-1 cells up to a concentration of 10 mg/mL, even though it accumulates in endosomal compartments as demonstrated by its unique NTIL emission properties. Many of the above features would portend the proposed use of this tecto(dendrimer) as an efficient transfection agent. Quite surprisingly, transfection activity could not be demonstrated in HeLa cells, and the possible reasons are discussed in the article.
Collapse
Affiliation(s)
- Maciej Studzian
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (M.S.); (P.D.)
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Paula Działak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (M.S.); (P.D.)
| | - Łukasz Pułaski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodowa 106, 93-232 Lodz, Poland
| | - David M. Hedstrand
- National Dendrimer & Nanotechnology Center, NanoSynthons LCC, 1200 N. Fancher Avenue, Mt. Pleasant, MI 48858, USA;
| | - Donald A. Tomalia
- National Dendrimer & Nanotechnology Center, NanoSynthons LCC, 1200 N. Fancher Avenue, Mt. Pleasant, MI 48858, USA;
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23173, USA
- Correspondence: (D.A.T.); (B.K.-M.)
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (M.S.); (P.D.)
- Leibniz Institute of Polymer Research, 01397 Dresden, Germany
- Correspondence: (D.A.T.); (B.K.-M.)
| |
Collapse
|
155
|
Meenambal R, Srinivas Bharath MM. Nanocarriers for effective nutraceutical delivery to the brain. Neurochem Int 2020; 140:104851. [PMID: 32976906 DOI: 10.1016/j.neuint.2020.104851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders are common among aging populations around the globe. Most are characterized by loss of neurons, protein aggregates, oxidative stress, mitochondrial damage, neuroinflammation among others. Although symptomatic treatment using conventional pharmacotherapy has been widely employed, their therapeutic success is limited due to varied reasons. In the need to identify an alternative approach, researchers successfully demonstrated the therapeutic utility of plant-derived nutraceuticals in cell and animal models of neurodegenerative conditions. However, most nutraceuticals failed during clinical trials in humans owing to their poor bioavailability in vivo and limited permeability across the blood brain barrier (BBB). The current emphasis is therefore on the improved delivery of nutraceuticals to the brain. In this regard, development of nanoparticle conjugated nutraceuticals to enhance bioavailability and therapeutic efficacy in the brain has gained attention. Here, we review the research advances in nanoparticles conjugated nutraceuticals applied in neurodegenerative disorders and discuss their advantages and limitations, clinical trials and toxicity concerns.
Collapse
Affiliation(s)
- Rugmani Meenambal
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India.
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India; Neurotoxicology Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India.
| |
Collapse
|
156
|
Mignani S, Shi X, Rodrigues J, Roy R, Muñoz-Fernández Á, Ceña V, Majoral JP. Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. Bioconjug Chem 2020. [DOI: https:/doi.org/10.1021/acs.bioconjchem.0c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Xiangyang Shi
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - João Rodrigues
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi’an 710072, PR China
| | - René Roy
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Ángeles Muñoz-Fernández
- Sección Inmunologı́a, Laboratorio InmunoBiologı́a Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain, Spanish HIV HGM BioBank, Madrid, Spain, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Valentin Ceña
- CIBERNED, ISCII, Madrid; Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Avda. Almansa, 14, 02006 Albacete, Spain
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse, Cedex 4, France
- Université Toulouse, 118 route de Narbonne, 31077 Toulouse, Cedex 4, France
| |
Collapse
|
157
|
Mignani S, Shi X, Rodrigues J, Roy R, Muñoz-Fernández Á, Ceña V, Majoral JP. Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. Bioconjug Chem 2020; 31:2060-2071. [PMID: 32786368 DOI: 10.1021/acs.bioconjchem.0c00395] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The goal of nanomedicine is to address specific clinical problems optimally, to fight human diseases, and to find clinical relevance to change clinical practice. Nanomedicine is poised to revolutionize medicine via the development of more precise diagnostic and therapeutic tools. The field of nanomedicine encompasses numerous features and therapeutic disciplines. A plethora of nanomolecular structures have been engineered and developed for therapeutic applications based on their multitasking abilities and the wide functionalization of their core scaffolds and surface groups. Within nanoparticles used for nanomedicine, dendrimers as well polymers have demonstrated strong potential as nanocarriers, therapeutic agents, and imaging contrast agents. In this review, we present and discuss the different criteria and parameters to be addressed to prepare and develop druggable nanoparticles in general and dendrimers in particular. We also describe the major requirements, included in the preclinical and clinical roadmap, for NPs/dendrimers for the preclinical stage to commercialization. Ultimately, we raise the clinical translation of new nanomedicine issues.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Xiangyang Shi
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - João Rodrigues
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - René Roy
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Ángeles Muñoz-Fernández
- Sección Inmunologı́a, Laboratorio InmunoBiologı́a Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain, Spanish HIV HGM BioBank, Madrid, Spain, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Valentin Ceña
- CIBERNED, ISCII, Madrid; Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Avda. Almansa, 14, 02006 Albacete, Spain
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse, Cedex 4, France
- Université Toulouse, 118 route de Narbonne, 31077 Toulouse, Cedex 4, France
| |
Collapse
|
158
|
do Nascimento T, Todeschini AR, Santos-Oliveira R, de Souza de Bustamante Monteiro MS, de Souza VT, Ricci-Júnior E. Trends in Nanomedicines for Cancer Treatment. Curr Pharm Des 2020; 26:3579-3600. [DOI: 10.2174/1381612826666200318145349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Background:
Cancer is characterized by abnormal cell growth and considered one of the leading
causes of death around the world. Pharmaceutical Nanotechnology has been extensively studied for the optimization
of cancer treatment.
Objective:
Comprehend the panorama of Pharmaceutical Nanotechnology in cancer treatment, through a survey
about nanomedicines applied in clinical studies, approved for use and patented.
Methods:
Acknowledged products under clinical study and nanomedicines commercialized found in scientific
articles through research on the following databases: Pubmed, Science Direct, Scielo and Lilacs. Derwent tool
was used for patent research.
Results:
Nanomedicines based on nanoparticles, polymer micelles, liposomes, dendrimers and nanoemulsions
were studied, along with cancer therapies such as Photodynamic Therapy, Infrared Phototherapy Hyperthermia,
Magnetic Hyperthermia, Radiotherapy, Gene Therapy and Nanoimmunotherapy. Great advancement has been
observed over nanotechnology applied to cancer treatment, mainly for nanoparticles and liposomes.
Conclusion:
The combination of drugs in nanosystems helps to increase efficacy and decrease toxicity. Based on
the results encountered, nanoparticles and liposomes were the most commonly used nanocarriers for drug encapsulation.
In addition, although few nanomedicines are commercially available, this specific research field is continuously
growing.
Collapse
Affiliation(s)
- Tatielle do Nascimento
- Laboratorio de Desenvolvimento Galenico, Farmacia Universitária, Centro de Ciencias da Saude, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriane R. Todeschini
- Laboratorio de Glicobiologia Estrutural e Funcional, Instituto de Biofisica Carlos Chagas Filho, Centro de Ciencias da Saude, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ralph Santos-Oliveira
- Instituto de Engenharia Nuclear, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Vilênia T. de Souza
- Laboratorio de Tecnologia Industrial Farmaceutica, Centro de Ciencias da Saude, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Ricci-Júnior
- Laboratorio de Desenvolvimento Galenico, Farmacia Universitária, Centro de Ciencias da Saude, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
159
|
Uram Ł, Markowicz J, Misiorek M, Filipowicz-Rachwał A, Wołowiec S, Wałajtys-Rode E. Celecoxib substituted biotinylated poly(amidoamine) G3 dendrimer as potential treatment for temozolomide resistant glioma therapy and anti-nematode agent. Eur J Pharm Sci 2020; 152:105439. [PMID: 32615261 DOI: 10.1016/j.ejps.2020.105439] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 02/01/2023]
Abstract
Glioblastoma multiforme (GBM) is a one of the most widely diagnosed and difficult to treat type of central nervous system tumors. Resection combined with radiotherapy and temozolomide (TMZ) chemotherapy prolongs patients' survival only for 12 - 15 months after diagnosis. Moreover, many patients develop TMZ resistance, thus important is search for a new therapy regimes including targeted drug delivery. Most types of GBM reveal increased expression of cyclooxygenase-2 (COX-2) and production of prostaglandin E2 (PGE2), that are considered as valuable therapeutic target. In these studies, the anti-tumor properties of the selective COX-2 inhibitor celecoxib (CXB) and biotinylated third generation of the poly(amidoamine) dendrimer substituted with 31 CXB residues (G3BC31) on TMZ -resistant U-118 MG glioma cell line were examined and compared with the effect of TMZ alone including viability, proliferation, migration and apoptosis, as well as the cellular expression of COX-2, ATP level, and PGE2 production. Confocal microscopy analysis with the fluorescently labeled G3BC31 analogue has shown that the compound was effectively accumulated in U-118 MG cells in time-dependent manner and its localization was confirmed in lysosomes but not nuclei. G3BC31 reveal much higher cytotoxicity for U-118 MG cells at relatively low concentrations in the range of 2-4 µM with compared to CBX alone, active at 50-100 µM. This was due to induction of apoptosis and inhibition of proliferation and migration. Observed effects were concomitant with reduction of PGE2 production but independent of COX-2 expression. We suggest that investigated conjugate may be a promising candidate for therapy of TMZ-resistant glioblastoma multiforme, although applicable in local treatment, since our previous study of G3BC31 did not demonstrate selectivity against glioma cells compared to normal human fibroblasts. However, it has to be pointed that in our in vivo studies conducted with model organism, Caenorhabditis elegans indicated high anti-nematode activity of G3BC31 in comparison with CXB alone that confirms of usefulness of that organism for estimation of anti-cancer drug toxicity.
Collapse
Affiliation(s)
- Łukasz Uram
- Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy Ave, 35-959 Rzeszow, Poland.
| | - Joanna Markowicz
- Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy Ave, 35-959 Rzeszow, Poland
| | - Maria Misiorek
- Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy Ave, 35-959 Rzeszow, Poland
| | - Aleksandra Filipowicz-Rachwał
- Faculty of Medical Sciences, Rzeszow University of Information Technology and Management, 2 Sucharskiego Str, 35-225 Rzeszow, Poland
| | - Stanisław Wołowiec
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, Warzywna 1a, 35-310 Rzeszow, Poland
| | - Elżbieta Wałajtys-Rode
- Department of Drug Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology,75 Koszykowa Str, 00-664 Warsaw, Poland
| |
Collapse
|
160
|
Recent Advances in Nanocarrier-Assisted Therapeutics Delivery Systems. Pharmaceutics 2020; 12:pharmaceutics12090837. [PMID: 32882875 PMCID: PMC7559885 DOI: 10.3390/pharmaceutics12090837] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Nanotechnologies have attracted increasing attention in their application in medicine, especially in the development of new drug delivery systems. With the help of nano-sized carriers, drugs can reach specific diseased areas, prolonging therapeutic efficacy while decreasing undesired side-effects. In addition, recent nanotechnological advances, such as surface stabilization and stimuli-responsive functionalization have also significantly improved the targeting capacity and therapeutic efficacy of the nanocarrier assisted drug delivery system. In this review, we evaluate recent advances in the development of different nanocarriers and their applications in therapeutics delivery.
Collapse
|
161
|
Chis AA, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, Juncan AM, Totan M, Vonica-Tincu AL, Cormos G, Muntean AC, Muresan ML, Gligor FG, Frum A. Applications and Limitations of Dendrimers in Biomedicine. Molecules 2020; 25:E3982. [PMID: 32882920 PMCID: PMC7504821 DOI: 10.3390/molecules25173982] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Biomedicine represents one of the main study areas for dendrimers, which have proven to be valuable both in diagnostics and therapy, due to their capacity for improving solubility, absorption, bioavailability and targeted distribution. Molecular cytotoxicity constitutes a limiting characteristic, especially for cationic and higher-generation dendrimers. Antineoplastic research of dendrimers has been widely developed, and several types of poly(amidoamine) and poly(propylene imine) dendrimer complexes with doxorubicin, paclitaxel, imatinib, sunitinib, cisplatin, melphalan and methotrexate have shown an improvement in comparison with the drug molecule alone. The anti-inflammatory therapy focused on dendrimer complexes of ibuprofen, indomethacin, piroxicam, ketoprofen and diflunisal. In the context of the development of antibiotic-resistant bacterial strains, dendrimer complexes of fluoroquinolones, macrolides, beta-lactamines and aminoglycosides have shown promising effects. Regarding antiviral therapy, studies have been performed to develop dendrimer conjugates with tenofovir, maraviroc, zidovudine, oseltamivir and acyclovir, among others. Furthermore, cardiovascular therapy has strongly addressed dendrimers. Employed in imaging diagnostics, dendrimers reduce the dosage required to obtain images, thus improving the efficiency of radioisotopes. Dendrimers are macromolecular structures with multiple advantages that can suffer modifications depending on the chemical nature of the drug that has to be transported. The results obtained so far encourage the pursuit of new studies.
Collapse
Affiliation(s)
| | - Carmen Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga St., 550169 Sibiu, Romania; (A.A.C.); (A.M.A.); (L.L.R.); (A.B.); (A.M.J.); (M.T.); (A.L.V.-T.); (G.C.); (A.C.M.); (M.L.M.); (F.G.G.); (A.F.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga St., 550169 Sibiu, Romania; (A.A.C.); (A.M.A.); (L.L.R.); (A.B.); (A.M.J.); (M.T.); (A.L.V.-T.); (G.C.); (A.C.M.); (M.L.M.); (F.G.G.); (A.F.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Aisina RB, Mukhametova LI, Ivanova EM. The Nature of the Inhibitory Action of Anionic Polyamidoamine Dendrimers of Generation 1.5–3.5 on the Activity of the Fibrinolytic System. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020050027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
163
|
Sánchez A, Mejía SP, Orozco J. Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules 2020; 25:E3760. [PMID: 32824757 PMCID: PMC7464666 DOI: 10.3390/molecules25163760] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Polymeric nanocarriers (PNs) have demonstrated to be a promising alternative to treat intracellular infections. They have outstanding performance in delivering antimicrobials intracellularly to reach an adequate dose level and improve their therapeutic efficacy. PNs offer opportunities for preventing unwanted drug interactions and degradation before reaching the target cell of tissue and thus decreasing the development of resistance in microorganisms. The use of PNs has the potential to reduce the dose and adverse side effects, providing better efficiency and effectiveness of therapeutic regimens, especially in drugs having high toxicity, low solubility in the physiological environment and low bioavailability. This review provides an overview of nanoparticles made of different polymeric precursors and the main methodologies to nanofabricate platforms of tuned physicochemical and morphological properties and surface chemistry for controlled release of antimicrobials in the target. It highlights the versatility of these nanosystems and their challenges and opportunities to deliver antimicrobial drugs to treat intracellular infections and mentions nanotoxicology aspects and future outlooks.
Collapse
Affiliation(s)
- Arturo Sánchez
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 Nº 52-20, Medellín 050010, Colombia; (A.S.); (S.P.M.)
| | - Susana P. Mejía
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 Nº 52-20, Medellín 050010, Colombia; (A.S.); (S.P.M.)
- Experimental and Medical Micology Group, Corporación para Investigaciones Biológicas (CIB), Carrera, 72A Nº 78B–141 Medellín 050010, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 Nº 52-20, Medellín 050010, Colombia; (A.S.); (S.P.M.)
| |
Collapse
|
164
|
Devnarain N, Osman N, Fasiku VO, Makhathini S, Salih M, Ibrahim UH, Govender T. Intrinsic stimuli-responsive nanocarriers for smart drug delivery of antibacterial agents-An in-depth review of the last two decades. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1664. [PMID: 32808486 DOI: 10.1002/wnan.1664] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
Antibiotic resistance due to suboptimal targeting and inconsistent antibiotic release at bacterial infection sites has driven the formulation of stimuli-responsive nanocarriers for antibacterial therapy. Unlike conventional nanocarriers, stimuli-responsive nanocarriers have the ability to specifically enhance targeting and drug release profiles. There has been a significant escalation in the design and development of novel nanomaterials worldwide; in particular, intrinsic stimuli-responsive antibiotic nanocarriers, due to their enhanced activity, improved targeted delivery, and superior potential for bacterial penetration and eradication. Herein, we provide an extensive and critical review of pH-, enzyme-, redox-, and ionic microenvironment-responsive nanocarriers that have been reported in literature to date, with an emphasis on the mechanisms of drug release, the nanomaterials used, the nanosystems constructed and the antibacterial efficacy of the nanocarriers. The review also highlights further avenues of research for optimizing their potential and commercialization. This review confirms the potential of intrinsic stimuli-responsive nanocarriers for enhanced drug delivery and antibacterial killing. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nawras Osman
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria Oluwaseun Fasiku
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sifiso Makhathini
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohammed Salih
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Usri H Ibrahim
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
165
|
Mignani S, Shi X, Rodrigues J, Roy R, Muñoz-Fernández Á, Ceña V, Majoral JP. Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. Bioconjug Chem 2020. [DOI: https://doi.org/10.1021/acs.bioconjchem.0c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Xiangyang Shi
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - João Rodrigues
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi’an 710072, PR China
| | - René Roy
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Ángeles Muñoz-Fernández
- Sección Inmunologı́a, Laboratorio InmunoBiologı́a Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain, Spanish HIV HGM BioBank, Madrid, Spain, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Valentin Ceña
- CIBERNED, ISCII, Madrid; Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Avda. Almansa, 14, 02006 Albacete, Spain
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse, Cedex 4, France
- Université Toulouse, 118 route de Narbonne, 31077 Toulouse, Cedex 4, France
| |
Collapse
|
166
|
Bhargav AG, Mondal SK, Garcia CA, Green JJ, Quiñones‐Hinojosa A. Nanomedicine Revisited: Next Generation Therapies for Brain Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Adip G. Bhargav
- Mayo Clinic College of Medicine and Science Mayo Clinic 200 First Street SW Rochester MN 55905 USA
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| | - Sujan K. Mondal
- Department of Pathology University of Pittsburgh School of Medicine 200 Lothrop Street Pittsburgh PA 15213 USA
| | - Cesar A. Garcia
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| | - Jordan J. Green
- Departments of Biomedical Engineering, Neurosurgery, Oncology, Ophthalmology, Materials Science and Engineering, and Chemical and Biomolecular Engineering, Translational Tissue Engineering Center, Bloomberg‐Kimmel Institute for Cancer Immunotherapy, Institute for Nanobiotechnology Johns Hopkins University School of Medicine 400 N. Broadway, Smith 5017 Baltimore MD 21231 USA
| | - Alfredo Quiñones‐Hinojosa
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
- Departments of Otolaryngology‐Head and Neck Surgery/Audiology Neuroscience, Cancer Biology, and Anatomy Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| |
Collapse
|
167
|
Mikhtaniuk SE, Bezrodnyi VV, Shavykin OV, Neelov IM, Sheveleva NN, Penkova AV, Markelov DA. Comparison of Structure and Local Dynamics of Two Peptide Dendrimers with the Same Backbone but with Different Side Groups in Their Spacers. Polymers (Basel) 2020; 12:E1657. [PMID: 32722466 PMCID: PMC7464546 DOI: 10.3390/polym12081657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 01/13/2023] Open
Abstract
In this paper, we perform computer simulation of two lysine-based dendrimers with Lys-2Lys and Lys-2Gly repeating units. These dendrimers were recently studied experimentally by NMR (Sci. Reports, 2018, 8, 8916) and tested as carriers for gene delivery (Bioorg. Chem., 2020, 95, 103504). Simulation was performed by molecular dynamics method in a wide range of temperatures. We have shown that the Lys-2Lys dendrimer has a larger size but smaller fluctuations as well as lower internal density in comparison with the Lys-2Gly dendrimer. The Lys-2Lys dendrimer has larger charge but counterions form more ion pairs with its NH 3 + groups and reduce the bare charge and zeta potential of the first dendrimer more strongly. It was demonstrated that these differences between dendrimers are due to the lower flexibility and the larger charge (+2) of each 2Lys spacers in comparison with 2Gly ones. The terminal CH 2 groups in both dendrimers move faster than the inner CH 2 groups. The calculated temperature dependencies of the spin-lattice relaxation times of these groups for both dendrimers are in a good agreement with the experimental results obtained by NMR.
Collapse
Affiliation(s)
- Sofia E. Mikhtaniuk
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (V.V.B.); (O.V.S.); (I.M.N.)
| | - Valeriy V. Bezrodnyi
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (V.V.B.); (O.V.S.); (I.M.N.)
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| | - Oleg V. Shavykin
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (V.V.B.); (O.V.S.); (I.M.N.)
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| | - Igor M. Neelov
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (V.V.B.); (O.V.S.); (I.M.N.)
| | - Nadezhda N. Sheveleva
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| | - Anastasia V. Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| | - Denis A. Markelov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| |
Collapse
|
168
|
Amgoth C, Santhosh R, Malavath T, Singh A, Murali B, Tang G. Solvent‐Assisted [(Glycine)‐(MP‐SiO
2
NPs)] Aggregate for Drug Loading and Cancer Therapy. ChemistrySelect 2020. [DOI: 10.1002/slct.202001905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chander Amgoth
- Department of Chemistry Zhejiang University Hangzhou 310028 China
| | | | - Tirupathi Malavath
- Department of Biochemistry and Molecular Biology Tel Aviv University Israel
| | - Avinash Singh
- Department of Humanities and Sciences MLR Institute of Technology Hyderabad 500043 India
| | - Banavoth Murali
- School of Chemistry University of Hyderabad Hyderabad 500046 India
| | - Guping Tang
- Department of Chemistry Zhejiang University Hangzhou 310028 China
| |
Collapse
|
169
|
Kapadia CH, Luo B, Dang MN, Irvin-Choy N, Valcourt DM, Day ES. Polymer nanocarriers for MicroRNA delivery. J Appl Polym Sci 2020; 137:48651. [PMID: 33384460 PMCID: PMC7773200 DOI: 10.1002/app.48651] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022]
Abstract
Abnormal expression of microRNAs (miRNAs), which are highlyconserved noncoding RNAs that regulate the expression of various genes post transcriptionally to control cellular functions, has been associated with the development of many diseases. In some cases, disease-promoting miRNAs are upregulated, while in other instances disease-suppressive miRNAs are downregulated. To alleviate this imbalanced miRNA expression, either antagomiRs or miRNA mimics can be delivered to cells to inhibit or promote miRNA expression, respectively. Unfortunately, the clinical translation of bare antagomiRs and miRNA mimics has been challenging because nucleic acids are susceptible to nuclease degradation, display unfavorable pharmacokinetics, and cannot passively enter cells. This review emphasizes the challenges associated with miRNA mimic delivery and then discusses the design and implementation of polymer nanocarriers to overcome these challenges. Preclinical efforts are summarized, and a forward-looking perspective on the future clinical translation of polymer nanomaterials as miRNA delivery vehicles is provided.
Collapse
Affiliation(s)
- Chintan H Kapadia
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| | - Benjamin Luo
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| | - Megan N Dang
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| | - N'Dea Irvin-Choy
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| | - Danielle M Valcourt
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| | - Emily S Day
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716
- Helen F. Graham Cancer Center and Research Institute, Newark, Delaware 19713
| |
Collapse
|
170
|
Municoy S, Álvarez Echazú MI, Antezana PE, Galdopórpora JM, Olivetti C, Mebert AM, Foglia ML, Tuttolomondo MV, Alvarez GS, Hardy JG, Desimone MF. Stimuli-Responsive Materials for Tissue Engineering and Drug Delivery. Int J Mol Sci 2020; 21:E4724. [PMID: 32630690 PMCID: PMC7369929 DOI: 10.3390/ijms21134724] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Smart or stimuli-responsive materials are an emerging class of materials used for tissue engineering and drug delivery. A variety of stimuli (including temperature, pH, redox-state, light, and magnet fields) are being investigated for their potential to change a material's properties, interactions, structure, and/or dimensions. The specificity of stimuli response, and ability to respond to endogenous cues inherently present in living systems provide possibilities to develop novel tissue engineering and drug delivery strategies (for example materials composed of stimuli responsive polymers that self-assemble or undergo phase transitions or morphology transformations). Herein, smart materials as controlled drug release vehicles for tissue engineering are described, highlighting their potential for the delivery of precise quantities of drugs at specific locations and times promoting the controlled repair or remodeling of tissues.
Collapse
Affiliation(s)
- Sofia Municoy
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - María I. Álvarez Echazú
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - Pablo E. Antezana
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - Juan M. Galdopórpora
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - Christian Olivetti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - Andrea M. Mebert
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - María L. Foglia
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - María V. Tuttolomondo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - Gisela S. Alvarez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - John G. Hardy
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster, Lancashire LA1 4YB, UK
- Materials Science Institute, Faraday Building, Lancaster University, Lancaster, Lancashire LA1 4YB, UK
| | - Martin F. Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| |
Collapse
|
171
|
Farzin L, Shamsipur M, Samandari L, Sadjadi S, Sheibani S. Biosensing strategies based on organic-scaffolded metal nanoclusters for ultrasensitive detection of tumor markers. Talanta 2020; 214:120886. [DOI: 10.1016/j.talanta.2020.120886] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/14/2022]
|
172
|
Brandariz-Nuñez A, Robinson SJ, Evilevitch A. Pressurized DNA state inside herpes capsids-A novel antiviral target. PLoS Pathog 2020; 16:e1008604. [PMID: 32702029 PMCID: PMC7377361 DOI: 10.1371/journal.ppat.1008604] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/05/2020] [Indexed: 01/25/2023] Open
Abstract
Drug resistance in viruses represents one of the major challenges of healthcare. As part of an effort to provide a treatment that avoids the possibility of drug resistance, we discovered a novel mechanism of action (MOA) and specific compounds to treat all nine human herpesviruses and animal herpesviruses. The novel MOA targets the pressurized genome state in a viral capsid, "turns off" capsid pressure, and blocks viral genome ejection into a cell nucleus, preventing viral replication. This work serves as a proof-of-concept to demonstrate the feasibility of a new antiviral target-suppressing pressure-driven viral genome ejection-that is likely impervious to developing drug resistance. This pivotal finding presents a platform for discovery of a new class of broad-spectrum treatments for herpesviruses and other viral infections with genome-pressure-dependent replication. A biophysical approach to antiviral treatment such as this is also a vital strategy to prevent the spread of emerging viruses where vaccine development is challenged by high mutation rates or other evasion mechanisms.
Collapse
Affiliation(s)
- Alberto Brandariz-Nuñez
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Scott J. Robinson
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Alex Evilevitch
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
173
|
Photosensitive Supramolecular Micelle-Mediated Cellular Uptake of Anticancer Drugs Enhances the Efficiency of Chemotherapy. Int J Mol Sci 2020; 21:ijms21134677. [PMID: 32630069 PMCID: PMC7370087 DOI: 10.3390/ijms21134677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
The development of stimuli-responsive supramolecular micelles with high drug-loading contents that specifically induce significant levels of apoptosis in cancer cells remains challenging. Herein, we report photosensitive uracil-functionalized supramolecular micelles that spontaneously form via self-assembly in aqueous solution, exhibit sensitive photo-responsive behavior, and effectively encapsulate anticancer drugs at high drug-loading contents. Cellular uptake analysis and double-staining flow cytometric assays confirmed the presence of photo-dimerized uracil groups within the irradiated micelles remarkably enhanced endocytic uptake of the micelles by cancer cells and subsequently led to higher levels of apoptotic cell death, and thus improved the therapeutic effect in vitro. Thus, photo-dimerized uracil-functionalized supramolecular micelles may potentially represent an intelligent nanovehicle to improve the safety, efficacy, and applicability of cancer chemotherapy, and could also enable the development of nucleobase-based supramolecular micelles for multifunctional biomaterials and novel biomedical applications.
Collapse
|
174
|
Kumar S, Sharma B. Leveraging Electrostatic Interactions for Drug Delivery to the Joint. Bioelectricity 2020; 2:82-100. [PMID: 32856016 DOI: 10.1089/bioe.2020.0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Arthritis is a debilitating joint disease with a high economic burden and prevalence. There are many challenges delivering therapeutics to the joint, including low bioavailability when administered systemically and low joint retention after intra-articular injection. Therefore, drug delivery systems such as nanoparticles, liposomes, dendrimers, and carrier proteins have been utilized to overcome some of these limitations. To enhance joint tissue localization and retention, there are opportunities to leverage electrostatic interactions between drug carriers and various tissues and cells. These opportunities, as they pertain to specific joint tissues, are explored in this review. Further, the impact that electrostatic interactions has on various drug delivery parameters, such as the formation of a protein corona, the uptake and cytotoxicity, and the biodistribution of the drug delivery systems, is discussed. Lastly, this review summarizes key findings from studies that have investigated the use of electrostatic interactions to increase targeting of specific joint tissues and limitations in preclinical investigations are identified. As more novel targets are discovered in treating arthritis, there will be a continued need to localize therapeutics to specific tissues for greater therapeutic outcomes and hence attention must be paid in designing the drug delivery systems.
Collapse
Affiliation(s)
- Shreedevi Kumar
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
175
|
Hatami E, Jaggi M, Chauhan SC, Yallapu MM. Gambogic acid: A shining natural compound to nanomedicine for cancer therapeutics. Biochim Biophys Acta Rev Cancer 2020; 1874:188381. [PMID: 32492470 DOI: 10.1016/j.bbcan.2020.188381] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
Abstract
The United States Food and Drug Administration has permitted number of therapeutic agents for cancer treatment. Most of them are expensive and have some degree of systemic toxicity which makes overbearing in clinical settings. Although advanced research continuously applied in cancer therapeutics, but drug resistance, metastasis, and recurrence remain unanswerable. These accounts to an urgent clinical need to discover natural compounds with precisely safe and highly efficient for the cancer prevention and cancer therapy. Gambogic acid (GA) is the principle bioactive and caged xanthone component, a brownish gamboge resin secreted from the of Garcinia hanburyi tree. This molecule showed a spectrum of biological and clinical benefits against various cancers. In this review, we document distinct biological characteristics of GA as a novel anti-cancer agent. This review also delineates specific molecular mechanism(s) of GA that are involved in anti-cancer, anti-metastasis, anti-angiogenesis, and chemo-/radiation sensitizer activities. Furthermore, recent evidence, development, and implementation of various nanoformulations of gambogic acid (nanomedicine) have been described.
Collapse
Affiliation(s)
- Elham Hatami
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
176
|
Affiliation(s)
- Aung Than
- School of Chemical and Biomedical Engineering, Innovative Centre for Flexible DevicesNanyang Technological University Singapore
| | - Ping Zan
- School of Chemical and Biomedical Engineering, Innovative Centre for Flexible DevicesNanyang Technological University Singapore
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Innovative Centre for Flexible DevicesNanyang Technological University Singapore
| |
Collapse
|
177
|
Viltres H, Odio OF, Biesinger MC, Montiel G, Borja R, Reguera E. Preparation of Amine‐ and Disulfide‐Containing PAMAM‐Based Dendrons for the Functionalization of Hydroxylated Surfaces: XPS as Structural Sensor. ChemistrySelect 2020. [DOI: 10.1002/slct.202000432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Herlys Viltres
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad LegariaInstituto Politécnico Nacional Ciudad de México México
| | - Oscar F. Odio
- CONACyT-Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria Ciudad México México
| | | | | | - Raúl Borja
- Centro de Nanociencias y Micro-NanotecnologíasInstituto Politécnico Nacional Ciudad de México, Distrito Federal, México
| | - Edilso Reguera
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad LegariaInstituto Politécnico Nacional Ciudad de México México
| |
Collapse
|
178
|
Fana M, Gallien J, Srinageshwar B, Dunbar GL, Rossignol J. PAMAM Dendrimer Nanomolecules Utilized as Drug Delivery Systems for Potential Treatment of Glioblastoma: A Systematic Review. Int J Nanomedicine 2020; 15:2789-2808. [PMID: 32368055 PMCID: PMC7185330 DOI: 10.2147/ijn.s243155] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/03/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GB) is a grade IV astrocytoma that maintains a poor prognosis with respect to current treatment options. Despite major advancements in the fields of surgery and chemoradiotherapy over the last few decades, the life expectancy for someone with glioblastoma remains virtually unchanged and warrants a new approach for treatment. Poly(amidoamine) (PAMAM) dendrimers are a type of nanomolecule that ranges in size (between 1 and 100 nm) and shape and can offer a new viable solution for the treatment of intracranial tumors, including glioblastoma. Their ability to deliver a variety of therapeutic cargo and penetrate the blood-brain barrier (BBB), while preserving low cytotoxicity, make them a favorable candidate for further investigation into the treatment of glioblastoma. Here, we present a systematic review of the current advancements in PAMAM dendrimer technology, including the wide spectrum of dendrimer generations formulated, surface modifications, core modifications, and conjugations developed thus far to enhance tumor specificity and tumor penetration for treatment of glioblastoma. Furthermore, we highlight the extensive variety of therapeutics capable of delivery by PAMAM dendrimers for the treatment of glioblastoma, including cytokines, peptides, drugs, siRNAs, miRNAs, and organic polyphenols. While there have been prolific results stemming from aggressive research into the field of dendrimer technology, there remains a nearly inexhaustible amount of questions that remain unanswered. Nevertheless, this technology is rapidly developing and is nearing the cusp of use for aggressive tumor treatment. To that end, we further highlight future prospects in focus as researchers continue developing more optimal vehicles for the delivery of therapeutic cargo.
Collapse
Affiliation(s)
- Michael Fana
- College of Medicine, Central Michigan University, Mt. Pleasant, MI48859, USA
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI48859, USA
| | - John Gallien
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI48859, USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI48859, USA
| | - Bhairavi Srinageshwar
- College of Medicine, Central Michigan University, Mt. Pleasant, MI48859, USA
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI48859, USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI48859, USA
| | - Gary L Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI48859, USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI48859, USA
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI48859, USA
- Field Neurosciences Institute, St. Mary’s of Michigan, Saginaw, MI48604, USA
| | - Julien Rossignol
- College of Medicine, Central Michigan University, Mt. Pleasant, MI48859, USA
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI48859, USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI48859, USA
| |
Collapse
|
179
|
Sartaj A, Baboota S, Ali J. Nanomedicine: A Promising Avenue for the Development of Effective Therapy for Breast Cancer. Curr Cancer Drug Targets 2020; 20:603-615. [PMID: 32228423 DOI: 10.2174/1568009620666200331124113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/26/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Breast cancer is the most probable cancer among women. However, the available treatment is based on targeting different stages of breast cancer viz., radiation therapy, hormonal therapy, chemotherapy, and surgical interventions, which have some limitations. The available chemotherapeutics are associated with problems like low solubility, low permeability, high first-pass metabolism, and P-glycoprotein efflux. Hence, the aforementioned restrictions lead to ineffective treatment. Multiple chemotherapeutics can also cause resistance in tumors. So, the purpose is to develop an effective therapeutic regimen for the treatment of breast cancer by applying a nanomedicinal approach. METHODS This review has been conducted on a systematic search strategy, based on relevant literature available on Pub Med, MedlinePlus, Google Scholar, and Sciencedirect up to November 2019 using keywords present in abstract and title of the review. As per our inclusion and exclusion criteria, 226 articles were screened. Among 226, a total of 40 articles were selected for this review. RESULTS The significant findings with the currently available treatment is that the drug, besides its distribution to the target-specific site, also distributes to healthy cells, which results in severe side effects. Moreover, the drug is less bioavailable at the site of action; therefore, to overcome this, a high dose is required, which again causes side effects and lower the benefits. Nanomedicinal approaches give an alternative approach to avoid the associated problems of available chemotherapeutics treatment of breast cancer. CONCLUSION The nanomedicinal strategies are useful over the conventional treatment of breast cancer and deliver a target-specific drug-using different novel drug delivery approaches.
Collapse
Affiliation(s)
- Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| |
Collapse
|
180
|
Visentin S, Sedić M, Pavelić SK, Pavelić K. Targeting Tumour Metastasis: The Emerging Role of Nanotechnology. Curr Med Chem 2020; 27:1367-1381. [DOI: 10.2174/0929867326666181220095343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/13/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022]
Abstract
The metastatic process has still not been completely elucidated, probably due to insufficient knowledge of the underlying mechanisms. Here, we provide an overview of the current findings that shed light on specific molecular alterations associated with metastasis and present novel concepts in the treatment of the metastatic process. In particular, we discuss novel pharmacological approaches in the clinical setting that target metastatic progression. New insights into the process of metastasis allow optimisation and design of new treatment strategies, especially in view of the fact that metastatic cells share common features with stem cells. Nano- and micro-technologies are herein elaborated in details as a promising therapeutic concept in targeted drug delivery for metastatic cancer. Progression in the field could provide a more efficient way to tackle metastasis and thus bring about advancements in the treatment and management of patients with advanced cancer.
Collapse
Affiliation(s)
- Sarah Visentin
- Department of Biotechnology, University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejcic 2, 51 000 Rijeka, Croatia
| | - Mirela Sedić
- Department of Biotechnology, University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejcic 2, 51 000 Rijeka, Croatia
| | - Sandra Kraljević Pavelić
- Department of Biotechnology, University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejcic 2, 51 000 Rijeka, Croatia
| | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebacka 30, 52 100 Pula, Croatia
| |
Collapse
|
181
|
Chariou PL, Ortega-Rivera OA, Steinmetz NF. Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS NANO 2020; 14:2678-2701. [PMID: 32125825 PMCID: PMC8085836 DOI: 10.1021/acsnano.0c00173] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanocarrier-based delivery systems can be used to increase the safety and efficacy of active ingredients in medical, veterinary, or agricultural applications, particularly when such ingredients are unstable, sparingly soluble, or cause off-target effects. In this review, we highlight the diversity of nanocarrier materials and their key advantages compared to free active ingredients. We discuss current trends based on peer-reviewed research articles, patent applications, clinical trials, and the nanocarrier formulations already approved by regulatory bodies. Although most nanocarriers have been engineered to combat cancer, the number of formulations developed for other purposes is growing rapidly, especially those for the treatment of infectious diseases and parasites affecting humans, livestock, and companion animals. The regulation and prohibition of many pesticides have also fueled research to develop targeted pesticide delivery systems based on nanocarriers, which maximize efficacy while minimizing the environmental impact of agrochemicals.
Collapse
|
182
|
Pandey P, Satija S, Wadhwa R, Mehta M, Purohit D, Gupta G, Prasher P, Chellappan DK, Awasthi R, Dureja H, Dua K. Emerging trends in nanomedicine for topical delivery in skin disorders: Current and translational approaches. Dermatol Ther 2020; 33:e13292. [DOI: 10.1111/dth.13292] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/12/2020] [Accepted: 02/26/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Parijat Pandey
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research Baba Mastnath University Rohtak Haryana India
| | - Saurabh Satija
- School of Pharmaceutical Sciences Lovely Professional University Phagwara Punjab India
| | - Ridhima Wadhwa
- Faculty of Life Science and Biotechnology South Asian University Akbar Bhawan, Chanakyapuri New Delhi India
- Discipline of Pharmacy, Graduate School of Health University of Technology Sydney Sydney Australia
| | - Meenu Mehta
- School of Pharmaceutical Sciences Lovely Professional University Phagwara Punjab India
- Discipline of Pharmacy, Graduate School of Health University of Technology Sydney Sydney Australia
- Centre for Inflammation Centenary Institute Sydney New South Wales Australia
| | - Deepika Purohit
- Department of Pharmaceutical Sciences Indira Gandhi University Rewari Haryana India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences Jaipur National University Jaipur Rajasthan India
| | - Parteek Prasher
- Department of Chemistry University of Petroleum and Energy Studies Dehradun India
| | - Dinesh K. Chellappan
- Departmental Sciences, School of Pharmacy International Medical University Kuala Lumpur Malaysia
| | - Rajendra Awasthi
- Amity Institute of Pharmacy Amity University Uttar Pradesh Noida Uttar Pradesh India
| | - Harish Dureja
- Department of Pharmaceutical Sciences Maharshi Dayanand University Rohtak Haryana India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health University of Technology Sydney Sydney Australia
- Centre for Inflammation Centenary Institute Sydney New South Wales Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN) Callaghan New South Wales Australia
| |
Collapse
|
183
|
Akbarzadeh Khiavi M, Safary A, Barar J, Ajoolabady A, Somi MH, Omidi Y. Multifunctional nanomedicines for targeting epidermal growth factor receptor in colorectal cancer. Cell Mol Life Sci 2020; 77:997-1019. [PMID: 31563999 PMCID: PMC11104811 DOI: 10.1007/s00018-019-03305-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/08/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Systemic administration of chemotherapeutics by nanocarriers (NCs) functionalized with targeting agents provides a localized accumulation of drugs in the target tissues and cells. Advanced nanoscaled medicaments can enter into the tumor microenvironment (TME) and overcome the uniquely dysregulated biological settings of TME, including highly pressurized tumor interstitial fluid in an acidic milieu. Such multimodal nanomedicines seem to be one of the most effective treatment modalities against solid tumors such as colorectal cancer (CRC). To progress and invade, cancer cells overexpress various oncogenes and molecular markers such as epidermal growth factor receptors (EGFRs), which can be exploited for targeted delivery of nanoscaled drug delivery systems (DDSs). In fact, to develop effective personalized multimodal nanomedicines, the type of solid tumor and status of the disease in each patient should be taken into consideration. While the development of such multimodal-targeted nanomedicines is largely dependent on the expression level of oncomarkers, the type of NCs and homing/imaging agents play key roles in terms of their efficient applications. In this review, we provide deep insights into the development of EGFR-targeting nanomedicines and discuss various types of nanoscale DDSs (e.g., organic and inorganic nanoparticles) for targeting of the EGFR-positive solid tumors such as CRC.
Collapse
Affiliation(s)
- Mostafa Akbarzadeh Khiavi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Azam Safary
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ajoolabady
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
184
|
Boca S, Gulei D, Zimta AA, Onaciu A, Magdo L, Tigu AB, Ionescu C, Irimie A, Buiga R, Berindan-Neagoe I. Nanoscale delivery systems for microRNAs in cancer therapy. Cell Mol Life Sci 2020; 77:1059-1086. [PMID: 31637450 PMCID: PMC11105078 DOI: 10.1007/s00018-019-03317-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/26/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022]
Abstract
Concomitant with advances in research regarding the role of miRNAs in sustaining carcinogenesis, major concerns about their delivery options for anticancer therapies have been raised. The answer to this problem may come from the world of nanoparticles such as liposomes, exosomes, polymers, dendrimers, mesoporous silica nanoparticles, quantum dots and metal-based nanoparticles which have been proved as versatile and valuable vehicles for many biomolecules including miRNAs. In another train of thoughts, the general scheme of miRNA modulation consists in inhibition of oncomiRNA expression and restoration of tumor suppressor ones. The codelivery of two miRNAs or miRNAs in combination with chemotherapeutics or small molecules was also proposed. The present review presents the latest advancements in miRNA delivery based on nanoparticle-related strategies.
Collapse
Affiliation(s)
- Sanda Boca
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian, 400271, Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu", University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, Romania
| | - Anca Onaciu
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, Romania
| | - Lorand Magdo
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu", University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, Romania
| | - Calin Ionescu
- 5th Surgical Department, Municipal Hospital, Cluj-Napoca, Romania
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Irimie
- Department of Oncological Surgery and Gynecological Oncology, 400015, Cluj-Napoca, Romania
- Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015, Cluj-Napoca, Romania
| | - Rares Buiga
- Department of Pathology, "Prof Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu", University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania.
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, Cluj-Napoca, Romania.
| |
Collapse
|
185
|
The interaction of nanostructured antimicrobials with biological systems: Cellular uptake, trafficking and potential toxicity. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2019.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
186
|
Karimi-Sales R, Ashiri M, Hafizi M, Kalanaky S, Maghsoudi AH, Fakharzadeh S, Maghsoudi N, Nazaran MH. Neuroprotective Effect of New Nanochelating-Based Nano Complex, ALZc3, Against Aβ (1-42)-Induced Toxicity in Rat: a Comparison with Memantine. Pharm Res 2020; 37:48. [PMID: 32020309 DOI: 10.1007/s11095-020-2773-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The current drugs for Alzheimer's disease (AD) are only used to slow or delay the progression of the pathology. So using a novel technology is a necessity to synthesize more effective medications to control this most common cause of dementia. In this study, using nanochelating technology, ALZc3 was synthesized and its therapeutic effects were evaluated in comparison with memantine on a well-known rat model of AD, which is based on Amyloid-βeta (Aβ) injection into the brain. MATERIALS AND METHODS Aβ (1-42) was injected bilaterally into the CA1 area of the hippocampus of male rats and then animals were treated daily by oral administration of Alz-C3, memantine or their vehicles. Activities of antioxidant enzymes catalase and superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA) levels, as well as Bax/Bcl-2 ratio, caspase-3 activation, and TNF-α expression were evaluated 7 days after Aβ injection. Finally, learning and memory of the rats were assessed by Morris water maze test. RESULTS ALZc3 and memantine improved memory impairment and antioxidant activity and reduced TNF-α expression, caspase-3 activity and Bax/Bcl-2 ratio in the rat's hippocampus. The results showed a superiority of ALZC3 compared to memantine in reducing caspase-3, increasing CAT activity in Aβ (1-42)-injected groups and improving apoptosis factor in healthy mice. CONCLUSION These results indicated that ALZc3 could significantly prevent the memory impairment and Aβ (1-42) toxicity. Thus, ALZc3 could be a promising novel anti-AD agent.
Collapse
Affiliation(s)
- Ramin Karimi-Sales
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrafarin Ashiri
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Amir Hossein Maghsoudi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran.,Humer Daroo, TUMS pharmaceutical incubation center, Kargar Shomali, Tehran, Iran
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Nader Maghsoudi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
187
|
Interactions between PAMAM dendrimers and DOPC lipid multilayers: Membrane thinning and structural disorder. Biochim Biophys Acta Gen Subj 2020; 1865:129542. [PMID: 31987955 DOI: 10.1016/j.bbagen.2020.129542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Understanding the structure of hybrid nanoparticle-lipid multilayers is of fundamental importance to their bioanalytical applications and nanotoxicity, where nanoparticle-membrane interactions play an important role. Poly(amidoamine) (PAMAM) dendrimers are branched polymeric nanoparticles with potential biomedical applications due to precise tunability of their physicochemical properties. Here, the effect of PAMAM dendrimers (2.9-4.5 nm) with either a hydrophilic amine (NH2) or a hydrophobic C12 chain surface termination on the 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) multilayers has been studied for the first time. METHODS DOPC multilayers were created by the liposome-rupture method via drop-casting dendrimer-liposome dispersions with the dendrimers added at different concentrations and at three different stages. The multilayer structure was evaluated via the analysis of the synchrotron X-ray reflectivity (XRR) curves, obtaining the bilayer d-spacing, the coherence length from the Scherrer (Ls) analysis of the Bragg peaks, and the paracrystalline disorder parameter (g). RESULTS Dendrimer addition led to lipid bilayer thinning and more disordered multilayer structures. Larger hydrophobic dendrimers caused greater structural disruption to the multilayers compared to the smaller dendrimers. The smallest, positively charged dendrimers at their highest concentration caused the most pronounced bilayer thinning. The dendrimer-liposome mixing method also affected the multilayer structure due to different dendrimer aggregation involved. CONCLUSIONS These results show the complexity of the effect of dendrimer physicochemical properties and the addition method of dendrimers on the structure of mixed dendrimer-DOPC multilayers. GENERAL SIGNIFICANCE These insights are useful for fundamental understanding of nanotoxicity and future biomedical application of nanocomposite multilayer materials in which nanoparticles are added for enhanced properties and functionality.
Collapse
|
188
|
Carvalho MR, Reis RL, Oliveira JM. Dendrimer nanoparticles for colorectal cancer applications. J Mater Chem B 2020; 8:1128-1138. [PMID: 31971528 DOI: 10.1039/c9tb02289a] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer nanotechnology is a prolific field of research, where nanotools are employed to diagnose and treat cancer with unprecedented precision. Targeted drug delivery is fundamental for more efficient cancer treatments. For this, nanoparticles have been extensively used during the past few years in order to improve the specificity, selectivity and controlled release of drug delivery. It holds potential in minimizing systemic toxicity through the development of functionalized particles for targeted treatment. Among all the type of nanoparticles, dendrimers display several advantages, which make them ideal candidates for improved and targeted drug delivery in cancer research. Dendrimers can transport large amounts of drug into specific areas. In addition, they can be employed for monitoring the progress of the treatment process, with an unprecedented theranostic capability. Special emphasis is given to colorectal cancer and to the preferred employed strategies for producing drug-loaded/functionalized NPs for cancer therapy in the past few years.
Collapse
Affiliation(s)
- M R Carvalho
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - R L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - J M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
189
|
Mandal AK. Dendrimers in targeted drug delivery applications: a review of diseases and cancer. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1713780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ardhendu Kumar Mandal
- Central Instrumentation Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, India
| |
Collapse
|
190
|
Alfei S, Marengo B, Domenicotti C. Polyester-Based Dendrimer Nanoparticles Combined with Etoposide Have an Improved Cytotoxic and Pro-Oxidant Effect on Human Neuroblastoma Cells. Antioxidants (Basel) 2020; 9:E50. [PMID: 31935872 PMCID: PMC7022520 DOI: 10.3390/antiox9010050] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Etoposide (ETO) is a cytotoxic drug that exerts its effect by increasing reactive oxygen species (ROS) production. Although ETO is widely used, fast metabolism, poor solubility, systemic toxicity, and multi-drug resistance induction all limit its administration dosage and its therapeutic efficiency. In order to address these issues, a biodegradable dendrimer was prepared for entrapping and protecting ETO and for enhancing its solubility and effectiveness. The achieved dendrimer complex with ETO (CPX 5) showed the typical properties of a well-functioning delivery system, i.e., nanospherical morphology (70 nm), optimal Z-potential (-45 mV), good drug loading (37%), very satisfying entrapment efficiency (53%), and a remarkably improved solubility in biocompatible solvents. In regards to its cytotoxic activity, CPX 5 was tested on neuroblastoma (NB) cells with very promising results. In fact, the dendrimer scaffold and ETO are able to exert per se a cytotoxic and pro-oxidant activity on human NB cells. When CPX 5 is combined with ETO, it shows a synergistic action, slowly releasing the drug over time and significantly improving and protracting bioactivity. On the basis of these findings, the prepared ETO reservoir represents a novel biodegradable and promising device for the delivery of ETO into NB cells.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy;
| | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy;
| |
Collapse
|
191
|
Antibody-Targeted Nanoparticles for Cancer Treatment. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
192
|
Wang SY, Hu HZ, Qing XC, Zhang ZC, Shao ZW. Recent advances of drug delivery nanocarriers in osteosarcoma treatment. J Cancer 2020; 11:69-82. [PMID: 31892974 PMCID: PMC6930408 DOI: 10.7150/jca.36588] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor mainly occurred in children and adolescence, and chemotherapy is limited for the side effects and development of drug resistance. Advances in nanotechnology and knowledge of cancer biology have led to significant improvements in developing tumor-targeted drug delivery nanocarriers, and some have even entered clinically application. Delivery of chemotherapeutic agents by functionalized smart nanocarriers could protect the drugs from rapid clearance, prolong the circulating time, and increase the drug concentration at tumor sites, thus enhancing the therapeutic efficacy and reducing side effects. Various drug delivery nanocarriers have been designed and tested for osteosarcoma treatment, but most of them are still at experimental stage, and more further studies are needed before clinical application. In this present review, we briefly describe the types of commonly used nanocarriers in osteosarcoma treatment, and discuss the strategies for osteosarcoma-targeted delivery and controlled release of drugs. The application of nanoparticles in the management of metastatic osteosarcoma is also briefly discussed. The purpose of this article is to present an overview of recent progress of nanoscale drug delivery platforms in osteosarcoma, and inspire new ideas to develop more effective therapeutic options.
Collapse
Affiliation(s)
- Shang-Yu Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hong-Zhi Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiang-Cheng Qing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhi-Cai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zeng-Wu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
193
|
Alshweiat A, Ambrus R, Csoka II. Intranasal Nanoparticulate Systems as Alternative Route of Drug Delivery. Curr Med Chem 2019; 26:6459-6492. [PMID: 31453778 DOI: 10.2174/0929867326666190827151741] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/25/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022]
Abstract
There is always a need for alternative and efficient methods of drug delivery. The nasal cavity can be considered as a non-invasive and efficient route of administration. It has been used for local, systemic, brain targeting, and vaccination delivery. Although many intranasal products are currently available on the market, the majority is used for local delivery with fewer products available for the other targets. As nanotechnology utilization in drug delivery has rapidly spread out, the nasal delivery has become attractive as a promising approach. Nanoparticulate systems facilitate drug transportation across the mucosal barrier, protect the drug from nasal enzyme degradation, enhance the delivery of vaccines to the lymphoid tissue of the nasal cavity with an adjuvant activity, and offer a way for peptide delivery into the brain and the systemic circulation, in addition to their potential for brain tumor treatment. This review article aims at discussing the potential benefit of the intranasal nanoparticulate systems, including nanosuspensions, lipid and surfactant, and polymer-based nanoparticles as regards productive intranasal delivery. The aim of this review is to focus on the topicalities of nanotechnology applications for intranasal delivery of local, systemic, brain, and vaccination purposes during the last decade, referring to the factors affecting delivery, regulatory aspects, and patient expectations. This review further identifies the benefits of applying the Quality by Design approaches (QbD) in product development. According to the reported studies on nanotechnology-based intranasal delivery, potential attention has been focused on brain targeting and vaccine delivery with promising outcomes. Despite the significant research effort in this field, nanoparticle-based products for intranasal delivery are not available. Thus, further efforts are required to promote the introduction of intranasal nanoparticulate products that can meet the requirements of regulatory affairs with high patient acceptance.
Collapse
Affiliation(s)
- Areen Alshweiat
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary.,Faculty of Pharmaceutical Science, The Hashemite University, Zarqa, Jordan
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - IIdikó Csoka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| |
Collapse
|
194
|
Influence cationic and anionic PAMAM dendrimers of low generation on selected hemostatic parameters in vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110605. [PMID: 32228918 DOI: 10.1016/j.msec.2019.110605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Polyamidoamine (PAMAM) dendrimers are a new class of monodisperse polymers that are used for drug delivery in systemic administrations. The influence of PAMAM dendrimers on components of the blood coagulation system has been extensively studied, but their effect on the activity of the fibrinolysis system has not been studied to date. METHODS The effect of cationic (G1-G3) and anionic (G1.5-G3.5) PAMAM dendrimers on the conformation and function of the main components of the coagulation and fibrinolysis systems was comparatively studied. Changes in overall plasma hemostatic potential, thrombin generation, prothrombin time, thrombin and tPA activities, the fluorescence of fibrinogen and plasminogen, zeta potential, polymerization of fibrinogen, and activation of plasminogen were analyzed to assess coagulofibrinolytic mechanisms of influence of the charge of the dendrimers. RESULTS Cationic dendrimers increased prothrombin time, suppressed thrombin generation in plasma, and changed the conformation and coagulability of fibrinogen, while anionic dendrimers did not have such effects. Anionic dendrimers slightly reduced tPA activity and altered plasminogen conformation much more strongly than the cationic dendrimers. Plasminogen activation by tPA was strongly inhibited by anionic dendrimers and weakly stimulated by cationic dendrimers. All these effects were enhanced with increasing generation and concentration of the dendrimers. CONCLUSIONS PAMAM-NH2 dendrimers inhibit the extrinsic activation pathway of the coagulation system and alter the conformation and function of fibrinogen. PAMAM-COOH dendrimers change the conformation of plasminogen and inhibit its activation by tPA. This study gives new insight into the effect of anionic PAMAM dendrimers on the activity of the fibrinolytic system. For intravenous applications, the antifibrinolytic effect of anionic PAMAM dendrimers of generation ≥G2.5 should be considered.
Collapse
|
195
|
Gopalan D, Pandey A, Udupa N, Mutalik S. Receptor specific, stimuli responsive and subcellular targeted approaches for effective therapy of Alzheimer: Role of surface engineered nanocarriers. J Control Release 2019; 319:183-200. [PMID: 31866505 DOI: 10.1016/j.jconrel.2019.12.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/18/2019] [Indexed: 12/23/2022]
Abstract
The present review deals in-depth with the current application of nanotechnology in targeting the major pathological hallmarks of Alzheimer's disease. This review further focuses on the surface modification of the nanocarriers using antibody, aptamers, proteins and peptides for specific targeting in the brain by overcoming the biological barriers such as blood brain barrier. The stimuli responsive/pulsatile drug delivery nanoplatforms using stimuli such as pH, temperature, photo-thermal, reactive oxygen species, ultrasonic stimulation and electrical stimulation, which help to create a micro-environment to either trigger the site-specific drug release from the nanoplatform or to reduce the disease burden in the brain, have been discussed. The targeting of nanoplatforms to sub-cellular compartments such as mitochondria, nuclei, endoplasmic reticulum, golgi apparatus and lysosomes along with receptor specific interactions such as such folate, lactoferrin, transferrin, insulin and low-density lipoprotein (LDL) receptors has been included to give reader an idea about strategies to enhance cellular co-localization and receptor based targeting of nanoparticles to enhance efficacy of delivery platform. This article describes the various type of nanoplatforms which include lipidic nanoplatforms, polymeric nanoplatforms, inorganic nanoplatforms (metallic nanocarriers, quantum dots, ceramic based nanocarriers), carbon based nanocarriers and cell derived or biomimetic (exosomes and virus based) nanoplatforms, to either deliver the active ingredient or to themselves target the Alzheimer's disease pathology. Thus the review gives a detailed insight of all the recent research studies carried out using nanotechnology in the field of Alzheimer's disease.
Collapse
Affiliation(s)
- Divya Gopalan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Research, Manipal, Karnataka, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Research, Manipal, Karnataka, India
| | - Nayanabhirama Udupa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Research, Manipal, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Research, Manipal, Karnataka, India.
| |
Collapse
|
196
|
Manatunga DC, Godakanda VU, de Silva RM, de Silva KMN. Recent developments in the use of organic-inorganic nanohybrids for drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1605. [PMID: 31826328 DOI: 10.1002/wnan.1605] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 01/22/2023]
Abstract
Organic-inorganic nanohybrid (OINH) structures providing a versatile platform for drug delivery with improved characteristics are an area which has gained recent attention. Much effort has been taken to develop these structures to provide a viable treatment options for much alarming diseases such as cancer, bone destruction, neurological disorders, and so on. This review focuses on current work carried out in producing different types of hybrid drug carriers identifying their properties, fabrication techniques, and areas where they have been applied. A brief introduction on understating the requirement for blending organic-inorganic components into a nanohybrid drug carrier is followed with an elaboration given about the different types of OINHs developed currently highlighting their properties and applications. Then, different fabrication techniques are discussed given attention to surface functionalization, one-pot synthesis, wrapping, and electrospinning methods. Finally, it is concluded by briefing the challenges that are remaining to be addressed to obtain multipurpose nanohybrid drug carriers with wider applicability. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Danushika C Manatunga
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - V Umayangana Godakanda
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Rohini M de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - K M Nalin de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
197
|
Nucleic acid-based theranostics in type 1 diabetes. Transl Res 2019; 214:50-61. [PMID: 31491371 DOI: 10.1016/j.trsl.2019.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/01/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022]
Abstract
Application of RNAi interference for type 1 diabetes (T1D) therapy bears tremendous potential. This review will discuss vehicles for oligonucleotide delivery, imaging modalities used for delivery monitoring, therapeutic targets, and different theranostic strategies that can be applied for T1D treatment.
Collapse
|
198
|
Three-Component Sequential Reactions for Polymeric Nanoparticles with Tailorable Core and Surface Functionalities. Chem 2019. [DOI: 10.1016/j.chempr.2019.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
199
|
Zhu Y, Liu C, Pang Z. Dendrimer-Based Drug Delivery Systems for Brain Targeting. Biomolecules 2019; 9:E790. [PMID: 31783573 PMCID: PMC6995517 DOI: 10.3390/biom9120790] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Human neuroscience has made remarkable progress in understanding basic aspects of functional organization; it is a renowned fact that the blood-brain barrier (BBB) impedes the permeation and access of most drugs to central nervous system (CNS) and that many neurological diseases remain undertreated. Therefore, a number of nanocarriers have been designed over the past few decades to deliver drugs to the brain. Among these nanomaterials, dendrimers have procured an enormous attention from scholars because of their nanoscale uniform size, ease of multi-functionalization, and available internal cavities. As hyper-branched 3D macromolecules, dendrimers can be maneuvered to transport diverse therapeutic agents, incorporating small molecules, peptides, and genes; diminishing their cytotoxicity; and improving their efficacy. Herein, the present review will give exhaustive details of extensive researches in the field of dendrimer-based vehicles to deliver drugs through the BBB in a secure and effectual manner. It is also a souvenir in commemorating Donald A. Tomalia on his 80th birthday.
Collapse
Affiliation(s)
- Yuefei Zhu
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China; (Y.Z.); (C.L.)
- Department of Biomedical Engineering, Columbia University Medical Center, 3960 Broadway, New York, NY 10032, USA
| | - Chunying Liu
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China; (Y.Z.); (C.L.)
| | - Zhiqing Pang
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China; (Y.Z.); (C.L.)
| |
Collapse
|
200
|
Dias AP, da Silva Santos S, da Silva JV, Parise-Filho R, Igne Ferreira E, Seoud OE, Giarolla J. Dendrimers in the context of nanomedicine. Int J Pharm 2019; 573:118814. [PMID: 31759101 DOI: 10.1016/j.ijpharm.2019.118814] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/23/2023]
Abstract
Dendrimers are globular structures, presenting an initiator core, repetitive layers starting radially from the core and terminal groups on the surface, resembling tree architecture. These structures have been studied in many biological applications, as drug, DNA, RNA and proteins delivery, as well as imaging and radiocontrast agents. With reference to that, this review focused in providing examples of dendrimers used in nanomedicine. Although most studies emphasize cancer, there are others which reveal action in the neurosystem, reducing either neuroinflammation or protein aggregation. Dendrimers can carry bioactive compounds by covalent bond (dendrimer prodrug), or by ionic interaction or adsortion in the internal space of the nanostructure. Additionally, dendrimers can be associated with other polymers, as PEG (polyethylene glycol), and with targeting structures as aptamers, antibodies, folic acid and carbohydrates. Their products in preclinical/clinical trial and those in the market are also discussed, with a total of six derivatives in clinical trials and seven products available in the market.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Soraya da Silva Santos
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - João Vitor da Silva
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Elizabeth Igne Ferreira
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Omar El Seoud
- Department of Organic Chemistry, Institute of Chemistry, University of São Paulo - USP, São Paulo, SP, Brazil
| | - Jeanine Giarolla
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil.
| |
Collapse
|