1951
|
Nickoloff BJ, Ben-Neriah Y, Pikarsky E. Inflammation and Cancer: Is the Link as Simple as We Think? J Invest Dermatol 2005; 124:x-xiv. [PMID: 15955081 DOI: 10.1111/j.0022-202x.2005.23724.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brian J Nickoloff
- Oncology Institute, Cardinal Bernadin Cancer Center, Loyola University Chicago Medical Center, Chicago, Illinois, USA
| | | | | |
Collapse
|
1952
|
de Visser KE, Korets LV, Coussens LM. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 2005; 7:411-23. [PMID: 15894262 DOI: 10.1016/j.ccr.2005.04.014] [Citation(s) in RCA: 573] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 02/25/2005] [Accepted: 04/13/2005] [Indexed: 12/15/2022]
Abstract
Chronic inflammation predisposes tissue to cancer development; however, regulatory mechanisms underlying recruitment of innate leukocytes toward developing neoplasms are obscure. We report that genetic elimination of mature T and B lymphocytes in a transgenic mouse model of inflammation-associated de novo epithelial carcinogenesis, e.g., K14-HPV16 mice, limits neoplastic progression to development of epithelial hyperplasias that fail to recruit innate immune cells. Adoptive transfer of B lymphocytes or serum from HPV16 mice into T and B cell-deficient/HPV16 mice restores innate immune cell infiltration into premalignant tissue and reinstates necessary parameters for full malignancy, e.g., chronic inflammation, angiogenic vasculature, hyperproliferative epidermis. These findings support a model in which B lymphocytes are required for establishing chronic inflammatory states that promote de novo carcinogenesis.
Collapse
Affiliation(s)
- Karin E de Visser
- Cancer Research Institute, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
1953
|
Diedrichs N, Ragot JP, Thede K. A Highly Efficient Synthesis of Rocaglaols by a Novel ?-Arylation of Ketones. European J Org Chem 2005. [DOI: 10.1002/ejoc.200400891] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
1954
|
Prehn RT. The role of mutation in the new cancer paradigm. Cancer Cell Int 2005; 5:9. [PMID: 15854226 PMCID: PMC1090602 DOI: 10.1186/1475-2867-5-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 04/26/2005] [Indexed: 11/16/2022] Open
Abstract
The almost universal belief that cancer is caused by mutation may gradually be giving way to the belief that cancer begins as a cellular adaptation that involves the local epigenetic silencing of various genes. In my own interpretation of the new epigenetic paradigm, the genes epigenetically suppressed are genes that normally serve in post-embryonic life to suppress and keep suppressed those other genes upon which embryonic development depends. Those other genes, if not silenced or suppressed in the post-embryonic animal, become, I suggest, the oncogenes that are the basis of neoplasia. Mutations that occur in silenced genes supposedly go unrepaired and are, therefore, postulated to accumulate, but such mutations probably play little or no causative role in neoplasia because they occur in already epigenetically silenced genes. These mutations probably often serve to make the silencing, and therefore the cancer, epigenetically irreversible.
Collapse
|
1955
|
Gidron Y, Perry H, Glennie M. Does the vagus nerve inform the brain about preclinical tumours and modulate them? Lancet Oncol 2005; 6:245-8. [DOI: 10.1016/s1470-2045(05)70096-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
1956
|
Affiliation(s)
- Derek A Mann
- Liver Group, Division of Infection, Inflammation and Repair, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO166YD, UK.
| | | |
Collapse
|
1957
|
Abstract
The cytotoxicity of chemotherapeutic agents is attributed to apoptosis. Acquired resistance to the effects of chemotherapy has emerged as a significant impediment to effective cancer therapy. One feature that cytotoxic treatments of cancer have in common is their activation of the transcription factor nuclear factor-kappaB (NF-kappaB), which regulates cell survival. NF-kappaB activation suppresses the apoptotic potential of chemotherapeutic agents and contributes to resistance. What evidence is there that inhibitors of NF-kappaB might promote apoptosis in cancer cells and can NF-kappaB inhibitors be used to overcome resistance to chemotherapeutic agents?
Collapse
Affiliation(s)
- Chikashi Nakanishi
- Tokyo Metropolitan Cancer and Infectious Disease Center, Komagome Hospital, 3-18-22, Honkomagome, Bunkyoku, Tokyo 113-8677, Japan.
| | | |
Collapse
|
1958
|
Pinlaor S, Tada-Oikawa S, Hiraku Y, Pinlaor P, Ma N, Sithithaworn P, Kawanishi S. Opisthorchis viverrini antigen induces the expression of Toll-like receptor 2 in macrophage RAW cell line. Int J Parasitol 2005; 35:591-6. [PMID: 15862573 DOI: 10.1016/j.ijpara.2005.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 02/17/2005] [Accepted: 02/18/2005] [Indexed: 12/21/2022]
Abstract
Opisthorchis viverrini infection induces inflammation in and around the bile duct, leading to cholangiocarcinoma in humans. To examine the mechanism of O. viverrini-induced inflammatory response, we assessed the expression of Toll-like receptors (TLRs) in RAW 264.7 macrophage cell line treated with an extract of O. viverrini antigen. Flow cytometry and immunocytochemistry showed that O. viverrini antigen induced the expression of TLR2 but not TLR4. Western blotting and immunocytochemistry revealed that nuclear factor-kappaB (NF-kappaB), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were expressed in RAW 264.7 cells treated with O. viverrini antigen in a dose-dependent manner. These results suggest that O. viverrini induces inflammatory response through TLR2-mediated pathway leading to NF-kappaB-mediated expression of iNOS and COX-2.
Collapse
|
1959
|
Viatour P, Merville MP, Bours V, Chariot A. Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 2005; 30:43-52. [PMID: 15653325 DOI: 10.1016/j.tibs.2004.11.009] [Citation(s) in RCA: 1175] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a transcription factor that has crucial roles in inflammation, immunity, cell proliferation and apoptosis. Activation of NF-kappaB mainly occurs via IkappaB kinase (IKK)-mediated phosphorylation of inhibitory molecules, including IkappaBalpha. Optimal induction of NF-kappaB target genes also requires phosphorylation of NF-kappaB proteins, such as p65, within their transactivation domain by a variety of kinases in response to distinct stimuli. Whether, and how, phosphorylation modulates the function of other NF-kappaB and IkappaB proteins, such as B-cell lymphoma 3, remains unclear. The identification and characterization of all the kinases known to phosphorylate NF-kappaB and IkappaB proteins are described here. Because deregulation of NF-kappaB and IkappaB phosphorylations is a hallmark of chronic inflammatory diseases and cancer, newly designed drugs targeting these constitutively activated signalling pathways represent promising therapeutic tools.
Collapse
Affiliation(s)
- Patrick Viatour
- Laboratory of Medical Chemistry and Human Genetics, CHU, Sart-Tilman, Center for Biomedical Integrated Genoproteomics, University of Liege, Belgium
| | | | | | | |
Collapse
|
1960
|
Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005; 7:211-7. [PMID: 15766659 DOI: 10.1016/j.ccr.2005.02.013] [Citation(s) in RCA: 1289] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Frances Balkwill
- Cancer Research UK, Translational Oncology Laboratory, Barts and The London, Queen Mary's Medical School, EC1M 6BQ London, United Kingdom.
| | | | | |
Collapse
|
1961
|
Ding X, Hiraku Y, Ma N, Kato T, Saito K, Nagahama M, Semba R, Kuribayashi K, Kawanishi S. Inducible nitric oxide synthase-dependent DNA damage in mouse model of inflammatory bowel disease. Cancer Sci 2005; 96:157-63. [PMID: 15771618 PMCID: PMC11160000 DOI: 10.1111/j.1349-7006.2005.00024.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Increased cancer risk occurs in inflammatory bowel disease (IBD) undergoing long-term chronic inflammation. To evaluate whether inducible nitric oxide synthase (iNOS)-dependent DNA damage plays a role in the carcinogenic process triggered by IBD, we prepared a mouse model of IBD induced by transfer of CD45RBhighCD4+ T cells lacking regulatory T cells to female severe combined immunodeficiency (SCID) mice. CD45RBhighCD4+ T cells were isolated from mouse spleen after staining with fluorescein isothiocyanate (FITC)-conjugated anti-CD45RB monoclonal antibody, followed by anti-FITC-conjugated microbeads. This IBD mouse model showed that the bodyweight increased with aging to a lesser extent than non-treated controls, and that the intestine was shortened. Pathological findings of this mouse model, which showed severe inflammation in colon tissues, were similar to IBD patients. Double immunofluorescence technique revealed that both 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were formed mainly in epithelial cells of the IBD mouse model. 8-Nitroguanine was formed in most of 8-oxodG-immunoreactive nuclei of epithelial cells. iNOS, proliferating cell nuclear antigen and p53 protein were also expressed in the colon epithelium. These results indicate that nitrative DNA damage, as well as oxidative DNA damage, is induced in colon epithelial cells of the IBD mouse model followed by proliferation of these cells, which may contribute to colon carcinogenesis.
Collapse
Affiliation(s)
- Xiaohui Ding
- Department of Anatomy, Mie University School of Medicine, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
1962
|
Xu Z, Chen L, Leung L, Yen TSB, Lee C, Chan JY. Liver-specific inactivation of the Nrf1 gene in adult mouse leads to nonalcoholic steatohepatitis and hepatic neoplasia. Proc Natl Acad Sci U S A 2005; 102:4120-5. [PMID: 15738389 PMCID: PMC554825 DOI: 10.1073/pnas.0500660102] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Knockout studies have shown that the transcription factor Nrf1 is essential for embryonic development. Nrf1 has been implicated to play a role in mediating activation of oxidative stress response genes through the antioxidant response element (ARE). Because of embryonic lethality in knockout mice, analysis of this function in the adult knockout mouse was not possible. We report here that mice with somatic inactivation of nrf1 in the liver developed hepatic cancer. Before cancer development, mutant livers exhibited steatosis, apoptosis, necrosis, inflammation, and fibrosis. In addition, hepatocytes lacking Nrf1 showed oxidative stress, and gene expression analysis showed decreased expression of various ARE-containing genes, and up-regulation of CYP4A genes. These results suggest that reactive oxygen species generated from CYP4A-mediated fatty acid oxidation work synergistically with diminished expression of ARE-responsive genes to cause oxidative stress in mutant hepatocytes. Thus, Nrf1 has a protective function against oxidative stress and, potentially, a function in lipid homeostasis in the liver. Because the phenotype is similar to nonalcoholic steatohepatitis, these animals may prove useful as a model for investigating molecular mechanisms of nonalcoholic steatohepatitis and liver cancer.
Collapse
Affiliation(s)
- Zhenrong Xu
- Department of Pathology, University of California, D440 Medical Sciences, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
1963
|
Kim SO, Kundu JK, Shin YK, Park JH, Cho MH, Kim TY, Surh YJ. [6]-Gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-κB in phorbol ester-stimulated mouse skin. Oncogene 2005; 24:2558-67. [PMID: 15735738 DOI: 10.1038/sj.onc.1208446] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
[6]-Gingerol, a pungent ingredient of ginger (Zingiber officinale Roscoe, Zingiberaceae), has a wide array of pharmacologic effects. The present study was aimed at unraveling the molecular mechanisms underlying previously reported antitumor promoting effects of [6]-gingerol in mouse skin in vivo. One of the well-recognized molecular targets for chemoprevention is cyclooxygenase-2 (COX-2) that is abnormally upregulated in many premalignant and malignant tissues and cells. In our present study, topical application of [6]-gingerol inhibited COX-2 expression in mouse skin stimulated with a prototype tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Since the transcription factor nuclear factor-kappaB (NF-kappaB) is known to regulate COX-2 induction, we attempted to determine the effect of [6]-gingerol on TPA-induced activation of NF-kappaB. Pretreatment with [6]-gingerol resulted in a decrease in both TPA-induced DNA binding and transcriptional activities of NF-kappaB through suppression of IkappaBalpha degradation and p65 nuclear translocation. Phosphorylation of both IkappaBalpha and p65 was substantially blocked by [6]-gingerol. In addition, [6]-gingerol inhibited TPA-stimulated interaction of phospho-p65-(Ser-536) with cAMP response element binding protein-binding protein, a transcriptional coactivator of NF-kappaB. Moreover, [6]-gingerol prevented TPA-induced phosphorylation and catalytic activity of p38 mitogen-activated protein (MAP) kinase that regulates COX-2 expression in mouse skin. The p38 MAP kinase inhibitor SB203580 attenuated NF-kappaB activation and subsequent COX-2 induction in TPA-treated mouse skin. Taken together, our data suggest that [6]-gingerol inhibits TPA-induced COX-2 expression in mouse skin in vivo by blocking the p38 MAP kinase-NF-kappaB signaling pathway.
Collapse
Affiliation(s)
- Sue Ok Kim
- College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | |
Collapse
|
1964
|
Friedman SL. Mac the knife? Macrophages- the double-edged sword of hepatic fibrosis. J Clin Invest 2005; 115:29-32. [PMID: 15630440 PMCID: PMC539205 DOI: 10.1172/jci23928] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Progression of hepatic fibrosis requires sustained inflammation leading to activation of stellate cells into a fibrogenic and proliferative cell type, whereas regression is associated with stellate cell apoptosis. The contribution of hepatic macrophages to these events has been largely overlooked. However, a study in this issue of the JCI demonstrates that macrophages play pivotal but divergent roles, favoring ECM accumulation during ongoing injury but enhancing matrix degradation during recovery. These findings underscore the potential importance of hepatic macrophages in regulating both stellate cell biology and ECM degradation during regression of hepatic fibrosis.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York 10029, USA.
| |
Collapse
|
1965
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumours worldwide. The major etiologies and risk factors for HCC development are well defined and some of the multiple steps involved in hepatocarcinogenesis have been elucidated in recent years. Despite these scientific advances and the implementation of measures for early HCC detection in patients at risk, patient survival has not improved during the last three decades. This is due in part to the advanced stage of the disease at the time of clinical presentation, in part due to the limited therapeutic options. These fall into four main categories: (1) surgical interventions, including tumour resection and liver transplantation, (2) percutaneous interventions, including ethanol injection and radiofrequency thermal ablation, (3) transarterial interventions, including embolisation and chemoembolisation and (4) drugs as well as gene and immune therapies. These therapeutic strategies have been evaluated in part in randomised controlled clinical trials that are the basis for therapeutic recommendations. While surgery and percutaneous as well as transarterial interventions are effective in patients with limited disease (1-3 lesions, < 5 cm in diameter) and compensated underlying liver disease (cirrhosis Child A), at the time of diagnosis more than 80% patients present with multicentric HCC and advanced liver disease or comorbidities that restrict the therapeutic measures to best supportive care. In order to reduce morbidity and mortality from HCC, therefore, early diagnosis and the development of novel systemic therapies for advanced disease, including drugs, gene and immune therapies as well as primary HCC prevention are of paramount importance. Further, secondary HCC prevention after successful therapeutic interventions needs to be improved in order to make an impact on the survival of patients with HCC. New technologies, including gene expression profiling and proteomic analyses, should further elucidate the molecular events underlying HCC development and identify novel diagnostic markers as well as therapeutic and preventive targets.
Collapse
Affiliation(s)
- Hubert E Blum
- Department of Medicine II, University of Freiburg, Hugstetter Strasse 55, D-79106 Freiburg, Germany.
| |
Collapse
|
1966
|
Li X, Le Beau MM, Ciccone S, Yang FC, Freie B, Chen S, Yuan J, Hong P, Orazi A, Haneline LS, Clapp DW. Ex vivo culture of Fancc-/- stem/progenitor cells predisposes cells to undergo apoptosis, and surviving stem/progenitor cells display cytogenetic abnormalities and an increased risk of malignancy. Blood 2005; 105:3465-71. [PMID: 15644418 PMCID: PMC1895016 DOI: 10.1182/blood-2004-06-2483] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Current strategies for genetic therapy using Moloney retroviruses require ex vivo manipulation of hematopoietic cells to facilitate stable integration of the transgene. While many studies have evaluated the impact of ex vivo culture on normal murine and human stem/progenitor cells, the cellular consequences of ex vivo manipulation of stem cells with intrinsic defects in genome stability are incompletely understood. Here we show that ex vivo culture of Fancc(-/-) bone marrow cells results in a time-dependent increase in apoptosis of primitive Fancc(-/-) progenitor cells in conditions that promote the proliferation of wild-type stem/progenitor cells. Further, recipients reconstituted with the surviving Fancc(-/-) cells have a high incidence of cytogenetic abnormalities and myeloid malignancies that are associated with an acquired resistance to tumor necrosis factor alpha (TNF-alpha). Collectively, these data indicate that the intrinsic defects in the genomic stability of Fancc(-/-) stem/progenitor cells provide a selective pressure for cells that are resistant to apoptosis and have a propensity for the evolution to clonal hematopoiesis and malignancy. These studies could have implications for the design of genetic therapies for treatment of Fanconi anemia and potentially other genetic diseases with intrinsic defects in genome stability.
Collapse
Affiliation(s)
- Xiaxin Li
- Cancer Research Institute, 1044 W Walnut Street, Rm 408, Indianapolis, IN 46202-5254, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1967
|
Abstract
Cancers arise as a consequence of the accumulation of multiple genetic mutations in a susceptible cell, resulting in perturbation of regulatory networks that control proliferation, survival, and cellular function. Here, the sources of cellular stress that can cause oncogenic mutations and the responses of cells to DNA damage are reviewed. The role of different repair pathways and the potential for cell- and tissue-specific reliance on individual repair mechanisms are discussed. Evidence for cell- and tissue-specific activation of p53-mediated growth arrest and apoptosis after exposure to an individual genotoxin is assessed and some of the potential mediators of these different responses are provided. These cell- and tissue-specific responses to particular forms of DNA damage are likely to be key determinants of tissue-specific tumour susceptibility, and there is good evidence for genetic variations in these responses. The role that genotoxic agents play in altering the microenvironment to produce indirect effects on tumourigenesis through altered production of free radicals and cytokines that are characteristic of inflammatory-type processes is also evaluated. Changes to the microenvironment as direct or indirect effects of genotoxic stress can be involved in both tumour initiation and progression and may even be a prerequisite for tumourigenesis. Therefore, tumour susceptibility after endogenous or exogenous genotoxic stress represents a balance between cell-intrinsic responses of target cells and changes to the microenvironment. A fuller understanding of cell- and tissue-specific responses, alterations to the microenvironment, and genetic modifiers of these responses could lead to novel prevention and therapeutic strategies for common forms of human malignancy.
Collapse
Affiliation(s)
- Philip J Coates
- Cancer Biology and Clinical Pathology Unit, Division of Pathology and Neurosciences, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
| | | | | |
Collapse
|
1968
|
Friedman SL. Mac the knife? Macrophages– the double-edged sword of hepatic fibrosis. J Clin Invest 2005. [DOI: 10.1172/jci200523928] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
1969
|
Mezyk-Kopeć R, Bzowska M, Bzowska M, Mickowska B, Mak P, Potempa J, Bereta J. Effects of elastase and cathepsin G on the levels of membrane and soluble TNFα. Biol Chem 2005; 386:801-11. [PMID: 16201876 DOI: 10.1515/bc.2005.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neutrophil elastase (NE) and cathepsin G (CG), the proteolytic enzymes localized in azurophil granules of neutrophils (PMN), are involved in PMN responses to various stimuli. When released at sites of inflammation, they participate in the degradation of numerous proteins involved in the regulation of the immune response. In this study, we employed ADAM17(-/-) fibroblasts stably transfected with cDNA of human pro-tumor necrosis factor alpha (proTNFalpha) (ADAM17(-/-)TNF(+)) to investigate the effects of NE and CG on shedding and degradation of TNFalpha. Both NE and CG were found to diminish the level of membrane TNFalpha (mTNFalpha) as measured by flow cytometry. This process was accompanied by the accumulation of biologically active soluble TNFalpha (sTNFalpha) in the culture medium, as determined by an increase in both the cytotoxic activity of TNFalpha and its ability to serve as a co-stimulator in the induction of inducible nitric oxide synthase (iNOS). However, in contrast to CG, NE at high concentrations was able to degrade sTNFalpha released from the cell surface. Using soluble recombinant human TNFalpha, we identified Val(93)-Ala(94) and Val(117)-Glu(118) as the NE cleavage sites within the sTNFalpha molecule. Taken together, the ability of NE and CG to modulate levels of membrane and soluble forms of TNFalpha may contribute to the proinflammatory activity of neutrophils.
Collapse
Affiliation(s)
- Renata Mezyk-Kopeć
- Department of Cell Biochemistry, Faculty of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | | | | | | | | | | | | |
Collapse
|
1970
|
Nishikori M. Classical and Alternative NF-.KAPPA.B Activation Pathways and Their Roles in Lymphoid Malignancies. J Clin Exp Hematop 2005. [DOI: 10.3960/jslrt.45.15] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
1971
|
Surh YJ, Kundu JK. Signal transduction network leading to COX-2 Induction: a road map in search of cancer chemopreventives. Arch Pharm Res 2005; 28:1-15. [PMID: 15742801 DOI: 10.1007/bf02975128] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer is still a major global health concern even after an everlasting strive in conquering this dread disease. Emphasis is now given to chemoprevention to reduce the risk of cancer and also to improve the quality of life among cancer afflicted individuals. Recent progress in molecular biology of cancer has identified key components of the cellular signaling network, whose functional abnormality results in undesired alterations in cellular homeostasis, creating a cellular microenvironment that favors premalignant and malignant transformation. Multiple lines of evidence suggest an elevated expression of cyclooxygenase-2 (COX-2) is causally linked to cancer. In response to oxidative/pro-inflammatory stimuli, turning on unusual signaling arrays mediated through diverse classes of kinases and transcription factors results in aberrant expression of COX-2. Population-based as well as laboratory studies have explored a broad spectrum of chemopreventive agents including selective COX-2 inhibitors and a wide variety of anti-inflammatory phytochemicals, which have been shown to target cellular signaling molecules as underlying mechanisms of chemoprevention. Thus, unraveling signaling pathways regulating aberrant COX-2 expression and targeted blocking of one or more components of those signal cascades may be exploited in searching chemopreventive agents in the future.
Collapse
Affiliation(s)
- Young-Joon Surh
- National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, Seoul 151-742, Korea.
| | | |
Collapse
|
1972
|
|
1973
|
Kundu JK, Surh YJ. [A rare cause of neonatal exudative enteropathy: congenital Langerhans cell histiocytosis (histiocytosis X)]. Mutat Res 1992; 591:123-46. [PMID: 16102784 DOI: 10.1016/j.mrfmmm.2005.04.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 04/12/2005] [Accepted: 04/13/2005] [Indexed: 01/09/2023]
Abstract
A case of Langerhans cell histiocytosis is reported in a neonate. Intestinal involvement was especially diffuse and severe, presenting as a protein-losing enteropathy secondary to massive mucosal infiltration by histiocytic cells. The infant died at the age of 3 1/2 months despite therapy with corticosteroids and vinblastine then etoposide and interferon. Such an outcome confirmed the severity of forms with neonatal onset and digestive involvement.
Collapse
Affiliation(s)
- Joydeb Kumar Kundu
- National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, Shinlim-dong, Kwanak-gu, Seoul 151-742, South Korea
| | | |
Collapse
|